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ABSTRACT

The quality of process data plays a key role in training a Process Reward Model
(PRM), which can enhance the complex mathematical reasoning capability of
large language models. Existing methods estimate the quality of reasoning steps
based on a fixed-budget sampling strategy and navigate a vast search space to per-
form path expansion during the automated data generation process, resulting in
their inefficiency and inflexibility. To address these issues, we propose Adaptive
Monte Carlo Search (AMCS), a framework that transforms data generation from
fixed, static to adaptive, dynamic search at the level of node value estimation and
path expansion. On one hand, AMCS adaptively refines estimation by allocating
more samples to uncertain reasoning steps while using fewer samples for those
that are easier to estimate. On the other hand, it enhances the path expansion
through a Monte Carlo algorithm with a temporally adaptive policy that begins
with broad exploration and gradually shifts toward exploiting the most promising
directions. With AMCS, we construct a large-scale dataset MathSearch—-200K
of about 200K process supervision examples for training PRMs. To verify the
effectiveness of our method, we conduct extensive experiments on four mathe-
matical reasoning benchmarks. Experimental results show that Qwen2.5-Math-
7B-PRM-AMCS achieves up to 76.2% accuracy on MATH500 with GLM-4-9B,
outperforming all baseline PRMs. Notably, a 7B model supervised by Qwen2.5-
Math-7B-PRM-AMCS surpasses a 72B model with weaker supervision. More-
over, Qwen2.5-Math-7B-PRM-AMCS maintains consistent advantages on out-of-
distribution problems, demonstrating strong generalization capability. Our code is
available at https://github.com/reml-group/AMCS.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated significant success across a wide range of natu-
ral language processing tasks (Ma et al.,2025afb; |Seo et al.| 2025)), including open-domain dialogue,
summarization, and code generation. However, they often struggle with complex multi-step mathe-
matical reasoning (Wang et al., [2024c), where precise logical consistency and error-free deduction
are essential. This has motivated diverse efforts to improve reasoning capability, spanning architec-
tural innovations (Zhan et al., |20235)), targeted pre-training (Ren et al., 2025), post-hoc fine-tuning
(Zhang et al., |2024), strategy prompting (Wu et al., |2024)), and verification (Setlur et al., [2025a)).
Among these, verification is particularly appealing due to its model-agnostic nature and empirical
effectiveness. By training a verifier to discriminate between correct and flawed reasoning paths, one
can substantially enhance the LLM prediction, offering a scalable and generalizable avenue toward
more trustworthy reasoning.

The verification in LLMs is broadly categorized into two paradigms: Outcome Reward Models
(ORMs) and Process Reward Models (PRMs). ORMs (Cobbe et al.l [2021b; [Uesato et al., [2022)
assign a scalar confidence score to an entire generated output, typically based on the final correct-
ness or task success. In contrast, PRMs (Ma et al., [2023} Setlur et al., 2025b) evaluate the reasoning
trajectory step by step, assigning intermediate rewards or correctness scores to each reasoning step.
Recent studies (Yu et al., 2025} |Ying et al.l [2024; |Wang et al., [2025) found that PRMs may outper-
form ORMs in the mathematical reasoning of LLMs due to the fine-grained step-level supervision
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Figure 1: Strategy comparison of node (step) value estimation in automated process data genera-
tion. Fixed-budget approaches (top) allocate uniform resources across all nodes, while our dynamic-
budget approach (bottom) adapts sampling effort based on node uncertainty.

and human-like cognitive evaluation. As we know, the primary bottleneck in scaling PRMs lies
in data acquisition. High-quality process supervision requires value annotations for every reasoning
step, which is an effort-intensive process that often demands substantial domain expertise, especially
in complex, multi-step problems.

Although prior works (Wang et al., [2024a; Peng et al., [2025; [Sun et al., 2025) leverage the Monte
Carlo (MC) algorithm to obtain process labels automatically, they remain inefficient in node value
estimation and inflexible in path expansion due to fixed sampling budgets and path expansion. For
instance, as shown in Figure [T} they uniformly adopt a fixed budget of 16 samples per problem
during node value estimation rather than dynamic sampling. In addition, they usually fail to balance
exploration and exploitation during the path expansion, which is crucial for accurately localizing
erroneous reasoning steps.

To address the mentioned issues, we propose Adaptive Monte Carlo Search (AMCS), a framework
that transforms the data generation process from fixed, static to adaptive, dynamic search. Specif-
ically, fo tackle the estimation inefficiency, AMCS avoids allocating fixed computational effort to
every reasoning node (step). Instead, it monitors evaluation uncertainty in real time and dynami-
cally assigns more sampling resources to the nodes whose estimates remain uncertain. For nodes
that have already converged to reliable estimates, our method reduces computational effort to im-
prove overall efficiency. To overcome the inflexibility of path expansion, AMCS abandons the fixed
exploration and exploitation strategy. It begins with broad exploration to uncover diverse reasoning
paths. As the expansion progresses, it shifts toward exploiting the most promising directions, guided
by accumulated evidence of path success. This adaptive expansion enables efficient generation of
high-quality supervision data while reducing computational overhead. To verify the effectiveness
and superiority of AMCS, we train a PRM model (Qwen2.5-Math-7B-PRM-AMCS) based on the
generated large-scale process supervision data MathSearch—-200K and conduct extensive experi-
ments on AIME 2024/2025, MATH (Hendrycks et al.,2021), Olympiad-Bench (Li et al.,[2024a)), and
Omni-MATH (Gao et al., [2024). Experimental results show that the combination of PRM-AMCS
and GLM-4-9B consistently outperforms existing baselines, achieving 15.0%, 76.2%, 22.1%, and
19.0%, respectively.

Our main contributions are as follows:

* We propose an adaptive Monte Carlo search framework, which addresses the efficiency and
inflexibility during the generation of process supervision data by introducing uncertainty-
driven adaptive sampling and dynamic exploration and exploitation.

* We curate a high-quality process supervision dataset MathSearch-200K of 200K anno-
tated reasoning trajectories with more precise value estimates and more reliable step-level
supervision signals for challenging mathematical reasoning tasks.

* We conduct comprehensive experiments and analysis across four datasets, including rein-
forcement learning experiments, analysis of scaling, supervision, and adaptive allocation.
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2  PRELIMINARIES: GENERATION OF PROCESS SUPERVISION DATA

Fine-grained evaluation of intermediate reasoning steps is critical to train a high-quality PRM. For-
mally, given a dataset D consisting of large-scale tuples (p, s1.¢, fi+), the PRM is obtained by training
on this dataset, where p is a mathematical problem, s;.; is a partial reasoning trajectory up to step ¢,
and /1; is a quality score reflecting the likelihood that the trajectory leads to a correct solution. Since
obtaining fi; through expert annotation is prohibitively costly, prior works (Wang et al.,2024a}; Peng
et al.l 2025} [Sun et al,, [2025) typically rely on automated MC-based pipelines to construct these
supervisory signals.

