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Abstract
Attribute Value Extraction (AVE) is a crucial001
technology in e-commerce that enables the002
identification and extraction of specific prod-003
uct attributes and their corresponding values.004
While most prior research has focused on di-005
rectly extracting explicit values from text, this006
paper introduces a multimodal implicit AVE007
dataset in the fashion domain, which can gener-008
ate standardized attribute-value pairs for more009
effective downstream analysis. Additionally,010
we propose a step-by-step pipeline that sepa-011
rates the generation of attributes and values,012
alleviating the model’s complexity in under-013
standing the task. In the second step, our visual014
prompting method directs the model’s attention015
to key regions in the images, thereby improving016
the accuracy of value extraction. Experimental017
results demonstrate that our approach outper-018
forms several recent strong baselines, and abla-019
tion studies further highlight the effectiveness020
of each component of our method.021

1 Introduction022

The Attribute Value Extraction (AVE) task aims023

to automatically identify and extract attributes and024

their corresponding values from content related025

to specific items, such as product descriptions, re-026

views, and social media posts (Li et al., 2021; Khan-027

delwal et al., 2023; Fang et al., 2024). As shown in028

Figure 1, the input consists of multimodal product029

information, combining textual descriptions and030

images. The system processes this data to extract031

and present attribute-value pairs in the output, such032

as identifying “Sleeve Style” as “Long Sleeve” and033

“Neckline” as “Henley”.034

In this paper, we mainly focus AVE for fashion-035

related products, and aims to extract the attributes036

such as size, material, and color, along with their037

corresponding values (Ahuja et al., 2020). This not038

only enhances product search efficiency (Nguyen039

et al., 2020) but also facilitates personalized rec-040

ommendations (Dong et al., 2020), delivering a041

Instruction:
This is an attribute extraction task, please extract the 
attribute mentioned in the input text and image.

Input:
Title: Key Apparel Men's Extended Sleeve 
Heavyweight 3-Button Pocket Henley 
Description: Heavyweight 3-button henley pocket t-
shirt extended sleeve.

attribute: Sleeve Style, value: Long Sleeve; 
attribute: Neckline, value: Henley

Multimodal Large Language Model (MLLM)

Output:

Image:

Figure 1: Example of Attribute Value Extraction (AVE).

better shopping experience for users while aiding 042

platforms in optimizing operations. 043

However, Attribute Value Extraction (AVE) 044

tasks still face several limitations and significant 045

challenges. One of the limitations in recent At- 046

tribute Value Extraction (AVE) tasks is the high 047

variability in how values are expressed. The same 048

value can be represented in multiple ways. For in- 049

stance, “v-neck” may appear as “V-neck”, “plung- 050

ing neckline” or “V-shaped neck”. This compli- 051

cates subsequent analysis and aggregation. Works 052

such as Zhang et al. (2021); Li et al. (2021); Wang 053

et al. (2020) extract the corresponding values di- 054

rectly from the text without a classification process, 055

which contributes to the diverse expressions of val- 056

ues, reducing the method’s overall effectiveness 057

and utility. Another challenge is that images are 058

playing an increasingly important role in conveying 059

product information, making text alone insufficient 060

for accurate attribute extraction. Integrating images 061

is essential for better information extraction, but 062

it presents a challenge due to the complexity and 063

richness of visual content, which makes it harder 064

for models to extract key information. 065

For addressing challenge of the high variabil- 066

ity of values, we construct a new dataset with im- 067

plicit expression and standardized attribute values. 068
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Specifically, we take two approaches: First, we069

