
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM STATIC TO DYNAMIC: ADAPTIVE MONTE
CARLO SEARCH FOR MATHEMATICAL PROCESS SU-
PERVISION

Anonymous authors
Paper under double-blind review

ABSTRACT

The quality of process data plays a key role in training a Process Reward Model
(PRM), which can enhance the complex mathematical reasoning capability of
large language models. Existing methods estimate the quality of reasoning steps
based on a fixed-budget sampling strategy and navigate a vast search space to per-
form path expansion during the automated data generation process, resulting in
their inefficiency and inflexibility. To address these issues, we propose Adaptive
Monte Carlo Search (AMCS), a framework that transforms data generation from
fixed, static to adaptive, dynamic search at the level of node value estimation and
path expansion. On one hand, AMCS adaptively refines estimation by allocating
more samples to uncertain reasoning steps while using fewer samples for those
that are easier to estimate. On the other hand, it enhances the path expansion
through a Monte Carlo algorithm with a temporally adaptive policy that begins
with broad exploration and gradually shifts toward exploiting the most promising
directions. With AMCS, we construct a large-scale dataset MathSearch-200K
of about 200K process supervision examples for training PRMs. To verify the
effectiveness of our method, we conduct extensive experiments on four mathe-
matical reasoning benchmarks. Experimental results show that Qwen2.5-Math-
7B-PRM-AMCS achieves up to 76.2% accuracy on MATH500 with GLM-4-9B,
outperforming all baseline PRMs. Notably, a 7B model supervised by Qwen2.5-
Math-7B-PRM-AMCS surpasses a 72B model with weaker supervision. More-
over, Qwen2.5-Math-7B-PRM-AMCS maintains consistent advantages on out-of-
distribution problems, demonstrating strong generalization capability. Our code is
available at https://github.com/reml-group/AMCS.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated significant success across a wide range of natu-
ral language processing tasks (Ma et al., 2025a;b; Seo et al., 2025), including open-domain dialogue,
summarization, and code generation. However, they often struggle with complex multi-step mathe-
matical reasoning (Wang et al., 2024c), where precise logical consistency and error-free deduction
are essential. This has motivated diverse efforts to improve reasoning capability, spanning architec-
tural innovations (Zhan et al., 2025), targeted pre-training (Ren et al., 2025), post-hoc fine-tuning
(Zhang et al., 2024), strategy prompting (Wu et al., 2024), and verification (Setlur et al., 2025a).
Among these, verification is particularly appealing due to its model-agnostic nature and empirical
effectiveness. By training a verifier to discriminate between correct and flawed reasoning paths, one
can substantially enhance the LLM prediction, offering a scalable and generalizable avenue toward
more trustworthy reasoning.

The verification in LLMs is broadly categorized into two paradigms: Outcome Reward Models
(ORMs) and Process Reward Models (PRMs). ORMs (Cobbe et al., 2021b; Uesato et al., 2022)
assign a scalar confidence score to an entire generated output, typically based on the final correct-
ness or task success. In contrast, PRMs (Ma et al., 2023; Setlur et al., 2025b) evaluate the reasoning
trajectory step by step, assigning intermediate rewards or correctness scores to each reasoning step.
Recent studies (Yu et al., 2025; Ying et al., 2024; Wang et al., 2025) found that PRMs may outper-
form ORMs in the mathematical reasoning of LLMs due to the fine-grained step-level supervision

1

https://github.com/reml-group/AMCS

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝒔𝟏
… …𝒔𝟐 𝒔𝟑 𝒔𝟒

𝒔𝟓 𝒔n Answer

Problem

𝐿𝑒𝑡 𝑝 𝑥 𝑏𝑒 𝑎 𝑚𝑜𝑛𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 4. 𝑇ℎ𝑟𝑒𝑒 𝑟𝑜𝑜𝑡𝑠 𝑎𝑟𝑒 1,
2, 3. 𝐹𝑖𝑛𝑑 𝑝 0 + 𝑝 4 .

Find roots:
p(x)=24

expand
polynomial

Fixed-Budget Estimation

Dynamic-Budget Estimation

Node (Reasoning Step)

Estimation:

MC =
𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑛𝑡𝑜𝑡𝑎𝑙

rollout 1

rollout 2

rollout 3

𝑀𝐶 =
3

3
= 1.0 …

rollout 1

rollout 2

rollout 20

𝑀𝐶 =
11

20
= 0.55

…

rollout 1

rollout 2

rollout 16

𝑀𝐶 =
16

16
= 1.0rollout 3 𝑀𝐶 =

8

16
= 0.5

…

rollout 1

rollout 2

rollout 16

rollout 3

Figure 1: Strategy comparison of node (step) value estimation in automated process data genera-
tion. Fixed-budget approaches (top) allocate uniform resources across all nodes, while our dynamic-
budget approach (bottom) adapts sampling effort based on node uncertainty.

and human-like cognitive evaluation. As we know, the primary bottleneck in scaling PRMs lies
in data acquisition. High-quality process supervision requires value annotations for every reasoning
step, which is an effort-intensive process that often demands substantial domain expertise, especially
in complex, multi-step problems.

Although prior works (Wang et al., 2024a; Peng et al., 2025; Sun et al., 2025) leverage the Monte
Carlo (MC) algorithm to obtain process labels automatically, they remain inefficient in node value
estimation and inflexible in path expansion due to fixed sampling budgets and path expansion. For
instance, as shown in Figure 1, they uniformly adopt a fixed budget of 16 samples per problem
during node value estimation rather than dynamic sampling. In addition, they usually fail to balance
exploration and exploitation during the path expansion, which is crucial for accurately localizing
erroneous reasoning steps.

To address the mentioned issues, we propose Adaptive Monte Carlo Search (AMCS), a framework
that transforms the data generation process from fixed, static to adaptive, dynamic search. Specif-
ically, to tackle the estimation inefficiency, AMCS avoids allocating fixed computational effort to
every reasoning node (step). Instead, it monitors evaluation uncertainty in real time and dynami-
cally assigns more sampling resources to the nodes whose estimates remain uncertain. For nodes
that have already converged to reliable estimates, our method reduces computational effort to im-
prove overall efficiency. To overcome the inflexibility of path expansion, AMCS abandons the fixed
exploration and exploitation strategy. It begins with broad exploration to uncover diverse reasoning
paths. As the expansion progresses, it shifts toward exploiting the most promising directions, guided
by accumulated evidence of path success. This adaptive expansion enables efficient generation of
high-quality supervision data while reducing computational overhead. To verify the effectiveness
and superiority of AMCS, we train a PRM model (Qwen2.5-Math-7B-PRM-AMCS) based on the
generated large-scale process supervision data MathSearch-200K and conduct extensive experi-
ments on AIME 2024/2025, MATH (Hendrycks et al., 2021), Olympiad-Bench (Li et al., 2024a), and
Omni-MATH (Gao et al., 2024). Experimental results show that the combination of PRM-AMCS
and GLM-4-9B consistently outperforms existing baselines, achieving 15.0%, 76.2%, 22.1%, and
19.0%, respectively.

Our main contributions are as follows:

• We propose an adaptive Monte Carlo search framework, which addresses the efficiency and
inflexibility during the generation of process supervision data by introducing uncertainty-
driven adaptive sampling and dynamic exploration and exploitation.

• We curate a high-quality process supervision dataset MathSearch-200K of 200K anno-
tated reasoning trajectories with more precise value estimates and more reliable step-level
supervision signals for challenging mathematical reasoning tasks.

