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Abstract

This paper addresses the problem of inventing and using hierarchical representa-
tions for stochastic robot-planning problems. Rather than using hand-coded state or
action representations as input, it presents new methods for learning how to create a
generalizable high-level action representation for long-horizon, sparse reward robot
planning problems in stochastic settings with unknown dynamics. After training,
this system yields a robot-class-specific but environment independent planning
system that generalizes to different robots, environments, and problem instances.
Given new problem instances in unseen stochastic environments, it first creates
zero-shot options (without any experience on the new environment) with dense
pseudo-rewards and then uses them to solve the input problem in a hierarchical
planning and refinement process. Theoretical results identify sufficient conditions
for completeness of the presented approach. Extensive empirical analysis shows
that even in settings that go beyond these sufficient conditions, this approach con-
vincingly outperforms baselines by 2× in terms of solution time with orders of
magnitude improvement in solution quality.

1 Introduction

Recent work on robot planning and learning has led to strong progress on approaches that achieve
specific goals in settings with short horizons, dense rewards, and/or deterministic dynamics that are
usually encoded in simulators such as MuJoCo. However, this progress has been difficult to translate
to pervasive robotics problems that feature long-horizons, sparse rewards, stochastic dynamics, and
generalization across different robots, environments, or tasks. In fore-mentioned settings, their
performance degrade rapidly. E.g., Fig. 1 shows that recent advances fail to scale for robot motion
planning in a large office space with stochastic dynamics as well as fail to learn solution that can be
generalized to different problems in the same environment. In fact, their performance drops below
that of naïve approaches such as continual re-planning. Such settings constitute a massive departure
from the short, dense and/or deterministic settings that has been the focus of much recent work.

This paper addresses the problem of robot planning in the relatively under-studied long horizon,
sparse reward and stochastic setting with unknown system dynamics. Solving such problems is
challenging: stochasticity implies that deterministic motion planning is not sufficient: the robot can
reach unexpected states and thus we need solutions in the form of policies rather than motion plans.
Furthermore, the absence of well-defined dynamics models typically requires reinforcement learning
(RL) based approaches, but RL algorithms are difficult to scale in long-horizon, sparse-reward settings
(as also evidenced in Fig. 1) and generalize to new problems and environments.

We address these technical problems using a novel approach for hierarchical planning and learning that
learns how to invent generalizable abstractions of stochastic robot planning problems in terms of use-
ful high-level actions represented as options [53] or composable sub-policies. A training phase adapts
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Robot: Husky

Figure 1: Performance of the two state-of-the-art
approaches as a measure of fraction of problems
solved (y-axis) in the given time (x-axis). The
blue line presents the lower performing variant
of the approach developed in this paper. Exist-
ing approaches for robot planning show limited
scalability in stochastic environments. As the en-
vironment size increases, performance falls below
that of naïve RRT-Replan.

our general approach to a given robot-class,
and yields a robot-class-attuned, environment-
independent planning system (Sec. 3). In other words,
for a given class of robots with the same number
of degrees of freedom, this approach learns how to
transform an input continuous problem into a discrete
symbolic search problem over the identified options,
which is then solved and refined using a hierarchical
planning and refinement algorithm (Sec. 4).

After training, when given a new robot planning prob-
lem in an unseen, stochastic environment, this ap-
proach uses the generalized option inventor learned
in the first phase for inventing zero-shot options (with-
out any new experience) in the form of desirable pairs
of initiation and termination sets, and zero-shot, and
dense pseudo-reward that can be used to carry out RL
for learning policies for the invented options. Short
horizons and dense pseudo-rewards computed for
zero-shot options make option-policy learning signif-

icantly more sample-efficient than end-to-end policy learning.

Our main contributions are (a) algorithms for learning how to zero-short invent generalizable high-
level actions for different robots for stochastic planning problems in test environments not encountered
during training; (b) a unified hierarchical learning, planning, and refinement approach for learning
how to solve new long-horizon, stochastic problems in sparse reward settings using the learned
approach for abstracting them into a space with discrete states and actions; and (c) zero-shot invention
of dense pseudo-reward functions for the invented options.

To our knowledge, this paper presents the first approach for learning how to zero-shot invent a
generalizable hierarchical representation for unseen stochastic robot planning problems. Unlike prior
work on the topic, our approach does not require input state or action abstractions, and requires
only a kinematic robot specification and a problem generator. This results in robust transferability
of learning. If multiple test problems come from the same environment, options can be re-used
across instances. Furthermore, this is also the first approach that generalizes the abstraction hierarchy
invention process across different robots. Robots used during testing or deployment need not be the
same as the robots used while training the option invention pipeline.

Theoretical results characterize the formal properties of this approach such as sufficient conditions for
completeness (Sec. 4.1), and show that this approach ensures downward-refinability of the invented
options for a class of robots. Empirical analysis (Sec. 5) shows that even in situations that go beyond
our sufficient conditions, this approach provides ∼ 2× improvement over existing approaches in
terms of computational efficiency and order-of-magnitude improvements in solution quality.

2 Background
Let X ⊆ Rd = Xfree ∪ Xobs be the configuration space (C-space) of a robot R and let O be a set of
obstacles in a given environment. Given a collision function f : X → {0, 1}, Xfree represents the
set of configurations that are not in collision with any obstacle o ∈ O such that f(x) = 0 and let
Xobs = X \ Xfree. Let xi ∈ Xfree be the initial configuration of the robot and xg ∈ Xfree be the goal
configuration of the robot. The motion planning problem can be defined as:
Definition 1. A motion planning problem M is defined as a 4-tuple ⟨X , f, xi, xg⟩, where X is the
C-space, f is the collision function, xi and xg are initial and goal configurations.

