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Abstract

Understanding mathematics requires not only
comprehending natural language, but also
mathematical notation. For mathematical lan-
guage modeling, current pre-training methods
for transformer-based language models which
were originally developed for natural language
need to be adapted. In this work, we pro-
pose a multi-stage pre-training scheme includ-
ing natural language and mathematical nota-
tion that is applied on ALBERT and BERT, re-
sulting in two models that can be fine-tuned for
downstream tasks: p?ALBERT and p?BERT.
We show that both models outperform the cur-
rent state-of-the-art model on Answer Rank-
ing. Furthermore, a structural probing classi-
fier is applied in order to test whether opera-
tor trees can be reconstructed from the models’
contextualized embeddings.

1 Introduction

Transformer-based Language Models (LM) have
not only a high impact on all domains in Natural
Language Understanding, but also on related fields
that besides natural language try to model artificial
languages such as programming code or mathemat-
ical notation written in IXIEX. Since pre-training
of these models is by its nature optimized for nat-
ural language, for artificial languages the training
needs to be adapted. This work focuses on scien-
tific literature where coherent natural language text
is discontinued by formulas written using I&TEX.
Since models like BERT (Devlin et al., 2018) rely
on coherent text, this phenomenon might not be
handled correctly. Therefore, we propose a pre-
training scheme consisting of multiple stages to
adapt transformer-based language models to do-
mains where mathematical notation is mixed with
coherent text. In order to demonstrate its improve-
ments over the vanilla models, we apply the train-
ing scheme to BERT and ALBERT.

Because both models already posses powerful
natural language modeling capacities, it is not nec-

essary to train them from scratch on our new do-
main and, hence, we start from these general mod-
els. Recent research has shown that pre-training on
formula-sentence order prediction improves perfor-
mance on formula-only and NL-only examples, but
in a task where both natural language and mathe-
matical notation occurs, the model still performs
poorly (Reusch et al., 2021). Hence, we apply
both methods to our model: Starting from the NL-
pre-trained published checkpoint, we first train the
model on a formula-NL order prediction task, then
using the standard sentence order prediction task.
To improve the models understanding of formulas
itself, we also add a Mathematical Modeling stage,
where the model is trained on MLM and SOP only
on formulas in IATEX.

While some models for mathematical modeling
rely on the standard sub-word tokenizer of BERT
(Reusch et al., 2021), others add I&TEX tokens to the
existing vocabulary (Jo et al., 2021). In this work,
we also investigate, whether it is necessary to add
tokens to the vocabulary or whether the sub-word
tokenization might already work well enough.

Our evaluation is carried out in two different
ways: We first evaluate our models on the down-
stream task answer ranking for mathematical ques-
tions using the ARQMath Lab 2020 data set. This
task is especially useful, since is contains natural
language text and formulas which need to be un-
derstood by the model in order to retrieve the right
answer. Secondly, we analyze how well the models
are able to reconstruct a parse tree of the mathemat-
ical formulas on their own. Here, we employ the
structural probes introduced by Hewitt et al. for
operator trees (Hewitt and Manning, 2019).

In total, the main contributions of this work are:

* We present a Multi-stage pre-training
scheme for Transformer-based LM for
Math-understanding and apply it on ALBERT
and BERT: ;/>ALBERT and y>BERT



* We evaluate the need for extending the tok-
enizer by adding IATEX tokens

* Finally, we train a probing classifier for the
mathematical knowledge LMs can learning
using only IATEX input.

Our evaluation confirms the multi-stage scheme
for ALBERT and BERT by outperforming the pre-
vious best model on the answer ranking task AR-
QMath 2020, as well as our decision to extend
the models vocabulary by I&TEX tokens. Secondly,
we show that mathematical knowledge in form of
OPTs is extractable from the BERT’s contextual-
ized embeddings. For ALBERT, the results are not
clear: While > ALBERT improves over ALBERT
base, it scores lower than BERT base that was not
trained on mathematical notation.

The following work is structured as follows:
First, we review work related to domain-adaptive
pre-training in different domains and in Mathemat-
ical Language Modeling in particular, as well as
research on the learned knowledge of transformer-
based language models. Then we introduce the
pre-training and our fine-tuning task using BERT
and ALBERT. Sec. 4 presents the probing classifier
while Sec. 5 details what data is used in each stage
and provides information on the training process.
Our results on the fine-tuning task and the struc-
tural probe are reported in Sec. 6. Sec. 7 concludes
this work.