• We conduct comprehensive experiments and analysis across four datasets, including rein-
forcement learning experiments, analysis of scaling, supervision, and adaptive allocation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES: GENERATION OF PROCESS SUPERVISION DATA

Fine-grained evaluation of intermediate reasoning steps is critical to train a high-quality PRM. For-
mally, given a dataset D consisting of large-scale tuples (p, s1:t, µ̂t), the PRM is obtained by training
on this dataset, where p is a mathematical problem, s1:t is a partial reasoning trajectory up to step t,
and µ̂t is a quality score reflecting the likelihood that the trajectory leads to a correct solution. Since
obtaining µ̂t through expert annotation is prohibitively costly, prior works (Wang et al., 2024a; Peng
et al., 2025; Sun et al., 2025) typically rely on automated MC-based pipelines to construct these
supervisory signals.

The key idea is to evaluate the quality of any partial reasoning trajectory by measuring how often
it leads to correct solutions. Specifically, given a partial reasoning sequence s1:t (representing the
first t steps of a solution attempt), the automated pipeline generates N different expansions from
this step and checks whether each expansion results in the correct final answer a. The quality score
µ̂t is then estimated as the empirical success probability:

µ̂t =
1

N

∑
I(expand(s1:t)) = a). (1)

As a concrete illustration, Appendix G presents a case study of rollouts on a math problem, showing
the diversity of reasoning trajectories that arise from the same prompt. However, the mentioned
pipeline reveals two limitations at different levels:

1. At the Node Value Estimation Level. Its reliance on a fixed-budget sampling strategy
leads to inefficiency, as it ignores the varying difficulty of expansions from different nodes.
For instance, in Figure 1, expanding from s2 is considerably easier than expanding from s5,
suggesting that uniform exploration across all nodes is unnecessary.

2. At the Path Expansion Level. It overlooks the adaptive balance between exploration and
exploitation in the search stage. This stage is critical for accurately localizing erroneous
reasoning steps, which is essential for curating the dataset D.

Therefore, the non-adaptive or fixed nature of both these levels is the efficiency and inflexibility
bottleneck in current automated annotation pipelines.

3 ADAPTIVE MONTE CARLO SEARCH

3.1 OVERVIEW

To overcome the aforementioned dual limitations, we introduce the Adaptive Monte Carlo Search
(AMCS) framework, illustrated in Figure 2. At its core, AMCS reimagines the data generation
process—shifting from a fixed, static paradigm to an adaptive, dynamic search strategy. The top
panel of the figure depicts the dynamic estimation of node values based on the uncertainty, while
the bottom panel illustrates the adaptive path expansion based on the trade-off between exploration
and exploitation. After obtaining the process supervision dataset MathSearch-200K, we train a
PRM model to be a verifier and employ it to guide LLMs to solve math problems.

3.2 UNCERTAINTY-DRIVEN ADAPTIVE SAMPLING

To achieve a reliable estimate with the fewest samples, AMCS transforms the evaluation of a single
node from a one-off, brute-force sampling into an adaptive iterative process that dynamically adjusts
sampling effort based on estimation confidence.

Initial Sampling with Rollout Clustering. For any given reasoning prefix s1:t, the adaptive pro-
cess begins with a small, exploratory set of kinit rollouts generated using non-greedy decoding.
Under such stochastic generation, these initial rollouts often pursue different solutions (e.g., fac-
torization vs. substitution for the same algebraic problem, or forward vs. backward reasoning for
geometric proofs), making them fundamentally heterogeneous. As shown in Figure 2, treating such
diverse rollouts as equivalent samples leads to inefficient estimation, since aggregating values from
heterogeneous rollouts (e.g., r1, r2 vs. r3, rk) introduces additional variance that degrades value
estimation accuracy.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The AMCS framework. The top panel illustrates the adaptive process of node value
estimation, which transitions from an initial exploratory sampling stage to an uncertainty-guided
iterative refinement. The bottom panel shows the integration of this process within a step-wise path
expansion process, where nodes are colored by their estimated Q-values.

Given this heterogeneity, a natural idea is to group rollouts following similar reasoning patterns
together for more accurate success probability estimation within each group. Specifically, AMCS
partitions the diverse initial rollouts into K homogeneous clusters by featurizing each rollout ri
with a two-dimensional feature vector vi that characterizes both the generation confidence and the
solution complexity:

vi = [Confidence(ri),Complexity(ri)], (2)

where the generation confidence is measured by the average token-level negative log-likelihood
(− 1

Lr

∑Lr

l=1 logP (w
(r)
l |w(r)

<l)) to reflect the model’s certainty during generation, and the solution
complexity is captured by log(Lr + ζ). Here, Lr is the total number of tokens in the rollout, and
w

(r)
l denotes the l-th token in rollout ri and ζ = 10−6 prevents numerical issues. Since these fea-

tures have different scales and units, z-score standardization is applied to ensure equal contribution
to the distance-based clustering, as detailed in Appendix B.1. Based on the standardized feature
representation, the K-Means algorithm is employed to partition the rollouts into K strategy clusters
C = {C1, . . . , CK}, where each cluster Cj contains rollouts with similar confidence and complexity
profiles, enabling more targeted estimation within homogeneous strategy groups.

Uncertainty-Driven Iterative Refinement. Building on the initial clustering results, our method
iteratively refines success probability estimates through uncertainty-guided sampling. The core prin-
ciple is that clusters with higher uncertainty require more samples to achieve reliable estimates,
while confident clusters need minimal additional sampling. This ensures computational resources
focus on clusters where additional samples provide the most information gain. The refinement pro-
cess maintains success probability estimates p̂j = sj/nj for each cluster Cj , where sj and nj denote
successful and total rollouts, respectively, and quantifies estimation confidence through uncertainty
measure δj . Specifically, we employ the Wilson score interval to measure cluster-level uncertainty:

δj =
z

1 + z2

nj

√
p̂j(1− p̂j)

nj
+

z2

4n2
j

, (3)

where z ≈ 1.96 for 95% confidence (Wilson, 1927). This formulation provides reliable confidence
bounds even with small sample sizes or extreme probabilities (Brown et al., 2001). The node-level
uncertainty δnode aggregates cluster uncertainties weighted by sample sizes (detailed derivation in
Appendix B).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

At each iteration, we identify the target cluster C∗ with maximum uncertainty among active candi-
dates. A cluster is considered active if it has not converged (uncertainty δj exceeds threshold ϵcluster)
and has remaining sampling budget (current samples nj below limit ncluster

max). Formally, the active set
is Cactive = {Cj : nj < ncluster

max ∧ δj > ϵcluster}, and the target cluster is selected as:

C∗ = argmax
Cj∈Cactive

δj . (4)

The number of new samples mstep allocated to C∗ scales with its uncertainty level:

mstep = min{mmax,max{mmin, ⌈γ · δC∗⌉}}, (5)

where γ converts uncertainty to sample counts, and bounds [mmin,mmax] ensure reasonable batch
sizes. After generating these rollouts and assigning them via feature distance, we update cluster
statistics and proceed to the next iteration.

Node Value Estimation. The iterative refinement process from the above step does not continue
indefinitely. To ensure computational efficiency and prevent excessive sampling on nodes that have
already converged to reliable estimates, we establish a set of principled termination criteria. Specif-
ically, the process terminates when any of the following three complementary conditions is met:

δnode ≤ ϵnode or
K∑
j=1

nj ≥ kmax or ∀j : δj ≤ ϵcluster, (6)

each condition corresponding to confidence achievement, budget exhaustion, and universal cluster
convergence, respectively. Upon termination, the final Monte Carlo estimate for node s aggregates
cluster-level success probability weighted by their respective sample sizes:

µ̂(s) =

K∑
j=1

nj

ntotal
· p̂j . (7)

This weighted average ensures that clusters with more samples contribute proportionally more to the
final estimate, reflecting their higher confidence levels. The value µ̂(s) serves as the Monte Carlo
value estimate for the node, which is subsequently used as the Q-value in the MCTS selection phase.

