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Abstract

The goal of this paper is to develop a practi-
cal and general-purpose approach to construct
confidence intervals for differentially private
parametric estimation. We find that the para-
metric bootstrap is a simple and effective so-
lution. It cleanly reasons about variability
of both the data sample and the randomized
privacy mechanism and applies “out of the
box” to a wide class of private estimation rou-
tines. It can also help correct bias caused by
clipping data to limit sensitivity. We prove
that the parametric bootstrap gives consistent
confidence intervals in two broadly relevant
settings, including a novel adaptation to linear
regression that avoids accessing the covariate
data multiple times. We demonstrate its effec-
tiveness for a variety of estimators, and find
that it provides confidence intervals with good
coverage even at modest sample sizes and per-
forms better than alternative approaches.

1 Introduction

Differential privacy provides a rubric for drawing infer-
ences from data sets without compromising the privacy
of individuals.

This paper is about privately constructing confidence in-
tervals. In the non-private case, approximate methods
based on asymptotic normality or the bootstrap (Efron,
1979) apply to a wide range of models and are very
widely used in practice. In the private case, such “swiss
army knife” methods are hard to find. The situation
is complicated by the fact that private estimation pro-
cedures are necessarily randomized, which leads to a
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distinct source of randomness (“privacy noise”) in ad-
dition to the usual random draw of a finite sample
from a population (“sampling noise”). We find experi-
mentally that asymptotic methods are significantly less
effective in private settings, due to privacy noise that
becomes negligible only for for very large sample sizes
(Section @ Bootstrap approaches face the challenge
of incurring privacy costs by accessing the data many
times (Brawner and Honaker| 2018]).

This paper advocates using the parametric bootstrap as
a simple and effective method to construct confidence
intervals for private statistical estimation. The para-
metric bootstrap resamples data sets from an estimated
parametric model to approximate the distribution of
the estimator. It is algorithmically simple, can be
used with essentially any private estimator, and cleanly
reasons about both sampling noise and privacy noise.
Unlike the traditional bootstrap, it is based on post-
processing and avoids accessing the data many times,
so it often has little or no privacy burden. By reason-
ing about the distribution of a finite sample, it makes
fewer assumptions than purely asymptotic methods and
significantly mitigates the problem of non-negligible
privacy noise. The parametric bootstrap can also help
correct bias in private estimation caused by artificially
bounding data to limit sensitivity.

We first introduce the parametric bootstrap and dis-
cuss its application to private estimation, including
methods to construct confidence intervals and correct
bias. We then review parametric bootstrap theory,
and apply the parametric bootstrap to obtain provably
consistent confidence intervals in two private estima-
tion settings—exponential families and linear regression
sufficient statistic perturbation (SSP)—as well as an
empirical demonstration for the “one posterior sample”
(OPS) method (Wang et all 2015; [Foulds et al.| [2016;
Zhang et al.,|2016|). These demonstrate the broad appli-
cability the parametric bootstrap to private estimation.

One limitation of the parametric bootstrap is the re-
striction to fully parametric estimation. For example,
it doesn’t apply directly to regression problems that do
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not have a parametric model for covariates, and may
not be appropriate very complex data. In our linear
regression application, we contribute a novel hybrid
bootstrap approach to circumvent this limitation; the
resulting method is easy to use and simultaneously esti-
mates regression coeflicients and constructs confidence
intervals with good coverage properties. A second limi-
tation is computational cost, which scales with the data
size. For small or medium data sets, the cost is likely
manageable. For very large ones, cheap asymptotic
methods will often be adequate (see Section |7} for ex-
ponential families and linear regression with sufficient
statistic perturbation, the asymptotic distributions are
a relatively simple byproduct of our bootstrap theory).
However, it is unknown in general how large data must
be for asymptotic methods to perform well.

2 Background

Differential privacy is a formal definition to capture
the notion that, to maintain privacy, the output of an
algorithm should remain nearly unchanged if the data
of one individual changes. Say that two data sets X
and X’ of size n are neighbors if they differ in exactly
one data record.

Definition 1 (Differential privacy, Dwork et al.20006).
A randomized algorithm A satisfies e-differential pri-
vacy (e-DP) if, for neighboring data sets X and X',
and any subset O C Range(A),

Pr[A(X) € O] < exp(e) Pr[A(X") € O].

One common way to achieve differential privacy is by
injecting calibrated noise onto the statistics computed
from the data. Let f be any function that maps data
sets to R?. The magnitude of noise required to privatize
the computation of f depends on its sensitivity.

Definition 2 (Sensitivity, [Dwork et al[/2006). The
sensitwity of a function f is

Af = max 1£(X) = F(X )

where X, X' are any two neighboring data sets.

When f is additive, it is straightforward to bound its
sensitivity (proof in Appendix [A):

Claim 1. Suppose X = (z1,...,z,) and f(X) =
S g(x;) where g maps data points to R™. Let
width(g;) = max, g;(x) — ming g;(z) where x ranges
over the data domain. Then Af < 2721 width(g;),
which is a constant independent of n.

Many algorithms satisfy differential privacy by using
the Laplace mechanism.

Definition 3 (Laplace mechanism, Dwork et al.
2006). Given a function f that maps data sets
to R™, the Laplace mechanism outputs the ran-
dom wariable L(X) ~ Lap(f(X),Af/e) from the
Laplace distribution, which has density Lap(z;u,b) =
(2b) "™ exp(— ||z — ul|; /b). This corresponds to adding
zero-mean independent noise u; ~ Lap(0, Af/€) to each
component of f(X).

3 Parametric Bootstrap

We consider

Algorithm 1 Parametric Bootstrap
the standard

setup of para- I: Input: z1.,, B, estimator A
metric statis- 2: 0,7 + A(z1:0)

tical inference 3: for b from 1 to B do

where a data 4 %‘Tb» . ;1’2 ~ P

Sample T1:p = 5: 0* 77'* $— A(x?n)
(T1,...,2y,) is 6: return 7, (7*,...,7*F)

observed and
each x; is assumed to be drawn independently from
a distribution Py in the family {Py : § € ©} with
unknown 6.

The goal is to estimate some population parameter
7 = 7(0), the estimation target, via an estimator 7 =
%(xlzn)ﬂ We also seek a 1 — « confidence interval for
7, that is, an interval [d,, En] such that Py(a, <7 <
Bn) ~ 1 — «a, where Py is the probability measure over
the full sample when the true parameter is §. We will
require 7 and [d,?)] to be differentially private. Our
primary focus is not designing private estimators 7,
but designing methods to construct private confidence
intervals [a, ] that can be used for many estimators
and have little additional privacy burden.

