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ABSTRACT

In this paper, we propose SWIFT, a lightweight model that is not only powerful,
but also efficient in deployment and inference for Long-term Time Series Fore-
casting (LTSF). Our model is based on two key points: 1. decomposition of se-
quences using wavelet transform. 2. using only one shared single layer for sub-
series’ mapping. We conduct comprehensive experiments, and the results show
that SWIFT achieves state-of-the-art (SOTA) performance on multiple datasets,
offering a promising method for edge computing and deployment in this task.
Moreover, it is noteworthy that the number of parameters in SWIFT is only 25%
of what it would be with a single-layer linear model for time-domain prediction.

1 INTRODUCTION

Long-term time series forecasting (LTSF) finds broad applications across various domains, includ-
ing energy management, financial market analysis, weather prediction, traffic flow monitoring, and
healthcare monitoring. Accurate prediction is crucial for them. At the same time, many applica-
tions require real-time prediction on edge devices, e.g., in latency-sensitive tasks such as energy
scheduling or intelligent transportation systems, where models need to be responsive to real-world
demands, and where edge computing and fast inference are critical. Additional challenges are posed
under conditions of limited computational resources (Deng et al., 2024).

Achieving precise forecasts typically relies on powerful yet complex deep learning models, such as
RNNs (Grossberg, 2013), LSTMs (Hochreiter & Schmidhuber, 1997), TCNs (Hewage et al., 2020;
Wu et al., 2022), and Transformers (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022). Thanks
to the self-attention mechanism, Transformers can capture long-range dependencies in sequences,
which improves prediction accuracy and makes it the most powerful of the existing LTSF forecast-
ers. However, these models also encounter several challenges stemming from their computational
complexity and the large scale of their model weights, which restrict their practical applicability,
particularly in environments with limited computational resources.

Since recently a solid paper (Zeng et al., 2023) shows that even a simple one-layer linear model
can outperforms Transformer-based models in almost all cases, more and more efficient linear fore-
casters are proposed (Das et al., 2023; Liu et al., 2023; Xu et al., 2024). While improving predic-
tion accuracy, these linear forecasters are constantly becoming more efficient, with faster inference
speed and less deployment costs, pushing the boundary of this field forward. Recently, FITS (Xu
et al., 2024) modeling time-series with a complex-valued neural network, surpassed several exist-
ing Transformer models in both inference speed and forecasting performance with 10k parameters,
establishing itself as a benchmark in the field.

However, one disadvantage of interpolation models like FITS is that the output will contain the
length of the input, which creates parameter redundancy for cases where the input window is long.
Besides, most current lightweight models are based on Fast Fourier Transforms (FFT) which can
be used to extract periodic features and trends in time-series. But FFT is not suitable for handling
non-smooth data, and the data generated in real-world applications are generally non-stationary.

Motivated by the above observations, we present SWIFT, a lightweight model based on first order
wavelet transform Gupta et al. (2021) and only one linear layer. For the first time, we deal with the
time-series only in the time-frequency domain, replacing the FFT with Discrete Wavelet Transform
(DWT). SWIFT achieves good performance on both smooth and non-smooth data, and it is approx-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

imately 100K times lighter than some mainstream models. Even when compared to a lightweight
model like FITS, our model still has only 15% of its number of parameters.

In summary, our contributions can be delineated as follows:

• We propose SWIFT, a powerful lightweight model for time-series forecasting tasks, which
is four times smaller than the single-layer linear model for time-domain prediction.

• We present the first method for processing time-series only in the time-frequency domain,
applicable to both smooth and non-smooth series.

• We show that wavelet coefficients in different frequency bands can be mapped through the
same representation space after aggregating features in a convolution layer.

• We conduct extensive experiments on predicting long multivariate sequences on several
real-world benchmarks showing the superiority of our method. In addition, we have done
experiments on anomaly detection tasks, demonstrating the strong generalization of our
method.

2 RELATED WORK

2.1 EFFICIENT LINEAR FORECASTERS

Since (Zeng et al., 2023) shows that a simple one-layer linear model can outperforms Transformer
forecasters (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022) in almost all cases, there has been
a rapid emergence of linear forecasters (Oreshkin et al., 2020; Das et al., 2023; Liu et al., 2023) in
LTSF. The impressive performance and efficiency continuously challenge this direction.