3.3 ADAPTIVE PATH EXPANSION

Building upon the adaptive node evaluation in Section 3.2, we employ adaptive path expansion to
navigate the reasoning space.

Selection Mechanism. Following OmegaPRM (Luo et al., 2024), we select nodes to expand dur-
ing tree search based on the exploitation value:

Q(s, r) = α1−µ̂(s) · β
len(r)
Lp , (8)

where s represents a reasoning state and r denotes a rollout continuation, µ̂(s) is the node-level
success estimate from Section 3.2, α, β ∈ (0, 1) are scaling factors, and Lp is the normalized
problem length. The exploration bonus employs the UCT principle (Kocsis & Szepesv´ari, 2006;
Silver et al., 2016):

U(s, r) = cpuct

√
logN(s)

1 +N(s, r)
, (9)

where N(s, r) and N(s) denote visit counts, and cpuct > 0 controls exploration strength.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dynamic Exploration-Exploitation Trade-off. Beyond adaptive node estimation, we introduce
temporal modulation of the exploration-exploitation balance. Traditional MCTS maintains fixed
weighting throughout search, but for effective process supervision data generation, this balance
should evolve as information accumulates. We define a time-varying selection score:

πt(s, r) = (1− wt)Q(s, r) + wtU(s, r), wt = exp(−t/T), (10)

where t is the current iteration and T > 0 controls the transition rate. The exponentially decaying
weight wt ensures exploration dominates initially when value estimates are uncertain, then progres-
sively shifts to exploitation as confidence increases.

3.4 PROCESS REWARD MODEL TRAINING

Following the generation of process supervision data via AMCS, we train a process reward model
designed to evaluate intermediate reasoning steps. The training dataset D comprises approximately
200,000 reasoning trajectories generated by applying AMCS to problems from MATH500 and
GSM8K. Each training instance (p, s1:t, µ̂(st)) consists of a problem p, a partial reasoning tra-
jectory s1:t, and its corresponding Monte Carlo value estimate µ̂(st) ∈ [0, 1]. We initialize the PRM
with Qwen2.5-Math-7B-Instruct to leverage its strong mathematical reasoning capabilities. To fully
leverage the continuous, fine-grained nature of the signals produced by AMCS, we employ a binary
cross-entropy loss function with soft labels. In this formulation, the continuous Monte Carlo esti-
mate µ̂(st) ∈ [0, 1] directly serves as the target probability rather than being binarized. The training
objective is:

L(θ) = − 1

|D|
∑

(p,s1:t,µ̂)∈D

[µ̂ log fθ(p, s1:t) + (1− µ̂) log(1− fθ(p, s1:t))] , (11)

where fθ(p, s1:t) represents the score predicted by the PRM. This soft label mechanism preserves the
uncertainty information from our adaptive framework: high-confidence estimates (where µ̂ is near
0 or 1) provide strong supervision signals, while uncertain estimates (near 0.5) naturally contribute
weaker gradients, effectively regularizing the training process.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate Qwen2.5-Math-7B-PRM-AMCS across diverse mathematical reasoning benchmarks
including GSM8K (Cobbe et al., 2021a), MATH (Hendrycks et al., 2021), AIME, Olympiad-Bench
(Li et al., 2024a), and OmniMATH (Gao et al., 2024). Our experiments test four actor models (GLM-
4-9B, Phi-4-mini-Instruct, Llama-3.2-3B-Instruct, Qwen3-8B) with three search strategies (Beam
Search, Best-of-N, MCTS) for inference evaluation, and conduct PPO fine-tuning using Qwen2.5-
Math-7B-Instruct. We compare against open source PRMs, including Math-Shepherd, PRM800K,
and Deepseek variants. AMCS parameters use kinit = 6, kmax = 32, ϵ = 0.1, with K = 3 clusters.
The experimental details are provided in Appendix C.

4.2 MAIN RESULTS

We evaluate the effectiveness of AMCS by training PRMs with our adaptive data generation frame-
work and comparing their performance against existing PRMs across four mathematical reasoning
benchmarks: AIME, MATH, Olympiad-Bench, and OmniMATH. In our experiments, PRMs guide
four different actor models (GLM-4-9B, Phi-4-mini-Instruct, Llama-3.2-3B-Instruct, and Qwen3-
8B) in generating reasoning trajectories. We test these models across three search strategies (Beam
Search, Best-of-N, and MCTS) to demonstrate the generalizability of our approach. Table 1 presents
comprehensive results across all model-strategy combinations.

PRMs trained with AMCS-generated data demonstrate consistent improvements across all experi-
mental settings, with our method achieving peak performance of 76.2% on MATH, 15.0% on AIME,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Mathematical reasoning performance of different PRMs across various search strategies.
Models marked with † serve as the actor models, which are responsible for generating the reasoning
trajectories. All results are reported in accuracy (%). Dataset names are abbreviated: MATH is
MATH500, Oly. is Olympiad-Bench, Omni. denotes OmniMATH, and Avg. represents the average
score.

Llama-3.2-3B-Instruct† Phi-4-mini-Instruct†
Strategy Verifier AIME MATH Oly. Omni. Avg. AIME MATH Oly. Omni. Avg.

Beam Search

Qwen2.5-Math-7B-Instruct 0.0 45.3 10.4 10.5 16.6 5.0 48.0 11.4 7.5 18.0
Llama3.1-8B-PRM-Deepseek 6.7 39.0 7.1 8.0 15.2 1.7 43.6 11.1 8.0 16.1
Qwen2.5-Math-7B-PRM800K 6.7 52.5 13.9 12.1 21.3 5.0 68.5 17.8 15.7 26.8
Math-Shepherd-Mistral-7B 8.3 54.5 10.4 13.0 21.6 8.3 69.1 11.9 13.0 25.6
Qwen2.5-Math-7B-PRM-AMCS 10.0 61.4 13.6 13.7 24.7 8.7 68.5 19.8 16.2 28.3

Best-of-N

Qwen2.5-Math-7B-Instruct 1.7 52.8 12.2 12.1 19.7 1.7 41.4 11.7 11.5 16.6
Llama3.1-8B-PRM-Deepseek 3.3 49.0 10.4 10.5 18.3 3.3 51.2 11.7 11.6 19.5
Qwen2.5-Math-7B-PRM800K 1.7 56.6 12.3 12.8 20.9 6.7 64.8 16.8 12.3 25.2
Math-Shepherd-Mistral-7B 1.7 53.8 12.0 12.6 20.0 6.7 64.2 14.5 14.9 25.1
Qwen2.5-Math-7B-PRM-AMCS 6.7 59.9 13.9 13.2 23.4 6.7 68.0 17.7 16.2 27.2

MCTS

Qwen2.5-Math-7B-Instruct 1.7 44.7 8.8 10.0 16.3 3.3 53.0 10.1 7.0 18.4
Llama3.1-8B-PRM-Deepseek 5.0 40.0 7.6 9.0 15.4 3.3 43.2 10.5 8.2 16.3
Qwen2.5-Math-7B-PRM800K 8.3 59.4 14.6 12.6 23.7 5.0 68.0 18.2 17.1 27.1
Math-Shepherd-Mistral-7B 6.7 57.6 11.9 11.7 22.0 5.0 65.6 12.5 14.6 24.4
Qwen2.5-Math-7B-PRM-AMCS 8.3 60.0 14.7 12.3 23.8 8.3 69.0 19.4 17.2 28.5

Qwen3-8B† GLM-4-9B†

Strategy Verifier AIME MATH Oly. Omni. Avg. AIME MATH Oly. Omni. Avg.