The key idea is to evaluate the quality of any partial reasoning trajectory by measuring how often
it leads to correct solutions. Specifically, given a partial reasoning sequence sp.; (representing the
first ¢ steps of a solution attempt), the automated pipeline generates N different expansions from
this step and checks whether each expansion results in the correct final answer a. The quality score
[ 1s then estimated as the empirical success probability:

1
o= S o) = ). ®

As a concrete illustration, Appendix [G]presents a case study of rollouts on a math problem, showing
the diversity of reasoning trajectories that arise from the same prompt. However, the mentioned
pipeline reveals two limitations at different levels:

1. At the Node Value Estimation Level. Its reliance on a fixed-budget sampling strategy
leads to inefficiency, as it ignores the varying difficulty of expansions from different nodes.
For instance, in Figure[T] expanding from s; is considerably easier than expanding from s,
suggesting that uniform exploration across all nodes is unnecessary.

2. At the Path Expansion Level. It overlooks the adaptive balance between exploration and
exploitation in the search stage. This stage is critical for accurately localizing erroneous
reasoning steps, which is essential for curating the dataset D.

Therefore, the non-adaptive or fixed nature of both these levels is the efficiency and inflexibility
bottleneck in current automated annotation pipelines.

3 ADAPTIVE MONTE CARLO SEARCH

3.1 OVERVIEW

To overcome the aforementioned dual limitations, we introduce the Adaptive Monte Carlo Search
(AMCS) framework, illustrated in Figure 2] At its core, AMCS reimagines the data generation
process—shifting from a fixed, static paradigm to an adaptive, dynamic search strategy. The top
panel of the figure depicts the dynamic estimation of node values based on the uncertainty, while
the bottom panel illustrates the adaptive path expansion based on the trade-off between exploration
and exploitation. After obtaining the process supervision dataset MathSearch-200K, we train a
PRM model to be a verifier and employ it to guide LLMs to solve math problems.

3.2 UNCERTAINTY-DRIVEN ADAPTIVE SAMPLING

To achieve a reliable estimate with the fewest samples, AMCS transforms the evaluation of a single
node from a one-off, brute-force sampling into an adaptive iterative process that dynamically adjusts
sampling effort based on estimation confidence.

Initial Sampling with Rollout Clustering. For any given reasoning prefix s;.;, the adaptive pro-
cess begins with a small, exploratory set of ki, rollouts generated using non-greedy decoding.
Under such stochastic generation, these initial rollouts often pursue different solutions (e.g., fac-
torization vs. substitution for the same algebraic problem, or forward vs. backward reasoning for
geometric proofs), making them fundamentally heterogeneous. As shown in Figure 2] treating such
diverse rollouts as equivalent samples leads to inefficient estimation, since aggregating values from
heterogeneous rollouts (e.g., 71,72 vs. 73,7) introduces additional variance that degrades value
estimation accuracy.
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Figure 2: The AMCS framework. The top panel illustrates the adaptive process of node value
estimation, which transitions from an initial exploratory sampling stage to an uncertainty-guided
iterative refinement. The bottom panel shows the integration of this process within a step-wise path
expansion process, where nodes are colored by their estimated Q-values.

Given this heterogeneity, a natural idea is to group rollouts following similar reasoning patterns
together for more accurate success probability estimation within each group. Specifically, AMCS
partitions the diverse initial rollouts into K homogeneous clusters by featurizing each rollout r;
with a two-dimensional feature vector v; that characterizes both the generation confidence and the
solution complexity:

v; = [Confidence(r;), Complexity(r;)], (2)

where the generation confidence is measured by the average token-level negative log-likelihood
(—+ Zf;l log P(wl(r) |w(<7l))) to reflect the model’s certainty during generation, and the solution
complexity is captured by log(L, + (). Here, L, is the total number of tokens in the rollout, and

wl(r) denotes the [-th token in rollout r; and ¢ = 107° prevents numerical issues. Since these fea-
tures have different scales and units, z-score standardization is applied to ensure equal contribution
to the distance-based clustering, as detailed in Appendix [B.I] Based on the standardized feature
representation, the K-Means algorithm is employed to partition the rollouts into K strategy clusters
C ={C1,...,Ck}, where each cluster C'; contains rollouts with similar confidence and complexity
profiles, enabling more targeted estimation within homogeneous strategy groups.

Uncertainty-Driven Iterative Refinement. Building on the initial clustering results, our method
iteratively refines success probability estimates through uncertainty-guided sampling. The core prin-
ciple is that clusters with higher uncertainty require more samples to achieve reliable estimates,
while confident clusters need minimal additional sampling. This ensures computational resources
focus on clusters where additional samples provide the most information gain. The refinement pro-
cess maintains success probability estimates p; = s;/n; for each cluster C;, where s; and n; denote
successful and total rollouts, respectively, and quantifies estimation confidence through uncertainty
measure J;. Specifically, we employ the Wilson score interval to measure cluster-level uncertainty:

5=y \/ﬁj(lﬁj) P 3)

= > : 5
1+ e n; 4nj

where z = 1.96 for 95% confidence (Wilson, [1927). This formulation provides reliable confidence
bounds even with small sample sizes or extreme probabilities (Brown et al., 2001)). The node-level
uncertainty dnoq. aggregates cluster uncertainties weighted by sample sizes (detailed derivation in
Appendix [B).
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At each iteration, we identify the target cluster C* with maximum uncertainty among active candi-

dates. A cluster is considered active if it has not converged (uncertainty ¢; exceeds threshold €cyster)
and has remaining sampling budget (current samples 7; below limit n¢%r). Formally, the active set

is Cactive = {Cj : nj < N A §; > €qusier }» and the target cluster is selected as:

C* = argmax ;. 4)
Cj ecaclivc

The number of new samples mp allocated to C* scales with its uncertainty level:

Megtep = min{mmam maX{mmim |—'Y : 50*]}}a )]

where -y converts uncertainty to sample counts, and bounds [mMyin, Mmax] ensure reasonable batch
sizes. After generating these rollouts and assigning them via feature distance, we update cluster
statistics and proceed to the next iteration.

