
Multi-Stage Pre-Training for Math-Understanding: µ2(AL)BERT

Anonymous ACL submission

Abstract
Understanding mathematics requires not only001
comprehending natural language, but also002
mathematical notation. For mathematical lan-003
guage modeling, current pre-training methods004
for transformer-based language models which005
were originally developed for natural language006
need to be adapted. In this work, we pro-007
pose a multi-stage pre-training scheme includ-008
ing natural language and mathematical nota-009
tion that is applied on ALBERT and BERT, re-010
sulting in two models that can be fine-tuned for011
downstream tasks: µ2ALBERT and µ2BERT.012
We show that both models outperform the cur-013
rent state-of-the-art model on Answer Rank-014
ing. Furthermore, a structural probing classi-015
fier is applied in order to test whether opera-016
tor trees can be reconstructed from the models’017
contextualized embeddings.018

1 Introduction019

Transformer-based Language Models (LM) have020

not only a high impact on all domains in Natural021

Language Understanding, but also on related fields022

that besides natural language try to model artificial023

languages such as programming code or mathemat-024

ical notation written in LATEX. Since pre-training025

of these models is by its nature optimized for nat-026

ural language, for artificial languages the training027

needs to be adapted. This work focuses on scien-028

tific literature where coherent natural language text029

is discontinued by formulas written using LATEX.030

Since models like BERT (Devlin et al., 2018) rely031

on coherent text, this phenomenon might not be032

handled correctly. Therefore, we propose a pre-033

training scheme consisting of multiple stages to034

adapt transformer-based language models to do-035

mains where mathematical notation is mixed with036

coherent text. In order to demonstrate its improve-037

ments over the vanilla models, we apply the train-038

ing scheme to BERT and ALBERT.039

Because both models already posses powerful040

natural language modeling capacities, it is not nec-041

essary to train them from scratch on our new do- 042

main and, hence, we start from these general mod- 043

els. Recent research has shown that pre-training on 044

formula-sentence order prediction improves perfor- 045

mance on formula-only and NL-only examples, but 046

in a task where both natural language and mathe- 047

matical notation occurs, the model still performs 048

poorly (Reusch et al., 2021). Hence, we apply 049

both methods to our model: Starting from the NL- 050

pre-trained published checkpoint, we first train the 051

model on a formula-NL order prediction task, then 052

using the standard sentence order prediction task. 053

To improve the models understanding of formulas 054

itself, we also add a Mathematical Modeling stage, 055

where the model is trained on MLM and SOP only 056

on formulas in LATEX. 057

While some models for mathematical modeling 058

rely on the standard sub-word tokenizer of BERT 059

(Reusch et al., 2021), others add LATEX tokens to the 060

existing vocabulary (Jo et al., 2021). In this work, 061

we also investigate, whether it is necessary to add 062

tokens to the vocabulary or whether the sub-word 063

tokenization might already work well enough. 064

Our evaluation is carried out in two different 065

ways: We first evaluate our models on the down- 066

stream task answer ranking for mathematical ques- 067

tions using the ARQMath Lab 2020 data set. This 068

task is especially useful, since is contains natural 069

language text and formulas which need to be un- 070

derstood by the model in order to retrieve the right 071

answer. Secondly, we analyze how well the models 072

are able to reconstruct a parse tree of the mathemat- 073

ical formulas on their own. Here, we employ the 074

structural probes introduced by Hewitt et al. for 075

operator trees (Hewitt and Manning, 2019). 076

In total, the main contributions of this work are: 077

• We present a Multi-stage pre-training 078

scheme for Transformer-based LM for 079

Math-understanding and apply it on ALBERT 080

and BERT: µ2ALBERT and µ2BERT 081
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• We evaluate the need for extending the tok-082