Beam Search

Qwen2.5-Math-7B-Instruct 1.7 42.0 9.1 11.0 16.0 8.3 71.1 18.0 17.0 28.6
Llama3.1-8B-PRM-Deepseek 3.3 43.7 12.3 10.4 17.4 5.0 69.0 14.7 14.2 25.7
Qwen2.5-Math-7B-PRM800K 3.3 42.0 11.6 11.2 17.0 13.3 75.4 19.4 12.3 30.1
Math-Shepherd-Mistral-7B 0.0 47.2 13.5 13.9 18.7 6.7 73.0 19.6 14.8 28.5
Qwen2.5-Math-7B-PRM-AMCS 6.7 49.4 13.2 14.1 20.9 13.3 76.0 20.3 19.2 32.2

Best-of-N

Qwen2.5-Math-7B-Instruct 0.0 42.4 12.0 13.7 17.0 6.7 75.0 19.0 16.2 29.2
Llama3.1-8B-PRM-Deepseek 3.3 41.2 13.2 11.9 17.4 10.0 74.2 18.7 16.2 29.8
Qwen2.5-Math-7B-PRM800K 1.7 41.8 13.2 14.2 17.7 11.7 76.2 18.2 17.6 30.9
Math-Shepherd-Mistral-7B 3.3 45.0 14.0 8.0 17.6 8.3 77.2 19.6 15.5 30.2
Qwen2.5-Math-7B-PRM-AMCS 5.0 47.8 17.2 13.9 21.0 11.7 77.8 19.3 17.8 31.7

MCTS

Qwen2.5-Math-7B-Instruct 3.3 46.5 9.2 12.3 17.8 6.7 70.4 16.7 15.5 27.3
Llama3.1-8B-PRM-Deepseek 3.3 46.2 14.2 11.8 18.9 13.3 69.0 16.6 15.6 28.6
Qwen2.5-Math-7B-PRM800K 1.7 42.6 11.9 14.4 17.7 13.3 76.0 21.2 18.7 32.3
Math-Shepherd-Mistral-7B 5.0 50.6 14.6 13.6 21.0 3.3 74.2 19.5 16.0 28.3
Qwen2.5-Math-7B-PRM-AMCS 6.7 51.2 14.9 14.7 21.9 15.0 76.2 22.1 19.0 33.1

22.1% on Olympiad-Bench, and 19.0% on OmniMATH using GLM-4-9B with MCTS. The im-
provements exhibit several notable patterns that provide insights into the effectiveness of adaptive
data generation.

The benefits scale positively with model capacity, where larger models (GLM-4-9B, Qwen3-8B)
consistently show more substantial improvements compared to smaller models (Phi-4-mini, Llama-
3.2-3B). This suggests that AMCS-generated supervision data provides richer learning signals that
larger models can better exploit. Additionally, the improvements are more pronounced on challeng-
ing benchmarks such as AIME and Olympiad-Bench, indicating that adaptive resource allocation
during data generation particularly benefits complex multi-step reasoning scenarios where tradi-
tional fixed-budget approaches may under-sample critical reasoning paths.

Across different search strategies, AMCS maintains consistent advantages while revealing interest-
ing interaction patterns. MCTS generally yields the highest absolute performance, but the relative
improvements from AMCS remain substantial across Beam Search and Best-of-N as well, demon-
strating that the quality gains are inherent to the supervision data rather than dependent on specific
inference mechanisms.

4.3 PROCESS SUPERVISION VERSUS MODEL SCALE

To validate the generalizability of AMCS across different model capacities, we evaluate our ap-
proach using actor models ranging from 1.5B to 72B parameters. Figure 3 demonstrates that
Qwen2.5-Math-7B-PRM-AMCS consistently outperforms all baseline methods across the entire
parameter range on both MATH500 and GSM8K benchmarks. The performance advantages are
particularly pronounced in smaller models, where Qwen2.5-Math-7B-PRM-AMCS achieves 53.4%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Performance comparison across Qwen actor models of different sizes (1.5B-72B) paired
with various PRMs on MATH500 and GSM8K benchmarks.

accuracy on MATH500 with the 1.5B actor model compared to 28.8% for Deepseek-PRM, repre-
senting a 24.6 percentage point improvement. This substantial gap suggests that smaller models are
especially sensitive to the quality of step-level supervision, making high-fidelity process rewards
crucial for achieving competitive performance with limited parameters.

Remarkably, the scaling analysis reveals that superior process supervision can effectively com-
pensate for reduced model capacity. A 7B model paired with Qwen2.5-Math-7B-PRM-AMCS
(70.6% on MATH500) substantially outperforms a 72B model with weaker supervision (65.0% with
Deepseek-PRM), despite requiring approximately 10× fewer parameters. This finding indicates
that investing in higher-quality process supervision may be more cost-effective than simply scaling
model parameters. The consistent advantages maintained by AMCS across both math-specialized
models (Qwen2.5-Math series) and general instruction-tuned variants (32B-Instruct) further demon-
strate the robustness and broad applicability of our adaptive framework across different architectural
choices and training paradigms.

4.4 SUPERVISION DATA ANALYSIS

Figure 4 examines the distribution characteristics of reasoning steps and token density across dif-
ferent process supervision datasets. AMCS exhibits a fundamentally different distribution profile
compared to existing datasets, with a broader, right-skewed step distribution (mean: 11 steps) com-
pared to the concentrated distributions of Math-Shepherd and PRM800K (6-7 steps). The token
density analysis reveals systematic differences as well: AMCS averages 65 tokens per step with
wider variance, indicating more detailed intermediate reasoning than baseline datasets (32-46 to-
kens). These distributional characteristics reflect important differences in data generation philos-
ophy. The extended tail in AMCS step counts suggests systematic capture of complex reasoning
scenarios that require multi-stage elaboration—cases potentially underrepresented in fixed-budget
approaches. This adaptive granularity aligns with the intuition that mathematical problems exhibit
varying intrinsic complexity, requiring correspondingly detailed supervision for effective process
reward modeling.

4.5 ADAPTIVE ALLOCATION ANALYSIS

To understand the resource allocation behavior of AMCS, we analyze the sampling patterns across
different node value ranges in our generated dataset. Figure 5 shows the distribution of MC roll-
outs and explored nodes across five value intervals. As illustrated in Figure 5(a), AMCS allocates
significantly more rollouts to uncertain nodes (µ ∈ [0.4, 0.6]: 20.0 rollouts) compared to confident
ones (µ < 0.2: 6.9 rollouts; µ > 0.8: 7.1 rollouts), demonstrating a 3× difference in sampling
intensity. This adaptive allocation contrasts with the fixed 16-sample baseline (Luo et al., 2024;
Wang et al., 2024a), which wastes resources on easy-to-evaluate extreme values while potentially
undersampling uncertain regions. Similarly, as shown in Figure 5(b), the search depth varies from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Distribution comparison of reasoning steps and token density across process supervision
datasets. AMCS exhibits a fundamentally different distribution profile with a broader step distri-
bution extending to longer reasoning sequences (mean: 11 steps) compared to the concentrated
distributions of Math-Shepherd and PRM800K (6-7 steps). The token density analysis reveals that
AMCS averages 65 tokens per step with wider variance, indicating more detailed intermediate rea-
soning than baseline datasets (32-46 tokens per step).

Figure 5: AMCS allocation patterns during data generation. (a) Distribution of MC rollouts per
node across value ranges. (b) Search depth and total nodes explored for different node values.

3.1 for low-valued nodes to 5.0-5.1 for intermediate values, indicating that AMCS explores more ex-
tensively when facing higher uncertainty. The total nodes explored also peaks at intermediate values
(14-16 nodes) versus extremes (8-10 nodes). We further provide qualitative analysis of reasoning
steps across different value categories in Appendix F.