Node Value Estimation. The iterative refinement process from the above step does not continue
indefinitely. To ensure computational efficiency and prevent excessive sampling on nodes that have
already converged to reliable estimates, we establish a set of principled termination criteria. Specif-
ically, the process terminates when any of the following three complementary conditions is met:

K

Jnode < €node  OT an > kmax or v_] : 5j < €cluster (6)
j=1

each condition corresponding to confidence achievement, budget exhaustion, and universal cluster
convergence, respectively. Upon termination, the final Monte Carlo estimate for node s aggregates
cluster-level success probability weighted by their respective sample sizes:

K
als) = ;. (7

This weighted average ensures that clusters with more samples contribute proportionally more to the
final estimate, reflecting their higher confidence levels. The value /i(s) serves as the Monte Carlo
value estimate for the node, which is subsequently used as the Q-value in the MCTS selection phase.

3.3 ADAPTIVE PATH EXPANSION

Building upon the adaptive node evaluation in Section [3.2] we employ adaptive path expansion to
navigate the reasoning space.

Selection Mechanism. Following OmegaPRM (Luo et al.| 2024)), we select nodes to expand dur-
ing tree search based on the exploitation value:

Q(s,r) = ') . gL (8)

where s represents a reasoning state and r denotes a rollout continuation, [i(s) is the node-level
success estimate from Section a,B € (0,1) are scaling factors, and L,, is the normalized
problem length. The exploration bonus employs the UCT principle (Kocsis & Szepesv “aril, 2006}
Silver et al.| [2016):

(€))

where N (s,r) and N(s) denote visit counts, and cpuec > 0 controls exploration strength.
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Dynamic Exploration-Exploitation Trade-off. Beyond adaptive node estimation, we introduce
temporal modulation of the exploration-exploitation balance. Traditional MCTS maintains fixed
weighting throughout search, but for effective process supervision data generation, this balance
should evolve as information accumulates. We define a time-varying selection score:

m(s,m) = (L —wy)Q(s, 1) + wU(s,r), wy=exp(—t/T), (10)

where ¢ is the current iteration and 7' > 0 controls the transition rate. The exponentially decaying
weight w; ensures exploration dominates initially when value estimates are uncertain, then progres-
sively shifts to exploitation as confidence increases.

3.4 PROCESS REWARD MODEL TRAINING

Following the generation of process supervision data via AMCS, we train a process reward model
designed to evaluate intermediate reasoning steps. The training dataset D comprises approximately
200,000 reasoning trajectories generated by applying AMCS to problems from MATHS500 and
GSMS8K. Each training instance (p, s1.¢, [i(s;)) consists of a problem p, a partial reasoning tra-
jectory s1.+, and its corresponding Monte Carlo value estimate fi(s;) € [0, 1]. We initialize the PRM
with Qwen2.5-Math-7B-Instruct to leverage its strong mathematical reasoning capabilities. To fully
leverage the continuous, fine-grained nature of the signals produced by AMCS, we employ a binary
cross-entropy loss function with soft labels. In this formulation, the continuous Monte Carlo esti-
mate fi(s;) € [0, 1] directly serves as the target probability rather than being binarized. The training
objective is:

LO)=—— S [alog fo(p,sie) + (1 —@)log(l — fa(p, s1a))], (11)

D -
(p,s1:¢,0) €D

where fy(p, s1.¢) represents the score predicted by the PRM. This soft label mechanism preserves the
uncertainty information from our adaptive framework: high-confidence estimates (where /i is near
0 or 1) provide strong supervision signals, while uncertain estimates (near 0.5) naturally contribute
weaker gradients, effectively regularizing the training process.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate Qwen2.5-Math-7B-PRM-AMCS across diverse mathematical reasoning benchmarks
including GSM8K (Cobbe et al.,[2021a), MATH (Hendrycks et al.,2021), AIME, Olympiad-Bench
(Lietal.,|2024a), and OmniMATH (Gao et al.,|2024)). Our experiments test four actor models (GLM-
4-9B, Phi-4-mini-Instruct, Llama-3.2-3B-Instruct, Qwen3-8B) with three search strategies (Beam
Search, Best-of-N, MCTS) for inference evaluation, and conduct PPO fine-tuning using Qwen2.5-
Math-7B-Instruct. We compare against open source PRMs, including Math-Shepherd, PRM80OK,
and Deepseek variants. AMCS parameters use kinjg = 6, kmax = 32, € = 0.1, with K = 3 clusters.
The experimental details are provided in Appendix [C]

4.2 MAIN RESULTS

We evaluate the effectiveness of AMCS by training PRMs with our adaptive data generation frame-
work and comparing their performance against existing PRMs across four mathematical reasoning
benchmarks: AIME, MATH, Olympiad-Bench, and OmniMATH. In our experiments, PRMs guide
four different actor models (GLM-4-9B, Phi-4-mini-Instruct, Llama-3.2-3B-Instruct, and Qwen3-
8B) in generating reasoning trajectories. We test these models across three search strategies (Beam
Search, Best-of-N, and MCTS) to demonstrate the generalizability of our approach. Table[T|presents
comprehensive results across all model-strategy combinations.

PRMs trained with AMCS-generated data demonstrate consistent improvements across all experi-
mental settings, with our method achieving peak performance of 76.2% on MATH, 15.0% on AIME,
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Table 1: Mathematical reasoning performance of different PRMs across various search strategies.
Models marked with t serve as the actor models, which are responsible for generating the reasoning
trajectories. All results are reported in accuracy (%). Dataset names are abbreviated: MATH is
MATHS500, Oly. is Olympiad-Bench, Omni. denotes OmniMATH, and Avg. represents the average
score.