Recently, FITS (Xu et al., 2024) introduced a frequency-domain interpolation strategy that utilizes
low-pass filters and FFT (Brigham & Morrow, 1967) for time series modeling. By maintaining a
parameter scale at 10k level, FITS surpassed several existing Transformer models in both inference
speed and forecasting performance, establishing itself as a benchmark in the field.

However, FFT assumes that signals are stationary, limiting its ability to capture the temporal lo-
calization of transient or non-stationary signals (Liu et al., 2022). Furthermore, its approach of
applying a global frequency domain transformation to the entire signal often results in suboptimal
performance when dealing with strong boundary effects. Meanwhile, the limited representational
capacity of a single-layer linear model typically necessitates a longer look-back window to prevent
underfitting and distribution shifts. The parameter count of FITS is primarily determined by the
length of the look-back window due to its interpolation-based prediction approach. Consequently,
The efficiency of FITS decreases significantly as the lookback window increases.

Our proposed model, SWIFT, aims to enhance the field of efficient time series forecasting through
the introduction of DWT. This approach not only improves SWIFT’s capacity to handle non-
stationary signals but also significantly reduces model’s parameter count, thereby enhancing effi-
ciency while preserving predictive performance.

2.2 DWT METHOD

As a powerful method for time-frequency analysis, DWT is widely used in tasks dealing with time
series. (Yang et al., 2022) decomposed the time-series using wavelet decomposition and then utilized
CNN and LSTM for prediction. FEDformer (Zhou et al., 2022) combines Wavelet Transform with
frequency enhanced strategy and attention mechanism to capture long range dependencies. Sasal
et al. (2022) utilize a maximal overlap discrete wavelet transformation and build a local transformer
model for time-series forecasting. Besides, DWT is often used for anomaly detection. For instance,
(Bhattacharya et al., 2022) used wavelet transform for signal denoising and damage localization. Re-
cently, (Arabi et al., 2024) proposed a method for data augmentation in time-series prediction tasks,
which is used to obtain more diverse sequences by eliminating or swapping wavelet coefficients.

However, none of these approaches provided significant insight into the wavelet transform for LTSF.
In our work, we explored the wavelet coefficients in depth and found that the high-frequency coeffi-
cients and low-frequency coefficients of the historical wavelet can be mapped to the coefficients of
the future wavelet in the same representation space.
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3 PRELIMINARY

3.1 LTSF PROBLEM DEFINITION

In multivariate LTSF, time series data contain multiple variables or channels at each time step. Given
historical values X = {x1, . . . ,xLx

| xi ∈ Rd} where d represents the number of variables and Lx
represents the length of the lookback window, the goal of LTSF is to predict future values Y =
{y1, . . . ,yLy

| yi ∈ Rd}. The output length Ly is usually much longer than the length of the
lookback window Lx, and the feature dimension is not limited to univariate case (d ≥ 1).

3.2 DWT AND TIME-FREQUENCY DOMAIN

With the discrete wavelet transform, the signal is decomposed into a series of linear combinations
of wavelet functions and scale functions, the coefficients of each combination being the wavelet
coefficients. In DWT, the scale function ϕ(t) and wavelet function ψ(t) are related as follows:

ϕ(t) =
∑
n

hϕ[n]
√
2ϕ(2t− n)

ψ(t) =
∑
n

hψ[n]
√
2ϕ(2t− n)

(1)

At the same time, we are able to obtain recursive formulas for approximation coefficients Wϕ[j, k]
and detail coefficients Wψ[j, k], where j denotes the order of the wavelet decomposition and k de-
notes the shift in the time domain.

Wϕ[j, k] = hϕ[−n] ∗Wϕ[j + 1, n]

Wψ[j, k] = hψ[−n] ∗Wϕ[j + 1, n]
(2)

In SWIFT, We choose the Haar wavelet and perform only the first order decomposition (j = 1), and
its filters corresponding to the scale and wavelet functions are:

hϕ[n] = {1/
√
2, 1/

√
2}

hψ[n] = {1/
√
2,−1/

√
2}

(3)

We select Haar because it can make the transform fast and stable, which increases the speed of
reasoning across our framework.