4.6 EFFICIENCY AND QUALITY ANALYSIS OF ADAPTIVE SAMPLING

To validate the efficiency and quality advantages of AMCS’s adaptive sampling strategy, we sample
100 problems from MATH (Hendrycks et al., 2021), each with a 200-rollout budget, stratified by
difficulty levels (Level 1=easiest, Level 5=hardest). Following OmegaPRM (Luo et al., 2024), we
implement fixed-budget baselines with k ∈ {4, 10, 16, 22, 28} using the OpenR framework (Wang
et al., 2024b). Figure 6 presents computation time, search depth, and nodes explored.

The aggregate results (top row) show that AMCS maintains stable computational costs across prob-
lems (dashed lines), while fixed-budget strategies exhibit varying patterns. Notably, k = 4 incurs the
longest time despite minimal per-node budget, as poor value estimates require exploring more nodes
to find solutions. Larger k values reduce explored nodes but increase per-node sampling, creating
a breadth-precision trade-off. AMCS avoids this dilemma through uncertainty-driven allocation,
balancing exploration and estimation under budget constraints.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 6: Computational efficiency comparison of AMCS against fixed-budget strategies follow-
ing OmegaPRM (Luo et al., 2024). Top: Aggregate metrics showing AMCS’s stable performance
(dashed lines). Bottom: Comparison between k = 16 and AMCS across difficulty levels, demon-
strating adaptive resource allocation.

The difficulty-stratified analysis (bottom row) reveals AMCS’s adaptive behavior. Comparing
k = 16 versus AMCS across levels shows that AMCS uses substantially less time and explores
fewer nodes on simple problems (Levels 1-2), where quick convergence requires fewer samples.
On hard problems (Levels 4-5), AMCS maintains comparable or greater depth, thoroughly explor-
ing uncertain paths. This difficulty-aware allocation cannot be achieved with fixed budgets. Fixed
budgets tend to waste resources on easy problems while leaving harder ones insufficiently sampled.

Figure 7: Node value distributions via KDE.
AMCS closely aligns with the k = 28 set-
ting showing concentrated peaks, contrasting
with the k = 10 setting.

To assess the quality of value estimates, we an-
alyze the distribution of estimated node values µ
across the generated dataset using Kernel Density
Estimation (KDE). Figure 7 compares three config-
urations: low fixed budget (k = 10), high fixed bud-
get (k = 28), and AMCS. The setting with k = 10
exhibits a diffuse distribution with blurred peaks, re-
sulting in many nodes assigned ambiguous interme-
diate scores (µ ≈ 0.6), which provide unclear su-
pervision signals about step correctness. In contrast,
both k = 28 and AMCS show concentrated distribu-
tions near extreme values, providing clear node eval-
uations. AMCS closely fits the distribution pattern
of k = 28, achieving comparable estimation clarity
with fewer samples per node. This demonstrates that AMCS’s adaptive allocation efficiently pro-
duces high-quality, high-confidence process supervision signals under budget constraints.

5 CONCLUSION

We propose an Adaptive Monte Carlo Search (AMCS) framework that reimagines the generation of
process supervision data by shifting from fixed, static procedures to adaptive, dynamic search. On
one hand, AMCS employs an uncertainty-driven adaptive sampling strategy to address the ineffi-
ciency inherent in node value estimation. On the other hand, it introduces adaptive path expansion
to overcome the inflexibility of expansion. Leveraging AMCS, we curate MathSearch-200K,
a dataset comprising 200K annotated reasoning trajectories, and utilize it to train a process reward
model. Extensive experiments combining the reward model with large language models, using three
distinct strategies across four benchmark datasets, demonstrate the effectiveness, superiority, and
scalability of our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICAL STATEMENT

This study is conducted in strict accordance with the principles of academic integrity. We affirm that
all research presented is original and free from any form of plagiarism or data falsification. Through-
out the research process, no personal or private information is involved. The objective of this work is
to contribute positively to the advancement of the mathematical reasoning of large language models.
We have thoroughly assessed the potential societal impact of our research and are confident that it
poses no direct negative ethical risks. All authors have made substantial contributions to this study
and have approved the final version of the manuscript for submission.

REPRODUCIBLE STATEMENT

To ensure the reproducibility of this study, we provide all necessary code, data, and experimental
configuration details. Code: All the implementation code, model scripts, and experimental pro-
cedures of this study have been open sourced on this website https://anonymous.4open.
science/r/AMCS-065C/. The code repository includes detailed README.md files to guide
environment configuration and code execution. Dataset: The core dataset used in this study is pub-
licly available as an open-source resource and can be readily accessed for research purposes.

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for
mathematical reasoning: Progresses and challenges. In EACL, pp. 225–237, 2024.

Lawrence D Brown, Tony Cai, and Anirban DasGupta. Interval estimation for a binomial proportion. Statistical
Science, 16(2):101–133, 2001.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. In NeurIPS, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training veri-
fiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021b.

Ishita Dasgupta, Andrew K Lampinen, Stephanie CY Chan, Antonia Creswell, Dharshan Kumaran, James L
McClelland, and Felix Hill. Language models show human-like content effects on reasoning. arXiv preprint
arXiv:2207.07051, 2022.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei
Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-math: A universal olympiad
level mathematic benchmark for large language models. arXiv preprint arXiv:2410.07985, 2024.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin
Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing
Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai
Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao,
Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan
Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong,
Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of
large language models from glm-130b to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit
Bata, Yoav Levine, Kevin Leyton-Brown, et al. Mrkl systems: A modular, neuro-symbolic architecture
that combines large language models, external knowledge sources and discrete reasoning. arXiv preprint
arXiv:2205.00445, 2022.

11

https://anonymous.4open.science/r/AMCS-065C/
https://anonymous.4open.science/r/AMCS-065C/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moontae Lee,
Honglak Lee, and Lu Wang. Process reward models that think. arXiv preprint arXiv:2504.16828, 2025.

Levente Kocsis and Csaba Szepesv´ari. Bandit based monte-carlo planning. In ECML, pp. 282–293, 2006.

Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuanqi Tan, Xiang
Wang, and Chang Zhou. Mugglemath: Assessing the impact of query and response augmentation on math
reasoning. arXiv preprint, 2024a.

Qingyao Li, Xinyi Dai, Xiangyang Li, Weinan Zhang, Yasheng Wang, Ruiming Tang, and Yong Yu. Codeprm:
Execution feedback-enhanced process reward model for code generation. In ACL, pp. 8169–8182, 2025.

Zenan Li, Zhi Zhou, Yuan Yao, Xian Zhang, Yu-Feng Li, Chun Cao, Fan Yang, and Xiaoxing Ma. Neuro-
symbolic data generation for math reasoning. In NeurIPS, pp. 23488–23515, 2024b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR, 2023.

Chengwu Liu, Ye Yuan, Yichun Yin, Yan Xu, Xin Xu, Zaoyu Chen, Yasheng Wang, Lifeng Shang, Qun Liu,
and Ming Zhang. Safe: Enhancing mathematical reasoning in large language models via retrospective step-
aware formal verification. arXiv preprint arXiv:2506.04592, 2025.

Yixin Liu, Avi Singh, C Daniel Freeman, John D Co-Reyes, and Peter J Liu. Improving large language model
fine-tuning for solving math problems. arXiv preprint arXiv:2310.10047, 2023.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and Hongsheng Li.
Mathcoder2: Better math reasoning from continued pretraining on model-translated mathematical code. In
ICLR, 2025.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin,
Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct. In ICLR, 2025.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei Shu,
Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by automated process
supervision. arXiv preprint arXiv:2406.06592, 2024.

Jie Ma, Zhitao Gao, Qi Chai, Wangchun Sun, Pinghui Wang, Hongbin Pei, Jing Tao, Lingyun Song, Jun Liu,
Chen Zhang, et al. Debate on graph: a flexible and reliable reasoning framework for large language models.
In AAAI, pp. 24768–24776, 2025a.