The parametric bootstrap is a simple way to approx-
imate the distribution of 7 for confidence intervals
and other purposes. It is a variant of Efron’s boot-
strap (Efron, [1979] [1981allb; Efron and Tibshirani,
1986)), which runs an estimator many times on sim-
ulated data sets whose distribution approximates the
original data. In the parametric bootstrap, data sets
are simulated from P, the parametric distribution with
estimated parameter é The procedure is shown in
Algorithm [T, where A is an algorithm that computes
the estimates 6 and # from the data. A simple case is
when 7(z1.,) = T(é(.%’l;n)) but in general these may be
estimated separately.

The parametric bootstrap is highly compatible with dif-
ferential privacy. The data is only accessed in Line 2, so

“'We use a hat on variables that are functions of the data
and therefore random.

2In the non-parametric bootstrap, data sets are simu-
lated from the empirical distribution of x1.y,.
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the only requirement is that A be differentially private
(which necessitates it is randomized). The remaining
steps are post-processing and incur no additional pri-
vacy cost. The simulation cleanly handles reasoning
about both data variability (Line 4) and randomness in
the estimator (Line 5). When the estimation target is
0, we have 7 = é, and the procedure incurs no privacy
cost beyond that of the private estimator 7. In other
cases, additional privacy budget is required to estimate
the full vector 6 including nuisance parameters; an
example is estimating the mean of a Gaussian with
unknown variance (Du et al.l [2020]).

3.1 Confidence Intervals and Bias Correction

Table 1: Bootstrap confidence intervals. &, is the
1 — v quantile of 7* — 7 or (7* — 7)/6*, and ¢, is
the 1 — v quantile of 7*.

Interval Target Target interval T interval
Pivotal Po1 [hog.fg]  [F-fg, 76 g]
Studentized

pivotal G52 [6og.ég] [F-€g6, 7 —&_g0]
Efron’s

percentile 7 [C1_a, f%] [Cl,%, é%]

There are several well known methods to compute
confidence intervals from bootstrap replicates. Three
are listed in Table [I} note that names are inconsistent
in the literatureﬂ The general principle is to treat the
pair (7*,7) analogously to (7,7) to approximate the
distribution of the latter. The intervals differ according
to what function of (7, 7) they target. A simple example
is to approximate the “pivot” 7—7 by 7% —7, which leads
to the pivotal interval. To construct it, we estimate
the 1 — v quantile of 7* — 7 as the 1 — v quantile of
the bootstrap replicates (7*! — 7,...,7*B — ). The
number of replicates controls the error introduced by
this step. This error is usually ignored theoretically
because, in principle, it can be reduced arbitrarily with
enough computation, and it can be controlled well
in practice. The studentized pivotal interval targets
(7 — 7)/6 instead, where 6 is a standard error estimate
of the main procedure; it can converge faster than the
pivotal interval (Wasserman/ 2006). Efron’s percentile
interval targets 7 directly and, while simple, its logic
is less obvious; it can also be viewed as targeting the

30ur mathematical presentation follows Van der Vaart
(2000)), but names follow |Wasserman| (2006). The names
“pivotal” and “studentized pivotal” and are descriptive and
avoid the confusion of “percentile interval” sometimes re-
ferring to the pivotal interval and other times to Efron’s
percentile interval. The possessive "Efron’s" (Van der Vaart,
2000) clarifies that we use Efron’s definition of “percentile
interval” (e.g., Efron and Hastiel 2016).

pivot 7 — 7 with a “reversed” interval, which is how
theoretical properties are shown. By approximating
7T — 17 by 7° — 7, we can also estimate the bias of 7.
This leads to a simple bias corrected estimator 7y.:

bias = E[7* — 7], Tuc < T — bias.

Similar to the quantiles above, E[7* — 7] is estimated
as the sample mean over bootstrap replicates.

3.2 Significance and Connection to Other
Resampling Methods for Private
Estimation

The parametric bootstrap can be applied to any para-
metric estimation problem, a wide range of private
estimators, is very accurate in practice, and has little
or no additional cost in terms of privacy budget or algo-
rithm development. These make it an excellent default
choice (to our knowledge, the best) for constructing pri-
vate confidence intervals for any parametric estimation
problem with small to medium data sets.

That such a simple and effective choice is available is
not articulated in the literature. Two prior works use
methods that can be viewed as the parametric boot-
strap, but do not discuss the classical procedure and its
wide ranging applications, or different facets of boot-
strap methodology such as techniques for constructing
confidence intervals and bootstrap theory. Specifically,
the simulation approach of Du et al.| (2020)) for Gaussian
mean confidence intervals is equivalent to the paramet-
ric bootstrap with a non-standard variant of Efron’s
percentile intervals, and performed very well empir-
ically. In their application to independence testing,
Gaboardi et al| (2016 approximate the distribution
of a private test statistic by simulating data from a
null model after privately estimating its parameters;
this can be viewed as an application of the parametric
bootstrap to the null model.

Several other works use resampling techniques that
resemble the parametric bootstrap for a similar, but
conceptually distinct, purpose (D’Orazio et al., |2015;
Wang et al., [2019; Evans et al., 2019)). A typical setup
is when 7 = 7/ + 1, where 7’ is a non-private estimator
and 7 is noise added for privacy. Standard asymptotics
are used to approximate \/n(7’ — 7) as N(0,5), where
& is a (private) standard error estimate for 7. For the
private estimator, this gives v/n(7—7) ~ N (0, ) ++/nn.
Because 7 has known distribution, Monte Carlo sam-
pling can be used to draw samples from A(0,5) + /nn
for computing confidence intervals or standard errors.
The key distinction is that standard asymptotics are
used to approximate the distribution of 7/, which cap-
tures all variability due to the data, and sampling is
used only to combine that distribution with the pri-
vacy noise distribution. In contrast, the key feature
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of a bootstrap method is that it resamples data sets
to reason about estimator variability due the random
data, and thereby avoids standard asymptotics. This
technique also does not apply when the privacy mecha-
nism is more complicated than adding additive noise to
a non-private estimate (cf. the OPS example of Sec. .

4 Bootstrap Theory

This section gives general results we can use to argue
correctness of bootstrap confidence intervals in private
settings. We give a general notion of “bootstrap” esti-
mator that covers different resampling methods. Let
(Q, F,Py) be the probability space for x1,xs,... ~ Py
and 71,12, . . . where, for a given n, the data is x1., and
1n captures any other randomness used in the privacy
mechanism or estimator; we refer to this as the “outer”
probability space. A bootstrap estimator is defined in
terms of a random experiment over an “inner” probabil-
ity space conditional on w € 2 and n. Let P} (-|w) be a
Markov kernel defining this space. The traditional boot-
strap uses P (-lw) = P" with P(dz) = L5 0p, (d);
the parametric bootstrap uses P = Pj instead. Our
hybrid model in Section [5] uses a custom resampling
method, which gives a custom measure P (-|w).

