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Abstract

Attribute Value Extraction (AVE) is a crucial
technology in e-commerce that enables the
identification and extraction of specific prod-
uct attributes and their corresponding values.
While most prior research has focused on di-
rectly extracting explicit values from text, this
paper introduces a multimodal implicit AVE
dataset in the fashion domain, which can gener-
ate standardized attribute-value pairs for more
effective downstream analysis. Additionally,
we propose a step-by-step pipeline that sepa-
rates the generation of attributes and values,
alleviating the model’s complexity in under-
standing the task. In the second step, our visual
prompting method directs the model’s attention
to key regions in the images, thereby improving
the accuracy of value extraction. Experimental
results demonstrate that our approach outper-
forms several recent strong baselines, and abla-
tion studies further highlight the effectiveness
of each component of our method.

1 Introduction

The Attribute Value Extraction (AVE) task aims
to automatically identify and extract attributes and
their corresponding values from content related
to specific items, such as product descriptions, re-
views, and social media posts (Li et al., 2021; Khan-
delwal et al., 2023; Fang et al., 2024). As shown in
Figure 1, the input consists of multimodal product
information, combining textual descriptions and
images. The system processes this data to extract
and present attribute-value pairs in the output, such
as identifying “Sleeve Style” as “Long Sleeve” and
“Neckline” as “Henley”.

In this paper, we mainly focus AVE for fashion-
related products, and aims to extract the attributes
such as size, material, and color, along with their
corresponding values (Ahuja et al., 2020). This not
only enhances product search efficiency (Nguyen
et al., 2020) but also facilitates personalized rec-
ommendations (Dong et al., 2020), delivering a

Instruction:
This is an attribute extraction task, please extract the
attribute mentioned in the input text and image

Image:

Input:
Title: Key Apparel Men's Extended Sleeve
Heavyweight 3-Button Pocket Henley
Description: Heavyweight 3-button henley pocket t-
shirt extended sleeve
| ]
v
[ Multimodal Large Language Model (MLLM) ]

attribute: Sleeve Style, value: Long Sleeve;
attribute: Neckline, value: Henley

Output: ’

Figure 1: Example of Attribute Value Extraction (AVE).

better shopping experience for users while aiding
platforms in optimizing operations.

However, Attribute Value Extraction (AVE)
tasks still face several limitations and significant
challenges. One of the limitations in recent At-
tribute Value Extraction (AVE) tasks is the high
variability in how values are expressed. The same
value can be represented in multiple ways. For in-
stance, “v-neck” may appear as “V-neck”, “plung-
ing neckline” or “V-shaped neck”. This compli-
cates subsequent analysis and aggregation. Works
such as Zhang et al. (2021); Li et al. (2021); Wang
et al. (2020) extract the corresponding values di-
rectly from the text without a classification process,
which contributes to the diverse expressions of val-
ues, reducing the method’s overall effectiveness
and utility. Another challenge is that images are
playing an increasingly important role in conveying
product information, making text alone insufficient
for accurate attribute extraction. Integrating images
is essential for better information extraction, but
it presents a challenge due to the complexity and
richness of visual content, which makes it harder
for models to extract key information.

For addressing challenge of the high variabil-
ity of values, we construct a new dataset with im-
plicit expression and standardized attribute values.



Specifically, we take two approaches: First, we
apply synonym substitution to replace explicitly
mentioned values in the input text, enriching the
dataset and allowing for more flexible reasoning.
Second, we manually standardize the expression
of values within the same category, consolidating
variations to ensure consistency. This implicit mul-
timodal dataset serves as a valuable benchmark for
advancing attribute-value extraction tasks, particu-
larly in the clothing domain.

In addition, we propose a two-step framework
to replace the simultaneous generation of attributes
and values to address the challenge from multi-
modal input. In the first step, we provide the input
text and image to the model with an instruction
to extract attributes, such as “Sleeve Style” and
“Neckline”. In the second step, We ask our model
to extract the relevant values according to the at-
tributes extracted in the first step. Beside telling
model the known attributes in the form of text, we
apply visual prompting (Wu et al., 2024; Yu et al.,
2025) and highlight the given attributes in images
to reduce the difficulty of the model in visual infor-
mation extraction.