Jie Ma, Ning Qu, Zhitao Gao, Rui Xing, Jun Liu, Hongbin Pei, Jiang Xie, Linyun Song, Pinghui Wang, Jing
Tao, et al. Deliberation on priors: Trustworthy reasoning of large language models on knowledge graphs.
arXiv preprint arXiv:2505.15210, 2025b.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang. Let’s reward
step by step: Step-level reward model as the navigators for reasoning. arXiv preprint arXiv:2310.10080,
2023.

Vaskar Nath, Pranav Vishnu Raja, Jane Dwivedi-Yu, Claire Yoon, and Sean M Hendryx. Toolcomp: A multi-
tool reasoning & process supervision benchmark. arXiv preprint arXiv:2501.01290, 2025.

Miao Peng, Nuo Chen, Zongrui Suo, and Jia Li. Rewarding graph reasoning process makes llms more general-
ized reasoners. In KDD, pp. 2257–2268, 2025.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu,
Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via rein-
forcement learning for subgoal decomposition. arXiv preprint, 2025.

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code generation from
scientific papers in machine learning. arXiv preprint arXiv:2504.17192, 2025.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh Agar-
wal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated process verifiers for llm
reasoning. In ICLR, 2025a.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh Agar-
wal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated process verifiers for llm
reasoning. In ICLR, 2025b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, pp. 484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowl-
edge. nature, 550(7676):354–359, 2017.

Zhongxiang Sun, Qipeng Wang, Weijie Yu, Xiaoxue Zang, Kai Zheng, Jun Xu, Xiao Zhang, Yang Song, and
Han Li. Rearter: Retrieval-augmented reasoning with trustworthy process rewarding. In SIGIR, pp. 1251–
1261, 2025.

Qwen Team. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Vernon Toh, Ratish Puduppully, and Nancy F Chen. Veritymath: Advancing mathematical reasoning by self-
verification through unit consistency. In ICML, pp. 1–15, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and outcome-based feedback.
arXiv preprint arXiv:2211.14275, 2022.

Hongyu Wang, Xianjun Yang, Yibing Zhan, Hanjie Chen, Shulei Ji, Shiping Yang, and Yanghua Xiao. Math-
shepherd: Verify and reinforce llms step-by-step without human annotations. In ACL, 2024a.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Ziqin Gong, Yan Song, Lei Chen,
Lionel M. Ni, Linyi Yang, Ying Wen, and Weinan Zhang. Openr: An open source framework for advanced
reasoning with large language models. arXiv preprint arXiv:2410.09671, 2024b.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In ACL, pp. 9426–9439,
2024c.

Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu, Yue Cao,
Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for multimodal reasoning.
arXiv preprint arXiv:2503.10291, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In ICLR, 2023.

Zengzhi Wang, Xuefeng Li, Rui Xia, and Pengfei Liu. Mathpile: A billion-token-scale pretraining corpus for
math. In NeurIPS, pp. 25426–25468, 2024d.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, pp. 24824–24837, 2022.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
Large language models are better reasoners with self-verification. In EMNLP, pp. 2550–2575, 2023.

Edwin B Wilson. Probable inference, the law of succession, and statistical inference. Journal of the American
Statistical Association, 22(158):209–212, 1927.

Zhenyu Wu, Meng Jiang, and Chao Shen. Get an a in math: Progressive rectification prompting. In AAAI, pp.
19288–19296, 2024.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Xie. Self-
evaluation guided beam search for reasoning. Advances in Neural Information Processing Systems, 36:
41618–41650, 2023.

Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Mengdi Zhang, Xunliang Cai, and Jian Shao. S3Math:
Spontaneous step-level self-correction makes large language models better mathematical reasoners. In AAAI,
pp. 25588–25596, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu,
Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and Zhenru
Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement. arXiv
preprint arXiv:2409.12122, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yufan Ye, Ting Zhang, Wenbin Jiang, and Hua Huang. Process-supervised reinforcement learning for code
generation. arXiv preprint arXiv:2502.01715, 2025.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models toward verifiable reasoning.
arXiv preprint arXiv:2402.06332, 2024.

Tong Yu, Yongcheng Jing, Xikun Zhang, Wentao Jiang, Wenjie Wu, Yingjie Wang, Wenbin Hu, Bo Du,
and Dacheng Tao. Benchmarking reasoning robustness in large language models. arXiv preprint
arXiv:2503.04550, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. In
NeurIPS, pp. 15476–15488, 2022.

Shaoxiong Zhan, Yanlin Lai, Ziyu Lu, Dahua Lin, Ziqing Yang, and Fei Tang. Mathsmith: Towards ex-
tremely hard mathematical reasoning by forging synthetic problems with a reinforced policy. arXiv preprint
arXiv:2508.05592, 2025.

Zhihan Zhang, Tao Ge, Zhenwen Liang, Wenhao Yu, Dian Yu, Mengzhao Jia, Dong Yu, and Meng Jiang. Learn
beyond the answer: Training language models with reflection for mathematical reasoning. In EMNLP, pp.
14720–14738, 2024.

Kun Zhou, Beichen Zhang, Zhipeng Chen, Xin Zhao, Jing Sha, Zhichao Sheng, Shijin Wang, Ji-Rong Wen,
et al. Jiuzhang3. 0: Efficiently improving mathematical reasoning by training small data synthesis models.
NeurIPS, pp. 1854–1889, 2024.

A RELATED WORK

Mathematical Reasoning with LLMs. AI is advancing rapidly, with researchers pursuing
human-like reasoning abilities in LLMs (Dasgupta et al., 2022). Mathematical reasoning serves
as a key benchmark in this endeavor, requiring the integration of language understanding, symbolic
manipulation, and multi-step reasoning with correct intermediate steps (Ahn et al., 2024). To address
these challenges, prior work has explored several directions. 1) Architectural innovations introduce
specialized components, such as subgoal decomposition or neuro-symbolic modules (Karpas et al.,
2022; Li et al., 2024b), to bridge natural language understanding and formal mathematical compu-
tation. 2) Targeted pre-training on domain-specific or synthetic mathematical corpus (Wang et al.,
2024d; Zhou et al., 2024) allows the model to learn structured reasoning patterns and symbolic
manipulations that improve generalization on complex tasks (Lu et al., 2025; Shao et al., 2024).
3) Post-hoc fine-tuning further refines pretrained models with annotated reasoning traces, reflective
feedback, or process-level supervision (Zelikman et al., 2022; Liu et al., 2023; Yan et al., 2025). 4)
Prompting strategies guide models to generate intermediate steps or iteratively refine outputs with-
out modifying model parameters, exemplified by chain-of-thought prompting (Wei et al., 2022),
self-consistency (Wang et al., 2023), and rectification prompting (Wu et al., 2024). 5) Verification
methods validate outputs through self-correction (Toh et al., 2023), external verifiers (Weng et al.,
2023), or process-level evaluation (Liu et al., 2025), increasing the reliability and trustworthiness
of model-generated solutions. While all these approaches improve reasoning, challenges such as
error accumulation and unverified intermediate steps remain. This has drawn increasing attention to
verification methods.