apply synonym substitution to replace explicitly070

mentioned values in the input text, enriching the071

dataset and allowing for more flexible reasoning.072

Second, we manually standardize the expression073

of values within the same category, consolidating074

variations to ensure consistency. This implicit mul-075

timodal dataset serves as a valuable benchmark for076

advancing attribute-value extraction tasks, particu-077

larly in the clothing domain.078

In addition, we propose a two-step framework079

to replace the simultaneous generation of attributes080

and values to address the challenge from multi-081

modal input. In the first step, we provide the input082

text and image to the model with an instruction083

to extract attributes, such as “Sleeve Style” and084

“Neckline”. In the second step, We ask our model085

to extract the relevant values according to the at-086

tributes extracted in the first step. Beside telling087

model the known attributes in the form of text, we088

apply visual prompting (Wu et al., 2024; Yu et al.,089

2025) and highlight the given attributes in images090

to reduce the difficulty of the model in visual infor-091

mation extraction.092

Our experimental results demonstrate that our093

proposed method achieves outstanding perfor-094

mance, effectively extracting high-quality attribute-095

value pairs from multimodal inputs. Additionally,096

we compare our method with a text-based baseline097

on both implicit and explicit datasets, revealing that098

our method yields more significant improvements099

on implicit data. Furthermore, we evaluate differ-100

ent visual prompting techniques and confirm that101

our method delivers the best results.102

2 Related Works103

Traditional AVE datasets typically focus on extract-104

ing attributes and values from text (Yan et al., 2021;105

Yang et al., 2022). As images play an increasingly106

significant role in product information, more and107

more AVE datasets are emerging in the multimodal108

domain (Zhu et al., 2020; Zou et al., 2024; Zhang109

et al., 2023). According to whether the attribute-110

value pairs are explicitly stated in the text, AVE111

datasets can be categorized into explicit and im-112

plicit datasets. Explicit AVE (Zheng et al., 2018;113

Xu et al., 2019) involves extracting directly stated114

attribute-value pairs, while implicit AVE (Zou et al.,115

2024; Zhang et al., 2023) focuses on inferring at-116

tributes and values from the context when they are117

not explicitly mentioned.118

Title: Key Apparel Men's Extended Sleeve 
Heavyweight 3-Button Pocket Henley 
Description: Heavyweight 3-button henley 
pocket t-shirt extended sleeve.

Title: Key Apparel Men’s Long Sleeve 
Heavyweight 3-Button Pocket Henley 
Description: Heavyweight 3-button henley 
pocket t-shirt long sleeve.

V-Neck, v-neck, V-neck, vneck, V
Long-sleeve, long sleeves

V-neck
Long Sleeve

① Generate implicit context with LLM

② Standardize the output

Explicit Dataset Implicit Dataset

Figure 2: Example of data construction.

AVE tasks can be divided into two types: one 119

uses encoded inputs with the BIO tagging scheme 120

for extraction, typically in NER tasks, while the 121

other uses generative models to produce attribute- 122

value pairs. Kozareva et al. (2016) proposed 123

BiLSTM-CRF, a baseline NER model for attribute- 124

value prediction. Zhu et al. (2020) introduced a 125

multi-modal NER framework, integrating multi- 126

modal features with cross-modality attention for 127

joint attribute prediction. JG-AVE (Roy et al., 128

2022) tackles the AVE task in a generative frame- 129

work by formulating it with a word sequence- 130

based paradigm and a positional sequence-based 131

paradigm. These works are done under explicit 132

dataset. With the development of Large Language 133

Model (LLM), generative methods has been more 134

widely used, especially on the implicit datasets. 135

Zou et al. (2024) proposed a multimodal implicit 136

dataset and evaluated it on six recent multimodal 137

large language models (MLLMs) with eleven vari- 138

ants. Fang et al. (2024) proposed a novel algorithm 139

called LLM-ensemble to ensemble different LLMs’ 140

outputs for attribute value extraction. 141

Different from previous studies, We introduce a 142

multimodal implicit dataset that is more representa- 143

tive of real-world scenarios. Moreover, we propose 144

a Step-by-Step pipeline with visual promoting to 145

reduce the difficulty for the model in simultane- 146

ously extracting attributes and values, improving 147

extraction accuracy. 148

3 Implicit Dataset Construction 149

3.1 Dataset Construction 150

In order to get an implicit AVE dataset that has 151

multi-attributes and standardized values, we con- 152

struct a dataset referred to as FashionMAVE, which 153

is based on a subset in fashion domain of the MAVE 154

dataset (Yang et al., 2022), the largest product 155

attribute-value extraction dataset based on the num- 156

ber of attribute-value pairs. 157

Specifically, we generate the implicit context 158

using GPT4o-mini (OpenAI, 2025), where we pro- 159
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Dataset IM MM MA SV

