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ABSTRACT

A defining feature of computation in the human brain is that different regions can
manifest different representations of the same object set. Here we introduce a
novel method to learn and interpret multiple neural representations of lexical ob-
jects within specific, topographically-defined brain areas. Our approach fine-tunes
a pre-trained language model (LM) for each brain region of interest, resulting in
better alignment of the LM’s representational space with that of the correspond-
ing brain area. This alignment is achieved through supervised structural pruning of
LM features, which selects a subset of features most relevant to the target brain re-
gion. We then interpret these retained features using a linear probing task to iden-
tify the semantic information they encode. Both the pruning and probing steps are
validated through out-of-sample testing, with pruning significantly improving the
prediction of brain representations. This method advances on existing approaches
by i) eliminating the reliance on hand-crafted encoders, reducing potential biases;
ii) optimizing the alignment process via data-driven learning; and iii) providing
interpretability of the semantic features in a black-box LM. From a neurobiolog-
ical perspective, we find that brain regions encoding social and cognitive aspects
of lexical items consistently also represent their sensory-motor features, though
the reverse does not hold.

1 INTRODUCTION

A representational space can be described using basis vectors, which define the dimensions along
which objects are positioned based on their values and variances. While artificial neural networks
(ANNs) learn representations that are by definition distributed, recent work suggests that they can
also develop signatures of modular representational spaces, where different populations of units may
encode distinct concepts, categories, or syntactic properties. This seen when certain groups of units
show variance that is informative for specific categories, but uninformative for others. For exam-
ple, in language models it is possible to identify subsets of units that specifically encode syntactic
properties or capture semantic dimensions of different categories (e.g., Cao et al., 2021; Manrique
et al., 2023), and modular structure has been identified in several studies (e.g., Lepori et al., 2023;
Purushwalkam et al., 2019).

These findings suggest but do not prove the converse – that a group of objects could be represented
differently across functionally defined modules in ANNs. The main challenge is that representa-
tion in ANNs is inherently distributed, making it difficult to isolate functionally specific modules
encoding unique representational spaces. Low-rank factorization methods, which extract latent di-
mensions from the entire object-by-unit activation matrix (Cheng et al., 2017), can obscure smaller,
localized modules with limited contributions to overall model covariance. While subspace cluster-
ing methods aim to address this (Parsons et al., 2004), they require several heuristics and a-priori
decisions (Elhamifar & Vidal, 2013). And of course, without any principled analysis of covari-
ance to guide selection, multi-unit activity cannot be meaningfully interpreted. To illustrate, even
a random sampling of ANN units, without using any feature-selection criterion, can produce the
appearance that different populations encode different input dimensions. However, this lacks value
unless the units systematically encode meaningful semantics. For example, some units may respond
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Figure 1: Workflow Overview: The workflow begins with supervised pruning, which selects a subset
of language model (LM) features that improve the alignment between word-to-word distances in the
LM’s representational space and brain representations. In the second stage, a supervised probing task
is applied to determine the specific semantic content encoded by the pruned features. The brown and
red graphical elements indicate the pruning and probing workflows applied to study representations
in two different brain regions.

identically to all objects, or even not respond to any of the objects, providing no useful information.
Others units could respond randomly, unrelated to any coherent object representation.

While similar considerations arise when studying representations in biological systems, these may
offer clearer insights into representations due to their topographical organization, where spatially
adjacent processing units often support similar computations (e.g., vision, audition, language). This
spatial structure can aid in identifying proximally-organized neural populations that may encode
semantics. Additionally, the spatial resolution of neurobiological recordings often allows modeling
single-unit activations using linear encoding models, predicting neural responses based on object
features (e.g., Mitchell et al., 2008; Sucholutsky et al., 2023). Taken together, in biological sys-
tems, the ability to identify single units and group them based on spatial proximity provides a way
to identify neural populations that encode semantic information, and then analyze the representa-
tional space inherent in multi-unit activity in this population. Most importantly, we show that when
the questions is approached from this perspective, human-interpretable semantic labels can then
be assigned to the dimensions underlying these neural representations, in this way identifying the
meaning dimensions that organize representations in different brain areas.