For our purposes, a bootstrap estimator of a parameter
7(0) is a random variable 7% in the inner probability
space that simulates the parameter estimate 7,, of the
“main” procedure. Typically, the bootstrap estimator
arises from running the main procedure on resampled
data. That is, if 7,, = T),(w), then 7* = T,,(w*) with
w* ~ PX(- | w). Our hybrid OLS bootstrap will deviate
slightly from this pattern.

4.1 Consistency

Bootstrap “success” has to do with the asymptotic
distributions of the (approximate) pivot /n(#, — 7)
and its bootstrapped counterpart \/n(7} — 7,,). For
studentized intervals, the pivot (7, — 7)/d, is used
instead, where &, is a standard error estimate of the
main procedure; theory for this case is a straightforward
extension if &, — () in Pyp-probability (Van der
Vaart,, [2000; [Beran, (1997)).

Definition 4. The bootstrap estimator 7 is consistent
if
sup [P, (Val#: = 7) <t |w)—

. . 1)
Py (Vi — 7) < t)‘ L)

with convergence in Py-probability.

This says that the Kolmogorov-Smirnov distance be-
tween the distribution of the pivot and the conditional

distribution of the bootstrapped pivot converges to
zero, in probability over w.

In most cases /n(7, — 7) ~ T for a continuous ran-
dom variable T. In this case it is enough for the
bootstrapped pivot to converge to the correct limit
distribution.

Lemma 1 (Van der Vaart|2000, Eq. (23.2)). Suppose
Vn(tn — 1) ~ T for a random variable T with contin-
uwous distribution function F. Then, 7% is consistent if
and only if, for all t,

P* (\/ﬁ(%;; ) <t w) B R,

Consistency is also preserved under continuous map-
pings: if 7 is consistent relative to /n(7, — 7) ~ T
and g is continuous, then g(7;) is consistent relative to
Vn(g(7,) — g(7)) (Beran, 1997). In our applications
we will show consistency of a bootstrap estimator 6%
for the full parameter vector 6, which implies consis-
tency for continuous functions of #; a simple application
is selecting one entry and constructing a confidence
interval.

4.2 Confidence interval consistency

Bootstrap consistency implies consistent confidence
intervals. The confidence interval [d,, b,] for 7 = 7(9)
is (conservatively) asymptotically consistent at level

1 — « if, for all 6,

liminfPy (a, <7< by) 21— 0. 2)
n—oo

Lemma 2 (Van der Vaart|[2000, Lemma 23.3). Sup-
pose /n(t, —7) ~ T for a random variable T with
continuous distribution function and 7} is consistent.
Then the pivotal intervals are consistent, and, if T is
symmetrically distributed around zero, then Efron’s per-
centile intervals are consistent. When the analogous
conditions hold for the studentized pivot (7, — T)/6n,
studentized intervals are consistent.

4.3 Parametric bootstrap consistency

Beran| (1997)) showed that asymptotic equivariance of
the main estimator guarantees consistency of the para-
metric bootstrap. Let H,(0) be the distribution of
Vn(7n — 7(0)) under Py.

Definition 5 (Asymptotic equivariance, Beran||1997).
The estimator 7,, is asymptotically equivariant if H,(6+
hn/y/n) converges to a limiting distribution H(0) for
all convergent sequences h,, and all 6.

Theorem 1 (Parametric bootstrap consistency). Sup-
pose \/n(0, —0) ~ J(0) and 7, is asympotitcally equiv-
ariant with continuous limiting distribution H(0). Then

the parametric bootstrap estimator 7, is consistent.
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All proofs are provided in the appendix. Furthermore,
under reasonably general conditions, the reverse impli-
cation is true, with bootstrap failures occurring pre-
cisely at those parameter values 0y for which asymptotic
equivariance does not hold (Beranl 1997)).

5 Applications

We apply the parametric bootstrap to three private esti-
mation settings: (i) exponential families with sufficient
statistic perturbation (SSP), (ii) linear regression with
SSP, (iii) the “one posterior sample” (OPS) estimator.

Exponential Families A family of distributions is
an exponential family if Py has a density of the form:

pw;0) = h(z) exp(0" T (x) — A(0))

where h(z) is a base measure, 6 is the natural parame-
ter, T is the sufficient statistic function, and A is the
log-partition function. Define the log-likelihood func-
tion of an exponential family as ¢(0; x) = log p(z;6) —
log h(z) = 07T (x) — A(6). The constant term log h(x)
does not affect parameter estimation and is subtracted
for convenience. For a sample x1.,, let T(z1.,) =
>oi i T(z;). The log-likelihood of the sample is

0(0;x1.,) = GTT(xlzn) —nA(f) = f(G;T(xlm)),

which depends on the data only through the sufficient
statistic T'(21.,). The maximum-likelihood estimator
(MLE) is 6 = argmaxg f(6; T(z1:n))-

A simple way to create a private estimator is sufficient
statistic perturbation (SSP); that is, to privatize the
sufficient statistics using an elementary privacy mecha-
nism such as the Laplace or Gaussian mechanism prior
to solving the MLE problem. SSP is a natural choice
because T'(x1.,) is a compact summary of the data and
has sensitivity that is easy to analyze, and it often
works well in practice (Bernstein and Sheldon, 2018;
Foulds et al.| 2016). Specifically, it means solving

0 = argmax f (0, T(z1:) +w) (SSP-MLE)

0

where w is a suitable noise vector. This problem has
closed form solutions for many exponential families and
standard numerical routines apply to others. For the
Laplace mechanism, w; ~ Lap(%) for all j, where A =
>_; width(7}) is an upper bound on the L; sensitivity
of T'(z1.n) by Claim [1} If width(T}) is not known or
is unbounded, the analyst must supply bounds and
guarantee they are met, e.g., by discarding data points
that don’t meet the bounds, or clamping them to the
bounded interval.