2 Related Work

The influence of domain-adaptive pre-training on
BERT has been investigated by (Gururangan et al.,
2020) who identified that this is particularly valu-
able when the domain vocabulary has a low over-
lap with the pre-training data. As a consequence,
various models for different domains have been
developed, such as BioBERT (Lee et al., 2020),
Clinical BERT (Alsentzer et al., 2019; Huang et al.,
2019) or SciBERT (Beltagy et al., 2019) for scien-
tific domains, or CuBERT (Kanade et al., 2020) and
CodeBERT (Feng et al., 2020) for several program-
ming languages. A notable difference between
these models is that BioBERT, Clinical BERT and
CodeBERT use the original vocabulary that their
base model was pre-trained on while SciBERT and
CuBERT trained their own vocabulary specific to
their domain. However, each of these models could
demonstrate its improvements compared to the orig-
inal models without domain specific pre-training.

BERT-based models for mathematical domains
have also been studied with one example being
MathBERT (Peng et al., 2021). Here, mathemati-
cal formulas in form of operator trees are used an
input for pre-training. During the ARQMath Lab in
2020 and 2021, five teams submitted systems based
on BERT, RoBERTa and SentenceBERT (Rohatgi
et al., 2020; Novotny et al., 2020; Rohatgi et al.,
2021; Novotny et al., 2021; Dadure et al., 2021;
Mansouri et al., 2021) where the models were used
without domain adaption for downstream tasks.
Only (Reusch et al., 2021) pre-trained their sub-
missions on mathematical documents. (Jo et al.,
2021) fine-tuned a BERT model for notation pre-
diction tasks based on scientific documents. They
enlarged the vocabulary of BERT by additional
IATEX tokens.

However, little is known so far what BERT-based
models learn about mathematics. In contrast, their
learning capacities on natural language received
large attention in recent research (for a survey
see (Rogers et al., 2020)). Several probes and clas-
sifiers were employed to analyze whether BERT
captures grammatical structures like dependency
or constituency trees (Tenney et al., 2019; Hewitt
and Manning, 2019; Coenen et al., 2019) or which
layer attends to which linguistic feature (Clark
et al., 2019). Visual frameworks like bertviz by
(Vig, 2019) support the analysis of BERT’s inner
working by visualizing the attention weights of
trained models. Also ALBERT was shown to cap-
ture part-of-speech tags in different places as re-
ported by (Chiang et al., 2020), but most studies
were performed using BERT.

3 Model

In this section, we will first review how the BERT
and ALBERT models we employ are pre-trained
and fine-tuned.

BERT and ALBERT are both transformer lan-
guage models, which share a similar architecture.
Both base models consist of 12 transformer en-
coder layers. BERT has 12 separate layers, while
ALBERT’s layers share their parameters resulting
in a lower number of parameters being updated
during training. The second difference between
BERT and ALBERT are the embeddings: BERT
uses embeddings of the dimension 756. ALBERT’s
initial embeddings have a dimensionality of 128.

The models as originally published are trained
using two pre-training tasks which differ slightly.



Both are trained using the Masked Language Model
task and a sequence classification task.

Pre-training is performed on a sentence-level
granularity. Each sentence S is split into tokens:
S = wywsy - - - wy. Before inputting the sentence
into the model, each token w; is embedded using
a sum of three different embeddings, the word em-
bedding ¢;, the position embedding p;, and the seg-
ment embedding s; in order to discern between
the first and the second segment when the model
is presented e.g., two sentences as for the SOP
task. The segment embeddings will also help our
model to differentiate between the question and
answer as the two segments later. All three embed-
dings are added up to form the input embedding
FE; for each token: F; = t; + p; + s;. In order
to obtain a representation of the entire input, the
sentence .S is prepended with a classification token
wg = (CLS). Between both segments and at the
end of the sentence, the (SEP) token is placed.
If the sentence is shorter than 512 tokens, the se-
quence is padded, otherwise, it will be truncated to
512 tokens.