enizer by adding LATEX tokens083

• Finally, we train a probing classifier for the084

mathematical knowledge LMs can learning085

using only LATEX input.086

Our evaluation confirms the multi-stage scheme087

for ALBERT and BERT by outperforming the pre-088

vious best model on the answer ranking task AR-089

QMath 2020, as well as our decision to extend090

the models vocabulary by LATEX tokens. Secondly,091

we show that mathematical knowledge in form of092

OPTs is extractable from the BERT’s contextual-093

ized embeddings. For ALBERT, the results are not094

clear: While µ2ALBERT improves over ALBERT095

base, it scores lower than BERT base that was not096

trained on mathematical notation.097

The following work is structured as follows:098

First, we review work related to domain-adaptive099

pre-training in different domains and in Mathemat-100

ical Language Modeling in particular, as well as101

research on the learned knowledge of transformer-102

based language models. Then we introduce the103

pre-training and our fine-tuning task using BERT104

and ALBERT. Sec. 4 presents the probing classifier105

while Sec. 5 details what data is used in each stage106

and provides information on the training process.107

Our results on the fine-tuning task and the struc-108

tural probe are reported in Sec. 6. Sec. 7 concludes109

this work.110

2 Related Work111

The influence of domain-adaptive pre-training on112

BERT has been investigated by (Gururangan et al.,113

2020) who identified that this is particularly valu-114

able when the domain vocabulary has a low over-115

lap with the pre-training data. As a consequence,116

various models for different domains have been117

developed, such as BioBERT (Lee et al., 2020),118

ClinicalBERT (Alsentzer et al., 2019; Huang et al.,119

2019) or SciBERT (Beltagy et al., 2019) for scien-120

tific domains, or CuBERT (Kanade et al., 2020) and121

CodeBERT (Feng et al., 2020) for several program-122

ming languages. A notable difference between123

these models is that BioBERT, ClinicalBERT and124

CodeBERT use the original vocabulary that their125

base model was pre-trained on while SciBERT and126

CuBERT trained their own vocabulary specific to127

their domain. However, each of these models could128

demonstrate its improvements compared to the orig-129

inal models without domain specific pre-training.130

BERT-based models for mathematical domains 131

have also been studied with one example being 132

MathBERT (Peng et al., 2021). Here, mathemati- 133

cal formulas in form of operator trees are used an 134

input for pre-training. During the ARQMath Lab in 135

2020 and 2021, five teams submitted systems based 136

on BERT, RoBERTa and SentenceBERT (Rohatgi 137

et al., 2020; Novotnỳ et al., 2020; Rohatgi et al., 138

2021; Novotnỳ et al., 2021; Dadure et al., 2021; 139

Mansouri et al., 2021) where the models were used 140

without domain adaption for downstream tasks. 141

Only (Reusch et al., 2021) pre-trained their sub- 142

missions on mathematical documents. (Jo et al., 143

2021) fine-tuned a BERT model for notation pre- 144

diction tasks based on scientific documents. They 145

enlarged the vocabulary of BERT by additional 146

LATEX tokens. 147

However, little is known so far what BERT-based 148

models learn about mathematics. In contrast, their 149

learning capacities on natural language received 150

large attention in recent research (for a survey 151

see (Rogers et al., 2020)). Several probes and clas- 152

sifiers were employed to analyze whether BERT 153

captures grammatical structures like dependency 154

or constituency trees (Tenney et al., 2019; Hewitt 155

and Manning, 2019; Coenen et al., 2019) or which 156

layer attends to which linguistic feature (Clark 157

et al., 2019). Visual frameworks like bertviz by 158

(Vig, 2019) support the analysis of BERT’s inner 159

working by visualizing the attention weights of 160

trained models. Also ALBERT was shown to cap- 161

ture part-of-speech tags in different places as re- 162

ported by (Chiang et al., 2020), but most studies 163

were performed using BERT. 164

3 Model 165

In this section, we will first review how the BERT 166

and ALBERT models we employ are pre-trained 167

and fine-tuned. 168

BERT and ALBERT are both transformer lan- 169

guage models, which share a similar architecture. 170

Both base models consist of 12 transformer en- 171

coder layers. BERT has 12 separate layers, while 172

ALBERT’s layers share their parameters resulting 173

in a lower number of parameters being updated 174

during training. The second difference between 175

BERT and ALBERT are the embeddings: BERT 176

uses embeddings of the dimension 756. ALBERT’s 177

initial embeddings have a dimensionality of 128. 178

The models as originally published are trained 179

using two pre-training tasks which differ slightly. 180
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Both are trained using the Masked Language Model181