Theorem 2. Let 0, be the solution to the (SSP-MLE)
optimization problem for a sample x1., from an expo-
nential family model that satisfies the reqularity con-
ditions given in|Davison| (2005, Section 4.4.2). Then
V0, — 0) is asymptotically equivariant with limiting
distribution N(0, 1(0)~1), where 1(8) = V2A(0) is the
Fisher information. This implies consistency of the
parametric bootstrap estimator é;

Linear Regression We consider a linear regression
model where we are given n pairsﬂ (xi,y;) with x; € RP
and y; € R assumed to be generated as y; = 87 x; + u;,
where the errors u; are i.i.d., independent of x;, zero-
mean, and have finite variance ¢2, and the x; are i.i.d.
with E[xx?] = Q. We wish to estimate the regression
coefficients 8 € RP. Let X € R™*? be the matrix with
ith row equal to x7 and y,u € RY be the vectors with
tth entries y; and w;, respectively. The ordinary least
squares (OLS) estimator is:

B=(x"X)"'x"Ty. (3)

Like the MLE in exponential families, Eq. depends
on the data only through sufficient statistics X7 X
and X7y, and SSP is a simple way to privatize the
estimator that works very well in practice (Wang}, 2018)).
The privatized estimator is

B=(XTX+V) ' (XTy +w), (SSP-OLS)
where V € RP*P and w € RP are additive noise vari-
ables drawn from distributions Py and P, to ensure
privacy.

For the Laplace mechanism, we use

Vit~ Lap(0, Ay /er) for j <k, and Viy = Vi, (4)
wy ~ Lap(0, Ay e2) for all j, )

where Ay and A,, bound the L; sensitivity of V and
w, respectively. The result is (€1 + €2)-DP. Because
XTX =" xx! and XTy = 31" | x;y; are addi-
tive, we can take Ay = ., width(z;) - width(zy)
and A, = 3, width(z;) - width(y), where width(z;)
and width(y) are widths of the jth feature and re-
sponse variable, respectively, which are enforced by the
modeler.

For confidence intervals, we will also need a private
estimate of 02: let 62 = (n—p) ™' Y1 (i — BTx;)? +
Lap(0, A, /e3) where A, = width((y — 47x)?). The
released values for SSP-OLS are then (X7 X +V, XTy+
w, 3,62), which satisfy (e; + €2 + €3)-DP.

4We use boldface for vectors as needed to distinguish
from scalar quantities.
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Limitations of parametric bootstrap for private
regression The parametric bootstrap is more dif-
ficult to apply to regression problems in a private
setting due to the covariates. It is typical to boot-
strap conditioned on X, which means simulating new
response variables y from a parametric distribution
p(y|X; B,62), where 3 and 62 are (privately) estimated
parameters, and a fully parametric distribution p(u; o?)
is assumed for errors. A bootstrap replicate would look
like B* = (XTX) ' XTy* with y* = X3 + u* and u*
simulated form the error distribution. The challenge
is that X is accessed to generate each replicate, so to
make it differentially private would require additional
randomization and consume privacy budget. An alter-
native would be to posit a model p(x;6) and perform
the parametric bootstrap with respect to a joint model
p(x,y;0,8,02%), but the additional demand to model
covariates is unappealing in a regression context.

Hybrid parametric bootstrap for OLS We pro-
pose a novel hybrid approach that avoids the need to
repeatedly access covariate data or to model the covari-
ate or error distributions explicitly. Conceptually, we
use the part of the standard asymptotic analysis that
“works well” to approximate the relevant statistics of
the covariate data, and use the parametric bootstrap to
deal with the noise added for privacy. Following stan-
dard analysis for OLS, we can substitute y = X8 4+ u

in (SSP-OLS)) and scale terms to get:
. . 1.\ ',

(o) () @

This expression is instructive to see the different sources
of randomness that contribute to the variability of 3,,:

the terms Q,, = %XTX and ﬁXTu are due to data

variability, and %V and ﬁu} are due to privacy. We

form a bootstrap estimator B,’; that treats (Bn, B) anal-
ogously to (B:” Bn) and simulates the different sources
of variability using the best available information about
their distributions:

1

R 1 -1 1
ZF ~ N(0,62Q,), V* ~ Py,

. 1 1
Qn=—-XT"X+ =V
n n

w* prv

All privacy terms in Eq. (6] are simulated from their
exact distributions in Eq. The variables Q,, and
Q.. represent approximations of Q = E[xx!] available
to the corresponding estimator. Both quantities con-
verge in probability to Q. Our choice not to simulate
variability in these estimates due to the covariates
is analogous to the “fixed X” bootstrap strategy for
regression problems (Fox, 2002); we do simulate the
variability due to privacy noise added to the estimates.
The blue terms represent contributions to estimator
variability due to interactions between covariates and
unobserved noise variables. In a traditional bootstrap,
we might simulate this term in Eq. @ as ﬁXTu*
where u* are simulated errors, but, as described above,
we do not wish to access X within the bootstrap proce-
dure. Instead, because we know ﬁXTu ~ N(0,0%Q)

by the central limit theorem and because o2 and Q
are estimable, we simulate this term directly from the
normal distribution with estimated parameters.

Theorem 3. The private estimator satisfies /n(fn —
B) ~ N(0,02Q~1) and the bootstrap estimator (3% is
consistent in the sense of Lemma[1}

OPS [Dimitrakakis et al.|(2014)), Wang et al.| (2015)
and |Foulds et al.| (2016) used the idea of sampling from
a Bayesian posterior distribution to obtain a differen-
tially private point estimate. One Posterior Sampling
(OPS), which releases one sample from the posterior,
is a special case of the exponential mechanism, and
the corresponding estimator is near-optimal for para-
metric learning (Wang et al., [2015)). The parametric
bootstrap applies easily to OPS estimators and pro-
duces well calibrated intervals (Figure . We expect
the asymptotic analysis of Wang et al.| (2015) can be
adapted to prove asymptotic equivariance, and hence
parametric bootstrap consistency, for OPS, but do not
give a formal proof.

6 Related work

A number of prior works have studied private confi-
dence intervals for different models (D’Orazio et al.l
2015; [Karwa and Vadhanl 2018}, [Sheffet], [2017}; [Barri]
entos et al., 2018} |Gaboardi et al., |2019; Brawner and
Honaker}, 2018} [Du et al., |2020). [Smith| (2011) showed
that a broad class private estimators based on subsam-
ple & aggregate (Nissim et al., 2007) are asymptotically
normal. [D’Orazio et al.| (2015)) proposes an algorithm
based on subsample & aggregate to approximate the
variance of a private estimator (see Section [3.2)). The
topics of differentially private hypothesis testing (Vu
and Slavkovid], 2009; [Solea), 2014; |Gaboardi et al.l 2016

5This is a standard result of OLS asymptotics and is
expected to be accurate for modest sample sizes.
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Couch et al} 2019) and Bayesian inference (Williams
and McSherry|, |2010; [Dimitrakakis et al., 2014} [Wang
et all [2015; |[Foulds et al., 2016; |Zhang et al.| 2016}
Heikkila et al. [2017; Bernstein and Sheldon| |2018|
2019) are also related, but the specific considerations
differ somewhat from confidence interval construction.
Finding practical and general-purpose algorithms for
differentially private confidence intervals has been iden-
tified as an important open problem (King et al., 2020).