4 PROPOSED METHOD

4.1 STRUCTURE OVERVIEW

We propose the SWIFT which is shown in Figure 1. Firstly, the time-series is decomposed by 1st or-
der DWT. Then the high-frequency component and the low-frequency component are concatenated
and mapped using the same linear layer after passing through the convolutional layer. Finally, the
prediction is obtained by performing IDWT on the new components obtained from the mapping.

4.2 SWIFT COMPONENTS

DWT decomposition Given an input sequence X ∈ RN×T , where T is the length of lookback
window, and N is the number of variables, we apply a single-level DWT:

YL,YH = DWT(X) (4)

where YL ∈ RN×T/2 represents the approximation coefficients (low-frequency components), and
YH ∈ RN×T/2 represents the detail coefficients (high-frequency components). The low-frequency
component, obtained by convolving the input signal with a low-pass filter, captures the overall trend
and smooth variations in the original signal. The high-frequency component, obtained by convolving

3
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Figure 1: Overall structure of SWIFT. All mapping and transformation operations are represented
by gray boxes. The low-frequency component, the high-frequency component, and the mapped
transition component are represented by green, blue, and pink boxes, respectively.

the input signal with a high-pass filter, represents the rapid variations, discontinuities, and fine-scale
structures in the signal.

We employ a novel sub-series mapping strategy that leverages the multi-resolution analysis capa-
bilities of DWT. This approach allows us to capture and project both low-frequency trends and
high-frequency details of the input time series efficiently. Our key innovation lies in the unified
mapping of both low and high-frequency components. We concatenate these two components along
a new dimension to gain the time-frequency representation of whole series:

Y = [YL;YH] ∈ RN×2×T/2 (5)

After obtaining the representation Y, SWIFT extracts information from this representation by means
of convolution and Mapping. We will elaborate on this in section 4.2 and section 4.2.

DWTDWT

!H!H

!L!L

!!

Figure 2: We use discrete wavelet transform to divide original series into low-frequency component
and high-frequency component.

Convolution layer In our experiments, it has been found that there is some commonality in the
different band coefficients, with the potential to map through the same representation space. In
addition, the timing characteristics of the coefficient vector need to further aggregated. Therefore,
we add a 1D convolutional layer with input channel 2 and output channel 2. By presetting the kernel
size and stride length, the sequence length before and after convolution remains constant.
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In SWIFT, the convolution layer has three main functions: (i) Convolution layer can denoise the
signal and enables feature enhancement. (ii) Convolution layer can aggregate local information and
capture long and short term dependencies of time-series. (iii) Convolutional layers enable cross-
band information fusion, facilitating coefficients from different bands to share a linear layer.

After the aggregation of information, we are able to get new components:

YC = Conv(Y) +Y ∈ RN×2×T/2 (6)

Sub-series mapping strategy As mentioned in the previous sections, we use DWT to handle the
time series and divide it into two sub-series (YL and YH) by 1st order decomposition. The obtained
components are concatenated as the time-frequency representation of whole sequence Y.

Single-layer linear models, despite their widespread use, are constrained by inherent limitations
in their representational capacity. These limitations often manifest as underfitting or overfitting
phenomena, particularly when applied to complex, non-stationary time series data. Such models are
susceptible to being disproportionately influenced by specific patterns within the data, potentially
leading to degraded predictive performance.

To address these challenges and enhance the robustness of single-layer linear models, while simul-
taneously reducing the model’s parameter count and improving inference speed, we propose a novel
mapping strategy. Our approach employs a shared weight matrix for mapping both low-frequency
and high-frequency components of the input series:

Y′ = YCW + b (7)

where W ∈ RT/2×T ′/2 is the weight matrix, and b ∈ RT ′/2 is the bias vector. The resulting
Y′ ∈ RN×2×T ′/2, where T ′ is the prediction length. After mapping, we reshape Y′ back into
approximation and detail coefficients, and apply the Inverse Discrete Wavelet Transform (IDWT) to
obtain the final prediction:

Y′
L = Y′

:,0,:,Y
′
H = Y′

:,1,:

Ŷ = IDWT(Y′
L,Y

′
H), Ŷ ∈ RN×T ′ (8)

The shared mapping strategy has several advantages. (1) It enhances the robustness of the model by
jointly handling the low and high frequency components, reduces the sensitivity to the presence of
a single specific pattern in the time series, and mitigates the occurrence of overfitting. The shared
weights encourage the model to learn generalized features applicable to both frequency ranges, thus
enhancing the robustness of the model. (2) It improves parameter efficiency by using a single weight
matrix for both components, which significantly reduces the total number of parameters, improves
the computational efficiency of the model and speeds up inference time compared to mapping the
low-frequency and high-frequency components separately. Together, these advantages enhance the
prediction performance in time series forecasting involving complex, non-stationary data.

5 EXPERIMENT

5.1 FORECASTING RESULTS

Our proposed model framework aims to improve performance and efficiency in LTSF, and we thor-
oughly evaluate SWIFT on various time series forecasting applications.

Datasets We extensively include 7 real-world datasets in our experiments, including, Traffic, Elec-
tricity, Weather, ETT (4 subsets) used by Autoformer (Wu et al., 2021). We summarize the charac-
teristics of these datasets in appendix.

Baselines We carefully choose well-acknowledged forecasting models as our benchmark, includ-
ing (1) Transformer-based methods: FEDformer (Zhou et al., 2022) and PatchTST (Nie et al., 2023).
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(2) Efficient Linear-based methods: DLinear (Zeng et al., 2023), FITS (Xu et al., 2024). (3): TCN-
based methods: TimesNet (Wu et al., 2022). We rerun all the experiment with code and script
provided by their official implementation.

Implementation details Our method is trained with the ADAM optimizer (Kingma & Ba, 2015),
using OneCycleLR strategy to adjust the learning rate. We fix the length of lookback window as
720, and we set the predicted window among {96, 192, 336, 720}. As for the kernel size of the
convolution layer, we choose suitable size in {3, 9, 13, 17}.

Evaluation To avoid information leakage, We choose the hyper-parameter based on the perfor-
mance of the validation set. We follow the previous works (Zhou et al., 2021; Zeng et al., 2023;
Xu et al., 2024) to compare forecasting performance using Mean Squared Error (MSE) as the core
metrics.

Main results Comprehensive forecasting results are listed in Table 1 and Table 2 with the best in
bold and the second underlined. The lower MSE indicates the more accurate prediction result. As
shown in table 1 and table 2, SWIFT performs well in the forecasting task. Compared to FITS, the
most powerful and efficient model currently, SWIFT achieves comparable or even superior perfor-
mance in all 7 datasets.

Table 1: Long-term forecasting results with fixed lookback length T = 720 on ETT dataset in MSE.
The best result is highlighted in bold, and the second best is highlighted with underline. IMP is
the improvement between SWIFT and the second best/ best result, where a larger value indicates a
better improvement. Most of the STD are under 5e-4 and shown as 0.000 in this table.

Dataset ETTh1 ETTh2 ETTm1 ETTm2

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

FEDFormer 0.375 0.427 0.459 0.484 0.340 0.433 0.508 0.480 0.362 0.393 0.442 0.483 0.189 0.256 0.326 0.437
TimesNet 0.384 0.436 0.491 0.521 0.340 0.402 0.452 0.462 0.338 0.374 0.410 0.478 0.187 0.249 0.321 0.408
Dlinear 0.384 0.443 0.446 0.504 0.282 0.350 0.414 0.588 0.301 0.335 0.371 0.426 0.171 0.237 0.294 0.426

PatchTST 0.385 0.413 0.440 0.456 0.274 0.338 0.367 0.391 0.292 0.330 0.365 0.419 0.163 0.219 0.276 0.368
FITS 0.379 0.413 0.433 0.430 0.271 0.331 0.354 0.377 0.302 0.337 0.366 0.415 0.162 0.216 0.268 0.348

SWIFT 0.367 0.402 0.429 0.433 0.267 0.328 0.351 0.381 0.305 0.335 0.363 0.411 0.161 0.214 0.267 0.348
STD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
IMP 0.002 0.011 0.004 -0.003 0.004 0.003 0.03 -0.004 -0.013 -0.005 0.003 0.004 0.001 0.002 0.001 0.000

Table 2: Long-term forecasting results with fixed lookback length T = 720 on three popular datasets
in MSE. The best result is highlighted in bold and the second best is highlighted with underline. IMP
is the improvement between SWIFT and the second best/ best result, where a larger value indicates
a better improvement. Most of the STD are under 5e-4 and shown as 0.000 in this table.