task and a sequence classification task.182

Pre-training is performed on a sentence-level183

granularity. Each sentence S is split into tokens:184

S = w1w2 · · ·wN . Before inputting the sentence185

into the model, each token wi is embedded using186

a sum of three different embeddings, the word em-187

bedding ti, the position embedding pi, and the seg-188

ment embedding si in order to discern between189

the first and the second segment when the model190

is presented e.g., two sentences as for the SOP191

task. The segment embeddings will also help our192

model to differentiate between the question and193

answer as the two segments later. All three embed-194

dings are added up to form the input embedding195

Ei for each token: Ei = ti + pi + si. In order196

to obtain a representation of the entire input, the197

sentence S is prepended with a classification token198

wS = 〈CLS〉. Between both segments and at the199

end of the sentence, the 〈SEP 〉 token is placed.200

If the sentence is shorter than 512 tokens, the se-201

quence is padded, otherwise, it will be truncated to202

512 tokens.203

3.1 Masked Language Model204

The first pre-training task is the masked language
model meaning tokens from the input sentence are
randomly replaced by a 〈MASK〉 token, a differ-
ent token, or is not modified at all. After embed-
ding the input, it is fed into the language model
(LM ), consisting of 12 layers of transformer en-
coder blocks (Vaswani et al., 2017), resulting in
a contextualized output embedding vector Ui for
each input token:

CU1U2 · · ·UN = LM(ECLSE1E2 · · ·EN ),

where ECLS and C denote the input and output
embeddings of the 〈CLS〉 token. Afterwards, a
classification layer is applied for the prediction of
the original token from the input:

P (wj |S) = softmax(Ui ·WMLM + bMLM )j ,

where wj is the j-th token from the vocabulary.205

This determines the probability that the i-th input206

token was wj given the input sentence S. The207

weight matrix WMLM and its bias bMLM are only208

used for this pre-training task and are not used209

afterwards.210

3.2 Segment Order Prediction211

The next sentence prediction objective predicts
whether the sentence given to the model as the first

segment SA appears in a text before the sentences
given to the model as the second segment SB (la-
bel 1) or not (label 0). This task is performed as a
binary classification using the output embedding C
as its input:

p(label = i|S) = softmax(C ·WSOP + bSOP )i,

where the matrixWSOP and the bias bSOP are only 212

used for the SOP and are not re-used otherwise. 213

The sentence order prediction pre-training task 214

as introduced by (Lan et al., 2019) requires input 215

split into sentences and asks the model to predict 216

their order. Here, we do not only use sentences 217

for segments SA and SB . Therefore, we rename 218

the task to segment order prediction (SOP). Origi- 219

nally, BERT was trained on the next sentence pre- 220

diction task (NSP), but it has been demonstrated 221

that ALBERT’s sentence order prediction results in 222

a better performance on intrinsic and downstream 223

tasks. When pre-training ALBERT and BERT, we 224

apply SOP to both models as their second task even 225

though BERT was originally pre-trained using NSP. 226

3.3 Fine-Tuning 227

We fine-tune ALBERT and BERT models on 228

the down-stream task of answer ranking (AR). 229

More specifically, a classifier is trained on top 230

of the models’ output to predict whether an an- 231

swer A = A1A2 · · ·AM is relevant to a question 232

Q = Q1Q2 · · ·QN . 233

We present the input string
〈CLS〉Q1Q2 · · ·QN 〈SEP 〉A1A2 · · ·AM , with
〈CLS〉 denoting the classification token and
〈SEP 〉 the separation token, to the model:

CU1U2 · · ·UN = LM(ECLSE1E2 · · ·EN+M+1),

where Ei and ECLS are the input embeddings for
each input token and the 〈CLS〉 token, respec-
tively, calculated as explained in Sec. 3.1. After the
forward pass through the model, the output vector
of the 〈CLS〉 token C is given into a classification
layer:

p(label = i|Q,A) = softmax(C ·WAR+bAR)i,

where the label 1 denotes a matching or correct
answer for the query and label 0 otherwise. During
evaluation, the resulting probability of the classifi-
cation layer for label 1, is the assigned similarity
score s for the answer A to a question Q and is
then used to rank the answers in the corpus:

s(Q,A) = p(label = 1|Q,A).
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4 Mathematical Notation234

