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Abstract—RAMP, a benchmark for evaluating autonomous
assembly and planning, provides an ideal environment for com-
paring approaches and assessing progress in Task and Motion
Planning. RAMP is a recently released benchmark inspired
by real-world industrial assembly tasks with the aim being to
assemble a set of beams into predefined goal configurations. The
benchmark is designed to be accessible with the physical bench-
mark created from 3D printed and other easily obtainable parts.
The 3D printed parts can be extended upon and reconfigured
into numerous designs, thereby making the benchmark open-
ended. RAMP features a simulation environment to allow for
virtual progress and therefore readily lends itself to learning-
based approaches. To reduce the barrier to entry the benchmark
includes a baseline and other conveniences, such as fiducial mark-
ers and layout templates, so users can focus on individual sub-
tasks of the overall assembly challenge. RAMP has been designed
intentionally to assess long-horizon planning and features many
components that make it an ideal environment for learning and
assessing task and motion planning.

I. INTRODUCTION

The automation of offsite construction features many chal-
lenges, one of which is long-horizon planning of assembly
sequences. Beams for the internal structure of a prefabricated
building can be autonomously cut and punched to size using
light-steel-roll-forming [21]. However, the assembly of these
beams into a goal configuration (see Fig. 2) remains an
entirely manual process as variation in the assembly can not
be accounted for using traditional manufacturing techniques.
Applying Task and Motion Planning (TAMP) is a compelling
approach towards solving this problem. To this end, we have
taken this industry-inspired problem and distilled it into a form
available to researchers. The Robotic Assembly Manipulation
and Planning benchmark or RAMP [4] is intended to focus
research effort and catalyse progress in long-horizon industrial
assembly tasks.

Designing a robotic manipulation benchmark is notoriously
challenging as relying upon shared hardware systems and
components across research labs is impractical. However, we
pose that the greatest limitations to long-horizon industrial
assembly tasks is not hardware but open challenges in percep-
tion, reasoning, manipulation skill creation, diagnostics, fault
recovery and goal parsing. RAMP embodies these challenges
whilst also allowing researchers to engage only in particular
sub-tasks aligned with their specific research interests. This is
possible through the availability of a simulation environment;
the inclusion of fiducial markers for part identification and

Fig. 1: Top: The benchmark beams and pegs with fiducial
markers attached. Bottom-Left: Simulation environment with
fixed beam on the left, additional beams and pegs laying on
a layout template, Panda robot with optimised fingertips and
wrist camera, and birds-eye camera looking down from above.
Bottom-Right: Physical setup of the benchmark with the same
setup as the simulation environment.

state estimation; and through the inclusion of a baseline that
users can choose to leverage and build upon.

RAMP has been designed to overcome the common pitfalls
of benchmarks for robotic manipulation with the intent that
the benchmark should remain challenge-driven, accessible
and open-ended. Challenge-Driven. RAMP is inspired by
open challenges experienced in offsite construction. Three
categories of assemblies (easy, medium, and hard) have been
proposed with an evaluation protocol that reflects the industry
requirement for repeatable assembly of parts alongside evalu-
ation metrics that promote speed and completeness.

Accessible. Beams for RAMP are constructed from 3D
printed parts and extruded aluminium profiles (see Fig. 1, top),



Fig. 2: Light steel-rolled beams automatically cut and punched
to size, and manually assembled and fastened. Such assemblies
take a lot of time and effort as each beam and assembly can
be unique within a prefabricated building.

both widely accessible across research labs. The part files and
detailed instructions on how to construct your own benchmark-
ing set are publicly available1. Additionally, RAMP distributes
with a high-fidelity simulation environment created in Nvidia
Isaac [19] (see Fig. 1, bottom-left) mirroring a typical real-
world setup. A baseline method has been implemented in both
simulation and in a real-world setup to allow researchers to
build upon or to use as substrate in conjunction with their own
sub-task solutions.

Open-Ended. While RAMP has been released with a
number of predefined goal configurations, the beams and 3D
printed parts can be reconfigured in a variety of ways. New
parts can also be readily created to broaden the spectrum of
reachable configurations (e.g. parts for creating 3D structures).
The benchmark protocol has been configured to ensure the
goal configurations are achievable with a single-arm system,
although, RAMP readily lends itself to grow with community
capabilities to extend to more challenging setups (e.g. multi-
agent system configurations, inclusion of deformable cabling,
etc.). Our vision is to see RAMP grow into a community-
driven effort which evolves to meet the needs of the commu-
nity.

II. LITERATURE REVIEW

Benchmarks can have a significant impact in catalysing
communities into progressing the state-of-the-art. Several do-
mains that have seen great advancements through the use of
benchmarks include object detection [15], visual odometry
[12] and reinforcement learning [1]. A number of robot ma-
nipulation benchmarks have been proposed [18, 9, 2, 3, 23, 6]
with a subset of environments covering TAMP problem do-
mains [8, 24, 16, 10].