Our experimental results demonstrate that our
proposed method achieves outstanding perfor-
mance, effectively extracting high-quality attribute-
value pairs from multimodal inputs. Additionally,
we compare our method with a text-based baseline
on both implicit and explicit datasets, revealing that
our method yields more significant improvements
on implicit data. Furthermore, we evaluate differ-
ent visual prompting techniques and confirm that
our method delivers the best results.

2 Related Works

Traditional AVE datasets typically focus on extract-
ing attributes and values from text (Yan et al., 2021;
Yang et al., 2022). As images play an increasingly
significant role in product information, more and
more AVE datasets are emerging in the multimodal
domain (Zhu et al., 2020; Zou et al., 2024; Zhang
et al., 2023). According to whether the attribute-
value pairs are explicitly stated in the text, AVE
datasets can be categorized into explicit and im-
plicit datasets. Explicit AVE (Zheng et al., 2018;
Xu et al., 2019) involves extracting directly stated
attribute-value pairs, while implicit AVE (Zou et al.,
2024; Zhang et al., 2023) focuses on inferring at-
tributes and values from the context when they are
not explicitly mentioned.

Explicit Dataset Implicit Dataset

E 1 Generate implicit context with LLM
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Figure 2: Example of data construction.

AVE tasks can be divided into two types: one
uses encoded inputs with the BIO tagging scheme
for extraction, typically in NER tasks, while the
other uses generative models to produce attribute-
value pairs. Kozareva et al. (2016) proposed
BiLSTM-CRE, a baseline NER model for attribute-
value prediction. Zhu et al. (2020) introduced a
multi-modal NER framework, integrating multi-
modal features with cross-modality attention for
joint attribute prediction. JG-AVE (Roy et al.,
2022) tackles the AVE task in a generative frame-
work by formulating it with a word sequence-
based paradigm and a positional sequence-based
paradigm. These works are done under explicit
dataset. With the development of Large Language
Model (LLM), generative methods has been more
widely used, especially on the implicit datasets.
Zou et al. (2024) proposed a multimodal implicit
dataset and evaluated it on six recent multimodal
large language models (MLLMs) with eleven vari-
ants. Fang et al. (2024) proposed a novel algorithm
called LLM-ensemble to ensemble different LLMs’
outputs for attribute value extraction.

Different from previous studies, We introduce a
multimodal implicit dataset that is more representa-
tive of real-world scenarios. Moreover, we propose
a Step-by-Step pipeline with visual promoting to
reduce the difficulty for the model in simultane-
ously extracting attributes and values, improving
extraction accuracy.

3 Implicit Dataset Construction

3.1 Dataset Construction

In order to get an implicit AVE dataset that has
multi-attributes and standardized values, we con-
struct a dataset referred to as FashionMAVE, which
is based on a subset in fashion domain of the MAVE
dataset (Yang et al., 2022), the largest product
attribute-value extraction dataset based on the num-
ber of attribute-value pairs.

Specifically, we generate the implicit context
using GPT40-mini (OpenAl, 2025), where we pro-



Dataset MM MA SV

OpenTag(Zheng et al., 2018)
AE-110(Xu et al., 2019)
MEPAVE(Zhu et al., 2020)
AdaTag(Yan et al., 2021)
MAVE(Yang et al., 2022)
ImplicitAVE(Zou et al., 2024)
DESIRE(Zhang et al., 2023)
Ours

2

WA X X X X X
AN X X X X X
N NN NEN
N X X X XX XX

Table 1: Comparsion between datasets. In this table,
IM means implicit dataset, MM means: multimodal,
MA means: multi-attribute and SV means standardized
value.

vide explicit values and ask the model to try to
replace these values in the input context with al-
ternative expressions, while preserving the origi-
nal meaning. As shown in Figure 2, the explicit
expression “long sleeve” is replaced with “ex-
tended sleeve” (implicit), while “Henley” remains
unchanged due to the lack of alternative expres-
sions. This process enables our model to generate
results by understanding the input context rather
than merely extracting named entities, thus improv-
ing its generalization performance in real-world
applications.