3.1 Masked Language Model

The first pre-training task is the masked language
model meaning tokens from the input sentence are
randomly replaced by a (M ASK) token, a differ-
ent token, or is not modified at all. After embed-
ding the input, it is fed into the language model
(LM), consisting of 12 layers of transformer en-
coder blocks (Vaswani et al., 2017), resulting in
a contextualized output embedding vector U; for
each input token:

CUUy---Uy = LM (EcrsErVEy - - En),

where Forg and C denote the input and output
embeddings of the (C'LS) token. Afterwards, a
classification layer is applied for the prediction of
the original token from the input:

P(w;|S) = softmax(U; - Wy + barnm)

where w; is the j-th token from the vocabulary.
This determines the probability that the ¢-th input
token was w; given the input sentence S. The
weight matrix Wy and its bias bysy, s are only
used for this pre-training task and are not used
afterwards.

3.2 Segment Order Prediction

The next sentence prediction objective predicts
whether the sentence given to the model as the first

segment S4 appears in a text before the sentences
given to the model as the second segment Sp (la-
bel 1) or not (label 0). This task is performed as a
binary classification using the output embedding C'
as its input:

p(label = i|S) = softmax(C - Wsop + bsor)i,

where the matrix Wgo p and the bias bgo p are only
used for the SOP and are not re-used otherwise.
The sentence order prediction pre-training task
as introduced by (Lan et al., 2019) requires input
split into sentences and asks the model to predict
their order. Here, we do not only use sentences
for segments S4 and Sp. Therefore, we rename
the task to segment order prediction (SOP). Origi-
nally, BERT was trained on the next sentence pre-
diction task (NSP), but it has been demonstrated
that ALBERT’s sentence order prediction results in
a better performance on intrinsic and downstream
tasks. When pre-training ALBERT and BERT, we
apply SOP to both models as their second task even
though BERT was originally pre-trained using NSP.

3.3 Fine-Tuning

We fine-tune ALBERT and BERT models on
the down-stream task of answer ranking (AR).
More specifically, a classifier is trained on top
of the models’ output to predict whether an an-
swer A = A1 Ay --- Ay is relevant to a question
Q=Q1Q2  Qn.

We present the input string
<CLS>Q1Q2 s QN<SEP>A1A2 <Ay, with
(CLS) denoting the classification token and
(SEP) the separation token, to the model:

CUUs---Un = LM(EcrsE\Es -+ Enya41),

where E; and E¢crg are the input embeddings for
each input token and the (C'LS) token, respec-
tively, calculated as explained in Sec. 3.1. After the
forward pass through the model, the output vector
of the (C'LS) token C is given into a classification
layer:

p(label =i|Q, A) = softmax(C-War+bar)i,

where the label 1 denotes a matching or correct
answer for the query and label 0 otherwise. During
evaluation, the resulting probability of the classifi-
cation layer for label 1, is the assigned similarity
score s for the answer A to a question () and is
then used to rank the answers in the corpus:

5(Q. A) = p(label = 1Q, A).



4 Mathematical Notation

In this work, we focus on formulas written in ISEX
which has several reasons: First, I&I[EX is a popular
typesetting tool used across all sciences. Hence,
there exist a huge amount of training material. Prior
research has experimented with using parse trees of
formulas as an additional input during pre-training
(Peng et al., 2021). However, this poses several
issues: The input needs to be valid IATEX code, for
which the necessary packages need to be available
to the parser. The parser has to be fast since each
formula in the entire corpus must be parsed. And
thirdly, we would restrict the learned knowledge to
the knowledge that is left after parsing. By using a
parser, information contained in the original IATEX
code could be missing in the result. Furthermore,
it was already shown that BERT is able to learn
grammatical structure of natural languages which
could be extracted in the form of constituency and
dependency trees (Tenney et al., 2019; Hewitt and
Manning, 2019). If the model is able to learn these
structures for which building parsers or grammars
is much harder compared to mathematical notation,
then it should be possible that it can also learn how
structures in I£IEX work. Therefore, we advocate
using IATEX code directly. We analyze whether this
is enough as input by applying a probing classifier
on the learned contextualized embeddings of our
models.