The confidence interval approach of Wang et al.| (2019)
applies to any model fit by empirical risk minimization
with objective or output perturbation and is similar to
the asymptotic methods we compare to in Section [7]
Evans et al.| (2019) also give a general-purpose proce-
dure based on subsample & aggregate (S&A) (Nissim
et al.,[2007)) with normal approximations. This method
also uses S&A for the point estimates. We compare
to a similar variant of S&A in Section [7] [Wang et al.
(2018)) study statistical approximating distributions for
differentially private statistics in a general setting.

Brawner and Honaker| (2018) use the non-parametric
bootstrap in a privacy context to estimate standard
errors “for free” (at no additional cost beyond mean
estimation) in some settings. Other methods most
similar to the our work on the parametric bootstrap
were discussed in more detail in Sec. 3.2

Prior methods to construct confidence intervals for pri-
vate linear regression include (Sheffet] |2017; |Barrientos
et al., [2018).

7 Experiments

Figure 1: Observed vs nominal coverage of 95% Cls for
different distributions for different n.

We design synthetic experiments to demonstrate our
proposed methods for differentially private confidence
interval estimation.

First, we evaluate the performance of private paramet-
ric bootstrap CIs vs a baseline method (“Fisher CIs”)
based on asymptotic normality of the private estima-
tor and described in more detail below. Performance
is measured by how well the coverage of the private
CIs matches the nominal coverage. For all models, we
also include Fisher Cls of non-private estimators for
comparison.

Second, we demonstrate the bias-correction procedure
in Sec. B.lin the case of Gaussian and Poisson distribu-
tions with data points clamped to different thresholds,
which introduces estimation bias. These results show
the effectiveness of the parametric bootstrap at approx-
imating and mitigating the bias of differentially private
estimates when sensitivity is bounded by forcing data
to take values within given bounds.

Third, we compare parametric bootstrap ClIs to another
general purpose method to construct confidence inter-
vals based on subsample & aggregate (Nissim et al.,
2007} \Smith} [2011; |D’Orazio et al., |2015)).

Finally, the appendix includes additional experiments
exploring a broader range of settings and performance
metrics. These include: multivariate distributions, the
effect of varying €, and measurements of the upper- and
lower-tail CI failures. We aim for private Cls to be as
tight as possible while providing the correct coverage:
in the appendix, we also compare the width of our
intervals with that of intervals from existing methods
for the specific case of Gaussian mean estimation of
known variance.

Baseline: “Fisher CIs” As a byproduct of our con-
sistency analysis we also derive asymptotic normal
distributions of the private estimators for both expo-
nential families (Theorem [2) and OLS (Theorem [3). In
each case, we obtain a private, consistent estimate &]2- of
the jth diagonal entry of the inverse Fisher information
matrix of the private estimator én, and then construct
the confidence interval for 6; as

C,= [émj — Za/gé'j, én)j + za/Q&j]z (7)

where z, is the 1 — y-quantile of the standard nor-
mal distribution. For exponential families, the Fisher
information is estimated via plug-in estimation with
the private estimator 0,,. For OLS, it is estimated via
plugging in private estimates Q,, = %X X + %V and
62, which are both released by the SSP mechanism.
For non-private Fisher CIs, we follow similar (and very
standard) procedures with non-private estimators.

Exponential families We use synthetic data sets
drawn from different exponential family distributions.
Given a family, true parameter 6, and data size n, a
data set is drawn from Py. We release private statistics
via SSP with the Laplace mechanism. To simulate the
modeler’s domain knowledge about the data bounds, we
draw a separate surrogate data set of size 1000 drawn
from the same distribution, compute the data range
and use it to bound the width of each released statistic.
For private estimation, sampled data is clamped to
this range. Private 0 is computed from the privately
released statistics using [SSP-MLE] For the parametric
bootstrap CIs, we implement Algorithm [T]and compute
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Figure 2: Left pair. (i) observed vs. nominal coverage for different coverage levels, for a Poisson, n=100, ¢ = 0.5.
(ii) same plot, comparing the OPS method (Foulds et al., 2016|) and the parametric bootstrap for Bernoulli
estimation. Center pair: average CI widths for different n for (i) Gamma and (ii) OLS (other distributions give
qualitatively similar results). Width of the private bootstrap Cls approaches that of the public Cls as n — cc.
Right pair. (i) private and bias-corrected private estimates for a Poisson clamped at varying right-tail thresholds.
(ii) same for a Gaussian clamped at —10 on the left tail and at varying thresholds on the right tail.

Efron’s percentile intervals (see Table . The output
coverage is computed over T = 1000 trials.

Results are shown in Figures[I] and 2] For the para-
metric bootstrap, actual coverage closely matches the
nominal coverage, even for very small n. Coverage of
private Fisher CIs is too low until n becomes large,
due to the fact that it ignores privacy noise. The boot-
strap procedure correctly accounts for the increased
uncertainty due to the privacy by enlarging the Cls.
The width of the bootstrap intervals approaches the
width of the baseline Fisher intervals as n — oco. In
the appendix, we show that the coverage failures are
balanced between left and right tails and examine the
effect of increasing e (which reduces privacy noise and
has the same qualitative effect as increasing n).

Linear regression We follow a very similar proce-
dure for OLS. Data is generated with x; ~ Unif([—5, 5])
for all j and errors are w; ~ Unif[—10, 10]; bounds on y
are passed as inputs ([—150, 150]) and assumed known.
Observed values of y exceeding the given bounds are
dropped. These bounds are also used to compute
widths for the sensitivity. Private coefficients are es-
timated with SSP-OLS and bootstrap Cls are con-
structed via Efron’s percentile method. The results are
shown in Fig. [T}

Bias correction In the case of distributions with
infinite support, one option to bound the sensitivity is
to clamp or truncate the data to given bounds. These
procedures may induce estimation bias. As discussed
in Sec the parametric bootstrap can be used to
approximate this bias and mitigate it. We demonstrate
bias correction on the private estimates and Cls of
a Poisson and Gaussian distribution where data is
clamped on the right tail at different thresholds (Fig. [2)).