A solution to a motion planning problem is a motion plan τ . A motion plan is a sequence of
configurations ⟨x0, . . . , xn⟩ such that x0 = xi, xn = xg, and ∀x ∈ τ, f(x) = 0. Robots use
controllers that accept sequenced configurations from the motion plan and generate controls that take
the robot from one configuration to the next configuration. In practice, environment dynamics can be
noisy, which introduces stochasticity in the problem.

We define stochastic motion planning (SMP) problems in a manner similar to stochastic shortest
path problems (SSPs) [8]. Formally, a stochastic motion planning problem P is defined as P =
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⟨X ,U , T, x0, xg⟩ where X ⊆ Rd is a d-dimensional configuration space. U ⊆ Rd is the uncountably
infinite set of stochastic control actions defined in terms of the intended change in each degree of
freedom of the robot. Each u ∈ U follows a stochastic transition function Tu : x 7→ µ(x + u)
where µ(x+ u) is a probability measure parameterized using the intended target x+ u of the control
action. x0 is the initial configuration and xg is the goal configuration. A solution to a stochastic
motion planning problem is a partial policy π : X → U that maps each reachable configuration in
the configuration space (when starting with x0 and following π) to a control action from the set of
controls (actions) U .

2.1 State Abstractions

In this work we use the notion of state abstractions as a finite partitioning of a continuous state
space. Formally, a state abstraction from a concrete state space X to a finite, discrete state space
S is a function that maps each x ∈ X to an element of S. State abstractions created by domain
experts have been used extensively to speed up planning and learning. Recent work also presents
approaches for learning state abstractions (e.g., [29, 47]). In this work we utilize the critical-region
based state abstraction technique developed by Shah and Srivastava [47] since it allows zero-shot
state abstractions for new problems. We present here a brief summary of this approach to highlight
the properties and input requirements that are utilized in the current paper.

In this approach, critical regions of a configuration space characterize regions that tend to have a high
solution density and thus are essential for solving problem instances using sampling based motion
planners. This concept generalizes and unifies notions of hubs (e.g., the center of a room from which
multiple locations are accessible) and bottlenecks (e.g., a doorway that forces the robot to follow a
narrow path). Given the kinematic model of a robot, it is possible to train a deep neural network to
predict critical regions for new environments. A critical region prediction can, in turn be used to
define an abstraction of the configuration space:
Definition 2. Given a configuration space X , let dc define the minimum distance between a configu-
ration x ∈ X and a region ϕ ⊆ X . Given a set of critical regions Φ and a robot R, a region-based
Voronoi diagram (RBVD) Ψ is a partitioning of X such that for every Voronoi cell ψi ∈ Ψ there
exists a region ϕi ∈ Φ such that forall x ∈ ψi and forall ϕj ̸= ϕi, dc(x, ϕi) < dc(x, ϕj) and each
ψi is connected.

In this framework, abstract states are defined using a bijective function ℓ : Ψ → S that maps each
Voronoi cell ψ ∈ Ψ to an abstract state s ∈ S. The RBVD Ψ induces an abstraction function
α : X → S such that α(x)=s iff there exists a cell ψ such that x ∈ ψ and ℓ(ψ) = s. A configuration
x ∈ X is said to be in the high-level abstract state s ∈ S (denoted by x ∈ s) if α(x) = s. A
neighborhood function V : S × S → {0, 1} such that for a pair of states s1, s2 ∈ S, V(s1, s2) = 1
iff s1 and s2 are neighbors. We say a pair of abstract states s1 and s2 are neighbors iff there exists a
pair of configuration x1 ∈ s1 and x2 ∈ s2 and there exists a motion plan between x1 and x2.

3 Zero-Shot Option Inventors

Algorithm 1: OptionInventor
Input: robot R, training environments

Etrain, test environment Etest
Output: set of option O, cost function C

1 Θ← get_critical_region_predicter(R);
2 if Θ is not trained then
3 train Θ using Etrain

4 Φ← predict_critical_regions(Etest,Θ);
5 Ψ, S, V ← construct_RBVD(Etest,Φ);
6 O, C ← construct_options(Ψ,S,V);
7 foreach o ∈ O do
8 mpo← compute_motion_plan(o);
9 Go← compute_option_guide(o,mpo);

10 return O, C

Our overall approach for solving long-horizon,
stochastic robot planning problems is to zero-shot
invent a set of options for the given problem (Alg. 1),
and then to carry out hierarchical planning using
these options (Alg. 2). In this section we outline
our approach for automatically identifying options
(OptionInventor, Alg. 1) for a given environment.

Given a stochastic motion planning problem, Alg. 1
creates a zero-shot state abstraction (lines 1-5) us-
ing the methods presented above (Sec. 2.1). Once
abstract states are constructed, we define abstract ac-
tions as options (line 6) with their initiation set in one
abstract state and the termination set in a different
abstract state (discussed in Sec. 3.1). These options
(action abstractions) are independent of problem in-

stances, i.e., they are constructed once per environment and robot and reused for different problems
(pairs of initial and goal configurations). However, we still need to learn policies for executing such
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options. As defined, option termination sets turn out to be insufficient for efficiency: they result in a
sparse-reward setting, which makes it difficult to scale RL algorithms for policy learning. To address
this limitation, lines 7-9 also create in zero-shot fashion (without collecting additional experience
from the environment), an option guide: a dense pseudo-reward function for the invented options
(discussed in Sec. 3.2).