The most notable benchmark for TAMP proposed by La-
griffoul et al. [16] introduces five simulated environments
that assess a range of properties that make TAMP difficult.
Assessed properties include infeasible task actions, large task
spaces, motion/task trade-offs, non-monotonicity and non-
geometric actions [16]. Environments for their benchmark

1https://sites.google.com/oxfordrobotics.institute/ramp/create-your-own

include Towers of Hanoi, block environments and a kitchen en-
vironment. RAMP assess four of the five properties introduced
by Lagriffoul et al. but does not, in its current configuration,
assess non-geometric actions where there is a non-geometric
state change in objects.

There are several commonalities shared across most envi-
ronments used to assess TAMP methods [8, 24, 16, 10]. One
commonality is the extensive use of simulation with no corre-
sponding physical benchmark. Another common assumption is
that perfect state information is available, which is the case in
simulation although not the case in real-world environments.
The scenes used in the environments are often toy problems
that have objects with only simple geometries, although,
ThreeDWorld [8] provides a more realistic environment in this
sense. Finally, the environments require only simple pick-and-
place manipulations.

Our benchmark, RAMP, builds on components of these
environments whilst also providing some unique contribu-
tions useful to the TAMP community. First, it is designed
to be accessible, providing both a simulation and physical
benchmark that can be assessed using the same metrics and
using the same evaluation protocol. Second, it is challenge-
driven including challenging objects and manipulations that
are inspired by industry. Finally, it is open-ended with the
base components capable of generating many unique beams
and a great number of goal configurations, useful for learning
and assessing generalisable policies. Overall, we make it easy
for new users to get started with a simulation environment,
baseline code and fiducial markers whilst also creating an
environment that mimics industry assembly challenges.

III. BENCHMARK

RAMP is designed to assess long-horizon assembly tasks
with the core principles of providing a challenge-driven, ac-
cessible and open-ended benchmark. The benchmark consists
of an extensible set of base parts used to construct beams,
a predefined set of goal configurations, metrics for assessing
performance, an evaluation protocol to promote reproducibility
and a high-fidelity simulation environment. We provide an
overview of each of these components below. For specifics,
we refer the reader to [4].

A. Base Parts

The base set of parts are released as STL files which are
made publicly available. These parts can be composed into
beams in any number of ways with 20 × 20 mm extruded-
profile aluminium profile used to link parts together. We define
nine beams along with 15 pegs—see Fig.1 (top)—for the
benchmark. Space is made on select parts for a 25 × 25mm
April Tag [20], this is to assist with beam identification and
localisation. For an exact bill of parts and an assembly guide
please visit the RAMP benchmark website2.

Other parts have also been developed as part of the bench-
mark and can be found at the project website. Parts include

2https://sites.google.com/oxfordrobotics.institute/ramp
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(a) Easy Assemblies

(b) Medium Assemblies

(c) Hard Assemblies

Fig. 3: Three classes of assemblies for assessing the capabilities of any proposed solutions to the benchmark.

robot fingertips (useful for picking beams), clamps and peg
holders that can be 3D printed as well as a A2 layout template
to assist in laying out parts repeatably. We anticipate the
number of beams, assemblies and parts to evolve as the
benchmark grows to include more challenges over time.

B. Tasks

The goal configurations for RAMP can be seen in Fig. 3
with three classes of difficulty: easy, medium and hard. The
increase in difficulty across the classes is evident with harder
assemblies requiring more physical interactions to complete
as well as additional skills not required for the easy assembly
class. These goal configurations should act as a holdout set
with similar designs also achievable using the same method
but with the relevant goal conditioning.

To pass a goal for planning, any modality is supported,
including images, natural language, etc. We include an Ex-
tensible Markup Language (XML) based parser alongside
the benchmark that is used for describing both the beam
configurations and goal configurations.

C. Performance Measures

To assess performance, metrics have been chosen to reflect
the needs of industry, which are (i) a complete assembly,
and (ii) an assembly completed in the shortest amount of
time. Thus the primary metric is completion percentage with
the secondary metric being time to completion. Time to
completion must include the planning time and execution time.
Results should be presented similar to that found in Fig.4.

D. Evaluation Protocol

For reproducibility, we suggest users of the benchmark
follow several constraints, although, these are guidelines and
we anticipate the benchmark evolving to best suit the needs
of the community. To apply the benchmark an entire class of

assemblies must be attempted with each assembly repeated
five times consecutively without any changes to the method
except for the conditioning goal. There are no constraints on
systems, any robot may be used to attempt the benchmark.
Similarly, any gripper and sensors are able to be used with
exploration of new modalities encouraged.