OpenTag(Zheng et al., 2018) ✗ ✗ ✓ ✗
AE-110(Xu et al., 2019) ✗ ✗ ✓ ✗
MEPAVE(Zhu et al., 2020) ✗ ✗ ✓ ✗
AdaTag(Yan et al., 2021) ✗ ✗ ✓ ✗
MAVE(Yang et al., 2022) ✗ ✗ ✓ ✗
ImplicitAVE(Zou et al., 2024) ✓ ✓ ✗ ✗
DESIRE(Zhang et al., 2023) ✓ ✓ ✓ ✗
Ours ✓ ✓ ✓ ✓

Table 1: Comparsion between datasets. In this table,
IM means implicit dataset, MM means: multimodal,
MA means: multi-attribute and SV means standardized
value.

vide explicit values and ask the model to try to160

replace these values in the input context with al-161

ternative expressions, while preserving the origi-162

nal meaning. As shown in Figure 2, the explicit163

expression “long sleeve” is replaced with “ex-164

tended sleeve” (implicit), while “Henley” remains165

unchanged due to the lack of alternative expres-166

sions. This process enables our model to generate167

results by understanding the input context rather168

than merely extracting named entities, thus improv-169

ing its generalization performance in real-world170

applications.171

To further standardize the output, we manually172

reviewed all values and created a mapping between173

explicit values and their standardized counterparts.174

As shown in Figure 2, expressions like “V-Neck”,175

“v-neck”, “V-neck”, “vneck” and “V” are standard-176

ized to “V-neck” while “Long-sleeve” and “long177

sleeves” are standardized to “Long Sleeve”. This178

ensures that outputs with the same meaning but179

different expressions are standardized, making the180

results more consistent and applicable in real-world181

applications.182

3.2 Comparison with Other Datasets183

Table 1 provides a comparison between our dataset184

and others. Traditional AVE datasets are primar-185

ily explicit and unimodal (Zheng et al., 2018; Xu186

et al., 2019; Zhu et al., 2020; Yan et al., 2021; Yang187

et al., 2022). While they include multiple attributes,188

they do not capture implicit expressions of values189

or ensure value standardization. (Zou et al., 2024)190

introduces a multimodal implicit dataset based on191

MAVE, but each data point is only paired with a192

single attribute-value pair. DESIRE (Zhang et al.,193

2023) annotates values for candidate attributes of194

each product but does not standardize its annota-195

tions. This comparison highlights the advantages196

Category Attribute Train Val Test

Shirt

Neckline 1365 151 725
Sleeve Style 1148 125 632
Fastening Style 152 17 125
Pattern 112 12 73
Shoulder Style 58 6 58
Active Style 33 1 5

Dress

Sleeve Style 568 87 419
Neckline 897 96 501
Pattern 175 15 115
Length 806 134 595
Shoulder Style 394 35 118

Table 2: Attribute distribution in our dataset.

Dataset Attribute Explicit Implicit

Shirt

Neckline 40 21
Sleeve Style 40 11
Fastening Style 14 4
Pattern 15 7
Shoulder Style 3 3
Active Style 4 2

Dress

Sleeve Style 29 11
Neckline 36 18
Pattern 24 8
Length 45 13
Shoulder Style 8 3

Table 3: Number of values for each attribute in explicit
and implicit dataset.

of our proposed dataset in effectively handling im- 197

plicit expressions, supporting multimodal input, 198

incorporating multi-attribute labels, and ensuring 199

value standardization. 200

3.3 Dataset Statistics 201

In MAVE, all data is explicit, meaning that the 202

value of each data point can be directly found in 203

the text. After implicit processing, the majority 204

of the values in our dataset has become implicit, 205

with explicit data now accounting for only about 206

2.5%. We ensure that all attributes appearing in 207

our dataset are represented at least ten times in the 208

training set to maintain data balance. Moreover, all 209

attributes present in the test and validation sets have 210

also been observed in the training set, ensuring 211

consistency across all splits. 212

In our experiment, we split the dataset into three 213

subsets at a ratio of 1800:200:1000, where 1800 214

samples were allocated to the training set, 200 sam- 215

ples to the validation set, and 1000 samples to 216

the test set. The distribution of different attributes 217

across these sets is shown in Table 2. 218

We also count the number of values for different 219
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attributes in our dataset (Implicit). Additionally,220