In this work, we focus on formulas written in LATEX235

which has several reasons: First, LATEX is a popular236

typesetting tool used across all sciences. Hence,237

there exist a huge amount of training material. Prior238

research has experimented with using parse trees of239

formulas as an additional input during pre-training240

(Peng et al., 2021). However, this poses several241

issues: The input needs to be valid LATEX code, for242

which the necessary packages need to be available243

to the parser. The parser has to be fast since each244

formula in the entire corpus must be parsed. And245

thirdly, we would restrict the learned knowledge to246

the knowledge that is left after parsing. By using a247

parser, information contained in the original LATEX248

code could be missing in the result. Furthermore,249

it was already shown that BERT is able to learn250

grammatical structure of natural languages which251

could be extracted in the form of constituency and252

dependency trees (Tenney et al., 2019; Hewitt and253

Manning, 2019). If the model is able to learn these254

structures for which building parsers or grammars255

is much harder compared to mathematical notation,256

then it should be possible that it can also learn how257

structures in LATEX work. Therefore, we advocate258

using LATEX code directly. We analyze whether this259

is enough as input by applying a probing classifier260

on the learned contextualized embeddings of our261

models.262

4.1 Structural Probe263

The goal of the structural probe as intro-
duced by (Hewitt and Manning, 2019) is to
learn a matrix B, such that the distance
dB(wi, wj) :=

√
(Ui − Uj)TBTB(Ui − Uj) ap-

proximates a given tree distance dT , i.e., the length
of the path between the node of wi and the node of
wj . B is learned by minimizing the loss function
over all sentences S in the training corpus:

min
B

∑
S

1

|S|2
∑
i,j

|dT (wi, wj)− dB(wi, wj)|

Originally, Hewitt et al. applied the structural probe264

to demonstrate that dependency structures of the265

English language are to some extent contained in266

BERT’s contextualized embeddings. In this work,267

we will train a structure probe to evaluate whether268

the models’ inner workings have learned about269

mathematical structures, i.e., operator trees.270

=

\frac

ˆ

2 v

r

\mathrm

m

Figure 1: Operator Tree of the formula m = r
v2

4.2 Operator Trees 271

Formulas possess a hierarchical structure, which is 272

encoded in Content Math ML, defining an opera- 273

tor tree (OPT). An example OPT for the equation 274

m = r
v2

is shown in Fig. 1. Nodes of this tree rep- 275

resentation can be individual or multiple symbols 276

such as numbers, variables, text fragments indi- 277

cating certain functions, fractions, radicals, LATEX 278

style expressions, or parentheses and brackets. This 279

definition is similar to the one found in (Mansouri 280

et al., 2019), but we added parenthesis and brackets 281

to investigate the way our models capture open and 282

closed bracket relationships. OPT edges indicate 283

an operator-argument relationship between parent 284

and child node. Left and right brackets and paren- 285

theses have each an edge to the parent of the tree 286

inside them. LATEX style expressions like \mathbb 287

can be simply seen as an operator applied on the 288

argument inside. Hence, the original OPT stays 289

intact. 290

5 Experimental Setup 291

To improve how transformer-based language mod- 292

els understand mathematical notation, we want to 293

investigate three questions in this paper: (1) Do we 294

need to add LATEX Tokens to the tokenizers? (2) 295

Do all stages improve the models’ performance? 296

(3) Can we extract OPTs from the models’ con- 297

textualized embeddings? In order to answer these 298

questions, we train several models starting from the 299

official checkpoints of BERT and ALBERT, respec- 300

tively. To answer the first question, we train several 301

ALBERT models using different stages, either with 302

LATEX tokens added to the models’ and tokenizers’ 303

vocabulary or without. Question 2 is answered by 304

evaluating the models using the mathematical an- 305

swer ranking task of the ARQMath Lab 2020. We 306

show that removing each of the stages presented 307

in Sec. 5.1 degrades the downstream performance. 308

Furthermore, the final pre-training scheme is ap- 309

plied to BERT which is also fine-tuned on AR. To 310
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How are you? [SEP] He said 