Comparison with subsample & aggregate We
compare the parametric bootstrap Cls with the in-
tervals obtained via a subsample & aggregate (S&A)

algorithm. We adapted the S&A procedure of [D’Orazio
et al.|(2015) for privately estimating standard errors to
compute confidence intervals; see Algorithm [2]in the
appendix. We compare the accuracy of point estimates
and 95% CIs for the mean of a Gaussian of known vari-
ance. We found that the parametric bootstrap provides

more accurate point estimates and better calibrated,
tighter CIs than S&A (Figure|3).
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—e— PB average estimate | 0.975
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Figure 3: Point estimates (left), 95% CI coverage
(center) and average CI width (right) of the S&A
method (see Algorithm [2|in appendix) vs parametric
bootstrap for the mean of a Gaussian of known vari-
ance. Settings: € = 0.5, 0 =0, 0 = 1, (Tmin, Tmaz) =
(=20, +20), (Lmin, Lmaz) = (—10, +10), varmas = 50.

8 Conclusion

The parametric bootstrap is useful and effective to
construct consistent differentially private confidence in-
tervals for broad classes of private estimators, including
private linear regression, for which we present a novel
adaptation to avoid accessing the covariate data many
times. The parametric bootstrap yields confidence in-
tervals with good coverage even at modest sample sizes,
and tighter than the ones based on subsample & aggre-
gate or other general methods. It can be used with any
privacy mechanism, and can help mitigate differentially
private estimation bias.
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A Proof of Claim [

Claim 1. Suppose X = (z1,...,x,) and f(X) =", g(z;) where g maps data points to R™. Let width(g;) =
max, g;(x) — min, g;(z) where z ranges over the data domain. Then Af < ZTZI width(g;), which is a constant
independent of n.

Proof. Since X and X' differ in exactly one element and f is additive, f(X) — f(X’) = g(z) — g(z') for
some elements z, 2’ in the data domain. The absolute value of the jth output g;(z) — g;(z’) is bounded by
width(g;) = max,- g;(z*) — ming- g;(z*). The Ly sensitivity || f(X) — f(X")|l1 = |lg(z) — g(z)’||1 is therefore at
most the sum of the widths. O

B Proofs for Bootstrap Theory

Theorem 1 (Parametric bootstrap consistency). Suppose \/n(6, —0) ~» J(0) and 7, is asympotitcally equivariant
with continuous limiting distribution H(0). Then the parametric bootstrap estimator 7.5 is consistent.

This theorem is a simplified version of the result of Beran| (1997)). We give a self-contained proof. See also (Van der
Vaart), 2000, Problem 23.5).

Proof. The distribution of v/n(7, — 7) under Py is H, (), which, by asymptotic equivariance, converges to H(0).
In the parametric bootstrap, the distribution of \/n(7* — 7,) conditional on 6, = 0 + hy, /v/n is Hy (6 + hn//70)),
and, by asymptotic equivariance, H, (6 4+ h,,/\/n)) ~ H(0) if h,, is convergent. Since H () is continuous this is
equivalent to saying that, for all convergent sequences h,, and all ¢

P* (\/ﬁ(ﬁ; R <t]0, =0+ hn/\/ﬁ) = Fy(1). 8)

where Fy is the CDF of H(f). Now, let h, = \/n(f, — ) so that 0,, = 6 + h,,/\/n. By assumption, h,, ~ J(6)
and is therefore Op(1). Therefore, by Lemma Eq. implies

P* (\/ﬁ(%;; Ay <t én) s F(t) in Po-probability
and the result is proved. O

Lemma 3. Suppose g, is a sequence of functions such that g,(hy,) — 0 for any fized sequence h, = O(1). Then

gn(hn) 5o for every random sequence h, = Op(1).

Proof. Fix €,6 > 0. We wish to show, for large enough n, that

Pr [|gn(fln)| >e| <4
Since hy, is Op(1), there is some M such that, for all n,

Pr [[|hn| > M] < 6.

By our assumption on g,, there is some N such that |g,(h)| < € for all |h|| < M,n > N (take the sequence
h,, = h for each such h). Then, for n > N,

Pr [|ga(hy)| > €] < Pr[||ha| > M] <.
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C Proofs for Exponential Families

. . . . P
Lemma 4. Let w be any random variable with mean zero and finite variance. For any r > 0, Niw — 0.

Proof. The variance of N~"w is equal to N ~2" Var(w), which goes to zero as N — oco. By Chebyshev’s inequality,
this implies that N~"w % 0. O

Theorem 2. Let 0, be the solution to the (SSP-MLE) optimization problem for a sample x1.,, from an exponential
family model that satisfies the regularity conditions given in |Davison| (2003, Section 4.4.2). Then /n(0, — 0) is
asymptotically equivariant with limiting distribution N'(0,1(0)~1), where 1(8) = V2A(0) is the Fisher information.
This implies consistency of the parametric bootstrap estimator é;

Following standard practice, we will prove this for the case when 6 is scalar; the generalization to vector 6 is
straightforward but cumbersome. We first state the required (standard) regularity conditions. Let

n n

0n(0) = 0(0;2:) = > (logp(xi;0) — log h(x))
i=1 i=1

=0 T(x;) - nA(0)

i=1

be the log-likelihood of a sample x., from the exponential family model using the definition of log-likelihood
from Sec. (1} Let £(0) = ¢1(6) be the log-likelihood of a single x ~ p(x;0).

We assume the log-likelihood satisfies the conditions given in the book of Davison| (2003, Section 4.4.2). If it does,
then we have the following

(F1) Eo[?'(6)] = 0.
(F2) Varo[t'(8)] = — Eq[¢"(6)] = 1(6).

(F3) Given a sequence of estimators 6, 50, for all 6, € [0,0,], ﬁf%’(én)(én —0)? Lo

Facts (F1) and (F2) are well known exponential family properties. Also recall that, for an exponential family,

(F4) 1(0) = A”(6).

(F5) —£"(0) is deterministic and equal to I(6).

Proof. Let A, () = f(0,w+ Y., T(x;)) be the objective of the SSP-MLE optimization problem. We have

An(0) = 9(w + zn:T(xi)) —nA(9)

i=1

= 6w+ 92”: T(xz;) — nA(0)

= w + £, (6)

where £,,(0) is the log-likelihood of the true sample. That is, the original objective £, () is perturbed by the
linear function 6w to obtain A, (6). The derivatives are therefore related as:

An(0) = w + £,(0), (9)
AR () =10 (0), k> 1. (10)
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At the optimum 6,, the first derivative of A, is equal to zero. £ (6) is a sum of i.i.d. terms with mean 0 and
variance I(#), more specifically:

n
=) (T(x:) — A'(0))

i=1
For asymptotic equivariance, we are interested in the sequence of estimators 6,, when the “true parameter” follows

the sequence 6 + h,,/y/n. We follow the standard approach of writing the Taylor expansion of the first derivative
about the true parameter 6 + h,, //n:

0=w+,(0+ hn/v/n) + L00 + b /1) (00 — 0 — hy/ /D) + Z (11)
where we have used Egs. @D and to replace the derivatives of A on the right-hand side, and
Z, = %ZZ’(Qn)(Qn — 0 — h,/yn)?

is the second-order Taylor term, with 6,, some point in the interval
[0+ hpn//7,04).