To further standardize the output, we manually
reviewed all values and created a mapping between
explicit values and their standardized counterparts.
As shown in Figure 2, expressions like “V-Neck”,
“v-neck”, “V-neck”, “vneck” and “V” are standard-
ized to “V-neck” while “Long-sleeve” and “long
sleeves” are standardized to “Long Sleeve”. This
ensures that outputs with the same meaning but
different expressions are standardized, making the
results more consistent and applicable in real-world
applications.

3.2 Comparison with Other Datasets

Table 1 provides a comparison between our dataset
and others. Traditional AVE datasets are primar-
ily explicit and unimodal (Zheng et al., 2018; Xu
etal., 2019; Zhu et al., 2020; Yan et al., 2021; Yang
et al., 2022). While they include multiple attributes,
they do not capture implicit expressions of values
or ensure value standardization. (Zou et al., 2024)
introduces a multimodal implicit dataset based on
MAVE, but each data point is only paired with a
single attribute-value pair. DESIRE (Zhang et al.,
2023) annotates values for candidate attributes of
each product but does not standardize its annota-
tions. This comparison highlights the advantages

Category Attribute Train Val Test

Neckline 1365 151 725
Sleeve Style 1148 125 632
Shirt Fastening Style 152 17 125
Pattern 112 12 73
Shoulder Style 58 6 58
Active Style 33 1 5
Sleeve Style 568 87 419
Neckline 897 96 501
Dress Pattern 175 15 115
Length 806 134 595

Shoulder Style 394 35 118

Table 2: Attribute distribution in our dataset.

Dataset Attribute Explicit Implicit

Neckline 40 21
Sleeve Style 40 11

.. Fastening Style 14 4
Shirt Pattern 15 7
Shoulder Style 3 3

Active Style 4 2

Sleeve Style 29 11
Neckline 36 18

Dress Pattern 24 8
Length 45 13
Shoulder Style 8 3

Table 3: Number of values for each attribute in explicit
and implicit dataset.

of our proposed dataset in effectively handling im-
plicit expressions, supporting multimodal input,
incorporating multi-attribute labels, and ensuring
value standardization.

3.3 Dataset Statistics

In MAVE, all data is explicit, meaning that the
value of each data point can be directly found in
the text. After implicit processing, the majority
of the values in our dataset has become implicit,
with explicit data now accounting for only about
2.5%. We ensure that all attributes appearing in
our dataset are represented at least ten times in the
training set to maintain data balance. Moreover, all
attributes present in the test and validation sets have
also been observed in the training set, ensuring
consistency across all splits.

In our experiment, we split the dataset into three
subsets at a ratio of 1800:200:1000, where 1800
samples were allocated to the training set, 200 sam-
ples to the validation set, and 1000 samples to
the test set. The distribution of different attributes
across these sets is shown in Table 2.

We also count the number of values for different



attributes in our dataset (Implicit). Additionally,
we performed the same analysis on the original
MAVE dataset, which corresponds to our dataset
in its explicit form. The results, shown in Table 3,
indicate that our dataset successfully reduces the
variety of value types by standardizing expressions
for values with the same meaning.

4 Methods

In this study, our goal is to detect the attribute-
value pairs of fashion-related products according to
their descriptive text and images. In our task, each
attribute has a unique corresponding value while
each product can have multiple attributes.

In our task, the process of extracting attribute-
value pairs is illustrated in Figure 3. This is a
step-by-step procedure: in the first step, a mul-
timodal large language model (MLLM) extracts
attributes (e.g., “sleeve style”, “neckline”) from
both text and images. In the second step, the ex-
tracted attributes are used to reformulate the in-
put instructions, and visual prompting is applied,
using Grounding DINO (Liu et al., 2023b) to de-
tect attribute-related image regions and grayscaling
non-target areas to minimize distractions. This pro-
cess enables the model to focus on key information,
ultimately extracting accurate attribute-value pairs
(e.g., “Sleeve Style: Long Sleeve”). This approach
ensures better reasoning and enhances implicit at-
tribute value extraction.