$(x+y)^2 [SEP] = x^2 + y^2$

Let $S$ be a set in [SEP] $ S\X  

Let $S$ be a set. [SEP] Hence,

(AL)BERT base

(ML) Pre-training

(Sep) Pre-training

(Comb) Pre-training

Figure 2: The Stages for µ2ALBERT and µ2BERT

answer the third question, a probe is trained on top311

of both the ALBERT and BERT models and evalu-312

ated on the task of reconstructing the OPTs from313

a given LATEX string. Here, we apply the structural314

probe introduced Section 4.1.315

For answering Question (1) and (2), in total 11316

models had to be trained. To save computation317

time, we pre-trained these configurations each on a318

single run using the ALBERT architecture, where319

the model needs fewer weights and converges faster320

during training. Only the final pre-training scheme321

was than applied to BERT, which takes more com-322

puting resources for pre-training and fine-tuning.323

In the following, we will introduce the data we324

used for pre-training, fine-tuning, and evaluation325

as well as details on our experimental setup.326

5.1 Data327

We train and evaluate our models on data provided328

by the ARQMath Lab 2020 which contains ques-329

tion and answer posts from the Q&A community330

Mathematics StackExchange1. Pre-training used331

posts from 2010 to 2018 with HTML syntax re-332

moved. We wrapped formulas in $ signs as it usual333

in LATEX. Since ALBERT and BERT need sepa-334

rated input for the Segment Order Prediction task,335

all data needs to be split in segments. Here, we336

employed three different methods (Comb), (Sep)337

and (ML): (Comb) splits the natural language (NL)338

data into sentences,leaving LATEX as it is. Lines339

split by newlines in the LATEX code also served340

as two separate segments. (Sep) splits NL in sen-341

tences as (Comb), but also before the beginning342

of a LATEX formula. Here, the model should also343

learn whether the LATEX code and NL can follow344

each other (NL-formula coherence). Each LATEX345

string was also split by newlines. (ML) removes346

all NL text, leaving only LATEX code. The code is347

split into segments at relation symbols such as ’=’348

1https://math.stackexchange.com

or ’∈’2. This way, the models should learn whether 349

two LATEX segments belong together (inter-formula 350

coherence). These different pre-training corpora 351

form essentially our three stages (ML), (Comb)and 352

(Sep) applied on top of the natural language pre- 353

trained checkpoint shown in Fig. 2. We also ex- 354

perimented with other orderings of the stages, but 355

there were no improvements in performance visi- 356

ble. The data sizes for each stage are as follows: 357

(Comb) contains 18M sentences, (Sep) 37M seg- 358

ments and (ML) 3.6M formula segments. The data 359

was tokenized by either the standard tokenizer of 360

ALBERT or BERT, respectively or their tokenizer 361

extended by 501 LATEX tokens as noted in the re- 362

sult section. µ2ALBERT and µ2BERT apply the 363

extended tokenizer by default. 364

The fine-tuning data for the AR task is identi- 365

cal to the data used by (Reusch et al., 2021). We 366

pair each question from the ARQMath 2020 cor- 367

pus with one correct answer (label 1) and with one 368

incorrect answer (label 0). The correct answer is 369

chosen randomly from the answers given to the 370

original question. The incorrect answer is selected 371

by chance from a question with a similar topic, i.e., 372

at least one of the questions tags have to match the 373

original question. This procedure yielded 1.9M ex- 374

amples, of which 90% were used for training. The 375

evaluation of our models is performed in the same 376

way as for the ARQMath Lab which provides 77 377

questions from 2019 with relevance judgment for 378

several answers annotated using pooling. Each of 379

these questions is paired with every answer from 380

the corpus which are then provided as input to the 381

model. The classification score for label 1 is used to 382

rank the answers. We do not pre-filter the answers 383

by the tags of their questions, but use all answers 384

in the corpus. For each question from the evalua- 385

tion corpus, the organizers of the ARQMath Lab 386

2020 also annotated whether answering a question 387

depended on understanding mainly the questions 388

formulas, the natural language text or both. During 389

evaluation we will break down the performance of 390

our models by these three categories. 391

Our structural probe is trained on formulas 392

which were parsed to OPTs by a custom LATEX 393

parser written in Python adapted from the parser 394

rules of the mathematical formula search engine 395

Approach0 (Zhong and Zanibbi, 2019; Zhong et al., 396

2020). We selected 50k training examples by 397

2The entire list can be found in our GitHub repository:
<Link anonymized>
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chance from the corpus of all formulas from ARQ-398