3.1 Zero-Shot Option Endpoints

Given a set of zero-shot abstract states S created using the predicted critical regions for a new
environment (Def. 2), a neighborhood function V , and an abstraction function α, we define two types
of options: (1) centroid options that take the robot from the centroid of one critical region to another,
and (2) interface options that take the robot across an abstract state, i.e., from the boundary between
si and sj to the boundary between si and sk. Both forms of options can be composed to solve
long-horizon problems (this process is discussed in the next section).

First, we discuss centroid options. Intuitively, these options define abstract actions that transition
between a pair of critical regions. Formally, they are defined as follows:

Definition 3. Let si ∈ S be an abstract state in the RBVD Ψ with the corresponding critical region
ϕi ∈ Φ. Let d be the Euclidean distance measure and let t define a threshold distance. Let ci be the
centroid of the critical region ri. A centroid region of the critical region ri with the centroid ci is
defined as a set of configurations: {x|x ∈ si ∧ d(x, ci) < t}.

We use this definition to define the endpoints for the centroid options as follows:

Definition 4. Let si, sj ∈ S be neighboring abstract states such that V(si, sj) = 1 in an RBVD Ψ
constructed using the set of critical regions Φ. Let ϕi, ϕj ∈ Φ be the critical regions for the abstract
states si and sj and let ci and cj be their centroids regions. The endpoints for a centroid option are
defined as a pair ⟨Iij , βij⟩ such that Iij = ci and βij = cj .

Interface options serve as a dual to centroid options. Rather than defining high-level actions that
move from the “center” of one abstract state to the “center” of another, they define high-level actions
for going across an abstract state, from one boundary to another. To formally define interface options,
we first need to define “interface” regions between a pair of neighboring abstract states:

Definition 5. Let si, sj ∈ S be a pair of neighboring states such that V(si, sj) = 1 and ϕi and
ϕj be their corresponding critical regions. Let dc(x, ϕ) define the minimum Euclidean distance
between configuration x ∈ X and some point in a region ϕ ⊂ X . Let p be a configuration such that
dc(p, ϕi) = dc(p, ϕj) that is, p is on the border of the Voronoi cells that define si and sj . Given
the Euclidean distance measure d and a threshold distance t, an interface region for a pair of
neighboring states (si, sj) is defined as a set {x|(x ∈ si ∨ x ∈ sj) ∧ d(x, p) < t}.

We use this definition of interface regions to define endpoints for the interface options as follows:

Definition 6. Let si, sj , sk ∈ S be abstract states such that V(si, sj) = 1 and V(sj , sk) = 1. Let
ϕ̂ij and ϕ̂jk be the interface regions for pairs of high-level states (si, sj) and (sj , sk). The endpoints
for an interface option are defined as a pair ⟨Ioijk , βoijk⟩ such that Ioijk = ϕ̂ij and βoijk = ϕ̂jk.

We can now utilize these definitions to define, in zero-shot fashion, the complete set of centroid
options and interface options for a new environment. Recall that the RBVD Ψ induces a neighborhood
function V : S × S → {0, 1}. The set of centroid options is defined as Oc = {oij |∀si, sj ∈
S, V(si, sj) = 1∧ Iij = ci ∧ βij = cj}, where ci represents the centroid of the critical region ri for
the abstract state si.

Similarly, the set of interface options is defined as Oi = {oijk|∀si, sj , sk ∈ S, V(si, sj) = 1 ∧
V(sj , sk) = 1 ∧ Iij = ϕ̂ij ∧ βij = ϕ̂jk}, where ϕ̂ij represents an interface region for a pair of
neighboring abstract states si and sj .

3.2 Zero-Shot Option Guides

Given an option defined using the methods discussed above, we define an option guide as a dense
pseudo-reward function. We will use the option guide to improve sample efficiency while learning
policy for an option in sparse reward settings.
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Intuitively, option guides are defined using conceptual envelopes around deterministic motion plans
that can be computed relatively easily using existing methods. Formally, we define an ϵ-clear motion
plan as a motion plan in which every configuration has an ϵ-neighborhood that is collision free. With
a slight abuse of notation we use the abstraction function with a set of low-level configurations rather
than a single configuration such that for a set A, α(A) = {α(x)|∀x ∈ A}.

Let oi be an option with endpoints ⟨Ii, βi⟩, and centroids cIi and cβi for Ii and βi respectively.
Given a threshold distance t, an arbitrary neighborhood radius ϵ, and the Euclidean distance measure
d, we can define an ϵ-clear motion plan Gi for the option oi as follows: Gi = ⟨p1, . . . , pn⟩ such that
p1 = cIi , pn = cβi , for each pair of consecutive points pi, pj ∈ Gi , d(pi, pj) < t, and for every
point pi ∈ Gi, pi ∈ α(Ii) or pi ∈ α(βi). In practice, we found that any sampling-based motion
planner with ϵ-inflated obstacles can be used to construct such motion plans.

We define the option guide for oi as a dense pseudo-reward defined using Gi as follows. Intuitively,
the option guide is a dense pseudo-reward function that provides the robot with a large positive reward
when it reaches the termination set of the goal, a penalty for drifting to a different abstract state, and
a smoothened reward for making progress on the option guide. Formally, this is defined as follows:
Definition 7. Let oi be an option with endpoints ⟨Ii, βi⟩ and let Gi = ⟨p1, . . . , pm⟩ be an ϵ-clear
motion plan for a given ϵ. Given a configuration x ∈ X , let n(x) = pi define the closest point on Gi.
The option guide Ri(x) is defined as:

Ri(x) =


rt if x ∈ βi
rp if x ∈ S/{α(Ii), α(βi)}
−(d(x, n(x))

+d(n(x), pm))
otherwise

4 Hierarchical Stochastic Motion Planning Using Zero-Shot Options

Algorithm 2: Stochastic Hierarchical
Abstraction-guided Robot Planner (SHARP)