Multiply both sides of the equation by ﬁ and rearrange to get

. Lw+ L0,(0+ hn/vn) + =2,
Vil — 6 — ho /) = L v

— 3O+ /)
- (0 + hy/v/n)

where in the second equality we used (F5). By LemmaE ﬁw £ 0 and by (F3) ﬁZn Zo so, by Slutsky,

9 —60—nh =
vn( NS I(9+T) \/ "0+ 5 \/I(Hf) (12)
N————

We know that under the regularity assumptions the Fisher information I(-) is a continuous function and so, since
0+ % — 6, then by continuity (I(-) is deterministic):

() o

We now focus on the asymptotic behavior of (B). We will use the fact that in exponential families, Eg T'(z) = A’(0)
and Vary T'(x) = A”(9) = I(0). For simplicity of notation, define:

_afgy
un—A<8+\/ﬁ .

Define now the triangular array written in the following notation:

T(xl)—m T NP9+hT1
ii.d.
T(21) — p2, T'(22) — p2 T ~ Py ny
73
ii.d.
T(x1) — ps, T(w2) — p3, T'(xs) — ps T1g PML\}
3
iid.
T(z1) = pns T(22) = pny ooy T(@0) — pin T1m ~ Py ny
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Let’s focus on the n-th row. By construction the sum over the n-th row is S, = >0 | (T'(@;) — pn) = (0 + h—\/%),
so the numerator of (A). Each term in the n-th row has mean zero and:

— i:lVar[T(xi) — pin] =nl <9 + 3%) .

If for every € > 0 the following condition holds:

Jim. é Zn:E [(T(Jii) — in)?1 (!T(xi) — pn| > €Un):| =0,

then S, /o, — N(0,1) by the Lindeberg-Feller Central Limit Theorem. By plugging in the terms in the condition
above we have that:

1 - h
lim —————— Y E |[(T(z;) — n)®1 [|T(xs) — pn| > ev/ny [T <9 + n)

=£$I@+%)1annﬂm%!ﬂm%wﬂ>4“f@+%g

with the equality due to i.i.d. sampling within the row of the triangular array. Note that for any x,
lim (T(a1) — )1 [ [T(@1) — | = eviy [T (04 22) | =0,
n—oo - \/ﬁ

and that the integrand above is dominated by (T'(z1) — pr,)?, which is integrable and finite, since E[(T'(x1) — 1,,)?]
is finite. Hence by the dominated convergence theorem, the limit is zero and the condition is satisfied.

Going back to equation , we then have that

g+ hn
iﬁ&iﬁﬁwNmn«Hm”mszum*x

16+ )
which proves that \/n(6, — 6 — hy,/v/n) ~ N(0,I1(0)"'). Setting h, = 0, it is straightforward to find that
V(0 —0) ~> N(0,1(6)71). This proves that SSP-MLE is asymptotically equivariant. O

D Proofs for OLS

Theorem 3. The private estimator satisfies \/n(Bn — B) ~» N(0,02Q~Y) and the bootstrap estimator B is
consistent in the sense of Lemma [1}

Before proving the theorem, we give two lemmas. The first is standard and describes the asymptotics of the
dominant term.

Lemma 5. Under the assumptions of the OLS model in Section@ ﬁXTu ~ N(0,02Q).

Proof. Observe that XTu = >"""_ | x;u; is a sum of iid terms, and, using the assumptions of the model in Section
the mean and variance of the terms are E[x;u;] = E[x;] E[u;] = 0 and Var(x;u;) = Var(xu) = E[xuux?] =
E[u?xx”] = E[u?] E[xx?] = ¢2Q. The result follows from the central limit theorem. O
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The theorem involves asymptotic statements about Bn and B; The following lemma is a general asymptotic
result that will apply to both estimators using Eqgs. @ and .

Lemma 6. Define the function

B T " T A N
B.A{Q,B,Z,V,w} = <Q+nv) QB+ (Q+nv> (\/ﬁZ"‘nw)
and suppose the sequences Qn, Bn, Zn, Vn, Wy, are defined on a common probability space and satisfy
(i) Zn ~ N(0,0%Q),
(ii) Qu = Q,
(#3) B, Vn,wy, are all Op(1).

Then
Vi(Ba{Qn: Bus Zn, Vaswn} = )~ N(0,0°Q7).

Proof. Substitute the sequences into B,, and rearrange to get

Vi (Bn = Bn) = Vn ((Qn + iVn>_1 Qn — I) Bn+n (Qn + ivn)_l (\}HZW + Tllwn) (13)

First, note that the sequences %Vn, %Vn and ﬁwn, which will appear below, are all op(1), since V,, and wy,
are Op(1).

The first term in Eq. converges to zero in probability. Specifically, a manipulation shows:
1 \"! 1.\'/ 1
\/E Qn+ *Vn Qn_l Bn = Qn‘i‘*Vn —7Vn ﬁn
n n Vn
0]

For the first factor on the right side, (Q, + 2V,)™! Lot (by Slutsky’s theorem, since Q, £ Q and 1V, EiS 0),
and is therefore Op(1). For the second factor, we argued fﬁVn = op(1). For the third factor, 5, = Op(1) by
assumption.

The second term in Eq. converges in distribution to N'(0,02Q). Rewrite it as

Qn + Ly, B Zot —
n —Vn n —FWn | .
n vn
We already argued that (Q, + 1V;,)™*! £ Q-1 and ﬁwn £0. By assumption, Z, ~ N(0,5%Q). Therefore, by
Slutsky’s theorem, the entire term converges in distribution to Q@ ~*N(0,02Q) = N(0,02Q~1). O

We are ready to prove the Theorem [3]

Proof of Theorem[3 We first wish to show that ﬁ(ﬁn fﬂ) ~ N(0,02Q71). To see this, write 3, =

B, {%XTX,B, ﬁXTu,V,w} and apply Lemma@ It is easy to verify that the sequences satisfy the con-
ditions of the lemma.