we performed the same analysis on the original221

MAVE dataset, which corresponds to our dataset222

in its explicit form. The results, shown in Table 3,223

indicate that our dataset successfully reduces the224

variety of value types by standardizing expressions225

for values with the same meaning.226

4 Methods227

In this study, our goal is to detect the attribute-228

value pairs of fashion-related products according to229

their descriptive text and images. In our task, each230

attribute has a unique corresponding value while231

each product can have multiple attributes.232

In our task, the process of extracting attribute-233

value pairs is illustrated in Figure 3. This is a234

step-by-step procedure: in the first step, a mul-235

timodal large language model (MLLM) extracts236

attributes (e.g., “sleeve style”, “neckline”) from237

both text and images. In the second step, the ex-238

tracted attributes are used to reformulate the in-239

put instructions, and visual prompting is applied,240

using Grounding DINO (Liu et al., 2023b) to de-241

tect attribute-related image regions and grayscaling242

non-target areas to minimize distractions. This pro-243

cess enables the model to focus on key information,244

ultimately extracting accurate attribute-value pairs245

(e.g., “Sleeve Style: Long Sleeve”). This approach246

ensures better reasoning and enhances implicit at-247

tribute value extraction.248

4.1 Attribution Extraction249

In this step, we utilize both the product’s text de-250

scription and image as input, leveraging a multi-251

modal large language model (MLLM) to extract rel-252

evant attributes. This approach enables the model253

to integrate textual and visual information, improv-254

ing the accuracy and completeness of attribute ex-255

traction. The process is defined as follows:256

A[a1, a2, ..., ak] = MLLM(T1, I1) (1)257

where A[a1, a2, ..., ak] denotes the extracted at-258

tributes, and T1 and I1 represent the input text and259

image, respectively. For the MLLM architecture,260

we use LLAVA1.5 (Liu et al., 2023a), which com-261

bines CLIP (Radford et al., 2021) for image pro-262

cessing and Vicuna 1.5 (Zheng et al., 2023) for263

text understanding. CLIP extracts visual features,264

aligning them with textual representations, while265

Vicuna 1.5 processes the text descriptions to cap-266

ture key semantic details. These features are then267

fused using a Transformer-based module, allowing 268

the model to reason jointly across both modalities 269

and extract the most relevant attributes effectively. 270

4.2 Value Extraction 271

4.2.1 Instruction Design 272

In the Attribution Extraction step, the multimodal 273

large language model (MLLM) is instructed to ex- 274

tract attributes from both textual descriptions and 275

images. Once the relevant attributes have been 276

identified, we reformulate the instruction in input 277

text to provide clearer guidance for the model in 278

the Value Extraction step. This ensures that the 279

model can focus on generating precise attribute val- 280

ues based on the detected attributes. The new input 281

text is denoted as T2: 282

T2 = InstructionDesign(T1, A) (2) 283

where T1 and A represent the original input text 284

and the generated attributes, respectively. The de- 285

sign of the instruction can be seen in the input of 286

the second step in Figure 3. 287

4.2.2 Visual Prompting 288

In this part, we use visual prompting to empha- 289

size the regions in images corresponding to the ex- 290

tracted attributes and make it easier for the model 291

to accurately generate corresponding values accord- 292

ing to the attributes. 293

Detection of Attributes Related Regions 294

We firstly use Grounding DINO (Liu et al., 2023b), 295

an open-set object detection model, to detect these 296

specific areas that correspond to the extracted at- 297

tributes from raw images. Given the set of at- 298

tributes A[a1, a2, . . . , ak] extracted by the Multi- 299

modal Large Language Model (MLLM), Ground- 300

ing DINO is applied to perform object detection 301

and localize the regions of the attributes in the im- 302

age. This process is defined as follows: 303

R[a1, a2, . . . , ak] = GroundingDINO(I1,A) (3) 304

Where R[a1, a2, . . . , ak] represents the bound- 305

ing box coordinates of the regions corresponding 306

to each extracted attribute in the image, I1 denotes 307

the input image, and A is the set of attributes ex- 308

tracted in the previous step. Grounding DINO is 309

responsible for detecting these attributes in the im- 310

age and outputting the bounding box coordinates 311

for their respective locations. For instance, if the 312

attribute is “sleeve”, Grounding DINO outputs the 313
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Input:
Title: Key Apparel Men's
Extended Sleeve
Heavyweight 3-Button 
Pocket Henley 
Description: 
Heavyweight 3-button 
henley pocket t-shirt 
extended sleeve.