4.1 Structural Probe

The goal of the structural probe as intro-
duced by (Hewitt and Manning, 2019) is to
learn a matrix B, such that the distance
dB(wi7wj) = \/(UZ — Uj)TBTB(UZ' — Uj) ap-
proximates a given tree distance dr, i.e., the length
of the path between the node of w; and the node of
w;. B is learned by minimizing the loss function
over all sentences S in the training corpus:

. 1
mlnz Ta2 Z |dT(wi7wj) - dB(wi7wj)|
B 518145

Originally, Hewitt et al. applied the structural probe
to demonstrate that dependency structures of the
English language are to some extent contained in
BERT’s contextualized embeddings. In this work,
we will train a structure probe to evaluate whether
the models’ inner workings have learned about
mathematical structures, i.e., operator trees.
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Figure 1: Operator Tree of the formula m =

4.2 Operator Trees

Formulas possess a hierarchical structure, which is
encoded in Content Math ML, defining an opera-
tor tree (OPT). An example OPT for the equation
m = -5 is shown in Fig. 1. Nodes of this tree rep-
resentation can be individual or multiple symbols
such as numbers, variables, text fragments indi-
cating certain functions, fractions, radicals, IATEX
style expressions, or parentheses and brackets. This
definition is similar to the one found in (Mansouri
et al., 2019), but we added parenthesis and brackets
to investigate the way our models capture open and
closed bracket relationships. OPT edges indicate
an operator-argument relationship between parent
and child node. Left and right brackets and paren-
theses have each an edge to the parent of the tree
inside them. I&TEX style expressions like \mathbb
can be simply seen as an operator applied on the
argument inside. Hence, the original OPT stays
intact.

S Experimental Setup

To improve how transformer-based language mod-
els understand mathematical notation, we want to
investigate three questions in this paper: (1) Do we
need to add IATEX Tokens to the tokenizers? (2)
Do all stages improve the models’ performance?
(3) Can we extract OPTs from the models’ con-
textualized embeddings? In order to answer these
questions, we train several models starting from the
official checkpoints of BERT and ALBERT, respec-
tively. To answer the first question, we train several
ALBERT models using different stages, either with
IATEX tokens added to the models’ and tokenizers’
vocabulary or without. Question 2 is answered by
evaluating the models using the mathematical an-
swer ranking task of the ARQMath Lab 2020. We
show that removing each of the stages presented
in Sec. 5.1 degrades the downstream performance.
Furthermore, the final pre-training scheme is ap-
plied to BERT which is also fine-tuned on AR. To
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Figure 2: The Stages for 1> ALBERT and > BERT

answer the third question, a probe is trained on top
of both the ALBERT and BERT models and evalu-
ated on the task of reconstructing the OPTs from
a given IATEX string. Here, we apply the structural
probe introduced Section 4.1.

For answering Question (1) and (2), in total 11
models had to be trained. To save computation
time, we pre-trained these configurations each on a
single run using the ALBERT architecture, where
the model needs fewer weights and converges faster
during training. Only the final pre-training scheme
was than applied to BERT, which takes more com-
puting resources for pre-training and fine-tuning.

In the following, we will introduce the data we
used for pre-training, fine-tuning, and evaluation
as well as details on our experimental setup.

5.1 Data

We train and evaluate our models on data provided
by the ARQMath Lab 2020 which contains ques-
tion and answer posts from the Q& A community
Mathematics StackExchange!. Pre-training used
posts from 2010 to 2018 with HTML syntax re-
moved. We wrapped formulas in $ signs as it usual
in IATEX. Since ALBERT and BERT need sepa-
rated input for the Segment Order Prediction task,
all data needs to be split in segments. Here, we
employed three different methods (Comb), (Sep)
and (ML): (Comb) splits the natural language (NL)
data into sentences,leaving ISTEX as it is. Lines
split by newlines in the I&TEX code also served
as two separate segments. (Sep) splits NL in sen-
tences as (Comb), but also before the beginning
of a IXTEX formula. Here, the model should also
learn whether the I£TEX code and NL can follow
each other (NL-formula coherence). Each IATRX
string was also split by newlines. (ML) removes
all NL text, leaving only I&TgX code. The code is
split into segments at relation symbols such as =’

"https://math.stackexchange.com

or >€’2. This way, the models should learn whether
two IATEX segments belong together (inter-formula
coherence). These different pre-training corpora
form essentially our three stages (ML), (Comb)and
(Sep) applied on top of the natural language pre-
trained checkpoint shown in Fig. 2. We also ex-
perimented with other orderings of the stages, but
there were no improvements in performance visi-
ble. The data sizes for each stage are as follows:
(Comb) contains 18M sentences, (Sep) 37M seg-
ments and (ML) 3.6M formula segments. The data
was tokenized by either the standard tokenizer of
ALBERT or BERT, respectively or their tokenizer
extended by 501 IATEX tokens as noted in the re-
sult section. p?ALBERT and p2BERT apply the
extended tokenizer by default.