Next, we wish to show that the bootstrap estimator is consistent. By Lemma [I} it is enough to show that
Vn(B: = Bn) ~ N(0,02Q71) conditional on w in Py-probability, where § = (3,02,Q) and Py is the common
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probability space of the data and privacy random variables, represented by w. The bootstrap variables Z;, V*, w*
correspond to the inner measure P}. Define @, = %X TX + %V. Observe that Eq. is equivalent to

B = Bp{Qn, Bn, Z5,V* w*} under Z ~ N(0,62Q,),V* ~ Fy,w* ~ Fy, (14)

and (Qn, B, 62) are consistent estimators and hence converge in Pg-probability to (Q, 3, 02).

We can’t apply Lemma |§| directly to Eq. because this expression mixes random variables from the outer
space (Qn, Bn,d2) and inner space (Z, V*, w*). Instead, we temporarily reason about a deterministic sequence
(Qn, Bn,02) — (Q, B,0%). Then, by Lemma |§| applied to the inner probability space,

\/E(Bn{anﬂ'ru Z;,a V*aw*} - Bn) > N(Oa U2Q_1>

(15)
under ZF ~ N(0,62Q,),V* ~ Py,w* ~ P,

The conditions of Lemma |§| can easily be checked. In particular, we have Z* ~» N(0,02%Q).

We can restate the result Eq. as follows: for any fixed sequence (Q,,, 8n,02) = (Q,3,0?) and all ¢,
Py (VA(B: = Ba) S t1 Qu = Qui B = B 6% = o) = F(1)
where F is the CDF of N'(0,02Q~!). Lemma |7| below now implies that

P;, (\/E(B:z —Bn) <t | Qn. B, fri) — F(t) in Ps-probability,
and the theorem is proved. O

Lemma 7. Let g, : R¥ — R’ be a sequence of functions such that g, (hy,) — ¢ for any deterministic sequence

hn — h. Then g, (hy) e for any random sequence B Eh.

Proof. Take ¢ = 0 without loss of generality, let || - || be any norm and d(z,y) = || — y||. Fix € > 0. It must be
the case that
36 > 0,n9 € N such that:  d(h',h) <§ = ||gn(h)]| < € Yn > ny. (16)

Otherwise, we can construct a convergent sequence h,, — h with limsup,,_, . ||gn(hn)|| > €, which violates the
conditions of the Lemmalf]
Now, suppose B, B, Then, for n > ng, by Eq. ,
Pr [||gn(hn)|| > e} < Pr [d(ﬁn,h) > 5} .
Therefore . .
lim Pr [||gn(hn)|| > e] < lim Pr {d(hn,h) > 5} =0,
n—oo n— oo

which proves the result. O

SIf Eq. is not true, then for all § > 0 and no € N, there exists A’ such that d(h',h) < § and ||gn(h')|| > € for
some n > ng. Then we can construct a sequence h,, — h as follows. Let J, be any sequence such that §r — 0. Set
no = 0, and, for k > 1, select h’ such that d(h',h) < d and ||gns(R')|| > € for some n’ > ng_1 + 1. Set h, =k’ for all
ne€{ng1+1,..., n'} and let ny = n’. This sequence satisfies h,, — h but 9ny (hn,) > € for all k, so it is not true that
gn(hn) — 0. This contradicts the assumptions of the lemma, so Eq. must be true.
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E Subsample & Aggregate

Algorithm 2 Subsample& Aggregate

Input X, M, Zynin, Tmazs Lmin, Lmazs VaTmaa, €, 0
: procedure SUBSAMPLEANDAGGREGATE
X, X subsample(X7 M)
L* L* Lmin maz
min? “maz \/W’ /N/M

* var
Varae 71\//"11\;}1

1
2
3
4:
5: fori=1,...,M do
6
7
8
9

éi — Clamp(A(X ) L:m'm L;knaac)
|Limaz—Lominl

Al —
Opp 37 ity & + Lap(0, 5 75)

: fori=1,....M do
10: forb=1,...,B do

11: Xip < resample(X 4 LA]ZJ replace=True)
12: Gip < clamp(A(X;p), LY ins L,*mw)
13: vares, < clamp(Var(é; 1.5), 107%, var?,,.)

14: Ag +— varmax/M
15: vars < 57 Zz L vare, + Lap(0, A/ )
16: varpp + 77vare + Var(Lap(0, %))

17: CIDPF[ODP—Z%\/UGTDP,HA P+Z%VU&7"DP]

return épp, Clpp
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F Additional Experiments
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Figure 4: Effects of varying € for a fixed n = 100. We selected a Gamma with inference on the scale parameter.
The results are qualitatively equivalent for other distributions. (a) Observed coverage vs. nominal coverage of
CIs. Coverage levels: {0.5,0.6,0.7,0.8,0.9,0.95,0.99}. From top to bottom: (i) differentially private parametric
bootstrap; (ii) differentially private Fisher intervals; (iii) non-private Fisher ClIs. Private methods use SSP via
Laplace mechanism with varying values of €. Note that the effect of increasing € with n fixed is qualitatively
similar to the effect of increasing n holding € fixed. (b) Average CIs for the scale parameter for different e. The
width of the private bootstrap Cls approaches that of the public Cls as € increases.
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Figure 5: In this Figure, we look at the rate of failure of the confidence intervals on the upper vs lower tail. For
each of the two plots, the rows represent (i) differentially private parametric bootstrap; (ii) differentially private
Fisher intervals; (iii) non-private Fisher intervals. Top: data range and sensitivity computed as described in
Section [7} Clamping the data to a range can introduce a bias if the range is not conservative enough. The bias
becomes noticeable for large n, where the interval width is smaller. In our case, where the range is approximated
from a data set of size 1000, a small bias becomes noticeable for n > 5000, where upper-tail failures systematically
outnumber lower-tail failures by a small margin. Bottom: same as top plot, with double the range. Increasing the
range mitigates the bias.
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Figure 6: Observed vs nominal coverage (left) and average CI width (right) for a multivariate Gaussian in 5
dimensions, with e = 0.5. We compute ClIs for each dimension separately and report results for the first dimension

as an example.
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Figure 7: For different algorithms, average width (logscale) of differentially private confidence intervals for the

mean of a standard normal, range [—8,8|, e = 0.1, for different n levels. “public” is

the confidence interval

computed without differential privacy; “Karwa& Vadhan” refers to Karwa and Vadhan

(2018); “D’Orazio&al.”

refers to [D’Orazio et al| (2015)); “Brawner&Honaker” refers to Brawner and Honaker|

2018)); “NOISYMAD" and

“SYMQ” are methods from [Du et al.| (2020), and in particular “NOISYMAD” is very similar to o

ur parametric bootstrap

method (“PB”). We used the publicly available implementation by (2020) to reproduce their methods as

well as the other prior methods.
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