Instruction:
This is an attribute extraction task, 
please extract the attribute 
mentioned in the input text and
image. Attribute

extraction

Value
extraction

Output:
Sleeve Style, 
Neckline

Ground-
ing

Dino

Instruction:
This is a value extraction task, given 
the attributes: Sleeve Style, Neckline, 
please output their (its) value according
to the input text and image.

Input:
Title: Key Apparel Men's 
Extended Sleeve 
Heavyweight 3-Button 
Pocket Henley 
Description: Heavyweight 
3-button henley pocket t-
shirt extended sleeve.

Attribute
extraction

Value
extraction

Output:
attribute: 
Sleeve Style, 
value: 
Long Sleeve;
attribute: 
Neckline,
value: 
Henley

MLLM

1st-step Input

2nd-step Input

1st-step Output

2nd-step Output
SFT

Phase

1st-step Input

2nd-step Output

1st-step Output

2nd-step Input
MLLM

Task-SwitchInference
Phase

Attribute extraction

Value extraction

MLLM with Multi-function

1st-step 2nd-step

Visual Prompting

Instruction Design

Grayscale

Image:
Image:

Figure 3: The overview of proposed model.

regions in the image corresponding to the sleeves,314

enabling precise localization of the attributes.315

Grayscale Attributes Related Regions316

To further enhance attribute-value extraction ac-317

curacy by reducing the influence of unimportant318

information and ensuring that the model complies319

with the most informative visual cues, we converted320

the image outside the detected attribute areas into321

grayscale. Specifically, we retain the color infor-322

mation within these regions while converting the323

rest of the image to grayscale.324

I2 = Gray(I1, R) (4)325

The grayscale procedure is achieved by replac-326

ing the RGB values of the non-relevant areas with327

their corresponding grayscale value. This approach328

ensures that the model can focus more effectively329

on the key attributes by suppressing the less impor-330

tant parts of the image, thus improving the accuracy331

of attribute value generation.332

After obtaining the instruction with attributes333

and images with visual prompting, we generate334

the final attribute-value pairs through the MLLM,335

which follows the same process as the Attribution336

Extraction step:337

[(a1, v1), . . . , (ak, vk)] = MLLM(T2, I2) (5)338

4.3 SFT & Inference Phase339

Our step-by-step multimodal framework requires340

the MLLM to effectively detect both attributes and341

attribute pairs from datasets of varying formats. 342

To achieve this, the model is trained with a multi- 343

task strategy, enabling it to dynamically switch 344

functions based on the task type. As illustrated in 345

the SFT (supervised fine-tuning) phase of Figure 3, 346

data from both Step-1 and Step-2 is merged and 347

shuffled during training to enhance the model’s 348

adaptability. 349

In the inference phase, the input data is first pro- 350

cessed in the format required for Step-1. Recogniz- 351

ing that it is an attribute extraction task, the model 352

identifies and extracts attributes based on the given 353

input. These extracted attributes are then used to 354

generate new instructions and images through vi- 355

sual prompting, transforming the data into the for- 356

mat required for Step-2. This facilitates seamless 357

task-switching, allowing the model to recognize 358

the transition to a value extraction task. Finally, the 359

model generates the corresponding attribute-value 360

pairs. 361

5 Experiments 362

5.1 Experimental Setting 363

We evaluate our experimental results from two per- 364

spectives: attribute and attribute-value pair. The 365

evaluation of attributes focuses on assessing the 366

model’s ability to extract attributes from the dataset, 367

while the evaluation of attribute-value pairs mea- 368

sures the model’s performance in correctly iden- 369

tifying values and pairing them with their corre- 370

sponding attributes. For both perspectives, we use 371

precision, recall, and F1-score as evaluation met- 372

rics, with F1-score being the primary metric. 373
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Method Shirt Dress