4.1 Attribution Extraction

In this step, we utilize both the product’s text de-
scription and image as input, leveraging a multi-
modal large language model (MLLM) to extract rel-
evant attributes. This approach enables the model
to integrate textual and visual information, improv-
ing the accuracy and completeness of attribute ex-
traction. The process is defined as follows:

A[al,ag,...,ak] :MLLM(Tl,Il) (1)

where Alay, as, ..., ai] denotes the extracted at-
tributes, and 77 and I; represent the input text and
image, respectively. For the MLLM architecture,
we use LLAVAL1.5 (Liu et al., 2023a), which com-
bines CLIP (Radford et al., 2021) for image pro-
cessing and Vicuna 1.5 (Zheng et al., 2023) for
text understanding. CLIP extracts visual features,
aligning them with textual representations, while
Vicuna 1.5 processes the text descriptions to cap-
ture key semantic details. These features are then

fused using a Transformer-based module, allowing
the model to reason jointly across both modalities
and extract the most relevant attributes effectively.

4.2 Value Extraction

4.2.1 Instruction Design

In the Attribution Extraction step, the multimodal
large language model (MLLM) is instructed to ex-
tract attributes from both textual descriptions and
images. Once the relevant attributes have been
identified, we reformulate the instruction in input
text to provide clearer guidance for the model in
the Value Extraction step. This ensures that the
model can focus on generating precise attribute val-
ues based on the detected attributes. The new input
text is denoted as T5:

T, = InstructionDesign(7}, A) 2)

where T and A represent the original input text
and the generated attributes, respectively. The de-
sign of the instruction can be seen in the input of
the second step in Figure 3.

4.2.2 Visual Prompting

In this part, we use visual prompting to empha-
size the regions in images corresponding to the ex-
tracted attributes and make it easier for the model
to accurately generate corresponding values accord-
ing to the attributes.

Detection of Attributes Related Regions

We firstly use Grounding DINO (Liu et al., 2023b),
an open-set object detection model, to detect these
specific areas that correspond to the extracted at-
tributes from raw images. Given the set of at-
tributes Ala1, ag, ..., a] extracted by the Multi-
modal Large Language Model (MLLM), Ground-
ing DINO is applied to perform object detection
and localize the regions of the attributes in the im-
age. This process is defined as follows:
Rlai, as, ..., ar] = GroundingDINO(I;, A) (3)
Where Rlai, ag, ..., ax] represents the bound-
ing box coordinates of the regions corresponding
to each extracted attribute in the image, I; denotes
the input image, and A is the set of attributes ex-
tracted in the previous step. Grounding DINO is
responsible for detecting these attributes in the im-
age and outputting the bounding box coordinates
for their respective locations. For instance, if the
attribute is “sleeve”, Grounding DINO outputs the
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Figure 3: The overview of proposed model.

regions in the image corresponding to the sleeves,
enabling precise localization of the attributes.

Grayscale Attributes Related Regions

To further enhance attribute-value extraction ac-
curacy by reducing the influence of unimportant
information and ensuring that the model complies
with the most informative visual cues, we converted
the image outside the detected attribute areas into
grayscale. Specifically, we retain the color infor-
mation within these regions while converting the
rest of the image to grayscale.

I, = Gray(I1, R) €]

The grayscale procedure is achieved by replac-
ing the RGB values of the non-relevant areas with
their corresponding grayscale value. This approach
ensures that the model can focus more effectively
on the key attributes by suppressing the less impor-
tant parts of the image, thus improving the accuracy
of attribute value generation.

After obtaining the instruction with attributes
and images with visual prompting, we generate
the final attribute-value pairs through the MLLM,
which follows the same process as the Attribution
Extraction step:

[(a1,v1), ..., (ak, vk)] = MLLM(T, I5) ~ (5)

4.3 SFT & Inference Phase

Our step-by-step multimodal framework requires
the MLLM to effectively detect both attributes and

attribute pairs from datasets of varying formats.
To achieve this, the model is trained with a multi-
task strategy, enabling it to dynamically switch
functions based on the task type. As illustrated in
the SFT (supervised fine-tuning) phase of Figure 3,
data from both Step-1 and Step-2 is merged and
shuffled during training to enhance the model’s
adaptability.