Dataset Weather Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720

FEDformer 0.246 0.292 0.378 0.447 0.188 0.197 0.212 0.244 0.573 0.611 0.621 0.630
TimesNet 0.172 0.219 0.280 0.365 0.168 0.184 0.198 0.220 0.593 0.617 0.629 0.640
Dlinear 0.174 0.217 0.262 0.332 0.140 0.153 0.169 0.204 0.413 0.423 0.437 0.466

PatchTST 0.151 0.195 0.249 0.321 0.129 0.149 0.166 0.210 0.366 0.388 0.398 0.457
FITS 0.143 0.186 0.236 0.307 0.134 0.149 0.165 0.203 0.385 0.397 0.410 0.448

SWIFT 0.142 0.185 0.236 0.308 0.133 0.148 0.164 0.203 0.385 0.396 0.410 0.448
STD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
IMP 0.001 0.001 0.000 -0.001 -0.004 0.001 0.001 0.000 -0.019 -0.008 -0.012 0.009

Table 3 presents the number of trainable parameters and MACs for various Linear-based time series
forecasting (TSF) models using a look-back window of 720 and a forecasting horizon of 96 on the
Electricity dataset. The table clearly demonstrates the exceptional efficiency of SWIFT compared
to other models. Among all efficient models, SWIFT stands out with significantly fewer parameters
and much faster training times. SWIFT requires only 15% of the parameters of FITS and 60% of its
MACs, while achieving comparable or even superior performance to these state-of-the-art efficient
forecasting models. It is worth emphasizing that SWIFT’s parameter count is also much lower than
Dlinear, which has 139.7K parameters. Moreover, while FITS’ parameter count increases rapidly
when using long look-back windows for forecasting, SWIFT does not exhibit this issue.
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Table 3: Number of trainable parameters, MACs, and training time of Linear-based models under
look-back window=720 and forecasting horizon=96 on the Electricity dataset.

Model Parameters MACs Train./epoch (GPU) Train./epoch (CPU)

DLinear 138.4k 1449.58 M 15.811s 27.307s
FITS 115.8k 4759.63 M 25.070s 75.339s

SWIFT 17.4k 2854.79 M 16.833s 65.853s

Ablations We did two main ablation experiments, which is shown in table 4 and table 5.

We chose four datasets from ETT for the convolution layer ablation experiments. Obviously, the
role of the convolution layer in our model is crucial, which can be proved by the overall increase
in performance. In SWIFT, the convolution layer not only denoises sequences and captures timing
dependencies, but also enables cross-band feature integration.

Table 4: Model performance before and after adding convolution layers. IMP is the improvement
between with Conv. and without Conv., where a larger value indicates a better improvement.

Dataset ETTh1 ETTh2 ETTm1 ETTm2

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

+Conv. 0.367 0.402 0.429 0.433 0.267 0.328 0.351 0.381 0.305 0.335 0.363 0.411 0.161 0.214 0.267 0.348
w/o 0.372 0.418 0.446 0.446 0.276 0.337 0.360 0.388 0.310 0.346 0.367 0.414 0.164 0.216 0.273 0.352

IMP 0.005 0.016 0.017 0.013 0.009 0.009 0.009 0.007 0.005 0.011 0.004 0.003 0.003 0.002 0.006 0.004

Table 5 shows that the high-frequency and low-frequency components obtained after wavelet de-
composition are able to share a linear layer for mapping, which does not result in performance loss.
After conducting an in-depth study, we came to the following two conclusions: (i) The components
of different frequency bands obtained after DWT may have some underlying feature correlation,
so they can be represented and mapped in the same feature space. (ii) Convolution layer enables
cross-band feature fusion, which is shown in table 4.