Input: Training environments Etrain, test
environment Etest, initial and goal
configurations xi and xg

Output: A policy Π composed of options
1 if abstraction is not constructed then
2 O, C ← OptionInventor(R,Etrain,Etest);

3 si, sg ← get_abstract_states(xi,xg);
4 while not refined do
5 p← get_new_high_level_plan(si,sg ,O,C);
6 if p = ∅ then
7 break;

8 Π = empty_list;
9 π0 ← lear_ll_policy(xi,Io1 );

10 Π.add(π0);
11 foreach o ∈ p do
12 if πo does not exist then
13 if Go = ∅ then
14 flag o infeasible;
15 break;

16 πo ← learn_ll_policy(Io,βo,Go);
17 adjust the option cost Co;

18 Π.add(πo);

19 refined← True;

20 if refined then
21 πn+1 ← learn_ll_policy(βon ,xg);
22 Π.add(πn+1);
23 return Π;

24 return failure;

The SHARP algorithm (Alg. 2) presents our
overall approach for using the zero-shot options
defined above for hierarchical motion planning
under uncertainty. It takes as input an SMP
problem P = ⟨X ,U , xi, xg⟩, a simulator, and
an occupancy matrix of the environment, and
produces a partial policy Π : X → U that maps
each reachable robot configuration to a control
action. The algorithm starts by invoking the Op-
tionInventor in line 2 to construct zero-shot state
and action abstractions (in the form of options)
if they have not been constructed for the given
robot R and the environment Etest pair (Sec. 3).

Lines 4-19 use these options as high-level ac-
tions for computing high-level plans. Line 5
uses an incremental plan generator that takes the
set of invented options along with the abstract
initial and goal states as input and generates a
high-level plan using A∗ search. This module
considers the initiation and termination sets of
the invented options as preconditions and ef-
fects. It uses the Euclidean distance between
the termination set of the option and the goal
configuration as the heuristic and the Euclidean
distance between the initiation and termination
sets as an initial approximation to the cost of the
option.

Once a plan in the form of a sequence of options
is obtained in line 5, SHARP starts refining each
option in the plan by computing option policies.
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However, before computing the policy for the first option in the plan, it generates an additional
option o0 such that Io0 = xi and βo0 = Io1 and learns its policy (line 9). If a policy exists for the
option from the previous invocation of the algorithm, then our approach uses the same policy. Before
computing a policy for an option, Alg. 2 checks for its option guide. If an option guide does not exist,
the option is marked as infeasible and a new high-level plan is computed from the initial abstract state
(line 14). Once an option guide is computed for an option, line 16 uses an off-the-shelf low-level
policy learner to compute a policy for it. After computing (or reusing) policies for all the options
in the plan, line 21 generates an additional option on+1 such that Ion+1

= βon and βon+1
= xg and

learns its policy.

Finally, we compute a composed policy by composing policies for every option in this high-level plan
(lines 18 and 22). A composed policy Π for a high-level plan is an FSA with one controller state for
each option in the plan. For a controller state qi, Π(x) = πi(x) where πi represents the policy for
option oi ∈ O. The controller makes a transition qi → qi+1 when the robot reaches a configuration
x ∈ Ioi+1

.

In order to aid transferability, SHARP only synthesizes options once per each environment and robot.
It efficiently transfers the learned option policies by updating the option costs (C) using the average
number of steps from initiation sets to the termination sets of the options in multiple rollouts of the
learned option policies (line 17).

4.1 Theoretical Results

We now present theoretical properties of Alg. 2. Let Bδ(x) for δ > 0 define the δ-neighborhood of
x ∈ X under the Euclidean metric. Recall that each controller implicitly defines a transition function
with a probability distribution µ(x+u) for the control action u (see Sec. 2). A δ-compliant controller
is defined as for which the set of support of one whose set of support for µ(x+ u) is Bδ(x+ u). Our
formal guarantees do not require knowledge of µ other than an upper bound on the support radius.
Here, we refer to δ as the support radius for the given controller.

The following theoretical results charaterize formal properties of the presented approach. We present
the results below; proofs are included in Appendix C.

Thm. 4.1 shows that the construction process of the options ensures that the zero-shot options are
indeed composable and can be used for high-level deterministic planning.
Theorem 4.1. For a given stochastic motion planning problem P = ⟨X ,U , x1, xn⟩, let Φ be the
set of identified critical regions and Ψ be the RBVD that induces the set of abstract state S and a
neighborhood function V . If there exists a sequence of distinct abstract states ⟨s1, . . . , sn⟩ such that
V(si, si+1) = 1 then there exists a composed policy Π such that the resulting configuration after the
termination of every option in Π would be the goal configuration xn.

Thm. 4.2 asserts that when used with an optimal low-level policy learner, SHARP is probabilistically
complete for holonomic robots.
Theorem 4.2. Given a stochastic motion planning problem P = ⟨X ,U , xi, xg⟩ for a holonomic
robot R using a controller with a support radius δc < δ, a motion planner that can compute δ-clear
motion plans, and an optimal low-level policy learner, if there exists a δ-clear motion plan for the
robot R from x1 to xn that forms a sequence of distinct abstract states, then Alg. 2 will find a proper
policy for the given stochastic motion planning problem.

These results provide the foundations for analyzing such approaches and show a completeness
result for the presented approach. However, our approach generalizes beyond the sufficient (and
not necessary) conditions used in the theorems above. In fact our empirical evaluation (Sec. 5) is
conducted on non-holonomic robots that violate the premises of these results. Furthermore, we use
default controllers with unknown support radii.