In the inference phase, the input data is first pro-
cessed in the format required for Step-1. Recogniz-
ing that it is an attribute extraction task, the model
identifies and extracts attributes based on the given
input. These extracted attributes are then used to
generate new instructions and images through vi-
sual prompting, transforming the data into the for-
mat required for Step-2. This facilitates seamless
task-switching, allowing the model to recognize
the transition to a value extraction task. Finally, the
model generates the corresponding attribute-value
pairs.

5 Experiments

5.1 Experimental Setting

We evaluate our experimental results from two per-
spectives: attribute and attribute-value pair. The
evaluation of attributes focuses on assessing the
model’s ability to extract attributes from the dataset,
while the evaluation of attribute-value pairs mea-
sures the model’s performance in correctly iden-
tifying values and pairing them with their corre-
sponding attributes. For both perspectives, we use
precision, recall, and F1-score as evaluation met-
rics, with F1-score being the primary metric.



Method Shirt Dress
Precision Recall F1 Precision Recall F1

Performance on Attribute Extraction
T5 89.14  87.08  88.10 88.37 80.34  83.99
Language | GPT4o-mini 5578 5729  56.52 50.38 59.49  54.56
Models LLaMA3 94.43 91.22  92.80 90.60  87.64  89.09
InternLM2.5 92.53 88.65  90.55 92.34 88.76  90.51
Qwen2-VL 94.65 87.73  91.06 93.12 87.48  90.21
. BLIP2 90.25 87.67  88.94 91.96 88.37  90.14
Multimodal | InternXComposer2 92.65 88.01  90.27 88.67 87.63  87.98
Models LLAVAL.5 91.76  91.64  91.70 89.31 89.47  89.39
DEFLATE 91.25 86.90  88.04 89.21 80.10  84.63
Ours 93.82 9475  94.28 91.23 90.89  91.05

Performance on Value Extraction

66.63 73.79  69.57 6596 7290  69.32
Language | GPT4o-mini 2578  28.04  26.86 19.81 22,13 20.09
Models LLaMA3 83.43 86.37  84.88 78.71 81.32  80.00
InternLM2.5 83.29 86.48  84.86 78.67 82.98  80.81
Qwen2-VL 82.09 88.56  85.21 78.61 83.68  81.07
. BLIP2 80.54  85.15  82.80 86.58 7735  81.64
Multimodal | InternXComposer2 83.72 8230  83.02 7644  78.69  77.60
Models LLAVALS 85.18 85.24 8521 80.23 81.51  80.86
DEFLATE 69.00 7324  71.05 67.68 7323 7035
Ours 89.04 8599  87.48 8220 8292 8255

Table 4: Comparison with baselines.

For each experiment, we conduct a hyperparame-
ter sweep across learning rate, batch size, and train-
ing epochs, selecting the parameters that achieved
the highest validation performance. All experi-
ments were performed on a single 4090 GPU. To
fine-tune the large language models (LLMs) within
the limited memory space of our GPU, we adopted
the Low-Rank Adaptation (LoRA) fine-tuning ap-
proach (Hu et al., 2021).

5.2 Main Results

To thoroughly evaluate the performance of our
method, we select several strong baselines and a
recent SOTA method for comparison. Specifically,
we assess a range of language models, including T5
(Raffel et al., 2020) (base), LLaMA3 (Dubey et al.,
2024) (7B), InternLM2.5 (Cai et al., 2024) (7B),
and GPT-40-mini (OpenAl, 2025). Among these,
TS is fully fine-tuned, LLaMA3 and InternLM2.5
are fine-tuned using LoRA, and GPT-40-mini is
evaluated in a zero-shot setting. Additionally, we
conduct experiments with multimodal large lan-
guage models known for their strong performance,
including Qwen2-VL (Wang et al., 2024), InternX-
Composer2 (Dong et al., 2024), BLIP2 (Li et al.,
2023) and LLAVAL.5 (Liu et al., 2023a). All of
these multimodal models are 7B variants and fine-
tuned using LoRA. We also conduct experiments
on DEFLATE (Zhang et al., 2023), which is a

SOTA method for implicit AVE task.