As detailed, we introduce a combined method for: 1) identifying meaningful unit populations within
the brain, 2) formally capturing the variance dimensions they encode through supervised pruning,
and 3) providing interpretable explanations of these variance dimensions via a probing task. Figure 1
presents an overview of the methodology. We begin by identifying brain clusters (functional regions)
involved in semantic processing and define the representational space for each cluster. Different
brain areas are sensitive to different information dimensions and so will represent lexical items in
differ ways. Subsequently, for each brain area, we perform supervised pruning of a language model
(GloVe) to align the lexical similarity between words with the representational structure of that brain
area. This produces different sets of retained features for different brain regions. In a second step, we
use probing to interpret the semantics encoded in these retained features by evaluating how well each
of the retained feature sets can predict human annotations for new words. Using this workflow we
investigate whether it is possible to identify and interpret multiple, distinct semantic representations
for a single set of lexical items, across topographically constrained neural clusters in the human
brain. We address three inter-related aims:

Aim 1 is to evaluate whether it is possible to identify functional brain modules where: (1) the mod-
ule’s representational space — quantified via object-to-object distance matrices derived from multi-
unit population activity — can be predicted using object distances from a given language model
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M ; and (2) where said predictions can be optimized, separately for each brain area, by identifying
subsets of embedding dimensions within M , rather than using the entire model.

Aim 2, conditional on the success of Aim 1, the aim is to: (1) determine whether the subspaces iden-
tified in Aim 1 are consistent across brain areas, i.e., whether representations in different brain re-
gions are best explained by different latent dimensions in M ; and (2) provide a human-interpretable
explanation of the semantic dimensions that underlie the subspaces in M identified by the optimiza-
tion algorithm. If successful, this would show that it is possible to interpret in what manner lexical
semantics are multiply realized, via different population codes, across the human brain.

Aim 3, dependent on the success of Aims 1 and 2, combines the subsets of embedding dimensions
learned for different brain areas into a unified graph to determine if communities in the graph code
for different semantics.

Our approach addresses two related key limitations in current methods for studying semantic rep-
resentations in different brain areas. The first improvement is that current approaches require col-
lecting human-annotated feature-ratings for the same stimuli for which neurobiological recording
are obtained. These annotations are used to construct interpretable encoding models that align ob-
ject distances in the model with object distances in different brain areas (e.g., Mitchell et al., 2008;
Fernandino et al., 2022). In contrast, our method provides an interpretation of the semantic rep-
resentations that organize the representational space without requiring human annotations for the
items producing the neurobiological responses. As indicated, this is done by using a tailor-pruned
version of a black-box model to first approximate object distances in a target brain area, and then
interpreting the information encoded in the pruned model through a probing task.

A second improvement is that current methods require manual construction of annotation frame-
works, which in turn can be influenced by an experimenter’s own subjective decision about which
features to include. This biases the analysis towards those few dimensions that an experimenter
considers relevant. In contrast, our method is objective in that it uses a generic language model
(specifically, a subspace of the model learned via pruning) for encoding a brain region’s representa-
tional space. In this way we remove the need for manual feature selection or explicit assumptions
about the encoding model, taking advantage of the semantics already captured in pre-trained models.

Finally, we show that using this approach it is possible to aggregate information across multiple
learned representations by combining the pruned language models (optimized for different brain
areas) into a single graph structure. This graph, built directly from the pruned solutions identifies
communities of features in the LM that code for different semantics.

2 METHODS

2.1 DATASETS

The neuro-biological data consisted of functional MRI (fMRI) recordings, which capture brain ac-
tivity using blood oxygenation level-dependent (BOLD) signals. These recordings provided data for
approximately 14,000 virtual sensors (voxels) per participant, sampled at a temporal resolution of
0.5 Hz. Data were collected from nine participants, as reported in Mitchell et al. (2008). The voxel
IDs are consistent across participants, meaning that a given voxel ID refers to the same brain region
for all participants. This allowed us to combine data across participants. We restricted the analysis
to the subset of 13,189 voxels that contain non-null data for all participants. Each of the nine par-
ticipants was presented with 60 distinct nouns, each repeated six times. For each voxel, this design
yields a total of 54 activation values per noun (9 participants × 6 presentations). The complete data
can thus be represented as a four-dimensional tensor A ∈ R9×6×60×13189, where the dimensions
correspond, respectively to participants, repeated presentations, nouns and voxels. To improve the
signal-to-noise ratio, we averaged across the participant and presentation dimensions, collapsing the
first two dimensions. This results in a two-dimensional Voxel-Noun matrix V ∈ R13189×60, where
each element vi,j represents the averaged activation value for voxel i in response to noun j. This
matrix is referred to as the Voxel-Noun matrix.

Mitchell et al. also provide a simple vector-semantics model, which they show can predict brain
activity for the 60 nouns. It represented as a noun-semantics matrix S ∈ R60×25, where each of the
60 nouns is encoded as a vector of 25 semantic features. These features were derived from a corpus-
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based analysis, where each noun’s vector reflects its co-occurrence with 25 manually selected verbs.
These 60 nouns were drawn from 12 general categories, with 5 nouns per each. These categories
were: body parts, furniture, vehicles, animals, kitchen utensils, types of buildings (e.g., apartment,
igloo), parts of buildings, clothing, insects, vegetables, and man made objects. Intuitively, it is pos-
sible to represent these 60 nouns on multiple types of semantic dimensions including, for example,
visual, auditory, and relation to human-related activities, making them an interesting candidate for
the study of representation patterns.