Llama-3.2-3B-Instruct’ Phi-4-mini-Instruct’
Strategy Verifier AIME MATH Oly. Omni. Avg. AIME MATH Oly. Omni. Avg.
Qwen2.5-Math-7B-Tnstruct 00 453 104 105 166 50 480 114 75 180
Llama3. 1-8B-PRM-Deepscek 67 390 7.0 80 152, 17 436 1Ll 80 161
Beam Search ~ Qwen2.5-Math-7B-PRM800K 67 525 139 1201 213 | 50 685 178 157 268
Math-Shepherd-Mistral-7B 83 545 104 130 216| 83 691 119 130 256
Qwen2.5-Math-7B-PRM-AMCS | 100 614 136 137 247 | 87 685 198 162 283
Qwen2.5-Math-7B-Instruct 1.7 52.8 122 121 19.7 1.7 41.4 11.7 11.5 16.6
Llama3. 1-8B-PRM-Deepscek 33 490 104 105 183 | 33 512 117 116 195
Best-of N Qwen2.5-Math-7B-PRM80OK 17 566 123 128 209 | 67 648 168 123 252
Math-Shepherd-Mistral-7B 17 538 120 126 200 | 67 642 145 149 251
Qwen2.5-Math-7B-PRM-AMCS | 6.7 599 139 132 234 | 67 680 177 162 272
Qwen2.5-Math-7B-Instruct 17 447 88 100 163 | 33 530 101 70 184
Llama3.1-8B-PRM-Deepseck 50 400 76 90 154 | 33 432 105 82 163
MCTS Qwen2.5-Math-7B-PRMS00K 83 594 146 126 237 | 50 680 182 171 27
Math-Shepherd-Mistral-7B 67 576 119 117 220 | 50 656 125 146 244
Qwen2.5-Math-7B-PRM-AMCS | 83 600 147 123 238 | 83 690 194 172 285
Qwen3-8B GLM-4-9B
Strategy Verifier AIME MATH Oly. Omni. Avg | AIME MATH Oly. Omni. Avg
Qwen2.5-Math-7B-Tnstruct 17 420 91 110 160]| 83 711 180 170 286
Llama3. 1-8B-PRM-Deepscek 33 437 123 104 174 | 50 690 147 142 257
Beam Search  Qwen?2.5-Math-7B-PRM80OK 33 40 116 112 170 | 133 754 194 123  30.1
Math-Shepherd-Mistral-7B 00 472 135 139 187 | 67 730 196 148 285
Qwen2.5-Math-7B-PRM-AMCS | 6.7 494 132 141 209 | 133 760 203 192 322
Qwen2.5-Math-7B-Instruct 00 424 120 137 170 | 67 750 190 162 292
Llama3. 1-8B-PRM-Deepscek 33 412 132 119 174 | 100 742 187 162 2938
Best-of N Qwen2.5-Math-7B-PRM80OK 17 418 132 142 177 117 762 182 176 309
Math-Shepherd-Mistral-7B 33 450 140 80 176 | 83 772 196 155 302
Qwen2.5-Math-7B-PRM-AMCS | 5.0 478 172 139 210 | 117 778 193 178 317
Qwen2.5-Math-7B-Instruct 33 465 92 123 178 | 67 704 167 155 273
Llama3.1-8B-PRM-Deepseck 33 462 142 118 189 | 133 690 166 156 286
MCTS Qwen2.5-Math-7B-PRMS00K 17 426 119 144 177 | 133 760 212 187 323
Math-Shepherd-Mistral-7B 50 506 146 136 210 | 33 742 195 160 283
Qwen2.5-Math-7B-PRM-AMCS | 6.7 512 149 147 219 | 150 762 221 190 33.1

22.1% on Olympiad-Bench, and 19.0% on OmniMATH using GLM-4-9B with MCTS. The im-
provements exhibit several notable patterns that provide insights into the effectiveness of adaptive
data generation.

The benefits scale positively with model capacity, where larger models (GLM-4-9B, Qwen3-8B)
consistently show more substantial improvements compared to smaller models (Phi-4-mini, Llama-
3.2-3B). This suggests that AMCS-generated supervision data provides richer learning signals that
larger models can better exploit. Additionally, the improvements are more pronounced on challeng-
ing benchmarks such as AIME and Olympiad-Bench, indicating that adaptive resource allocation
during data generation particularly benefits complex multi-step reasoning scenarios where tradi-
tional fixed-budget approaches may under-sample critical reasoning paths.

Across different search strategies, AMCS maintains consistent advantages while revealing interest-
ing interaction patterns. MCTS generally yields the highest absolute performance, but the relative
improvements from AMCS remain substantial across Beam Search and Best-of-N as well, demon-
strating that the quality gains are inherent to the supervision data rather than dependent on specific
inference mechanisms.

4.3 PROCESS SUPERVISION VERSUS MODEL SCALE

To validate the generalizability of AMCS across different model capacities, we evaluate our ap-
proach using actor models ranging from 1.5B to 72B parameters. Figure |3| demonstrates that
Qwen2.5-Math-7B-PRM-AMCS consistently outperforms all baseline methods across the entire
parameter range on both MATHS500 and GSMS8K benchmarks. The performance advantages are
particularly pronounced in smaller models, where Qwen2.5-Math-7B-PRM-AMCS achieves 53.4%
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Figure 3: Performance comparison across Qwen actor models of different sizes (1.5B-72B) paired
with various PRMs on MATH500 and GSMS8K benchmarks.

accuracy on MATHS500 with the 1.5B actor model compared to 28.8% for Deepseek-PRM, repre-
senting a 24.6 percentage point improvement. This substantial gap suggests that smaller models are
especially sensitive to the quality of step-level supervision, making high-fidelity process rewards
crucial for achieving competitive performance with limited parameters.

Remarkably, the scaling analysis reveals that superior process supervision can effectively com-
pensate for reduced model capacity. A 7B model paired with Qwen2.5-Math-7B-PRM-AMCS
(70.6% on MATH500) substantially outperforms a 72B model with weaker supervision (65.0% with
Deepseek-PRM), despite requiring approximately 10x fewer parameters. This finding indicates
that investing in higher-quality process supervision may be more cost-effective than simply scaling
model parameters. The consistent advantages maintained by AMCS across both math-specialized
models (Qwen2.5-Math series) and general instruction-tuned variants (32B-Instruct) further demon-
strate the robustness and broad applicability of our adaptive framework across different architectural
choices and training paradigms.

4.4  SUPERVISION DATA ANALYSIS

Figure [4 examines the distribution characteristics of reasoning steps and token density across dif-
ferent process supervision datasets. AMCS exhibits a fundamentally different distribution profile
compared to existing datasets, with a broader, right-skewed step distribution (mean: 11 steps) com-
pared to the concentrated distributions of Math-Shepherd and PRM800OK (6-7 steps). The token
density analysis reveals systematic differences as well: AMCS averages 65 tokens per step with
wider variance, indicating more detailed intermediate reasoning than baseline datasets (32-46 to-
kens). These distributional characteristics reflect important differences in data generation philos-
ophy. The extended tail in AMCS step counts suggests systematic capture of complex reasoning
scenarios that require multi-stage elaboration—cases potentially underrepresented in fixed-budget
approaches. This adaptive granularity aligns with the intuition that mathematical problems exhibit
varying intrinsic complexity, requiring correspondingly detailed supervision for effective process
reward modeling.