The arrangement of the robot and beams should be similar
to those seen in Fig. 1, bottom-right, with the starting beam
fixed rigidly to the table and the layout template lying outside
the assembly area. The rigid attachment of the first beam to
the table top allows for the assembly to be attempted with
single-arm systems, an easy constraint to remove in future to
allow for multi-agent systems.

E. Simulation

RAMP includes a simulation environment configured to
mirror a typical setup with a Franka Emika Panda, two
real-sense cameras and beams laid out on the A2 layout
template (see Fig. 1 bottom-left). The simulation environment
is built using the Nvidia Isaac simulator [19] and in particular,
leverages signed distance field collisions [17] to faithfully
represent the physical setup. The simulation environment
provides observations, including state-based, image-based and
robot proprioceptive data, and also provides a high-level action
interface with Cartesion position and impedance control.

The simulation environment facilitates virtual progress and
testing but equally important, unlocks the ability to apply
a broad range of learning-based approaches. To expand the
current environment to further take advantage of learning-
based approaches and the open-ended benchmark we look to
create procedurally generated beams and assemblies whilst
also leveraging the ability of Nvidia Issac to run many
simulation environments simultaneously.



Fig. 4: Results of the baseline method across the three assemblies in the easy class of the benchmark, with the percentage of
completion of the desired assembly expressed as a function of the time (planning and execution, in seconds). The best and
average of the repeats are plotted along with the standard deviation.

IV. BASELINE

RAMP is released with a baseline method that is made
publicly available, therefore lowering the barrier to entry
by allowing adopters to build upon and use it within their
own systems. The baseline takes a traditional approach to
solve the easy class of assemblies with the implementation
and performance of the baseline discussed in the following
sections.

A. Baseline Implementation

The baseline method can be separated into two compo-
nents, the task planner and skill execution. The task plan-
ner is adapted from the REBA robot architecture[22] and
reasons over the problem at two resolutions, coarse and
fine. At the coarse resolution, the task planner computes
a sequence of abstracted actions, with each action tran-
sition then expanded upon by the fine resolution planner.
The fine resolution planner outputs an ordered list of ac-
tions which are then executed open-loop by the robot. The
fine resolution actions are move(robot, place), pick up(robot,
part), put down(robot, part), assemble square(robot, joint),
assemble cap(robot, joint), fasten(robot, joint, joint, peg) and
push(robot, beam).

Each action is executed on the robot using hand-designed
skills created intentionally as the simplest approach for the
baseline. The skills rely upon information available from
XML files that describe the beam configurations; April Tag
identification and state estimation [20]; and proprioceptive
information available from the robot. For simple skills, such as
move, pick up, and put down, the MoveIt [13] motion planner
is used to find a valid path. For all other skills, all of which
have contact-rich interactions, force-feedback and Cartesian
impedance control is used to compose each skill.

B. Results

Performance of the baseline method evaluated using the
evaluation protocol and metrics from Section III is presented
in Fig. 4. To summarise quantitatively the baseline method
performance across five repeats of each of the three easy
assemblies, on average the baseline achieves 84% in an
average time of 580sec. A significant portion of failure cases
are caused by an inability to fasten beams together with a

peg. This is often caused by poor state estimation of the hole
location or because of alignment issues between two beams.

V. LOOKING AHEAD

There are many challenges and opportunities to leverage
learning-based approaches to overcome limitations in cur-
rent TAMP methods. Some current challenges and limita-
tions as highlighted by Guo et al. [14] and others include
TAMP for real-world applications with imperfect perception
and execution [5], online closed-loop planning [11], multi-
robot cooperation [7], and domain knowledge representations.
RAMP provides an ideal environment for developing and
testing solutions that overcome some of these challenges as
the problem domain of RAMP already encompasses these
challenges or can be readily extended to encompass these
challenges. RAMP, being a benchmark, also allows for direct
comparison between proposed approaches and as it is designed
to be accessible, will allow for reproducible research and
comparison of methods across institutions.

We see learning-based approaches for TAMP as an inter-
esting prospect as applied to RAMP as the problem domain
is non-trivial to construct, task planning in itself is time
intensive and open-loop planning is a major limitation in
achieving high success rates. Learning-based approaches offer
an opportunity to make significant progress on some of these
challenges and are facilitated within the benchmark framework
with the availability of a high-fidelity simulation environment
and an open-ended domain that offers the opportunity of
many possible beam and goal configurations to assist with
generalisation and testing.

VI. CONCLUSION

We introduce RAMP, a benchmark designed to evaluate
progress on automated assembly and planning, as an ideal
environment for designing, training and assessing learning-
based TAMP methods. RAMP is inspired by industrial assem-
bly tasks featured in the domain of offsite construction and
distilled into a form that is easily accessible to researchers. As
such, RAMP is designed to be challenge-driven, accessible and
open-ended. RAMP is released with a high-fidelity simulation
environment and a baseline approach that users can build upon
or use as substrate in conjunction with their own sub-task
solutions.
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