5 Empirical Results
We present the salient aspects of our implementation, setup, and observations here; additional results,
code, and data are available in the supplementary material.

Our evaluation is organized to address the following key questions: (1) Does the presented approach of
zero-shot option invention followed by hierarchical planning and refinement improve performance in
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terms of computational efficiency and solution quality?; and (2) Can zero-shot options be transferred
to new problems in the same environment?

Figure 2: Our test environments and robots.

Results across an extensive
evaluation suite indicate
that the presented approach
creates and uses zero-
shot options effectively.
In larger environments
(L1-L3), ours is the only
approach that shows sig-
nificant learning, and it
achieves a significantly
higher solution quality
than all baselines. We
now present our evaluation
framework and results in
detail.

Evaluation framework and metrics We organized the overall evaluation of the presented approach
as follows. Given a previously unseen environment Etest and a problem instance ⟨xi, xg⟩, SHARP
(Alg. 2) zero-shot invents options for Etest and uses them to compute a policy for the test problem
instance. The total solution time recorded for SHARP includes the time taken to run OptionInventor
(which includes predicting critical regions, creating state abstractions, inventing option signatures,
and computing option guides), and to execute hierarchical planning and refinement process listed
under the SHARP algorithm (Alg. 2).

We evaluated the computational efficiency of all considered approaches in terms of the number of
problems solved in a given amount of time. For learning-based approaches, a problem is considered
to be solved in these experiments when the current learned policy yields an average reward of +500
over 10 rollouts. For RRT-replan, a problem is considered to be solved when the robot reaches the
0.2m neighborhood of the goal configuration. All approaches were assigned a uniform timeout per
problem of 2400 or 9000 seconds.

In addition, we use two metrics to evaluate solution quality since it is often easy to compute
meaningless policies in a short time frame: The average solution cost is defined as the average
number of steps taken while executing a computed solution; solution reliability is defined as the
likelihood of solving the given problem by executing the computed solution. Both metrics are
computed over 20 independent trials of the computed solution on the input problem instance.

Figs. 3, 4, and 5 summarize the results of our evaluation in terms of these metrics across a wide range
of robots, environments and test problems. We discuss the details of this evaluation including notes
on our implementation, environment and baseline selection, and our main observations below.

Our implementation We implemented two variants of our approach: SHARP-centroids and
SHARP-interfaces, which invent and use centroid options and interface options, respectively. Both
implementations use PyBullet and PyTorch [42]. PyBullet does not feature stochasticity robot
movements. We introduced stochasticity by adding random perturbations (unknown to Alg. 2) in
control targets of actions during training and execution. We used default robot controllers to evaluate
the learned policies. We used HARP [47] with ϵ = 0 for computing zero-shot option guides.

We used 2−layered neural networks with 256 neurons in each layer for representing local policies for
the learned options. Inputs to these networks were the current configuration of the robot and a vector
to the nearest point on the option guide for the current option. We used +1000 as a pseudo reward for
reaching the termination set of each option and -100 as a penalty for drifting to a different abstract
state. We use SAC [16] as a low-level policy learner in lines 9, 16, and 21 of Alg. 2.

Test environments and robots We evaluated our approach across 7 test environments (Fig. 2)
(not included in training the critical region predictor), 3 non-holonomic robots (Fig. 2) and a total
of 60 navigation and manipulation problems. Dimensions of the environments are as follows: S1,
S2: 15m× 15m; L1, L2, L3: 75m× 75m. Problem specific timeouts were set at 2400s for small
environments and manipulation problems and 9000s for larger environments. For each environment,
we generated 5 problem instances by randomly sampling different initial and goal configuration pairs.
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Figure 3: (Higher values are better) Times taken (averaged over 5 trials) by our approach (SHARP) and
baselines to compute solutions in the test environments. X-axis shows the time and y-axis shows the fraction of
the problems solved in the given time.

Figure 4: (Contd. from Fig. 3 with same setup)
Results for manipulation problems with the Fetch.

We used the following robots: the ClearPath Husky
(3-DOF), the AgileX Limo (3-DOF), and the Fetch
manipulator robot (7-DOF). Details of these robots
are presented in Appendix E.

Baseline selection We considered and evaluated
several learning and planning approaches [34, 16, 31,
37, 36, 5] as potential baselines for this work. Of
these, only RRT-Replan [34] and SAC [16] solved
any problem instances within the timeouts discussed

above. Therefore, we compared our approach against SAC and RRT-Replan. SAC is an off-policy
deep reinforcement learning approach that learns a single policy for the overall stochastic motion
planning problem. We used the same network architecture as ours for SAC’s neural policy. We used
a terminal reward of +1000 and a step reward of −1 to train the SAC agent. RRT-Replan is a version
of the popular RRT algorithm that recomputes a plan from the robot’s current configuration if the
robot fails to successfully reach the goal after executing the initial plan. All approaches considered
used the same input robot models, simulators, and low-level controllers as our approach.

5.1 Analysis of Results

Computational Efficiency Figs. 3 and 4 show the fraction of problem instances solved in a given
amount of time by both variants of SHARP and the baselines. In our case, this includes the time
taken to create the abstract states and actions as well as to compute the solutions. Each subsequent
problem uses learned high-level actions (policies and options) from the previous problem instances
when available. Results show SHARP shows significantly greater scalability and computational
efficiency. In most cases, baselines take 2× the time taken by SHARP to compute a solution. These
differences increase for larger environments, where baselines were able to solve less than 50% of the
environments that SHARP solved within the same timeouts.

These results illustrate the impact of learning to zero-shot invent and utilize options: even when
the time for predicting critical regions, building abstractions, computing high-level plans, and
learning low-level policies is included, SHARP significantly outperforms the baselines. Manipulation
environments show a relatively smaller difference between performance of all the approaches owing
to smaller horizons. This reinforces the key contribution of our approach of creating problems with
smaller horizons using options in order to solve problems with significantly large horizons.