4.5 ADAPTIVE ALLOCATION ANALYSIS

To understand the resource allocation behavior of AMCS, we analyze the sampling patterns across
different node value ranges in our generated dataset. Figure [5] shows the distribution of MC roll-
outs and explored nodes across five value intervals. As illustrated in Figure [5(a), AMCS allocates
significantly more rollouts to uncertain nodes (u € [0.4, 0.6]: 20.0 rollouts) compared to confident
ones (4 < 0.2: 6.9 rollouts; > 0.8: 7.1 rollouts), demonstrating a 3x difference in sampling
intensity. This adaptive allocation contrasts with the fixed 16-sample baseline
Wang et al), [2024d), which wastes resources on easy-to-evaluate extreme values while potentially
undersampling uncertain regions. Similarly, as shown in Figure [5(b), the search depth varies from
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Figure 4: Distribution comparison of reasoning steps and token density across process supervision
datasets. AMCS exhibits a fundamentally different distribution profile with a broader step distri-
bution extending to longer reasoning sequences (mean: 11 steps) compared to the concentrated
distributions of Math-Shepherd and PRM800K (6-7 steps). The token density analysis reveals that
AMCS averages 65 tokens per step with wider variance, indicating more detailed intermediate rea-

soning than baseline datasets (32-46 tokens per step).
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Figure 5: AMCS allocation patterns during data generation. (a) Distribution of MC rollouts per
node across value ranges. (b) Search depth and total nodes explored for different node values.

3.1 for low-valued nodes to 5.0-5.1 for intermediate values, indicating that AMCS explores more ex-
tensively when facing higher uncertainty. The total nodes explored also peaks at intermediate values
(14-16 nodes) versus extremes (8-10 nodes). We further provide qualitative analysis of reasoning
steps across different value categories in Appendix [F}

4.6 EFFICIENCY AND QUALITY ANALYSIS OF ADAPTIVE SAMPLING

To validate the efficiency and quality advantages of AMCS’s adaptive sampling strategy, we sample
100 problems from MATH (Hendrycks et all 2021)), each with a 200-rollout budget, stratified by
difficulty levels (Level 1=easiest, Level 5=hardest). Following OmegaPRM (Luo et al 2024)), we
implement fixed-budget baselines with k& € {4,10, 16, 22,28} using the OpenR framework (Wang
[2024b). Figure[6] presents computation time, search depth, and nodes explored.

The aggregate results (top row) show that AMCS maintains stable computational costs across prob-
lems (dashed lines), while fixed-budget strategies exhibit varying patterns. Notably, k¥ = 4 incurs the
longest time despite minimal per-node budget, as poor value estimates require exploring more nodes
to find solutions. Larger k values reduce explored nodes but increase per-node sampling, creating
a breadth-precision trade-off. AMCS avoids this dilemma through uncertainty-driven allocation,
balancing exploration and estimation under budget constraints.
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Figure 6: Computational efficiency comparison of AMCS against fixed-budget strategies follow-
ing OmegaPRM [2024). Top: Aggregate metrics showing AMCS’s stable performance
(dashed lines). Bottom: Comparison between k£ = 16 and AMCS across difficulty levels, demon-
strating adaptive resource allocation.

The difficulty-stratified analysis (bottom row) reveals AMCS’s adaptive behavior. Comparing
k = 16 versus AMCS across levels shows that AMCS uses substantially less time and explores
fewer nodes on simple problems (Levels 1-2), where quick convergence requires fewer samples.
On hard problems (Levels 4-5), AMCS maintains comparable or greater depth, thoroughly explor-
ing uncertain paths. This difficulty-aware allocation cannot be achieved with fixed budgets. Fixed
budgets tend to waste resources on easy problems while leaving harder ones insufficiently sampled.

To assess the quality of value estimates, we an-
alyze the distribution of estimated node values x
across the generated dataset using Kernel Density
Estimation (KDE). Figure [7] compares three config-
urations: low fixed budget (k = 10), high fixed bud-
get (k = 28), and AMCS. The setting with £ = 10
exhibits a diffuse distribution with blurred peaks, re-
sulting in many nodes assigned ambiguous interme-
diate scores (;1 ~ 0.6), which provide unclear su- 0.0 O e (u) 08 10
pervision signals about step correctness. In contrast,

Y Figure 7: Node value distributions via KDE.
both k = 28 and AMCS show concentrated distribu- A vics closely aligns with the & = 28 set-

tior}s near extreme values, providiqg c.lear.node eval- ting showing concentrated peaks, contrasting
uations. AMCS closely fits the distribution pattern . ith the & — 10 setting.

of k = 28, achieving comparable estimation clarity

with fewer samples per node. This demonstrates that AMCS’s adaptive allocation efficiently pro-
duces high-quality, high-confidence process supervision signals under budget constraints.

N
]

Probability Density

5 CONCLUSION

We propose an Adaptive Monte Carlo Search (AMCS) framework that reimagines the generation of
process supervision data by shifting from fixed, static procedures to adaptive, dynamic search. On
one hand, AMCS employs an uncertainty-driven adaptive sampling strategy to address the ineffi-
ciency inherent in node value estimation. On the other hand, it introduces adaptive path expansion
to overcome the inflexibility of expansion. Leveraging AMCS, we curate MathSearch-200X,
a dataset comprising 200K annotated reasoning trajectories, and utilize it to train a process reward
model. Extensive experiments combining the reward model with large language models, using three
distinct strategies across four benchmark datasets, demonstrate the effectiveness, superiority, and
scalability of our approach.
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A  RELATED WORK

Mathematical Reasoning with LLMs. Al is advancing rapidly, with researchers pursuing
human-like reasoning abilities in LLMs (Dasgupta et all [2022). Mathematical reasoning serves
as a key benchmark in this endeavor, requiring the integration of language understanding, symbolic
manipulation, and multi-step reasoning with correct intermediate steps (Ahn et al.,[2024). To address
these challenges, prior work has explored several directions. 1) Architectural innovations introduce
specialized components, such as subgoal decomposition or neuro-symbolic modules (Karpas et al.,
2022; |L1 et al.l 2024b), to bridge natural language understanding and formal mathematical compu-
tation. 2) Targeted pre-training on domain-specific or synthetic mathematical corpus (Wang et al.,
2024d; [Zhou et al., [2024)) allows the model to learn structured reasoning patterns and symbolic
manipulations that improve generalization on complex tasks (Lu et al.| 2025; [Shao et al., [2024).
3) Post-hoc fine-tuning further refines pretrained models with annotated reasoning traces, reflective
feedback, or process-level supervision (Zelikman et al.| 20225 Liu et al.| 2023} [Yan et al.| 2025)). 4)
Prompting strategies guide models to generate intermediate steps or iteratively refine outputs with-
out modifying model parameters, exemplified by chain-of-thought prompting (Wei et al., [2022),
self-consistency (Wang et al.| 2023)), and rectification prompting (Wu et al., |2024). 5) Verification
methods validate outputs through self-correction (Toh et al.| [2023)), external verifiers (Weng et al.,
2023)), or process-level evaluation (Liu et al., |2025)), increasing the reliability and trustworthiness
of model-generated solutions. While all these approaches improve reasoning, challenges such as
error accumulation and unverified intermediate steps remain. This has drawn increasing attention to
verification methods.