We also used an additional dataset provided by Binder et al. (2016), which provides human ratings
for 534 words on 65 semantic dimensions. Participants in that study rated the relevance of each
dimension to each word. We used this dataset to probe for information in GloVe embeddings as
detailed in Probing section below.

2.2 MODEL

As a vector space model, and as a target for Pruning, we used GloVe (Pennington et al., 2014), which
provides an adequate choice for predicting human similarity judgments for various concepts (e.g.,
Chersoni et al., 2021). We extracted GloVe word embeddings for the 60 nouns used by Mitchell et al.
These embeddings form a matrix E(M) ∈ R60×300, using GloVe with 300 dimensions. Additionally,
we extracted GloVe embeddings for 534 words from the Binder et al. dataset Binder et al. (2016),
forming a matrix E(B) ∈ R534×300. The embeddings for the 60 nouns were used to generate pruned
GloVe solutions, and the embeddings for the 534 words were utilized to construct predictive matrices
for the Probing analysis.

2.3 PRELIMINARIES: IDENTIFYING BRAIN AREAS FOR REPRESENTATION LEARNING

In our study, we use the noun-semantics matrix S as an encoding model to identify brain regions
where a linear mapping from the semantic features to each voxel’s activity produced a significant
fit. As an initial step, we performed a voxel-wise linear regression analysis, where the activation
values for the 60 nouns in each voxel (each row in the Voxel-Noun matrix V) were predicted using
the 60 × 25 Noun-Semantics matrix S. For each voxel, the encoding model’s R2 value was stored.
This model was fit separately for each of the 13189 voxels.

We then spatially clustered voxels as follows. The goal of clustering was to identify spatially coher-
ent groups of voxels with good predictive accuracy from the encoding model, which would serve as
the focus for subsequent representation learning. As a first step, we selected voxels with regression
R2 values in the top-half of a median split. We then created an adjacency matrix, defining two voxels
as connected if they shared at least a vertex contact within their 26-neighbor adjacency. Wn then ap-
plied agglomerative clustering to this adjacency matrix, with a distance threshold of 10mm between
clusters, and selected clusters that contained more than 8 voxels. In summary, this workflow relies
on the local topographic organization of brain activity, constraining clustering by spatial contiguity.

This analysis identified a total of 321 activation clusters. To obtain a manageable number of activa-
tion clusters, and to account for potential representational similarities among them, we first identified
the most representative clusters based on their word-to-word similarity structure. This was per-
formed as follows. For each cluster, we defined a cluster-specific activation matrix Ac ∈ RNc×60,
where Nc represents the number of voxels in the cluster and 60 corresponds to the words. The word-
to-word similarity for each cluster was captured in a cluster-specific similarity matrix Sc ∈ R60×60,
computed by taking the Pearson correlation between the activation values of all word pairs. We de-
fined prototypical clusters as those whose similarity matrices Sc were representative of the broader
set of clusters. To this end, we first extracted the upper triangle values of all 321 Sc matrices and
arranged them in a 321-row table, which we refer to as the “AllClustersSM” matrix. We then ap-
plied agglomerative clustering to AllClustersSM, using a threshold of Pearson correlation r ≥ 0.5
to group rows (activation clusters) presenting similar representational structures. In other words,
this step grouped activation clusters that exhibited similar word-to-word similarity patterns. Next,
we retained only cluster groups containing at least three members and identified the prototypical
cluster within each group as the one that on average was most strongly correlated with the others in
that group. This workflow ultimately produced 22 prototypical activation clusters whose similarity
matrices Sc were representative of the overall brain-wide pattern.
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2.4 PRUNING METHODS (AIM 1)

As indicated above (section 2.3), prototypical activation clusters were identified using the combined
following constraints: linear readout of information of each unit in the module, the units being
spatially adjacent, and the representation being prototypical of a set of similar representations inde-
pendently identified in the brain.

Given an activation cluster’s word-to-word similarity matrix Sc, we can assess how well it is pre-
dicted by GloVe representations. To do this, we first use the GloVe word embedding matrix E(M)

to generate a GloVe similarity matrix SGloVe. This matrix is computed by calculating the cosine
similarity between the embedding vectors of each word pair in E(M). We then compute the Spear-
man correlation (rho) between the upper triangles of Sc and SGloVe, which reflects the similarity of
the representations produced from GloVe and from the brain data (Kriegeskorte et al., 2008). We
consider this value as the baseline representational-alignment between the computational model and
brain activity. Note that SGloVe is identical in all analyses, whereas Sc differs for each of the 22
prototypical activation clusters.