The fine-tuning data for the AR task is identi-
cal to the data used by (Reusch et al., 2021). We
pair each question from the ARQMath 2020 cor-
pus with one correct answer (label 1) and with one
incorrect answer (label 0). The correct answer is
chosen randomly from the answers given to the
original question. The incorrect answer is selected
by chance from a question with a similar topic, i.e.,
at least one of the questions tags have to match the
original question. This procedure yielded 1.9M ex-
amples, of which 90% were used for training. The
evaluation of our models is performed in the same
way as for the ARQMath Lab which provides 77
questions from 2019 with relevance judgment for
several answers annotated using pooling. Each of
these questions is paired with every answer from
the corpus which are then provided as input to the
model. The classification score for label 1 is used to
rank the answers. We do not pre-filter the answers
by the tags of their questions, but use all answers
in the corpus. For each question from the evalua-
tion corpus, the organizers of the ARQMath Lab
2020 also annotated whether answering a question
depended on understanding mainly the questions
formulas, the natural language text or both. During
evaluation we will break down the performance of
our models by these three categories.

Our structural probe is trained on formulas
which were parsed to OPTs by a custom IATEX
parser written in Python adapted from the parser
rules of the mathematical formula search engine
ApproachO (Zhong and Zanibbi, 2019; Zhong et al.,
2020). We selected 50k training examples by

’The entire list can be found in our GitHub repository:
<Link anonymized>



chance from the corpus of all formulas from ARQ-
Math 2020; in the same way we used 10k formulas
each for development and test set.

5.2 Metrics

The AR task is scored using three metrics: nDCG’,
mAP’ and p@10’ by applying the scripts provided
by the ARQMath Lab. The structural probe is
evaluated using UUAS (undirected unlabeled at-
tachment score) which denotes the percentage of
correctly identified edges in the predicted tree and
the DSpr. which is determined by first calculating
the Spearman correlation between the predicted
distances dp and the gold-standard distances dr.
These correlations are then averaged between all
formulas of a fixed length. Finally, the average
across formulas of lengths 5-50 is reported as DSpr.
We decided to include both metrics since it was
shown that their scores can result in opposite trends
(Hall Maudslay et al., 2020).

5.3 Setup

We trained all models using eight A100 GPUs with
40 GB GPU memory. For pre-training a batch size
of 16 samples per GPU was used. Training AL-
BERT on stage (Comb) and (Sep) took 24h, which
corresponds to 13 epochs for stage (Comb) and 9
epochs for stage (Sep). Stage (ML) was trained for
20 epochs which took 10h. Pre-training BERT took
on average 25% longer. Fine-tuning used a batch
size of 32 examples per device, 200 warm-up steps
with a learning rate of 2e-05 which are the values
reported by (Reusch et al., 2021). The fine-tuning
of ALBERT took 8h for 3 epochs, while BERT
needed 11h. Pre-training and fine-tuning was per-
formed using Huggingface’s library transformers
(Wolf et al., 2020). To train and evaluate the struc-
tural probes, we used the original code provided
by Hewitt et al. and adapted it to the transformers
library®. We used the L1 loss and a maximum rank
of the probe of 768 as reported by the authors.

6 Evaluation

6.1 Extending the tokenizer

First, we analyze whether it is necessary to add
I4IEX tokens to the sub-word tokenizer. Hereby,
we compare the results of six ALBERT models.
The results of our AR fine-tuning task are shown in
Tab. 1. Each model started from the ALBERT base
checkpoint and was pre-trained using the indicated

3https://github.com/john-hewitt/structural-probes

nDCG’ Both Math Text
ALBERT™ 0365 0.369 0.347 0.403
ALBERTM 0.369 0362 0.369 0.390
Sep ™ 0.408  0.408 0.403 0.423
SepM 0413 0399 0417 0.440
ML+Sep ™ 0.407 0415 0397 0.408
ML+Sep™M 0.406  0.403 0.409 0.403
Comb M 0401 0411 0389 0.404
CombM 0.412  0.420 0403 0.414
ML+Comb™ 0.396  0.402 0.389 0.397
ML+Comb™ 0403  0.404 0411 0.381
p?ALBERT™ 0409  0.408 0.407 0.416
1> ALBERT 0.427  0.423 0428 0.432