Precision Recall F1 Precision Recall F1

Performance on Attribute Extraction

Language
Models

T5 89.14 87.08 88.10 88.37 80.34 83.99
GPT4o-mini 55.78 57.29 56.52 50.38 59.49 54.56
LLaMA3 94.43 91.22 92.80 90.60 87.64 89.09
InternLM2.5 92.53 88.65 90.55 92.34 88.76 90.51

Multimodal
Models

Qwen2-VL 94.65 87.73 91.06 93.12 87.48 90.21
BLIP2 90.25 87.67 88.94 91.96 88.37 90.14
InternXComposer2 92.65 88.01 90.27 88.67 87.63 87.98
LLAVA1.5 91.76 91.64 91.70 89.31 89.47 89.39
DEFLATE 91.25 86.90 88.04 89.21 80.10 84.63
Ours 93.82 94.75 94.28 91.23 90.89 91.05

Performance on Value Extraction

Language
Models

T5 66.63 73.79 69.57 65.96 72.90 69.32
GPT4o-mini 25.78 28.04 26.86 19.81 22.13 20.09
LLaMA3 83.43 86.37 84.88 78.71 81.32 80.00
InternLM2.5 83.29 86.48 84.86 78.67 82.98 80.81

Multimodal
Models

Qwen2-VL 82.09 88.56 85.21 78.61 83.68 81.07
BLIP2 80.54 85.15 82.80 86.58 77.35 81.64
InternXComposer2 83.72 82.30 83.02 76.44 78.69 77.60
LLAVA1.5 85.18 85.24 85.21 80.23 81.51 80.86
DEFLATE 69.00 73.24 71.05 67.68 73.23 70.35
Ours 89.04 85.99 87.48 82.20 82.92 82.55

Table 4: Comparison with baselines.