To evaluate whether it is possible to learn an improved alignment, we applied a feature pruning
algorithm, which selects a subset of GloVe features that produce an improved GloVe-brain represen-
tational alignment compared to using the full set of 300 GloVe features. The complete pruning algo-
rithm is presented in Appendix Algorithm 1. The algorithm is based on sequential feature selection,
where GloVe features in E(M) are first ranked by their importance in predicting the brain-derived
Sc, and then an optimal subset of features is identified for prediction. This pruning procedure was
applied independently to each of the 22 prototypical activation clusters. Specifically, each Sc ma-
trix supervised a distinct pruning processes, each aiming to discover a subset of GloVe features that
outperformed the full feature set.

In summary, rather than using the full 60×300 matrix, the pruned solutions reflect a reduced feature
set of size d, where d < 300, and the indices of these selected features were stored for downstream
analyses. We refer to these subsets as Fc, where c indexes each activation cluster (1 to 22) and Fc

refers to the set of indices for the selected features in cluster.

For each of the 22 clusters we implemented pruning in ways stages. First, as described above,
we analyzed the full 60× 300 matrix to identify the optimal number of features d, where d < 300.
Second, we employed a cross-validation (CV) framework, where in each fold, one word was left out,
and its corresponding row was removed from both Sc and E(M). In this workflow, the CV process
was supervised by a 59× 59 similarity matrix derived from brain activity, which was used to prune
a 59 × 300 GloVe embedding matrix. The learned mapping was then applied to the left-out word,
predicting the 59 pairwise similarity values across domains. As a baseline, these 59 similarity values
for the left-out word were computed using all 300 features. In this way, CV evaluates whether it is
possible to better predict the 59 similarity judgments for the left-out word when using the retained
features than when using the full 300-feature set.

2.5 PROBING METHODS (AIM 2)

Probing (Belinkov, 2022) evaluated the ability to decode 65 human-annotated semantic feature val-
ues from GloVe embeddings. E(B) ∈ R534×300 was the GloVe embedding matrix for the 534 words
analyzed by Binder et al. (2016), and Y(Binder) was the human-annotated feature matrix for those
same words. Probing quantifies how well the semantic feature values in Y(Binder) can be predicted
from the embeddings in E(B). The target matrix Y(Binder) consists of 65 feature annotations for
534 words, capturing semantic dimensions including vision, audition, emotion, and cognition (see
Appendix A.1).

We used a Partial Least Squares Regression (PLSR) model to map E(B) to Y(Binder). In each cross-
validation fold, 533 words were used to train the model, with the test set comprising GloVe embed-
dings and 65 feature annotations for the left-out word. The learned model was applied to predict
the left-out word’s 65 features. This process was repeated for all 534 words, generating a 534× 65
prediction matrix, Z, for probing analysis. Probing evaluated the PLSR model by correlating the
predicted and ground-truth human-rating values for each of the 65 features. These correlations were
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generally high, reproducing Chersoni et al. (2021), see Appendix Figure 4. Note that this perfor-
mance was obtained when using all 300 GloVe Features.

In the main analysis we applied the learning/testing PLSR procedure to GloVe embeddings con-
strained to the features from each activation cluster, Fc (see Figure 1). This allowed us to probe the
information encoded in each pruned feature set. Note that pruning was supervised by brain activity
data obtained for a different set of words, independent of the probing dataset. With 22 feature sets,
this produced 22 vectors of 65 correlation values each.

The analysis is subject to a noise ceiling, because the behavioral ratings forming the prediction target
(the 534×65 matrix, Y(Binder)) are averages over human feature-ratings, which are inherently noisy.
The noise ceiling cannot be precisely quantified due to the online data-collection method used in
the original study Binder et al. (2016), but is below 1.0. An indication is given by the fact that on
average, single-participant ratings and group-ratings showed a median correlation of R = 0.80.

2.6 CREATING A GRAPH FROM FEATURE-SUBSETS (AIM 3)

We integrated the feature sets selected from the 22 sets Fc into a single graph. In the graph, nodes
were feature indices selected by pruning. Features were connected if they appeared together in the
selected feature subsets, and the edge weight between any two features reflected the number of times
they co-occurred across subsets. The graph was partitioned using the Louvain algorithm (Blondel
et al., 2008), selecting the partition that maximized modularity from 100 runs. This analysis returned
four distinct communities, each representing a unique set of GloVe features.

To assess whether the communities found in the partition encode different semantic types, we eval-
uated each community’s features individually. We tested their performance in predicting human
similarity judgments on two datasets: Wordsim-353 (Agirre et al., 2009) and Simlex-999 (Hill et al.,
2015). We also tested them on a standard analogy benchmark (Mikolov et al., 2013) to determine
the semantic content within each community.