Table 1: AR Results of six ALBERT models, "™ de-
notes the standard tokenizer, M denotes the added KIEX
tokens, note that 1> ALBERT implies that the M was ap-
plied, hence it is not added to avoid confusion. * de-
notes the former state-of-the-art model using the same
fine-tuning scheme.

stage and tokenizer. After adding the IATEX tokens,
almost all models show at least a small improve-
ment in the nDCG’ and the Math scores. For the
categories "Both" and "Text", the results vary by
model. The overall improvement on nDCG’ when
adding I&TEX is 0.007. Especially the nDCG’ score
on topics that require math understanding is im-
proved by 0.017 points on average. For topics that
depend on understanding "Text" the improvements
are small: 0.001. Over the six models the aver-
age improvement for the category mathematics and
text ("Both") was 0. Hence, we can conclude that
adding IATEX mainly benefits the model’s math un-
derstanding and should be considered when dealing
with mathematical notation, since it requires almost
no effort. The largest overall improvement demon-
strates ,uQALBERT, while model (ML)+(Comb)M
improved the most in the Math category.

6.2 Ablation Study

Each of the stages we have presented improves
the capacities of our models. We show this em-
pirically by removing each of the stages from the
pre-training of our ALBERT model resulting in to-
tal in four models: u2ALBERT, MQALBERT without
(ML), 2> ALBERT without (Sep) and p>2ALBERT
without (Comb). The results on the AR fine-tuning
task are summarized in Tab. 2. Regarding the met-



nDCG’ mAP’ p@10’ | BothnDCG’ Math nDCG’” Text nDCG’
(2 ALBERT 0.427 0249 0341 | 0.423 0.428 0.432
Comb+Comb 0401  0.222 0332 | 0.389 0.415 0.394
Comb+Comb+Comb | 0.399  0.224 0.329 | 0.384 0.417 0.398
2 ALBERT - ML 0417  0.237 0357 | 0418 0.419 0411
pU2ALBERT - Comb | 0.406  0.229 0341 | 0.403 0.409 0.403
u2ALBERT - Sep 0403  0.222 0.321 | 0.404 0.411 0.381
BERT base™ 0.346  0.161 0.260 | 0.356 0.333 0.353
U2BERT 0406  0.237 0.347 | 0.402 0.407 0.412

Table 2: AR results of 4? ALBERT and p2BERT. Our models perform best across almost all metrics.

rics nDCG’ and mAP’, the full-model ;1> ALBERT
with all stages performs best. The second best
model was trained on two additional stages, us-
ing only the NL-I&TEX-separated and the combined
data. It was not trained on the mathematics-only
data. This model performed best on p@10°, but
in the long run its results were worse compared to
the full model resulting in lower scores for nDCG’
and mAP’ which take the model’s performance
after more than the first ten results into account.
When looking at the results per category, adding
each stage improved all scores. Especially stage
(Sep), the separation of NL and IXTgX, led to an
improvement of 0.059 on nDCG’ in the category
"Text’. The smallest impact overall had stage (ML),
the IATEX stage. Furthermore, we can say that our
model’s final performance it not simply a result of
a longer pre-training. The models (Comb)+(Comb)
and (Comb)+(Comb)+(Comb) were trained using
two and three times the combined stage and showed
signs of over-fitting after the second combined
stage since the performance became slightly lower.

6.3 ALBERT vs. BERT

To save compute time, we performed the experi-
ments so far using the ALBERT architecture. Nev-
ertheless, BERT is still the more popular model.
Therefore, we also applied the same training
scheme on a pre-trained BERT checkpoint, result-
ing in 4 BERT, and compared it to BERT base with
additional IATEX tokens added to the tokenizer. The
results are displayed in Tab. 2 and show significant
improvements on all reported metrics. ;12BERT per-
formed especially better over the previous state-of-
the-art model (Comb) M(see Tab. 1) in the "Math’
category with 0.018 points in nDCG’. In compari-
son to 2 ALBERT, the scores are not as high, which
can be expected since the pre-training scheme was

Model Best UUAS Best DSpr.
SciBERT™  0.5460 0.7267
BERT base™ 0.5327 0.7139
BERT baseM  0.6327 0.7794
ALBERTM 0.4923 0.6572
(2 ALBERT 0.5125 0.6800
L2BERT 0.6998 0.8157

Table 3: Results of reconstruction of OPTs using
UUAS and DSpr., displaying only the best results
across all 11 layers

initially optimized for ALBERT and it’s SOP task.