Math 2020; in the same way we used 10k formulas399

each for development and test set.400

5.2 Metrics401

The AR task is scored using three metrics: nDCG’,402

mAP’ and p@10’ by applying the scripts provided403

by the ARQMath Lab. The structural probe is404

evaluated using UUAS (undirected unlabeled at-405

tachment score) which denotes the percentage of406

correctly identified edges in the predicted tree and407

the DSpr. which is determined by first calculating408

the Spearman correlation between the predicted409

distances dB and the gold-standard distances dT .410

These correlations are then averaged between all411

formulas of a fixed length. Finally, the average412

across formulas of lengths 5–50 is reported as DSpr.413

We decided to include both metrics since it was414

shown that their scores can result in opposite trends415

(Hall Maudslay et al., 2020).416

5.3 Setup417

We trained all models using eight A100 GPUs with418

40 GB GPU memory. For pre-training a batch size419

of 16 samples per GPU was used. Training AL-420

BERT on stage (Comb) and (Sep) took 24h, which421

corresponds to 13 epochs for stage (Comb) and 9422

epochs for stage (Sep). Stage (ML) was trained for423

20 epochs which took 10h. Pre-training BERT took424

on average 25% longer. Fine-tuning used a batch425

size of 32 examples per device, 200 warm-up steps426

with a learning rate of 2e-05 which are the values427

reported by (Reusch et al., 2021). The fine-tuning428

of ALBERT took 8h for 3 epochs, while BERT429

needed 11h. Pre-training and fine-tuning was per-430

formed using Huggingface’s library transformers431

(Wolf et al., 2020). To train and evaluate the struc-432

tural probes, we used the original code provided433

by Hewitt et al. and adapted it to the transformers434

library3. We used the L1 loss and a maximum rank435

of the probe of 768 as reported by the authors.436

6 Evaluation437

6.1 Extending the tokenizer438

First, we analyze whether it is necessary to add439

LATEX tokens to the sub-word tokenizer. Hereby,440

we compare the results of six ALBERT models.441

The results of our AR fine-tuning task are shown in442

Tab. 1. Each model started from the ALBERT base443

checkpoint and was pre-trained using the indicated444

3https://github.com/john-hewitt/structural-probes

nDCG’ Both Math Text

ALBERT¬M 0.365 0.369 0.347 0.403
ALBERTM 0.369 0.362 0.369 0.390

Sep¬M 0.408 0.408 0.403 0.423
SepM 0.413 0.399 0.417 0.440

ML+Sep¬M 0.407 0.415 0.397 0.408
ML+SepM 0.406 0.403 0.409 0.403

Comb¬M* 0.401 0.411 0.389 0.404
CombM 0.412 0.420 0.403 0.414

ML+Comb¬M 0.396 0.402 0.389 0.397
ML+CombM 0.403 0.404 0.411 0.381

µ2ALBERT¬M 0.409 0.408 0.407 0.416
µ2ALBERT 0.427 0.423 0.428 0.432

Table 1: AR Results of six ALBERT models, ¬M de-
notes the standard tokenizer, M denotes the added LATEX
tokens, note that µ2ALBERT implies that the M was ap-
plied, hence it is not added to avoid confusion. * de-
notes the former state-of-the-art model using the same
fine-tuning scheme.