3 RESULTS

3.1 PRUNING RESULTS

In all 22 activation clusters, predictions of brain representations were always improved using the
subset of features learned via pruning. Furthermore, these improvements generalized beyond the
training data as shown in cross-validation tests. Table 1 presents the results, for each of the 22
brain areas that constituted a prototypical activation cluster. The table shows the pruning results
per cluster when pruning was applied to complete dataset or to out of sample folds in a context of
cross-validation.

The majority of brain areas identified were in parieto-temporal areas, lateral temporal and temporal-
occipital areas, which are the ones most often implicated in semantic processing in the brain (e.g.,
Binder et al., 2009). The very few exceptions included the left anterior cingulate cortex, right in-
ferior frontal gyrus, and left postcentral gyrus, but we note the first two produced relatively low
correlations.

In nearly all cases, the pruned solutions achieved these improved predictions while retaining fewer
than 25% of the GloVe features (N < 75 of 300), with several clusters requiring as few as 30
features. For instance, in one cluster located in the left posterior temporal gyrus, pruning improved
the Spearman correlation from 0.03 to 0.19 in out of sample data, with an average of only 28 features
selected per fold. There was no case where pruning under-performed the complete, full feature set.
In most cases, the improvement was considerable, though there were a few cases with moderate
improvements (e.g. from -0.05 to only 0.05 in an activation cluster located around the left anterior
cingulate contex, ACC).

Averaging over all 22 clusters, pruning the GloVe embeddings resulted in an increase in the mean
Spearman correlation from M = 0.025 ± 0.056 to M = 0.314 ± 0.083, using an average of
46.95 ±19.6 features. When applying leave-one-out cross-validation (LOOCV), pruning similarly
enhanced the prediction for held-out data, increasing the mean correlation from M = 0.031±0.044
to M = 0.143± 0.069, with an average of 49.17 ±17.17 features selected per fold.
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Table 1: Summary of Brain Area and pruning results when applied to entire datasets (Complete
dataset) or in LOOCV context (Cross Validation), ’f’ = features.

Brain Area Complete Dataset Cross Validation
All f Pruned f Features # All f Pruned f Features #

R. Occip. Par. 0.11 0.36 32 0.11 0.21 69
R. Post. Par. 0.03 0.37 42 0.01 0.18 44.8
R. Temp. Par. -0.04 0.26 24 -0.01 0.11 32.8
L. Sup. Occip. 0.03 0.42 53 0.05 0.20 56.5
L. Inf. Med. Front. (ACC) -0.10 0.18 45 -0.05 0.05 57
R. Fusiform Temp. Occip. 0.15 0.43 76 0.12 0.24 77.6
R. Temp. Par. 0.02 0.37 28 0.08 0.21 27.6
R. Inf. Postcentral 0.11 0.33 73 0.07 0.17 74.4
R. Occip. Par. Sulc. -0.05 0.20 46 -0.03 0.01 32
R. Inf. Temp./Occip./Cerebel. -0.04 0.30 17 -0.04 0.06 21.6
L. Postcentral G. 0.03 0.27 76 0.03 0.18 73.25
L. Parietal, SMG 0.01 0.30 41 0.03 0.10 38.9
R. Mid. Temp. 0.05 0.43 78 0.06 0.22 74.55
L. Parieto-Occip. 0.02 0.40 68 0.02 0.17 48.4
R. Mid. STG 0.01 0.27 38 0.02 0.04 26.4
R. Post. STS 0.09 0.40 48 0.08 0.24 50.9
R. IFG -0.01 0.22 39 -0.02 0.07 43.85
L. Post. STG 0.02 0.37 21 0.03 0.19 28.1
L. Post. STS 0.05 0.31 78 0.05 0.11 64.7
R. Post. Parietal 0.02 0.23 50 0.03 0.09 51.6
R. Mid. Temp. Sulc. 0.0 0.14 20 0.0 0.10 51
R. ITG 0.04 0.36 40 0.04 0.20 36.86

From the perspective of learning neurobiological representations, our results constitute a significant
advance, as the modal current approach to studying semantic spaces with word embeddings is to use
the entire set of features (Complete Dataset results, all features, in Table 1). Indeed, the values we
report for the non-pruned embeddings, with a mean of around 0.025 and a maximum of around 0.15
are typical of alignment values computed between DNN and brain similarity matrices in prior studies
(e.g., Fernandino et al., 2022). Pruning improved the correlation value significantly, in several cases
identifying meaningful correlations (ρ > 0.34) even when the full embeddings identified little or no
correlations. This means that without pruning, one would conclude that the brain region in question
cannot be predicted by GloVe representations, whereas in fact, prediction is completely possible if
the correct subspace is identified, a point we return to in the Discussion.