Verification for Reasoning. Verification is crucial for improving the reliability of reasoning in
LLMs, with two main paradigms: outcome reward models (ORMs) and process reward models
(PRMs). ORMs assign rewards based solely on the correctness of the final answer and have been
widely used in reinforcement learning with human feedback (RLHF) (Christiano et al., 2017). While
effective for simple tasks, ORMs provide sparse feedback, which can reinforce spurious reasoning
paths and limit performance in multi-step reasoning. By contrast, PRMs evaluate and reward inter-
mediate reasoning steps, providing richer supervision that guides models toward correct reasoning
trajectories. Empirical studies demonstrate the advantages of PRMs in various domains (Nath et al.,
2025). In mathematics, WizardMath (Luo et al., 2025) and ThinkPRM (Khalifa et al., 2025) outper-
form ORM-based approaches on benchmarks including GSM8K (Cobbe et al., 2021b) and MATH-
500 (Lightman et al., 2023), both in accuracy and data efficiency. In code generation, PRLCoder (Ye
et al., 2025) and CODEPRM (Li et al., 2025), which incorporate execution feedback, achieve higher
pass rates and better handling of complex tasks compared to ORM-guided reinforcement learning.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Process Supervision Data Generation. The effectiveness of PRMs depends on high-quality pro-
cess supervision data. Traditional pipelines such as manual annotation, rule-based heuristics, or
offline extraction provide supervision signals (Uesato et al., 2022; Lightman et al., 2023). Recent
efforts have sought more scalable alternatives, for example, using Monte Carlo Tree Search (MCTS)
to evaluate intermediate steps or leveraging verbalized verification chain-of-thought to reduce ex-
plicit labeling requirements (Wang et al., 2024a; Luo et al., 2024). While these approaches mitigate
annotation costs, the generated supervision remains static and does not evolve with model behavior.
In contrast, we propose a dynamic process supervision framework that continuously updates traces
based on the model’s evolving reasoning. This adaptive approach improves efficiency by focusing
on uncertain or error-prone steps and enhances robustness under distribution shifts, overcoming the
limitations of static supervision data.

B ALGORITHMIC DETAILS

This appendix provides an in-depth exposition of the key algorithmic components and implementa-
tion specifics of our Adaptive Monte Carlo Search (AMCS) framework. We detail the methodologies
for quantifying uncertainty at both cluster and node levels, the process of feature engineering, and
the robust assignment of new samples within the adaptive sampling loop.

B.1 FEATURE ENGINEERING AND CLUSTER MANAGEMENT

This section details the feature extraction, standardization, and dynamic assignment procedures used
in our adaptive Monte Carlo clustering framework.

Feature Extraction and Standardization For each rollout ri, we extract a two-dimensional fea-
ture vector vi = [NLLi, log(Lr + ζ)] where:

• Average Negative Log-Likelihood (NLL): NLLi = − 1
Wr

∑Wr

j=1 logP (w
(r)
j |w(r)

<j), where
Wr is the number of words in rollout ri. This measures the model’s generation confidence.

• Log Complexity: log(Lr + ζ) where Lr is the token length and ζ = 10−6 prevents nu-
merical issues for very short rollouts.

Since these features operate on fundamentally different scales (NLL values typically range from 0.1
to 50+ while log-length ranges from 0 to 10), direct combination would result in NLL dominating
the clustering distance calculations. To ensure both features contribute equally to the K-means
clustering, we apply z-score standardization to the initial k0 rollout features {vi}k0

i=1.

v̂i =
vi − µv

σv + ζstd
(12)

where µv = 1
k0

∑k0

i=1 vi and σv =
√

1
k0

∑k0

i=1(vi − µv)2 are computed element-wise. A small
constant ζstd = 10−8 is added to prevent division by zero for constant features.

The standardization parameters (µv,σv) computed from the initial k0 rollouts are stored and reused
for standardizing features of subsequently generated rollouts during the adaptive refinement phase,
ensuring consistent feature space representation throughout the clustering process.

Dynamic Sample Assignment During the iterative refinement phase, newly generated rollouts
must be assigned to existing clusters. Each new rollout rnew is assigned to the cluster whose centroid
is closest in the standardized feature space:

cluster(rnew) = argmin
j∈{1,...,K}

∥v̂new − µCj
∥2 (13)

where v̂new is the standardized feature vector of the new rollout and µCj
denotes the centroid of clus-

ter Cj in the standardized feature space. The Euclidean distance (L2 norm) serves as the similarity
metric.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Performance comparison of four Process Reward Models (PRMs) on the (a) MATH500
and (b) AIME datasets. A unified actor model, Llama-3.2-3-Instruct, generates N candidate reason-
ing paths. The final accuracy is determined by using each PRM for step-wise scoring to select the
optimal path.

After assignment, the target cluster’s statistics and centroid are updated incrementally:

1. The rollout index is added to the cluster’s rollout list.

2. Success/failure statistics are recomputed based on all assigned rollouts.

3. The Wilson confidence interval and uncertainty measure are updated.

4. The centroid is recomputed as the mean of all standardized feature vectors assigned to the
cluster.

This dynamic assignment mechanism ensures that newly generated rollouts are grouped with exist-
ing clusters representing similar reasoning strategies, maintaining the homogeneity principle essen-
tial for accurate uncertainty-driven sampling allocation.

B.2 UNCERTAINTY QUANTIFICATION

In Section 3.2, we introduce the Wilson score interval for uncertainty quantification. Here we pro-
vide the complete mathematical derivation and additional technical details.

Cluster-Level Uncertainty. For each strategy cluster Cj , we compute a success probability esti-
mate p̂j = sj/nj , where sj is the number of successful rollouts and nj is the total number of rollouts
within cluster Cj . The Wilson score interval is derived from inverting the score test for a binomial
proportion. For a binomial random variable with true probability p and observed proportion p̂, the
score statistic is:

Z =
p̂− p√

p(1− p)/n
(14)

The Wilson confidence interval is obtained by solving |Z| ≤ zα/2 for p, which yields the inter-
val bounds. The uncertainty measure δj (Eq. 3 in the main text) represents half the width of this
confidence interval. This formulation handles edge cases effectively: when nj is small, δj will be
large, correctly indicating high uncertainty. Conversely, as nj increases, δj shrinks, reflecting in-
creasing confidence in the estimate p̂j . The Wilson interval maintains valid coverage properties even
with small sample sizes or probabilities near 0 or 1, which are common scenarios in our adaptive
sampling setting where clusters may have few samples or exhibit very high/low success rates.

Node-Level Uncertainty. Beyond individual cluster uncertainties, we also require an overall un-
certainty measure for the parent node Si that is currently being evaluated. This node-level un-
certainty, denoted as δnode, aggregates the uncertainties from all active clusters within its scope,
weighted by their relative contributions to the overall estimate. The overall node uncertainty δnode is

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of the Qwen2.5-Math-7B-Instruct actor model when fine-tuned
with PPO using different PRMs as the reward signal. All results are reported in accuracy (%). Here,
pass@k denotes the proportion of problems for which a correct solution appears within the top-k
generated outputs. For instance, pass@1 measures single-shot accuracy, while pass@5 allows up to
five attempts.

Reward Model MATH500 GSM8K Hungarian Math
pass@1 pass@5 pass@1 pass@5 pass@1 pass@5

Qwen2.5-Math-PRM-7B 55.6 72.6 80.0 93.4 46.9 65.6
Qwen2.5-Math-7B-PRM800K 53.4 72.8 82.2 97.4 43.8 62.5
Skywork-o1-Open-PRM-Qwen-2.5-7B 55.6 64.4 82.6 92.9 46.9 71.9

Qwen2.5-Math-7B-PRM-AMCS 61.6 73.2 83.5 97.5 53.1 75.0

computed as:

δnode =

√√√√ K∑
j=1

(
nj

ntotal

)2

· δ2j . (15)

This weighted combination reflects both the individual uncertainty inherent in each cluster’s success
probability estimate and the proportional influence of each cluster (based on its sample size nj rel-
ative to the total samples ntotal) on the aggregated node value. A larger δnode signifies higher overall
uncertainty for the node Si, indicating that its current Q-value estimate is less reliable and warrants
further adaptive sampling to refine. This measure is critical for the confidence-based termination
condition in Eq. 6.