Based on the results shown in Table 4, it is evi-
dent that fine-tuned models consistently outperform
the zero-shot model (GPT40-mini) in both attribute
and value extraction tasks. Additionally, Large Lan-
guage Models (LLMs) demonstrate superior perfor-
mance compared to TS5, which has relatively fewer
parameters. Interestingly, despite their multimodal
capabilities, multimodal Large Language Models
do not consistently surpass their unimodal coun-
terparts, particularly when compared to LLaMA3
and InternLM?2.5. This observation highlights that
simply incorporating multimodal inputs may not
fully capture or exploit the rich information present
in images. Our proposed method, which integrates
step-by-step reasoning with visual prompting, ef-
fectively reduces reasoning complexity at each step.
As a result, it achieves state-of-the-art performance
in both attribute and value extraction, demonstrat-
ing the effectiveness of our method in addressing
the challenges of this task.

5.3 Ablation Studies

To validate the effectiveness of our proposed
method, we conduct a series of ablation studies.
These experiments include: using text only, using
both text and images for direct output, and employ-
ing a basic Step by Step approach without visual
prompting. The results (F1-Score) are shown in



Shirt Dress
Attr.  Val. | Attr.  Val.
Ours 94.28 87.48 |91.05 82.55
w/o V-Prompting | 93.35 85.31|90.63 81.11
w/o Step-by-Step | 91.70 85.21 | 89.39 80.86
w/o Image 92.33 84.93 | 88.70 80.08

Table 5: Ablation studies. V-Prompting means visual
prompting

Table 5.

The results show that using text and images for
direct output with LLAVA1.5 does not yield signif-
icant improvement over using text alone. This sug-
gests that the simple inclusion of images in this ex-
periment provides limited contributions. However,
when we incorporate step-by-step inference (with-
out visual prompting), we observe an improvement
in the extraction of attributes and attribute-value
pairs. This indicates that step-by-step inference
effectively reduces the complexity of model infer-
ence and enhances extraction performance. Finally,
our proposed method further improves upon the ba-
sic step-by-step approach by adding visual prompt-
ing, both in terms of attributes and attribute-value
pair extraction. This demonstrates that the visual
prompting in our method helps the model more
easily extract values based on the given attributes.
Moreover, while the first step of our method is sim-
ilar to basic step-by-step method, the more focused
inference in the second step enables the model
to better understand the attributes, leading to im-
proved performance in attribute extraction.

5.4 Comparison between Explicit and Implicit
Dataset

To further demonstrate the efficiency of our method,
we conducted experiments on the explicit dataset
corresponding to our implicit dataset. These exper-
iments were carried out using our proposed method
and compared against a baseline that utilizes text
input only.

The experimental results (F1-Score) are pro-
vided in the above two sub-figure of Figure 4,
which highlight the effectiveness of our proposed
method across both implicit and explicit datasets
for fashion-related attribute-value extraction tasks.

When comparing the explicit and implicit
datasets, the explicit dataset demonstrates better
performance. This is because the outputs of the
explicit dataset are directly derived from the input
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Figure 4: Comparison between explicit and implicit
dataset. I represents experiments on implicit dataset
and E represents experiments on explicit dataset, fext
means using text as only input and Ours means using
our proposed method.

text, making it easier for the model to detect values
without requiring extensive analysis or inference.
The below two sub-figures in Figure 4 show the
performance gain compared with our method and
base method. In these figures we observe smaller
improvement achieved in the explicit dataset when
employing our method. This may be due to the
fact that, in explicit datasets, AVE tasks are more
akin to Named Entity Recognition (NER), which
primarily focuses on extracting named entities from
text and places less emphasis on utilizing image
information. These experiments confirm that our
proposed method is effective on both explicit and
implicit datasets, with its potential being more fully
realized in implicit datasets, where reasoning and
multimodal analysis play a more critical role.

5.5 Influence of Visual Prompting Methods

We also conduct experiments on various visual
prompting methods. Figure 5 (a) shows the origi-
nal images without any visual prompting. The first
method, shown in Figure 5 (b), highlights the at-
tributes in boxes with labels above. This represents
a simplified version of the approach we employed.
The result (F1-Score) of this method are presented
in Table 6, which shows that it performs less ef-
fectively compared to our proposed method. This
indicates that the grayscale processing applied to
non-key areas (Figure 5(c)) successfully reduces
the difficulty for the model during inference, lead-
ing to an improvement in its performance.
Another method, applied to the API (Yu et al.,



Figure 5: Examples of different visual prompting.