Verification for Reasoning. Verification is crucial for improving the reliability of reasoning in
LLMs, with two main paradigms: outcome reward models (ORMs) and process reward models
(PRMs). ORMs assign rewards based solely on the correctness of the final answer and have been
widely used in reinforcement learning with human feedback (RLHF) (Christiano et al.,[2017)). While
effective for simple tasks, ORMs provide sparse feedback, which can reinforce spurious reasoning
paths and limit performance in multi-step reasoning. By contrast, PRMs evaluate and reward inter-
mediate reasoning steps, providing richer supervision that guides models toward correct reasoning
trajectories. Empirical studies demonstrate the advantages of PRMs in various domains (Nath et al.,
2025)). In mathematics, WizardMath (Luo et al.| 2025) and ThinkPRM (Khalifa et al., 2025)) outper-
form ORM-based approaches on benchmarks including GSMS8K (Cobbe et al., 2021b) and MATH-
500 (Lightman et al.} 2023), both in accuracy and data efficiency. In code generation, PRLCoder (Ye
et al.,|2025)) and CODEPRM (Li et al.| [2025)), which incorporate execution feedback, achieve higher
pass rates and better handling of complex tasks compared to ORM-guided reinforcement learning.
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Process Supervision Data Generation. The effectiveness of PRMs depends on high-quality pro-
cess supervision data. Traditional pipelines such as manual annotation, rule-based heuristics, or
offline extraction provide supervision signals (Uesato et al., 2022} [Lightman et al.| [2023). Recent
efforts have sought more scalable alternatives, for example, using Monte Carlo Tree Search (MCTS)
to evaluate intermediate steps or leveraging verbalized verification chain-of-thought to reduce ex-
plicit labeling requirements (Wang et al., 2024a; |Luo et al.||2024). While these approaches mitigate
annotation costs, the generated supervision remains static and does not evolve with model behavior.
In contrast, we propose a dynamic process supervision framework that continuously updates traces
based on the model’s evolving reasoning. This adaptive approach improves efficiency by focusing
on uncertain or error-prone steps and enhances robustness under distribution shifts, overcoming the
limitations of static supervision data.

B ALGORITHMIC DETAILS

This appendix provides an in-depth exposition of the key algorithmic components and implementa-
tion specifics of our Adaptive Monte Carlo Search (AMCS) framework. We detail the methodologies
for quantifying uncertainty at both cluster and node levels, the process of feature engineering, and
the robust assignment of new samples within the adaptive sampling loop.

B.1 FEATURE ENGINEERING AND CLUSTER MANAGEMENT

This section details the feature extraction, standardization, and dynamic assignment procedures used
in our adaptive Monte Carlo clustering framework.

Feature Extraction and Standardization For each rollout r;, we extract a two-dimensional fea-
ture vector v; = [NLL,;, log(L, + ()] where:

* Average Negative Log-Likelihood (NLL): NLL; = — 3~ Z;Vé log P (wy) |w(<rj)) where

W, is the number of words in rollout r;. This measures the model’s generation confidence.
* Log Complexity: log(L, + ¢) where L, is the token length and ¢ = 10~° prevents nu-
merical issues for very short rollouts.

Since these features operate on fundamentally different scales (NLL values typically range from 0.1
to 50+ while log-length ranges from 0O to 10), direct combination would result in NLL dominating
the clustering distance calculations. To ensure both features contribute equally to the K-means
clustering, we apply z-score standardization to the initial k¢ rollout features {vi}fﬁl.

~ Vi — My
V= 2 Bv (12)
' oy + Cstd
where p, = k% Zfil v; and oy = k% Zfil(vi — v )? are computed element-wise. A small

constant (yg = 1078 is added to prevent division by zero for constant features.

The standardization parameters (., o, ) computed from the initial & rollouts are stored and reused
for standardizing features of subsequently generated rollouts during the adaptive refinement phase,
ensuring consistent feature space representation throughout the clustering process.

Dynamic Sample Assignment During the iterative refinement phase, newly generated rollouts
must be assigned to existing clusters. Each new rollout .y, is assigned to the cluster whose centroid
is closest in the standardized feature space:

cluster(rpew) = argmin |[Voew — e |2 (13)
je{l,...K}

where Vi is the standardized feature vector of the new rollout and pc; denotes the centroid of clus-
ter C; in the standardized feature space. The Euclidean distance (L2 norm) serves as the similarity
metric.
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Figure 8: Performance comparison of four Process Reward Models (PRMs) on the (a) MATHS500
and (b) AIME datasets. A unified actor model, Llama-3.2-3-Instruct, generates N candidate reason-
ing paths. The final accuracy is determined by using each PRM for step-wise scoring to select the
optimal path.

After assignment, the target cluster’s statistics and centroid are updated incrementally:

The rollout index is added to the cluster’s rollout list.
Success/failure statistics are recomputed based on all assigned rollouts.

The Wilson confidence interval and uncertainty measure are updated.

o=

The centroid is recomputed as the mean of all standardized feature vectors assigned to the
cluster.

This dynamic assignment mechanism ensures that newly generated rollouts are grouped with exist-
ing clusters representing similar reasoning strategies, maintaining the homogeneity principle essen-
tial for accurate uncertainty-driven sampling allocation.

B.2 UNCERTAINTY QUANTIFICATION

In Section 3.2, we introduce the Wilson score interval for uncertainty quantification. Here we pro-
vide the complete mathematical derivation and additional technical details.

Cluster-Level Uncertainty. For each strategy cluster C';, we compute a success probability esti-
mate p; = s; / n;, where s; is the number of successful rollouts and n; is the total number of rollouts
within cluster C';. The Wilson score interval is derived from inverting the score test for a binomial
proportion. For a binomial random variable with true probability p and observed proportion p, the
score statistic is:

p—p

V(1 =p)/n

The Wilson confidence interval is obtained by solving |Z| < z, /o for p, which yields the inter-
val bounds. The uncertainty measure ¢; (Eq. [3|in the main text) represents half the width of this
confidence interval. This formulation handles edge cases effectively: when n; is small, §; will be
large, correctly indicating high uncertainty. Conversely, as n; increases, J; shrinks, reflecting in-
creasing confidence in the estimate ;. The Wilson interval maintains valid coverage properties even
with small sample sizes or probabilities near O or 1, which are common scenarios in our adaptive
sampling setting where clusters may have few samples or exhibit very high/low success rates.