Each pruning solution produces a subset of features specifically learned for each activation cluster,
denoted as Fc, which contains the indices of the GloVe features selected by that activation cluster.
By examining all 22 Fc sets, we examined if there was a consistent subset of features that were
either retained or excluded across the pruning solutions. As shown in Appendix Figure 5, many
features were consistently excluded. Of GloVe’s 300 features, 50 were never selected in any of the
22 solutions, while another 50 were selected only once. There was also weak evidence for consistent
inclusion of features across multiple pruning results. No feature appeared in more than 17 of the 22
solutions, indicating the absence of a core set of GloVe features that was consistently selected across
all activation clusters.

To understand the semantics of the excluded features, we analyzed the GloVe embeddings for the
534 words collected by Binder et al. (2016), and identified the top 50 words with the highest summed
activation scores for these feature indices. Among these, 49 were nouns, only one was an adjective,
and none were verbs. Of the 49 nouns, 10 were related to human concepts, including school, family,
college, grief, moral, voter, gasp, snub, priest, and grievance. The remaining nouns were primarily
animals and artifacts. The absence of adjectives and verbs from this high-scoring list suggests that
the excluded features weakly emphasize human actions or activities. For comparison, we identified
a set of features that tended to occur relatively frequently across pruning solutions (in 10 or more so-
lutions), The top 50 words associated with these features were more closely associated with human
activities. Verbs (18) and adjectives (5) were more prominent. (e.g., played, listened, helped, aggres-
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sive, friendly). For the 27 nouns, 14 were human-related, including symphony, cathedral, banker,
church, and hospital. These results already that those GloVe features most relevant for represent-
ing brain activity for the words used by Mitchell et al. (2008) are those associated with dynamic,
human-related activities or attributes, rather than static concepts or objects.

3.2 PROBING RESULTS

The results of out of sample prediction of human annotations from GloVe embeddings using PLSR,
when using the complete set of 300 features are presented in Figure 4. These serve as reference
values for subsequent analyses. As detailed in the Methods, for each of the 22 prototypical activation
clusters, we used only the GloVe features selected by pruning for optimizing prediction of that
cluster’s similarity matrix. That is, we used the feature subsets learned from pruning (indices of
features appearing in column ’Complete Dataset, Feature 1’ in Table 1). The results of these 22
separate analyses are presented in Figure 2, where the clusters are presented sorted in order of
average prediction efficacy.

We first observe that different brain activation clusters selected for features with different levels
of relevant information. Some clusters presented very little predictive capacity, whereas others ap-
proached that seen for the full feature set (normalized values approaching 0.9). As can be seen, some
GloVe subsets contained information sufficient for predicting sensory features (particularly visual)
but not higher level social and emotional features. Some clusters code for Vision more precisely than
Audition, and some present the opposite pattern. Quite a few feature-subsets contained information
sufficient for predicting Cognition, Communication, Human and Social dimensions, and these clus-
ters also contained information about sensory dimensions. There appears to be trend where coding
of Somatic and Audition features is found in clusters that also track Vision information (but not vice
versa). In general, Spatial and Temporal dimensions appeared to be relatively less-well predicted.
These finding show that while pruning often identified a fraction of the total GloVe features, these
were sufficient to effectively predict human judgments, especially for sensory features (though some
regions also appear to code for social/cognitive aspects).

As mentioned, we also identified 50 features that were consistently pruned and therefore not part
of any pruning solution. To evaluate their semantics, we used this set in the probing analysis by
limiting the GloVe embeddings used to these features alone. This too produced a 65-valued result
indicating the correlation between the predicted ratings and ground-truth ratings (across 534 words)
for each of the 65 semantic dimensions. The predictions afforded by these 50 features were, on
average quite poor, particularly for the social and cognitive semantic dimensions. Interestingly,
these consistently pruned features produced the most accurate prediction of the Needs dimension,
which coded for “someone or something that would be hard for you to live without” . This dimension
is important for distinguishing between small artifacts, but relatively unrelated to the nouns used by
Mitchell et al. (2008). In all, this suggests that GloVe features that are not relevant to predicting the
brains representational spaces (across multiple, independent activation clusters) contain relatively
impoverished psychologically relevant information.

3.3 GRAPH ANALYSIS OF FEATURES RETAINED BY PRUNING (AIM 3)

3.3.1 SIMILARITY TASKS

We constructed a graph from the features retained by the 22 applications of supervised pruning. The
best partition of the graph produced 3 communities, with 90, 85, and 74 features respectively. For
each community, we looked at its performance, when used alone, on a similarity-prediction task.