Solution quality Fig. 5 shows solution cost and solution reliability (as defined above) for solutions
computed by all considered approaches. These results show that SHARP’s planning over zero-shot
options results in lower cost solutions: they require significantly fewer steps during execution com-
pared to baselines, with the differences frequently spanning orders of magnitude. We acknowledge
that RRT-Replan is not an optimal planning approach. However, the solution quality also represents
the amount of time RRT-Replan had to re-compute and re-execute the solution.

Computing policies that account for stochasticity makes SHARP’s solution reliability uniformly above
90%, nearly 3× that of RRT-Replan (the best performing baseline) on the larger test environments.
RRT-Replan’s solutions had an execution success rate of ∼50% in the smaller navigation (S1, S2) and
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Figure 5: (Lower values or darker circles are better) Average number of steps taken in the successful execution
of the learned policies and success rates for our approach and the baselines. The pie chart over each bar represents
the success rate (shaded black area) while executing the learned policy.

manipulation (M1, M2) environments, and a success rate of less than 33% in the larger environments
(L1-L3). SAC’s solution reliability was lower, indicating limited scalability of end-to-end learning in
long-horizon problems.

Zero-shot option invention and reuse Appendix F shows the predicted critical regions, 2D
projections of the RBVDs, and synthesized option endpoints for our test environments. These results
show that our approach is able to zero-short invent options for new, unseen test environments. When
new problem instances come from a common environment, our approach is able to transfer these
zero-shot options and their policies to new problem instances (Appendix D). Centroid options showed
greater reuse rates on average across all environments (52%) than interface options (45%).

Generalization across robots Our approach generalizes the option inventor to different robots.
Thus, it supports different robots for training the option inventors and deployment or evaluation.
We test this generalization by using a simple non-holonomic robot with 3-DOF and deterministic
dynamics to generate the training data in 20 training environments of the size 5m× 5m for training
the option inventor for navigation environments. These learned inventors were evaluated using two
different non-holonomic robots in much larger environments.

6 Related Work
We discuss the relationship of our work with the most closely related approaches here and present a
broader discussion in Appendix A. To our knowledge, this is the first approach for zero-shot option
invention and hierarchical planning and refinement for stochastic robot planning problems that does
not require hand-coded abstractions or options as input. In addition, it can be applied to problems
and environments not seen during training.

Approaches for stochastic motion planning [11, 32, 57, 21, 7, 19] utilize analytical dynamical
models of the robot while this paper addresses problems where such models may not be available.
Another direction of research aims to learn task-specific subgoals in the given test environment [31,
4, 40, 41, 10]. These approaches utilize interactions with the test environments to learn useful
subgoals which can then be utilized for learning options and other forms of high-level actions. A
related direction of research focuses on learning task-specific options while interacting in the target
environment [51, 50, 9, 13, 5, 6]. In contrast, this paper focuses on zero-shot options that are created
without interacting with the test environments or tasks to improve efficiency and scalability.

Finally, there has been a lot of progress on short-horizon (∼ 5 seconds) dense-reward problems
where the robot receives frequent feedback for its actions from the environment. These approaches
include conventional control approaches as well as DRL approaches for visual model predictive
control (MPC) [58, 35, 14, 15, 18, 55, 33, 12, 2, 17]. While this paper’s focus is on long-horizon
sparse-reward planning problems with unknown stochastic dynamics, (visual) MPC techniques can
be used for learning low-level policies in conjunction with our approach (Alg. 2, line 22).

7 Conclusion
This paper presents the first approach that uses a data-driven process to learn to create state and
action abstractions for unseen environments and problem instances. We provide theoretical results
as well as a thorough empirical evaluation for the presented methods. These results show that the
presented approach effectively learns to create abstractions that provide strong performance and
quality advantages on a broad set of problems that are currently beyond the scope of known methods.
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A Extended Related Work

To the best of our knowledge, this is the first approach that uses a data-driven method for synthesizing
transferable and composable options and leverages these options with a hierarchical algorithm to
compute solutions for stochastic path planning problems. It builds upon the concepts of abstraction,
stochastic motion planning, option discovery, and hierarchical reinforcement learning and combines
reinforcement learning with planning. Here, we discuss related work in these areas.

Motion planning is a well-researched area. Numerous approaches [25, 34, 30, 44, 46] have been de-
veloped for motion planning in deterministic environments. Kavraki et al. [25], LaValle [34], Kuffner
and LaValle [30] develop sampling-based techniques that randomly sample configurations in the
environment and connect them for computing a motion plan from the initial and goal configurations.
Holte et al. [20], Pivtoraiko et al. [44], Saxena et al. [46] discretize the configuration space and use
search techniques such as A∗ search to compute motion plans in the discrete space.

Stochastic motion planning Multiple approaches [11, 32, 57, 21, 7, 19] have been developed
for performing motion planning with stochastic dynamics. Alterovitz et al. [1] build a weighted
graph called stochastic motion roadmap (SMR) inspired by the probabilistic roadmaps (PRM) [25]
where the weights capture the probability of the robot making the corresponding transition. Huynh
et al. [21] extend SMR for computing stochastic policies through value iteration over motion trees
constructed using RRT [34]. Sun et al. [52] use linear quadratic regulator -- a linear controller
that does not explicitly avoid collisions -- along with value iteration to compute a trajectory that
maximizes the expected reward. However, these approaches require an analytical model of the
transition probability of the robot’s dynamics. Tamar et al. [54] develop a fully differentiable neural
module that approximates value iteration (VI) and can be used for computing solutions for stochastic
path planning problems. However, these approaches [1, 52, 54] require discretized actions. Du
et al. [11], Van Den Berg et al. [56] formulate a stochastic motion planning problem as a POMDP
to capture uncertainty in robot sensing and movements. Multiple approaches [23, 13, 24] design
end-to-end reinforcement learning approaches for solving stochastic motion planning problems.
These approaches only learn policies to solve one path-planning problem at a time and do not transfer
knowledge across multiple problems. In contrast, our approach does not require discrete actions and
it learns options that are transferrable to different problems.