Z = (14)

Node-Level Uncertainty. Beyond individual cluster uncertainties, we also require an overall un-
certainty measure for the parent node S; that is currently being evaluated. This node-level un-
certainty, denoted as dpoqe, aggregates the uncertainties from all active clusters within its scope,
weighted by their relative contributions to the overall estimate. The overall node uncertainty ;e iS
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Table 2: Performance comparison of the Qwen2.5-Math-7B-Instruct actor model when fine-tuned
with PPO using different PRMs as the reward signal. All results are reported in accuracy (%). Here,
pass@k denotes the proportion of problems for which a correct solution appears within the top-k
generated outputs. For instance, pass@ 1 measures single-shot accuracy, while pass@35 allows up to
five attempts.

MATHS00 GSMSK Hungarian Math
Reward Model
pass@1 pass@5 pass@1 pass@5 pass@l pass@5
Qwen2.5-Math-PRM-7B 55.6 72.6 80.0 934 46.9 65.6
Qwen2.5-Math-7B-PRM800K 534 72.8 82.2 97.4 43.8 62.5
Skywork-01-Open-PRM-Qwen-2.5-7B 55.6 64.4 82.6 92.9 46.9 71.9
Qwen2.5-Math-7B-PRM-AMCS 61.6 73.2 83.5 97.5 53.1 75.0

computed as:

K s 2
Onode = Z( {) 57 (15)

This weighted combination reflects both the individual uncertainty inherent in each cluster’s success
probability estimate and the proportional influence of each cluster (based on its sample size n; rel-
ative to the total samples n, ) on the aggregated node value. A larger d,04e signifies higher overall
uncertainty for the node .5;, indicating that its current Q-value estimate is less reliable and warrants
further adaptive sampling to refine. This measure is critical for the confidence-based termination
condition in Eq.[6]

C EXPERIMENTAL DETAILS

Datasets. We evaluate on five benchmarks: GSM8K (Cobbe et al., 2021a) for grade school math,
MATH (Hendrycks et al.l 2021) for competition-level problems, AIME (60 problems from 2024-
2025 American Invitational Mathematics Examination), Olympiad-Bench (L1 et al.l 2024a) for
Olympic-difficulty problems, and OmniMATH (Gao et al.| 2024) using 1/10 stratified sampling
by difficulty.

Model Configurations. For inference evaluation, we test four actor models: GLM-4-9B (GLM
et al., 2024)), Phi-4-mini-Instruct, Llama-3.2-3B-Instruct, and Qwen3-8B (Team, [2025). PPO fine-
tuning uses Qwen2.5-Math-7B-Instruct (Yang et al., 2024) as the base model. Scaling analysis
covers the Qwen2.5 family from 1.5B to 72B parameters. We compare against multiple PRMs: for
inference, we use Qwen2.5-Math-7B-Instruct, Llama3.1-8B-PRM-Deepseek-Data, Qwen2.5-Math-
7B-PRMS800K, and Math-Shepherd-Mistral-7B-PRM; for PPO training, we focus on Qwen-family
PRMs, including Qwen2.5-Math-PRM-7B, Qwen2.5-Math-7B-PRM800K, and Skywork-o1-Open-
PRM-Qwen-2.5-7B.

Hyperparameters. Inference uses three search strategies: Beam Search (beam size 5), Best-of-N
(N=4), and MCTS (5 rollouts per node). PPO training employs a learning rate of le-6, batch size 4,
and 3 epochs per update. AMCS parameters are set as: initial sampling Kinir = 6, maximum budget
kmax = 32, precision threshold e = 0.1, and K = 3 clusters. All experiments use consistent random
seeds for reproducibility.

Training Details. During the data generation phase, four Tesla A800 GPU cards are used to train
our data about one week. We use four Tesla A800 GPU cards to train a process reward model about
three days.

PRM Inference Strategies. To clarify the inference procedures used in our experiments, we note
that all inference methods operate at the step level rather than the token level. Each node in the
search tree corresponds to a complete reasoning step generated by the LLM, and the PRM provides
a scalar reward for that step; search decisions are therefore made over reasoning steps instead of
individual tokens.
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Table 3: Qualitative analysis of reasoning steps across different node value categories. Low-valued
nodes (¢ < 0.2) typically contain straightforward calculations, while high-valued nodes (¢ > 0.8)
often represent solution conclusions.

Category  |MC Value (p) Reasoning Step Content Step Characteristics
0.12 Move all terms involving (2”x) to one side of the equation and constant terms
. to the other side. To do this, subtract (2”x) from both sides: This type of step describes the specific calculation or
) ) ) operation to be performed next, followed by a
MC| ROLLOUT| 0.12 Each of these values will eventually reach 2. demonstration of the operation, with a greater emphasis
0.18 Each time the center square is divided, the shaded area in the new smaller on calculation and execution.
: squares is a fraction of the area of the previous center square.
0.09 To solve the equation, we start by analyzing the expression (x"2 + 2x + 3). We
CAIICWICItaS These steps aim to pave the way for subsequent
The given recurrence relation is (a{n+1} =a_n + \frac{a{n+2}}{2}). We can pl Iculati and r ing. This is a
MC| ROLLOUT? 0:18 rearrange this to express (a{n+2}) in terms of (a_n) and (a{n+1}): problem-solving plan that establishes the framework
0.18 To find the greatest common factor (GCF) of (1001) and (2431), we can use and direction for the entire problem-solving process.
. the Euclidean algorithm.
0.90 The only positive integer solution is ((m, n) = (1, 3)). . . .
he only positive integer solution is ((m, n) =(1, 3)) This type of step no longer involves any new reasoning
or calculation, but rather declares the results of the
MCt ROLLOUT| 0.81 Thus, the sum of all possible sums of the series is entire solving process, which is a summary and
affirmation of all previous work.
0.85 Therefore, the number of different integer lengths for the third side is (9 ).
0.81 However, since (a < d), this case is not valid. This type of step is both a summary of the previous
part of the work (such as eliminating an invalid
MCt ROLLOUT? 0.81 Step 3: Determine the shape of the regions formed. situation) and a preview of the next step of the work.
Provide direction for a complex, multi-stage problem-
0.78 Therefore, the foci of the hyperbola are at ((\pm 3, 0)).Step 2: Find the foci solving process.
. of the ellipse. The given ellipse is (\frac{x"2} {16} + \frac{y"2} {b"2} = 1).