C EXPERIMENTAL DETAILS

Datasets. We evaluate on five benchmarks: GSM8K (Cobbe et al., 2021a) for grade school math,
MATH (Hendrycks et al., 2021) for competition-level problems, AIME (60 problems from 2024-
2025 American Invitational Mathematics Examination), Olympiad-Bench (Li et al., 2024a) for
Olympic-difficulty problems, and OmniMATH (Gao et al., 2024) using 1/10 stratified sampling
by difficulty.

Model Configurations. For inference evaluation, we test four actor models: GLM-4-9B (GLM
et al., 2024), Phi-4-mini-Instruct, Llama-3.2-3B-Instruct, and Qwen3-8B (Team, 2025). PPO fine-
tuning uses Qwen2.5-Math-7B-Instruct (Yang et al., 2024) as the base model. Scaling analysis
covers the Qwen2.5 family from 1.5B to 72B parameters. We compare against multiple PRMs: for
inference, we use Qwen2.5-Math-7B-Instruct, Llama3.1-8B-PRM-Deepseek-Data, Qwen2.5-Math-
7B-PRM800K, and Math-Shepherd-Mistral-7B-PRM; for PPO training, we focus on Qwen-family
PRMs, including Qwen2.5-Math-PRM-7B, Qwen2.5-Math-7B-PRM800K, and Skywork-o1-Open-
PRM-Qwen-2.5-7B.

Hyperparameters. Inference uses three search strategies: Beam Search (beam size 5), Best-of-N
(N=4), and MCTS (5 rollouts per node). PPO training employs a learning rate of 1e-6, batch size 4,
and 3 epochs per update. AMCS parameters are set as: initial sampling kinit = 6, maximum budget
kmax = 32, precision threshold ϵ = 0.1, and K = 3 clusters. All experiments use consistent random
seeds for reproducibility.

Training Details. During the data generation phase, four Tesla A800 GPU cards are used to train
our data about one week. We use four Tesla A800 GPU cards to train a process reward model about
three days.

PRM Inference Strategies. To clarify the inference procedures used in our experiments, we note
that all inference methods operate at the step level rather than the token level. Each node in the
search tree corresponds to a complete reasoning step generated by the LLM, and the PRM provides
a scalar reward for that step; search decisions are therefore made over reasoning steps instead of
individual tokens.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Qualitative analysis of reasoning steps across different node value categories. Low-valued
nodes (µ < 0.2) typically contain straightforward calculations, while high-valued nodes (µ > 0.8)
often represent solution conclusions.

Beam Search. We adopt step-level beam search following (Lightman et al., 2023) (Xie et al., 2023):
at each expansion layer, the algorithm keeps the top-k partial reasoning paths ranked by their PRM
scores and discards the rest. This differs from vanilla token-level beam search, as pruning is per-
formed at reasoning-step boundaries rather than at every token.

Best-of-N . We sample N complete reasoning trajectories independently using the actor model. The
PRM assigns step-wise rewards to each trajectory, and the trajectory with the highest final PRM
score is selected. No intermediate pruning or tree search is performed.

MCTS. Our MCTS implements an AlphaZero-style step-level tree search (Silver et al., 2017): edges
correspond to reasoning steps, PRM outputs serve as Q-value estimates for child nodes, and a UCB
rule balances exploration and exploitation. This design enables selective exploration of promising
reasoning branches under PRM guidance.

D REINFORCEMENT LEARNING WITH AMCS-TRAINED PRMS

To demonstrate the practical utility of AMCS beyond inference-time verification, we evaluate
whether PRMs trained with our adaptive data generation framework can serve as more effective
reward models in reinforcement learning settings. We conduct PPO fine-tuning experiments on
Qwen2.5-Math-7B-Instruct, comparing our Qwen2.5-Math-7B-PRM-AMCS against three baseline
PRMs from the same Qwen model family to ensure fair comparison: Qwen2.5-Math-PRM-7B,
Qwen2.5-Math-7B-PRM800K, and Skywork-o1-Open-PRM-Qwen-2.5-7B. All experiments follow
identical PPO training procedures with step-level reward supervision, varying only the reward model
across conditions. Table 2 presents the performance comparison across different reward models
on the MATH500, GSM8K, and the Hungarian Math out-of-distribution (OOD) benchmarks. Our
approach achieves pass@1 (pass@5) scores of 61.6% (73.2%) on MATH500, 83.5% (97.5%) on
GSM8K, and 53.1% (75.0%) on the Hungarian Math OOD dataset, consistently outperforming all
baselines. The modest gain on GSM8K can be attributed to its less complex problems and the
high baseline performance. In contrast, the substantial improvements on both the competition-level
MATH500 and the OOD Hungarian Math are more significant. This demonstrates that the higher-
quality process supervision provided by Qwen2.5-Math-7B-PRM-AMCS is especially beneficial for
learning sophisticated and generalizable reasoning patterns, rather than just solving problems from
a familiar distribution. These results provide crucial end-to-end validation, demonstrating that qual-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 9: An illustrative rollout case showing multiple reasoning trajectories sampled from a single
math problem. The figure highlights the diversity across rollouts, motivating the need for clustering
and adaptive evaluation.

ity improvements in process supervision data directly translate into more capable and robust final
models.

E EFFECT OF THE NUMBER OF REASONING PATHS

To evaluate the efficacy of our proposed Process Reward Model, Qwen2.5-Math-7B-PRM-AMCS,
we benchmark its performance against three baseline PRMs: Qwen2.5-Math-7B-PRM800K, math-
shepherd-mistral-7b-prm, and Llama3.1-8B-PRM-Deepseek-Data. We employ a unified actor
model, Llama-3.2-3B-Instruct, to generate N candidate reasoning paths for each problem from two
challenging mathematics competition datasets, MATH500 and AIME. The final accuracy is deter-
mined by using each PRM to perform step-wise scoring and select the best path from the candidate
pool, with N varying from 2 to 10. The results, depicted in Figure 8, show a consistent trend where a
larger N leads to higher final accuracy across all models. This aligns with the fundamental principle
of Best-of-N sampling, where a larger candidate pool provides a higher performance ceiling. Cru-
cially, our Qwen2.5-Math-7B-PRM-AMCS model consistently achieves the highest accuracy across
all values of N on both datasets. This performance advantage is particularly pronounced on the more
difficult AIME dataset, underscoring the robustness of our model. These findings demonstrate the
superior discriminative capability of our proposed PRM, indicating that it provides more accurate
step-wise reward signals for identifying high-quality reasoning processes compared to the baselines.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F REASONING STEP CHARACTERISTICS

To better understand the relationship between node values and reasoning complexity, we analyze
the content characteristics of reasoning steps across different value categories. Table 3 presents
representative examples from each category.

G CASE STUDY OF ROLLOUT DIVERSITY

To complement the discussion in Preliminaries, we provide a concise case study of reasoning rollouts
sampled from a single math problem. As shown in Figure 9, several representative trajectories are
depicted (with omissions for brevity), reflecting the inherent diversity of the rollout process.

20

	Introduction
	Preliminaries: Generation of Process Supervision Data
	Adaptive Monte Carlo Search
	Overview
	Uncertainty-Driven Adaptive Sampling
	Adaptive Path Expansion
	Process Reward Model Training

	Experiment
	Experimental Setup
	Main Results
	Process Supervision versus Model Scale
	Supervision Data Analysis
	Adaptive Allocation Analysis
	Efficiency and Quality Analysis of Adaptive Sampling

	Conclusion
	Related Work
	Algorithmic Details
	Feature Engineering and Cluster Management
	Uncertainty Quantification

	Experimental Details
	Reinforcement Learning with AMCS-trained PRMs
	Effect of the Number of Reasoning Paths
	Reasoning Step Characteristics
	Case Study of Rollout Diversity