Subgoal discovery Several approaches have considered the problem of learning task-specific
subgoals. Kulkarni et al. [31], Bacon et al. [4], Nachum et al. [40, 41], Czechowski et al. [10] use
intrinsic reward functions to learn a two-level hierarchical policy. The high-level policy predicts
a subgoal that the low-level goal-conditioned policy should achieve. The high-level and low-level
policies are then trained simultaneously using simulations in the environment. Paul et al. [43] combine
imitation learning with reinforcement learning for identifying subgoals from expert trajectories and
bootstrap reinforcement learning. Levy et al. [36] learn a multi-level policy where each level learns
subgoals for the policy at the lower level using Hindsight Experience Replay (HER) [3] for control
problems rather than long-horizon motion planning problems in deterministic settings. Kim et al.
[26] randomly sample subgoals in the environment and use a path planning algorithm to select the
closest subgoal and learn a policy that achieves this subgoal.

Option discovery Numerous approaches [51, 50, 9, 33, 13, 5, 6] perform hierarchical learning
by identifying task-specific options through experience collected in the test environment and then
use these options [53] along with low-level primitive actions. Stolle and Precup [51], Şimşek et al.
[50] lay the foundation for discovering options in discrete settings. They collect trajectories in the
environment and use them to identify high-frequency states in the environment. These states are
used as termination sets of the options and initiation sets are derived by selecting states that lead to
these high-frequency states. Once options are identified, they use Q-learning to learn policies for
these options independently to formulate Semi-MDPs [53]. Bagaria and Konidaris [5] learn options
in a reverse fashion. They compute trajectories in the environment that reaches the goal state. In
these trajectories, they use the last K points to define an option. These points are used to define the
initiation set of the option and the goal state is used as a termination set. They continue to partition
the rest of the collected trajectories similarly and generate a fixed number of options.

Several approaches [58, 35, 14, 15, 18, 55, 12, 2, 17] have explored vision-based model predictive
control for robot planning problems. These approaches learn latent representations of the kinematic
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and dynamics model of the robot and use them to perform model-based control for the given robot
control problem. These approaches focus on stochastic optimal control problems. In contrast, our
approach focuses on relatively long-horizon robot planning problems and can be used with arbitrary
controllers for short-horizon control (∼ 5 seconds).

Planning with options Approaches for combining symbolic planning with reinforcement learn-
ing [48, 59, 22, 38, 28, 29, 49] use pre-defined abstract models to combine symbolic planning with
reinforcement learning. In contrast, our approach learns such options (including initiation and termi-
nation sets) as well as their policies and uses them to compute solutions for stochastic path planning
problems with continuous state and action spaces.

B Training The Critical Region Predictor

Alg. 2 first needs to identify critical regions [39] to synthesize options in the given environment.
Recall that critical regions are regions in the environment that have a high density of solutions for the
given class of problems but are hard to sample under uniform distribution. We train a deep neural
network that learns to identify critical regions in a given environment using an occupancy matrix of
the environment. Given a set of training environments Etrain, training data for such a network can be
generated by solving multiple randomly sampled motion planning problems.

These critical region predictors are environment independent, and they are also generalizable across
robots to a large extent. Furthermore, the approach presented here directly used the open-source criti-
cal regions predictors made available by Shah and Srivastava [47]. These predictors are environment
independent and need to be trained only once per the kinematic characteristics of a robot. E.g., the
non-holonomic robots used to evaluate our approach (details in Sec. 5) are different from those used
by Shah and Srivastava [47], however, we used the critical regions predictor developed by them for a
rectangular holonomic robot.

Shah and Srivastava [47] use 20 training environments (Etrain) to generate the training data. For
each training environment etrain ∈ Etrain, they randomly sample 100 goal configurations. Shah and
Srivastava [47] randomly sample 50 initial configurations for each goal configuration and compute
motion plans for them using an off-the-shelf motion planner and a kinematic model of the robot.
They use UNet [45] with Tanh activation function for intermediate layers and Sigmoid activation for
the last layer. They use the weighted logarithmic loss as the loss function. Lastly, they use ADAM
optimizer [27] with a learning rate of 10−4 and train the network for 50, 000 epochs.

C Theoretical Results

Lemma C.1. Let X be the configuration space of the robot R and let Φ and Ψ be the set of critical
regions and RBVD respectively inducing the set of abstract states S and the neighborhood function
V . If there exists a pair of neighboring abstract states si, sj ∈ S such that V(si, sj) = 1 then there
would exist a pair of option endpoints Iij and βij such that Iij ⊂ si and βij ⊂ sj .

Proof. (Sketch) The proof is straightforward and directly follows from the Alg. 2 itself. Our approach
for create options considers all pairs of neighboring abstract states and creates options that transition
between them. For more details, refer to Sec. 3.

Proposition C.1. Let R be a holonomic robot using a δc-complient controller. For an option o with a
pair of endpoints ⟨Io, βo⟩, if there exists an option guide between Io and βo in the form of a δ-clear
motion plan such that δc < δ then there exists a proper partial policy for the option o.