Beam Search. We adopt step-level beam search following (Lightman et al,[2023) (Xie et al.,[2023):
at each expansion layer, the algorithm keeps the top-k partial reasoning paths ranked by their PRM

scores and discards the rest. This differs from vanilla token-level beam search, as pruning is per-
formed at reasoning-step boundaries rather than at every token.

Best-of-N. We sample N complete reasoning trajectories independently using the actor model. The
PRM assigns step-wise rewards to each trajectory, and the trajectory with the highest final PRM
score is selected. No intermediate pruning or tree search is performed.

MCTS. Our MCTS implements an AlphaZero-style step-level tree search 2017): edges
correspond to reasoning steps, PRM outputs serve as Q-value estimates for child nodes, and a UCB

rule balances exploration and exploitation. This design enables selective exploration of promising
reasoning branches under PRM guidance.

D REINFORCEMENT LEARNING WITH AMCS-TRAINED PRMS

To demonstrate the practical utility of AMCS beyond inference-time verification, we evaluate
whether PRMs trained with our adaptive data generation framework can serve as more effective
reward models in reinforcement learning settings. We conduct PPO fine-tuning experiments on
Qwen2.5-Math-7B-Instruct, comparing our Qwen2.5-Math-7B-PRM-AMCS against three baseline
PRMs from the same Qwen model family to ensure fair comparison: Qwen2.5-Math-PRM-7B,
Qwen2.5-Math-7B-PRM800K, and Skywork-o1-Open-PRM-Qwen-2.5-7B. All experiments follow
identical PPO training procedures with step-level reward supervision, varying only the reward model
across conditions. Table [2] presents the performance comparison across different reward models
on the MATH500, GSMS8K, and the Hungarian Math out-of-distribution (OOD) benchmarks. Our
approach achieves pass@1 (pass@5) scores of 61.6% (73.2%) on MATHS500, 83.5% (97.5%) on
GSMEK, and 53.1% (75.0%) on the Hungarian Math OOD dataset, consistently outperforming all
baselines. The modest gain on GSMS8K can be attributed to its less complex problems and the
high baseline performance. In contrast, the substantial improvements on both the competition-level
MATHS500 and the OOD Hungarian Math are more significant. This demonstrates that the higher-
quality process supervision provided by Qwen2.5-Math-7B-PRM-AMCS is especially beneficial for
learning sophisticated and generalizable reasoning patterns, rather than just solving problems from
a familiar distribution. These results provide crucial end-to-end validation, demonstrating that qual-
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Question:In rectangle ABCD, P is
on BC and AP is perpendicular to
PD; TS is perpendicular to BC and
BP=PT, PD intersects TS at Q; R
is on CD and RA goes through Q;
in right triangle PQA, PA=20,
AQ=25, QP=15, find the lengths of
BP and QT.

MC=0.33

Step 1: Place rectangle in
coordinate plane: A(0,0),

207 = 16 + %2 — 400 = 256 + X2
Xt =144 - x =12

m=0.42

l

Step 1: Assume BP = x, then PT
=X.

QT/PT — 2015 =QT/x — QT =
(413)x.

m=0.58

B(0,16), P(x,16). Use triangle APD and similarity e N
Use Pythagorean theorem in to triangle QPT. AQ_AQS“__)Sune AED _25 (;'gcezoz
triangle ABP: Incorrect ratio set up: AP/PD = 25), then =\(25-207)

Rollout=16

Step 1: Since zAPD =90°, use
circle theorem: AD is diameter.

=15.
But PQ is also 15, so assume Q

Thus BP =12 is midpoint of PD.

—Rollout=20

Step 2: Use coordinate system:
P(12,16), D(d,0).
Slope of PD = -16/(d-12).
Line PD: y - 16 =[-16/(d-12)](x -
12)

Step 2: Since BP=PT=12, T
is at (24,16).

TS is vertical, so Q is on x=24.
Use distance PQ = 15:
V((24-12)2 + (y-16)?) = 15 —
(144 + (y-16)2) = 15
— 144 + (y-16)> = 225 — (y-16)*
=81 —y=7or 25 (reject 25).
So Q =(24,7).

l ‘/l\‘ Rollout=15

Step 3: Then QT =16 -7 =97
But BP is not found.

Figure 9: An illustrative rollout case showing multiple reasoning trajectories sampled from a single

math problem. The figure highlights the diversity across rollouts, motivating the need for clustering
and adaptive evaluation.

Step 2: Use PQ = 15 in triangle
PQT:

152 = x2 + [(4I3)X] — 225 =1 +
(1619)x* — 225 = (259 —> x°
=81 >x=0.

Set x=24, y=7 > 7 - 16 = [-16/
SoBP =9, QT =12.

(d-12)](12) — -9 = -192/(d-12)
—d-12=21.33 - d=3333.

Step 3: QT = vertical distance
fromQto T=16-7=9.

ity improvements in process supervision data directly translate into more capable and robust final
models.

E EFFECT OF THE NUMBER OF REASONING PATHS

To evaluate the efficacy of our proposed Process Reward Model, Qwen2.5-Math-7B-PRM-AMCS,
we benchmark its performance against three baseline PRMs: Qwen2.5-Math-7B-PRM800K, math-
shepherd-mistral-7b-prm, and Llama3.1-8B-PRM-Deepseek-Data. We employ a unified actor
model, Llama-3.2-3B-Instruct, to generate N candidate reasoning paths for each problem from two
challenging mathematics competition datasets, MATH500 and AIME. The final accuracy is deter-
mined by using each PRM to perform step-wise scoring and select the best path from the candidate
pool, with N varying from 2 to 10. The results, depicted in Figure[8] show a consistent trend where a
larger N leads to higher final accuracy across all models. This aligns with the fundamental principle
of Best-of-N sampling, where a larger candidate pool provides a higher performance ceiling. Cru-
cially, our Qwen2.5-Math-7B-PRM-AMCS model consistently achieves the highest accuracy across
all values of N on both datasets. This performance advantage is particularly pronounced on the more
difficult AIME dataset, underscoring the robustness of our model. These findings demonstrate the
superior discriminative capability of our proposed PRM, indicating that it provides more accurate
step-wise reward signals for identifying high-quality reasoning processes compared to the baselines.
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F REASONING STEP CHARACTERISTICS

To better understand the relationship between node values and reasoning complexity, we analyze
the content characteristics of reasoning steps across different value categories. Table [3] presents
representative examples from each category.

G CASE STUDY OF ROLLOUT DIVERSITY

To complement the discussion in Preliminaries, we provide a concise case study of reasoning rollouts
sampled from a single math problem. As shown in Figure [9] several representative trajectories are
depicted (with omissions for brevity), reflecting the inherent diversity of the rollout process.
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