Shirt Dress
Attr.  Val. | Attr.  Val.
(a)lmage only | 91.70 85.21 | 89.39 80.86
(b)Image+Box | 93.97 86.34 | 90.48 81.64
(d)Image+API | 92.50 86.01 | 88.94 80.20
(c)Ours 94.28 87.48 191.05 82.55

Table 6: Results of different visual prompting.

2024), incorporates textual information into im-
ages by prompting the model to highlight specific
regions of the image based on the provided tex-
tual descriptions. The processed image is shown
in Figure 5 (d). From the figure, we can observe
that the regions around the sleeves and neckline
are minimally masked, indicating that this method
somewhat achieves its intended effect. However, it
is apparent that the mask processing of non-critical
areas does not effectively emphasize the crucial
parts of the image, leading to a vague and impre-
cise annotation. The results in Table 6 also suggest
that this is not the most effective visual prompting
method for our task.

5.6 Case Studies

In Figure 6, we present a case study comparing
our method to baselines that simply use both text
and multimodal input. In the first case, when using
text-only input, the model correctly predicts “long
sleeve” from “extended-sleeve” in the text. How-

Text: The title of the product is: Mountain Khakis
Men'‘s Granite Creek Extended-Sleeved Shirt.

| PP ]Collar Adjusts for Sun/Wind Protection on
Neck/2 Chest Pockets with Hidden Snap
Closure/Napoleon Zippered Chest Pockets for Security
& Venting.

Label: attribute: Sleeve Style, value: long sleeve
Text-Base: attribute: Sleeve Style, value: long sleeve
Multimodal-Base: attribute: Sleeve Style, value: short
sleeve

Ours: attribute: Sleeve Style, value: long sleeve

Text: The title of the product is: Seven7 Women's Open-
Shoulder Pocket Dress. This product has following
features: Average Customer Review: 5.0 out of 5 stars.

Label: attribute: Sleeve Style, value: long sleeve
Text-base: attribute: Shoulder Style, value: off shoulder
Multimodal-Base: attribute: Shoulder Style, value: cold
shoulder

Ours: attribute: Shoulder Style, value: cold shoulder

Image with visual prompting

Figure 6: Examples of case study.

ever, when an image is added, the rolled-up sleeves
in the image mislead the model, resulting in the
incorrect prediction of “short sleeve”. Our method,
which employs visual prompting, helps the model
focus more on the relevant sleeve details, enabling
it to make the correct prediction. In the second
case, the term “Open” in the input text is ambigu-
ous, as it could refer to either “off shoulder” or
“cold shoulder”. This ambiguity leads the model to
make an incorrect prediction regarding the shoul-
der style. Both our method and the multimodal
baseline leverage the additional information from
the image to correctly resolve this ambiguity and
make accurate prediction.

Based on the examples above, our method en-
hances the model’s visual reasoning ability, allow-
ing it to focus on key image details while avoiding
irrelevant noise. It also resolves text ambiguities
by leveraging image information, achieving precise
multimodal inference for accurate attribute-value
extraction.

6 Conclusion

In this paper, we proposed a method that enhances
multimodal attribute-value extraction for fashion-
related products. By combining step-by-step infer-
ence and visual prompting, our approach improves
the model’s performance in process multimodal in-
put. Our experiments demonstrate that our method
outperforms both text-only and multimodal base-
lines, effectively resolving text ambiguities and
focusing on relevant visual details. This work con-
tributes to more accurate and robust attribute-value
extraction in the fashion domain, offering potential
for improved e-commerce product categorization
and recommendation systems.



7 Limitations

A limitation of our approach is that it relies on
visual cues, making it effective for attributes that
can be seen, like sleeve style. However, it is less
suitable for extracting intrinsic attributes, such as
fabric material, which cannot be easily determined
from images. This limits the method’s applicability
in certain domains.
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