For each experiment, we conduct a hyperparame-374

ter sweep across learning rate, batch size, and train-375

ing epochs, selecting the parameters that achieved376

the highest validation performance. All experi-377

ments were performed on a single 4090 GPU. To378

fine-tune the large language models (LLMs) within379

the limited memory space of our GPU, we adopted380

the Low-Rank Adaptation (LoRA) fine-tuning ap-381

proach (Hu et al., 2021).382

5.2 Main Results383

To thoroughly evaluate the performance of our384

method, we select several strong baselines and a385

recent SOTA method for comparison. Specifically,386

we assess a range of language models, including T5387

(Raffel et al., 2020) (base), LLaMA3 (Dubey et al.,388

2024) (7B), InternLM2.5 (Cai et al., 2024) (7B),389

and GPT-4o-mini (OpenAI, 2025). Among these,390

T5 is fully fine-tuned, LLaMA3 and InternLM2.5391

are fine-tuned using LoRA, and GPT-4o-mini is392

evaluated in a zero-shot setting. Additionally, we393

conduct experiments with multimodal large lan-394

guage models known for their strong performance,395

including Qwen2-VL (Wang et al., 2024), InternX-396

Composer2 (Dong et al., 2024), BLIP2 (Li et al.,397

2023) and LLAVA1.5 (Liu et al., 2023a). All of398

these multimodal models are 7B variants and fine-399

tuned using LoRA. We also conduct experiments400

on DEFLATE (Zhang et al., 2023), which is a401

SOTA method for implicit AVE task. 402

Based on the results shown in Table 4, it is evi- 403

dent that fine-tuned models consistently outperform 404

the zero-shot model (GPT4o-mini) in both attribute 405

and value extraction tasks. Additionally, Large Lan- 406

guage Models (LLMs) demonstrate superior perfor- 407

mance compared to T5, which has relatively fewer 408

parameters. Interestingly, despite their multimodal 409

capabilities, multimodal Large Language Models 410

do not consistently surpass their unimodal coun- 411

terparts, particularly when compared to LLaMA3 412

and InternLM2.5. This observation highlights that 413

simply incorporating multimodal inputs may not 414

fully capture or exploit the rich information present 415

in images. Our proposed method, which integrates 416

step-by-step reasoning with visual prompting, ef- 417

fectively reduces reasoning complexity at each step. 418

As a result, it achieves state-of-the-art performance 419

in both attribute and value extraction, demonstrat- 420

ing the effectiveness of our method in addressing 421

the challenges of this task. 422

5.3 Ablation Studies 423

To validate the effectiveness of our proposed 424

method, we conduct a series of ablation studies. 425

These experiments include: using text only, using 426

both text and images for direct output, and employ- 427

ing a basic Step by Step approach without visual 428

prompting. The results (F1-Score) are shown in 429
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Shirt Dress
Attr. Val. Attr. Val.

Ours 94.28 87.48 91.05 82.55
w/o V-Prompting 93.35 85.31 90.63 81.11
w/o Step-by-Step 91.70 85.21 89.39 80.86
w/o Image 92.33 84.93 88.70 80.08

Table 5: Ablation studies. V-Prompting means visual
prompting

Table 5.430

The results show that using text and images for431

direct output with LLAVA1.5 does not yield signif-432

icant improvement over using text alone. This sug-433

gests that the simple inclusion of images in this ex-434

periment provides limited contributions. However,435

when we incorporate step-by-step inference (with-436

out visual prompting), we observe an improvement437

in the extraction of attributes and attribute-value438

pairs. This indicates that step-by-step inference439

effectively reduces the complexity of model infer-440

ence and enhances extraction performance. Finally,441

our proposed method further improves upon the ba-442

sic step-by-step approach by adding visual prompt-443

ing, both in terms of attributes and attribute-value444

pair extraction. This demonstrates that the visual445

prompting in our method helps the model more446

easily extract values based on the given attributes.447

Moreover, while the first step of our method is sim-448

ilar to basic step-by-step method, the more focused449

inference in the second step enables the model450

to better understand the attributes, leading to im-451

proved performance in attribute extraction.452

5.4 Comparison between Explicit and Implicit453

Dataset454

To further demonstrate the efficiency of our method,455

we conducted experiments on the explicit dataset456

corresponding to our implicit dataset. These exper-457

iments were carried out using our proposed method458

and compared against a baseline that utilizes text459

input only.460

The experimental results (F1-Score) are pro-461

vided in the above two sub-figure of Figure 4,462

which highlight the effectiveness of our proposed463

method across both implicit and explicit datasets464

for fashion-related attribute-value extraction tasks.465

When comparing the explicit and implicit466

datasets, the explicit dataset demonstrates better467

performance. This is because the outputs of the468

explicit dataset are directly derived from the input469

Figure 4: Comparison between explicit and implicit
dataset. I represents experiments on implicit dataset
and E represents experiments on explicit dataset, text
means using text as only input and Ours means using
our proposed method.

text, making it easier for the model to detect values 470

without requiring extensive analysis or inference. 471

The below two sub-figures in Figure 4 show the 472

performance gain compared with our method and 473

base method. In these figures we observe smaller 474

improvement achieved in the explicit dataset when 475

employing our method. This may be due to the 476

fact that, in explicit datasets, AVE tasks are more 477

akin to Named Entity Recognition (NER), which 478

primarily focuses on extracting named entities from 479

text and places less emphasis on utilizing image 480

information. These experiments confirm that our 481

proposed method is effective on both explicit and 482

implicit datasets, with its potential being more fully 483

realized in implicit datasets, where reasoning and 484

multimodal analysis play a more critical role. 485

5.5 Influence of Visual Prompting Methods 486

We also conduct experiments on various visual 487

prompting methods. Figure 5 (a) shows the origi- 488

nal images without any visual prompting. The first 489

method, shown in Figure 5 (b), highlights the at- 490

tributes in boxes with labels above. This represents 491

a simplified version of the approach we employed. 492

The result (F1-Score) of this method are presented 493

in Table 6, which shows that it performs less ef- 494

fectively compared to our proposed method. This 495

indicates that the grayscale processing applied to 496

non-key areas (Figure 5(c)) successfully reduces 497

the difficulty for the model during inference, lead- 498

ing to an improvement in its performance. 499

Another method, applied to the API (Yu et al., 500
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(a) (b)

(c) (d)

Figure 5: Examples of different visual prompting.