6.4 Learned Mathematical Knowledge

After we have evaluated both models on the AR
fine-tune task, which is an extrinsic evaluation, we
now investigate how much mathematical knowl-
edge was accumulated during training. Hereby, a
structural probe was trained on top of the contex-
tualized embeddings to reconstruct operator trees
given a formula in IATEX as input. We compare
our models 2 ALBERT and p?BERT to their base
models as well as to SCiBERT (Beltagy et al., 2019)
since it is designed to model scientific documents
which by nature include formulas and mathemat-
ical notation. We did not add additional IATEX to-
kens to SciBERT and applied its official tokenizer.
Fig. 3 shows the results of the probes trained on the
embeddings of each of the models’ layers, while
Tab. 3 summarizes the highest values from all lay-
ers. We report our results using UUAS and DSpr.
where higher values indicate a larger percentage
of correctly reconstructed edges and a higher cor-
relation between the predicted and gold-distances,
respectively. First, we can see that BERT and SciB-
ERT perform in a similar way. Surprisingly, both
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Figure 3: Results of reconstruction of OPTs across all
model layers.

models already demonstrate a higher ability of ex-
tracting and reconstructing the OPTs from their em-
beddings compared to ALBERTM and our trained
p2ALBERT. By adding mathematical tokens to
the tokenizer, the probe showed higher results in
reconstructing OPTs which is visible from the com-
parison between BERT base ™™ and BERT base™.
The best result yields 4?>BERT while 4> ALBERT
produces even lower results than the BERT models
without special support for mathematical tokens
nor in-domain pre-training. As Fig. 3 shows, there
exists a clear trend that most knowledge can be
extracted from layers in the middle of the BERT-
based models which is in line with the findings
by Hewitt et al. who found the same pattern for
BERT base and BERT large. Interestingly, we
could not confirm this behavior for ALBERT. Here,
the scores of all evaluated models decline with ris-
ing numbers of layers. We hypothesize that this
might be caused by the weight sharing mechanism
between layers in ALBERT. Examples of recon-
structed OPT for ?>BERT and ;2 ALBERT, as well
as BERTM and ALBERTM are displayed in Fig. 4.
In a large majority of cases the models correctly
identified the edges of the displayed formula. Most
differences can be seen from the second part of
the left hand side of the equation. 2BERT recon-
structed the OPT correctly, while the other three
models mostly struggle with the child relationships
of the equal sign.

7 Conclusion

Domain-adaptive pre-training has been proven to
be effective even when adapting models for do-
mains where coherent text is discontinued such as

U_1UU_2=\mathbb R

BERTM

U _1UU_ 2= \mathbb R

ALBERTM

U _1UU_2 = \mathbb R

1> ALBERT

U_1UU_2 = \mathbb R

1?BERT

Figure 4: Operator Trees calculated from the predicted
squared distances between the tokens. The black edges
above each formula are the gold edges from the OPT
parser, while the red edges are the predicted ones by
each model.

programming code (Feng et al., 2020). In this work,
we have introduced a pre-training scheme involv-
ing three different stages for language modeling of
documents containing mathematical notation. We
have demonstrated the usefulness of each stage and
also of the decision to include ISKIEX tokens for
mathematical notation by applying the models to
the task of mathematical answer ranking. Here, the
models showed a better performance especially on
questions involving mathematical understanding.
Compared to the previous state-of-the-art model,
12> ALBERT demonstrated improvements of 6.5%
on the overall nDCG’ score. In addition, we trained
a structural probe on top of the models’ contextu-
alized embeddings to demonstrate that operator
trees can be extracted. Here, only 4>BERT showed
strong results suggesting that it actually learned
mathematical knowledge. For ALBERT this impli-
cation still remains unclear. Furthermore, whether
the models’ actually use the learned knowledge dur-
ing downstream tasks is also unknown due to the
nature of the applied probe. Further research is re-
quired to investigate these issues. Our models and
the code are published in the project’s Repository*.

*Links anonymized for review
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