stage and tokenizer. After adding the LATEX tokens, 445

almost all models show at least a small improve- 446

ment in the nDCG’ and the Math scores. For the 447

categories "Both" and "Text", the results vary by 448

model. The overall improvement on nDCG’ when 449

adding LATEX is 0.007. Especially the nDCG’ score 450

on topics that require math understanding is im- 451

proved by 0.017 points on average. For topics that 452

depend on understanding "Text" the improvements 453

are small: 0.001. Over the six models the aver- 454

age improvement for the category mathematics and 455

text ("Both") was 0. Hence, we can conclude that 456

adding LATEX mainly benefits the model’s math un- 457

derstanding and should be considered when dealing 458

with mathematical notation, since it requires almost 459

no effort. The largest overall improvement demon- 460

strates µ2ALBERT, while model (ML)+(Comb)M 461

improved the most in the Math category. 462

6.2 Ablation Study 463

Each of the stages we have presented improves 464

the capacities of our models. We show this em- 465

pirically by removing each of the stages from the 466

pre-training of our ALBERT model resulting in to- 467

tal in four models: µ2ALBERT, µ2ALBERT without 468

(ML), µ2ALBERT without (Sep) and µ2ALBERT 469

without (Comb). The results on the AR fine-tuning 470

task are summarized in Tab. 2. Regarding the met- 471
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nDCG’ mAP’ p@10’ Both nDCG’ Math nDCG’ Text nDCG’

µ2ALBERT 0.427 0.249 0.341 0.423 0.428 0.432
Comb+Comb 0.401 0.222 0.332 0.389 0.415 0.394
Comb+Comb+Comb 0.399 0.224 0.329 0.384 0.417 0.398
µ2ALBERT - ML 0.417 0.237 0.357 0.418 0.419 0.411
µ2ALBERT - Comb 0.406 0.229 0.341 0.403 0.409 0.403
µ2ALBERT - Sep 0.403 0.222 0.321 0.404 0.411 0.381

BERT baseM 0.346 0.161 0.260 0.356 0.333 0.353
µ2BERT 0.406 0.237 0.347 0.402 0.407 0.412

Table 2: AR results of µ2ALBERT and µ2BERT. Our models perform best across almost all metrics.

rics nDCG’ and mAP’, the full-model µ2ALBERT472

with all stages performs best. The second best473

model was trained on two additional stages, us-474

ing only the NL-LATEX-separated and the combined475

data. It was not trained on the mathematics-only476

data. This model performed best on p@10’, but477

in the long run its results were worse compared to478

the full model resulting in lower scores for nDCG’479

and mAP’ which take the model’s performance480

after more than the first ten results into account.481

When looking at the results per category, adding482

each stage improved all scores. Especially stage483

(Sep), the separation of NL and LATEX, led to an484

improvement of 0.059 on nDCG’ in the category485

’Text’. The smallest impact overall had stage (ML),486

the LATEX stage. Furthermore, we can say that our487

model’s final performance it not simply a result of488

a longer pre-training. The models (Comb)+(Comb)489

and (Comb)+(Comb)+(Comb) were trained using490

two and three times the combined stage and showed491

signs of over-fitting after the second combined492

stage since the performance became slightly lower.493

6.3 ALBERT vs. BERT494

To save compute time, we performed the experi-495

ments so far using the ALBERT architecture. Nev-496

ertheless, BERT is still the more popular model.497

Therefore, we also applied the same training498

scheme on a pre-trained BERT checkpoint, result-499

ing in µ2BERT, and compared it to BERT base with500

additional LATEX tokens added to the tokenizer. The501

results are displayed in Tab. 2 and show significant502

improvements on all reported metrics. µ2BERT per-503

formed especially better over the previous state-of-504

the-art model (Comb)¬M(see Tab. 1) in the ’Math’505

category with 0.018 points in nDCG’. In compari-506

son to µ2ALBERT, the scores are not as high, which507

can be expected since the pre-training scheme was508

Model Best UUAS Best DSpr.