Table 5: IMP is the improvement between with Share and Split result, where a larger value
indicates a better improvement. Share corresponds to the use of only one linear layer, while Split
corresponds to the use of one linear layer for each frequency band.
Dataset ETTh1 ETTh2 ETTm1 ETTm2

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Share 0.367 0.402 0.429 0.433 0.267 0.328 0.351 0.381 0.305 0.335 0.363 0.411 0.161 0.214 0.267 0.348
Split 0.368 0.402 0.428 0.434 0.266 0.329 0.353 0.380 0.305 0.334 0.363 0.412 0.162 0.212 0.266 0.348
IMP 0.001 0.000 -0.001 0.001 -0.001 0.001 0.002 -0.001 0.000 -0.001 0.000 0.001 0.001 -0.002 -0.001 0.000

5.2 ANOMALY DETECTION RESULTS

Datasets We use 4 benchmark datasets used by (Xu et al., 2022): SMD (Server Machine Dataset),
PSM (Polled Server Metrics), MSL (Mars Science Laboratory rover) and SMAP (Soil Moisture
Active Passive satellite).

Baseline We compare SWIFT with models such as TimesNet (Wu et al., 2022), Anomaly Trans-
former (Xu et al., 2022), THOC (Shen et al., 2020), Omnianomaly (Su et al., 2019), DGHL (Challu
et al., 2022). Following TimesNet, we also compare the anomaly detection performance with other
models (Zeng et al., 2023).

Main results Table 6 demonstrates the performance of SWIFT on various datasets.SWIFT
achieves near-perfect F1 scores of 99.92% and 96.487% on the SMD and PSM datasets, respec-
tively, and achieves about 2.5% outperformance on PSM compared to FITS, demonstrating its high-
precision performance in anomaly detection. By introducing the time-frequency domain, SWIFT
can easily identify the anomalies that are difficult to recognize in the time domain, including the
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anomalies that introduce unexpected time-frequency components. In contrast, models such as
TimesNet, Anomaly Transformer and Stationary Transformer do not perform as well as SWIFT
on these datasets.

However, SWIFT performs relatively low on the SMAP and MSL datasets. Due to the binary event
data nature of these datasets, time-frequency feature representations may have difficulty capturing
these features effectively. In this case, time-domain modeling is more desirable because the raw
data format is already compact enough. As a result, models designed for anomaly detection, such as
THOC and Omni Anomaly, achieve higher F1 scores on these datasets.

It is worth noting that SWIFT has an extremely low number of parameters ranging from 0.625k-
2.5k for the anomaly detection task. Such a feature allows SWIFT to be deployed on almost any
edge device. In addition, SWIFT’s inference speed is impressive, reaching sub-millisecond levels,
much faster than the latency associated with larger models or communication overheads. This speed
underscores SWIFT’s suitability as a first-response tool for rapid detection of critical errors.

Table 6: Anomaly detection result of F1-scores on 4 datasets. The best result is highlighted in bold,
and the second best is highlighted with underline.
Models SWIFT FITS TimesNet Anomaly THOC Omni Stationary DGHL OCSVM IForest LightTS Dlinear

SMD 99.92 99.95 85.81 92.33 84.99 85.22 84.72 N/A 56.19 53.64 82.53 77.1
PSM 96.47 93.96 97.47 97.89 98.54 80.83 97.29 N/A 70.67 83.48 97.15 93.55

SMAP 68.16 70.74 71.52 96.69 90.68 86.92 71.09 96.38 56.34 55.53 69.21 69.26
MSL 58.51 78.12 85.15 93.59 89.69 87.67 77.5 94.08 70.82 66.45 78.95 84.88

6 CONCLUSION AND FUTURE WORK

In this paper, we propose SWIFT for time series analysis, an efficient linear-based model with
performance comparable to state-of-the-art models that are typically several orders of magnitude
larger. In future work, we plan to evaluate SWIFT in more real-world scenarios, such as in anomaly
detection and classification tasks, and to improve its interpretability. In addition, we plan to explore
large neural networks in the time-frequency domain to perform scaling up operations on SWIFT and
improve its prediction performance, such as large transformer models based on DWT.
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