An analysis of Wordsim-353 (Agirre et al., 2009), suggests that Community1 contained highly rel-
evant semantic information, whereas Community3 was least relevant. Specifically, baseline predic-
tion (using the full feature set) was ρ = 0.658, and similarity prediction from the three communities
when used alone was ρ = 0.652, 0.58, 0.56. Thus, the subset of features in Community1 closely
matched that of the full feature set, and also provided a substantial improvement over the prediction
provided by Community2, even though the latter contained only five less features.

To complement this analysis, we conducted an ablation study, removing each community from the
full GloVe feature set and measuring the resulting prediction. This ablation results were, rho =
0.62, 0.657, 0.655 respectively. Here, removal of Communities 2 and 3 produced performance that
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Figure 2: Prediction of each of Binder’s 65 features from GloVe features optimized to predict proto-
typical activation clusters across the brain. Each row on the vertical axis represents a brain cluster,
and its ability to predict each of the 65 human-annotated features, through supervised pruning, is
indicated on the horizontal axis.

matched baseline levels. Taken together, the data suggest that Community1 appeared to contain more
relevant information, whereas Community3 appeared to contain less relevant semantic information,
as its predictive power was low.

For Simlex-999 (Hill et al., 2015) the baseline was lower than Wordsim-353, ρ = 0.407. None of
the communities surpassed baseline when used alone, though Community2 approached it (rho =
0.35, 0.39, 0.39 respectively). Ablation indicated that in all cases, when a community was removed,
the remaining features matched or slightly surpassed baseline performance (ρ = 0.412, 0.395, 0.392
respectively). Thus, no clear conclusions can be made for this dataset.

3.3.2 ANALOGY TASKS

Figure 3 shows the results for the five semantic and eight syntactic analogy tasks, normalized to
the performance using the full-feature performance. In no case did the features from any single
community outperform the full feature set. However, there were some important differences across
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Figure 3: Performance on 14 analogy tasks for three communities produced from features retained
via pruning. ’Correct score’ values indicate percentage of correct response normalized by perfor-
mance when using the full-feature scores.

tasks: for some analogies, some communities approached full-set performance (e.g., Community 1
for country-adjective,“Italy : Italian :: France : ?”).

However, for other tasks (e.g., opposites, adjective-to-adverb) the performance was much weaker
than the full-set performance. This suggests that some analogy tasks may be encoded by relatively
limited sets of features that capture structured relational information. In contrast, representing oppo-
sition (antonymy) likely requires much more distributed information because they reflect relatively
subtle semantic distinctions that can be spread across many different knowledge domains. As also
seen in Figure 3, with the exception of one task, Communities 1 and 2 consistently outperformed
Community 3, which may be expected given they contained more features. Community 3 however
performed best in generating present participles (adding ’-ing’). There was no clear pattern in the
relative performance of features in Communities 1 and 2, though in some cases they produced quite
different performance.

We also evaluated the impact of removing each community on analogy tasks. For each task, we
first evaluated if the removal produced weaker performance than inclusion, but no such instances
were found. We then examined if removal of a community produced better performance than base-
line. There were a few such cases, though the overall effeicts were minor. For Community 1, the
grammar-plural task was performed better when removed (Acc = 0.79 vs. 0.77). For Community
2, the grammar-plural-verbs task was performed better when removed (Acc = 0.61 vs. 0.60). For
Community 3, the currency, nationality-adjective and past-tense tasks were performed better when
removed (respectively; Acc = 0.16 vs. 0.15; 0.926 vs 0.925; 0.64 vs. 0.62). The results suggest
that Communities 1 and 2 contain information unrelated to grammatical structure, as their removal
produced above baseline performance on such tasks.

4 DISCUSSION

We introduced a novel, effective, and conceptually simple approach to modeling and interpreting
neurobiological representations. Using pruning, we learn a black-box encoder that aligns with the
brain’s representational space, and through probing, we interpret the semantic content embedded
in the encoder. Our results demonstrate the effectiveness of this approach: pruning significantly
improves the ability to model brain representations while probing allows to interpret this space. We
also find that different brain regions have markedly different representations. Although we focused
on a single language model in this study, the method is easily extended to combine features across
multiple language models. These extensions are a viable direction for future work.
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A APPENDIX

A.1 INFORMATION CODED IN BINDER ET AL.’S FEATURES

Domain Component Description
Vision Vision something that you can easily see
Vision Bright visually light or bright
Vision Dark visually dark
Vision Colour having a characteristic or defining colour
Vision Pattern having a characteristic or defining visual texture or surface pat-

tern
Vision Large large in size
Vision Small small in size
Vision Motion showing a lot of visually observable movement
Vision Biomotion showing movement like that of a living thing
Vision Fast showing visible movement that is fast
Vision Slow showing visible movement that is slow
Vision Shape having a characteristic or defining visual shape or form
Vision Complexity visually complex
Vision Face having a human or human-like face
Vision Body having human or human-like body parts