SciBERT¬M 0.5460 0.7267
BERT base¬M 0.5327 0.7139
BERT baseM 0.6327 0.7794
ALBERTM 0.4923 0.6572
µ2ALBERT 0.5125 0.6800
µ2BERT 0.6998 0.8157

Table 3: Results of reconstruction of OPTs using
UUAS and DSpr., displaying only the best results
across all 11 layers

initially optimized for ALBERT and it’s SOP task. 509

6.4 Learned Mathematical Knowledge 510

After we have evaluated both models on the AR 511

fine-tune task, which is an extrinsic evaluation, we 512

now investigate how much mathematical knowl- 513

edge was accumulated during training. Hereby, a 514

structural probe was trained on top of the contex- 515

tualized embeddings to reconstruct operator trees 516

given a formula in LATEX as input. We compare 517

our models µ2ALBERT and µ2BERT to their base 518

models as well as to SciBERT (Beltagy et al., 2019) 519

since it is designed to model scientific documents 520

which by nature include formulas and mathemat- 521

ical notation. We did not add additional LATEX to- 522

kens to SciBERT and applied its official tokenizer. 523

Fig. 3 shows the results of the probes trained on the 524

embeddings of each of the models’ layers, while 525

Tab. 3 summarizes the highest values from all lay- 526

ers. We report our results using UUAS and DSpr. 527

where higher values indicate a larger percentage 528

of correctly reconstructed edges and a higher cor- 529

relation between the predicted and gold-distances, 530

respectively. First, we can see that BERT and SciB- 531

ERT perform in a similar way. Surprisingly, both 532
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Figure 3: Results of reconstruction of OPTs across all
model layers.

models already demonstrate a higher ability of ex-533

tracting and reconstructing the OPTs from their em-534

beddings compared to ALBERTM and our trained535

µ2ALBERT. By adding mathematical tokens to536

the tokenizer, the probe showed higher results in537

reconstructing OPTs which is visible from the com-538

parison between BERT base¬M and BERT baseM.539

The best result yields µ2BERT while µ2ALBERT540

produces even lower results than the BERT models541

without special support for mathematical tokens542

nor in-domain pre-training. As Fig. 3 shows, there543

exists a clear trend that most knowledge can be544

extracted from layers in the middle of the BERT-545

based models which is in line with the findings546

by Hewitt et al. who found the same pattern for547

BERT base and BERT large. Interestingly, we548

could not confirm this behavior for ALBERT. Here,549

the scores of all evaluated models decline with ris-550

ing numbers of layers. We hypothesize that this551

might be caused by the weight sharing mechanism552

between layers in ALBERT. Examples of recon-553

structed OPT for µ2BERT and µ2ALBERT, as well554

as BERTM and ALBERTM are displayed in Fig. 4.555

In a large majority of cases the models correctly556

identified the edges of the displayed formula. Most557

differences can be seen from the second part of558

the left hand side of the equation. µ2BERT recon-559

structed the OPT correctly, while the other three560

models mostly struggle with the child relationships561

of the equal sign.562

7 Conclusion563

Domain-adaptive pre-training has been proven to564

be effective even when adapting models for do-565

mains where coherent text is discontinued such as566
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Figure 4: Operator Trees calculated from the predicted
squared distances between the tokens. The black edges
above each formula are the gold edges from the OPT
parser, while the red edges are the predicted ones by
each model.

programming code (Feng et al., 2020). In this work, 567

we have introduced a pre-training scheme involv- 568

ing three different stages for language modeling of 569

documents containing mathematical notation. We 570

have demonstrated the usefulness of each stage and 571

also of the decision to include LATEX tokens for 572

mathematical notation by applying the models to 573

the task of mathematical answer ranking. Here, the 574

models showed a better performance especially on 575

questions involving mathematical understanding. 576

Compared to the previous state-of-the-art model, 577

µ2ALBERT demonstrated improvements of 6.5% 578

on the overall nDCG’ score. In addition, we trained 579

a structural probe on top of the models’ contextu- 580

alized embeddings to demonstrate that operator 581

trees can be extracted. Here, only µ2BERT showed 582

strong results suggesting that it actually learned 583

mathematical knowledge. For ALBERT this impli- 584

cation still remains unclear. Furthermore, whether 585

the models’ actually use the learned knowledge dur- 586

ing downstream tasks is also unknown due to the 587

nature of the applied probe. Further research is re- 588

quired to investigate these issues. Our models and 589

the code are published in the project’s Repository4. 590

4Links anonymized for review
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