Shirt Dress
Attr. Val. Attr. Val.

(a)Image only 91.70 85.21 89.39 80.86
(b)Image+Box 93.97 86.34 90.48 81.64
(d)Image+API 92.50 86.01 88.94 80.20
(c)Ours 94.28 87.48 91.05 82.55

Table 6: Results of different visual prompting.

2024), incorporates textual information into im-501

ages by prompting the model to highlight specific502

regions of the image based on the provided tex-503

tual descriptions. The processed image is shown504

in Figure 5 (d). From the figure, we can observe505

that the regions around the sleeves and neckline506

are minimally masked, indicating that this method507

somewhat achieves its intended effect. However, it508

is apparent that the mask processing of non-critical509

areas does not effectively emphasize the crucial510

parts of the image, leading to a vague and impre-511

cise annotation. The results in Table 6 also suggest512

that this is not the most effective visual prompting513

method for our task.514

5.6 Case Studies515

In Figure 6, we present a case study comparing516

our method to baselines that simply use both text517

and multimodal input. In the first case, when using518

text-only input, the model correctly predicts “long519

sleeve” from “extended-sleeve” in the text. How-520

Text: The title of the product is: Mountain Khakis 
Men‘s Granite Creek Extended-Sleeved Shirt. 
[……]Collar Adjusts for Sun/Wind Protection on 
Neck/2 Chest Pockets with Hidden Snap 
Closure/Napoleon Zippered Chest Pockets for Security 
& Venting.

Label: attribute: Sleeve Style, value: long sleeve
Text-Base: attribute: Sleeve Style, value: long sleeve 
Multimodal-Base: attribute: Sleeve Style, value: short
sleeve
Ours: attribute: Sleeve Style, value: long sleeve

Text: The title of the product is: Seven7 Women's Open-
Shoulder Pocket Dress. This product has following 
features: Average Customer Review: 5.0 out of 5 stars.

Label: attribute: Sleeve Style, value: long sleeve
Text-base: attribute: Shoulder Style, value: off shoulder
Multimodal-Base: attribute: Shoulder Style, value: cold 
shoulder
Ours: attribute: Shoulder Style, value: cold shoulder

Image with visual prompting

Image with visual prompting

Figure 6: Examples of case study.

ever, when an image is added, the rolled-up sleeves 521

in the image mislead the model, resulting in the 522

incorrect prediction of “short sleeve”. Our method, 523

which employs visual prompting, helps the model 524

focus more on the relevant sleeve details, enabling 525

it to make the correct prediction. In the second 526

case, the term “Open” in the input text is ambigu- 527

ous, as it could refer to either “off shoulder” or 528

“cold shoulder”. This ambiguity leads the model to 529

make an incorrect prediction regarding the shoul- 530

der style. Both our method and the multimodal 531

baseline leverage the additional information from 532

the image to correctly resolve this ambiguity and 533

make accurate prediction. 534

Based on the examples above, our method en- 535

hances the model’s visual reasoning ability, allow- 536

ing it to focus on key image details while avoiding 537

irrelevant noise. It also resolves text ambiguities 538

by leveraging image information, achieving precise 539

multimodal inference for accurate attribute-value 540

extraction. 541

6 Conclusion 542

In this paper, we proposed a method that enhances 543

multimodal attribute-value extraction for fashion- 544

related products. By combining step-by-step infer- 545

ence and visual prompting, our approach improves 546

the model’s performance in process multimodal in- 547

put. Our experiments demonstrate that our method 548

outperforms both text-only and multimodal base- 549

lines, effectively resolving text ambiguities and 550

focusing on relevant visual details. This work con- 551

tributes to more accurate and robust attribute-value 552

extraction in the fashion domain, offering potential 553

for improved e-commerce product categorization 554

and recommendation systems. 555
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7 Limitations556

A limitation of our approach is that it relies on557

visual cues, making it effective for attributes that558

can be seen, like sleeve style. However, it is less559

suitable for extracting intrinsic attributes, such as560

fabric material, which cannot be easily determined561

from images. This limits the method’s applicability562

in certain domains.563
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