Somatic Touch something that you could easily recognize by touch
Somatic Temperature hot or cold to the touch
Somatic Texture having a smooth or rough texture to the touch
Somatic Weight light or heavy in weight
Somatic Pain associated with pain or physical discomfort
Audition Audition something that you can easily hear
Audition Loud making a loud sound
Audition Low having a low-pitched sound
Audition High having a high-pitched sound
Audition Sound having a characteristic or recognizable sound or sounds
Audition Music making a musical sound
Audition Speech someone or something that talks
Gustation Taste having a characteristic or defining taste
Olfaction Smell having a characteristic or defining smell or smells

Motor Head associated with actions using the face, mouth, or tongue
Motor Upper limb associated with actions using the arm, hand, or fingers
Motor Lower limb associated with actions using the leg or foot
Motor Practice a physical object YOU have personal experience using

Table 2: Sensory and motor components, organized by domain (reproduced from Binder et al.’s
Table 1)
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Domain Component Description
Spatial Landmark having a fixed location, as on a map
Spatial Path showing changes in location along a particular direction or path
Spatial Scene bringing to mind a particular setting or physical location
Spatial Near often physically near to you (within easy reach) in everyday life
Spatial Toward associated with movement toward or into you
Spatial Away associated with movement away from or out of you
Spatial Number associated with a specific number or amount

Temporal Time an event or occurrence that occurs at a typical or predictable time
Temporal Duration an event that has a predictable duration, whether short or long
Temporal Long an event that lasts for a long period of time
Temporal Short an event that lasts for a short period of time

Causal Caused caused by some clear preceding event, action, or situation
Causal Consequential likely to have consequences (cause other things to happen)
Social Social an activity or event that involves an interaction between people
Social Human having human or human-like intentions, plans, or goals
Social Communication a thing or action that people use to communicate
Social Self related to your own view of yourself, a part of YOUR self-image

Cognition Cognition a form of mental activity or a function of the mind
Emotion Benefit someone or something that could help or benefit you or others
Emotion Harm someone or something that could cause harm to you or others
Emotion Pleasant someone or something that you find pleasant
Emotion Unpleasant someone or something that you find unpleasant
Emotion Happy someone or something that makes you feel happy
Emotion Sad someone or something that makes you feel sad
Emotion Angry someone or something that makes you feel angry
Emotion Disgusted someone or something that makes you feel disgusted
Emotion Fearful someone or something that makes you feel afraid
Emotion Surprised someone or something that makes you feel surprised

Drive Drive someone or something that motivates you to do something
Drive Needs someone or something that would be hard for you to live without

Attention Attention someone or something that grabs your attention
Attention Arousal someone or something that makes you feel alert, activated, ex-

cited, or keyed up in either a positive or negative way

Table 3: Spatial, temporal, causal, social, emotion, drive, and attention components (reproduced
from Binder et al.’s Table 2)
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A.2 PRUNING ALGORITHM

Algorithm 1 Pruning

1: Inputs:
2: SMHM : Similarity Matrix of human similarity judgments
3: SMDNN : Similarity Matrix of similarity estimations derived from the DNN by computing the

cosine similarity between the embeddings of two words
4: Step 1: Compute baseline
5: Compute baseline Spearman’s rank correlation ρ(SMHM ,SMDNN ), from the full set of features
6: Step 2: Rank features
7: Substep 1: Remove the first feature from all the original embeddings and compute the corre-

sponding similarity matrix SMDNNRED

8: Substep 2: Compute the difference D = ρ(SMHM ,SMDNN )− ρ(SMHM ,SMDNNRED). ρ is
Spearman’s rank correlation. Higher positive values for D indicate that the removed feature was
important

9: Substep 3: Repeat the step above for all the possible N − 1 feature subsets (where N = 4096 )

10: Substep 4: Rank the features based on D
11: Step 3: Construct pruned embeddings
12: Substep 1: Starting from an empty set of features, construct pruned embeddings by iteratively

reinserting one feature at a time, in descending order of importance
13: Substep 2: Compute Spearman ρ after each feature reinsertion and store the values in the array

a
14: Substep 3: Compute the maximum of a . Its position (index) within the array delimits the set of

features to be included in the pruned embeddings
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A.3 SUPPLEMENTARY FIGURES

Figure 4: Prediction of each of Binder’s 65 features (534 values per feature) from GloVe’s 300
embedding dimensions when using leave-one-out cross-validation (LOOCV). Correlations are the
Spearman rho (ρ) values.
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Figure 5: Histogram of feature inclusion in pruned solutions. Fifty features did not appear in any of
the 22 pruning solutions, 50 appeared in only one of the solutions, and none appeared in more than
17 of the 22 solutions.
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