Proof. (Sketch) Let Go = ⟨p1, . . . , pn⟩ be an option guide for the option o as defined in Sec. 3.2.
Here, each pi ∈ Go refers to a collision-free configuration xi ∈ Xfree that has a collision-free δ-
neighborhood represented with Bδ(pi). Now, given that the robot uses a δc-complient controller
such that δc < δ, an optimal partial proper policy can be defined using a function that gives the next
closest point on the option guide moving towards the termination set of the option o. Let No : x 7→ pi
such that ∀j > i, d(pj , x) > d(pi, x) and d(pi, βo) < d(x, βo). An optimal policy can be such that
πo(x) = No(x) given a δ-clear Gi. Given that the robot is using δc-complient controller with the
support radius δc < δ, the robot would always end up in Bδc neighborhood of a point in the option
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guide which a subset of Bδ collision-free neighborhood. This ensures existence of a proper policy for
the option o.

Lemma C.2. Let R be a holonomic robot using a δc-complient controller. If there exists a pair of
option endpoints Ii and βi with an option guide Gi in the form of a δ-clear motion plan between
Ii and βi such that δc < δ, and if the low-level policy learner is optimal, then Alg. 2 will learn an
option oi = ⟨Ii, βi,Gi, πi⟩.

Proof. (Sketch) The proof is straightforward. Proposition C.1 proves existence of a proper policy πi
for an option with endpoints Ii, βi and a holonomic robot R using δc-complient controller if there
exists δ-clear option guide Gi such that δc < δ. The rest of the proof relies on the optimality of the
low-level learning. The option guide Gi also induces a dense pseudo-reward function Ri (Sec. 3.2)
that provides a smooth reward function that guides the robot to the termination set of the robot. Given
that πi is an optimal policy (proposition C.1) and the low-level policy learner is optimal, it should
compute πi.

Theorem C.1. For a given stochastic motion planning problem P = ⟨X ,U , x1, xn⟩, let Φ be the
set of identified critical regions and Ψ be the RBVD that induces the set of abstract state S and a
neighborhood function V . If there exists a sequence of distinct abstract states ⟨s1, . . . , sn⟩ such that
V(si, si+1) = 1 then there exists a composed policy Π such that the resulting configuration after the
termination of every option in Π would be the goal configuration xn.

Proof. (Sketch) The proof directly derives from the definition of the endpoints for the centroid and
interface options. Given a sequence of adjacent abstract states ⟨s1, . . . , sn⟩, Def. 4 and 6 ensures a
sequence of options ⟨o1, . . . , on⟩ such that βi = Ii+1. This implies that an option can be executed
once the previous option is terminated. Given this sequence of options ⟨o1, . . . , on⟩, according to
the definition of the composed policy, there exists a composed policy Π such that for every pair of
consecutive options oi, oj ∈ Π, Ioj = βoi . Thus, we can say that if every option in Π terminates,
then the resulting configuration would be the goal configuration.

Theorem C.2. Given a stochastic motion planning problem P = ⟨X ,U , xi, xg⟩ for a holonomic
robot R using a controller with a support radius δc < δ, a motion planner that can compute δ-clear
motion plans, and an optimal low-level policy learner, if there exists a δ-clear motion plan for the
robot R from x1 to xn that forms a sequence of distinct abstract states, then Alg. 2 will find a proper
policy for the given stochastic motion planning problem.

Proof. (Sketch) Let T = ⟨xi, . . . , xg⟩ be the δ-clear motion plan from the initial configuration xi to
goal configuration xg . This δ-clear motion plan forms a non-repeating sequence of abstract states. Let
p = ⟨s1, . . . , sn⟩ be this sequence of distinct abstract states. Given that Alg. 2 explores all possible
sequences of high-level states between a given pair of initial and goal abstract states (line 10), we can
say that eventually, it would find this sequence of abstract states p and the corresponding sequence
of options for it. We can also deduce that for every pair of consequent abstract states sj , sj+1 ∈ p,
there exists a pair of consequent configurations xj , xj+1 ∈ T such that xj ∈ sj and xj+1 ∈ sj+1

and V(sj , sj+1) = 1 and that there exists a δ-clear motion plan between abstract states sj and sj+1.
Now, lemmas C.1 and C.2 (provided in Appendix C) show that given a motion planner that computes
a δ-clear motion plan and an optimal low-level policy learner, Alg. 2 would be able to learn options
with proper policies for every pair of neighboring states. This implies that our approach would be
able to learn options for each pair of consequent states in p. Lastly, Theorem C.1 proves that if there
exists a sequence of distinct abstract states then there exists a composed policy of learned options
that when executed successfully in xi terminates in xg i.e., a solution for the given problem.
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D Option Reuse Rates

S1 S2 L1 L2 L3 M1 M2
Interface
Options 43% 33% 37% 33% 42% 50% 75%

Centroid
Options 50% 50% 39% 36% 50% 65% 75%

Figure 6: Percentage of options that our approach reused from the task they were computed to every
subsequent task they were needed across 5 test tasks in each environment.

E Evaluation Robots

The Husky is a 4-wheeled differential drive robot that can move in one direction and rotate in place;
the Limo is also a 4-wheeled omnidirectional robot with an Ackermann dynamics; the Fetch is an
8-DOF manipulator robot.
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F Automatically Identified Critical Regions and RBVDs

F.1 Environments S1-S4 15m× 15m

Env S1 Env S2 Env S3 Env S4

Figure 7: Test environments of the size 15m× 15m with the identified abstract states. These images show 2D
projections of high-dimensional region-based Voronoi diagrams. Each colored partition represents an abstract
state. Top: The white circles represent centroids of the predicted critical regions used to synthesize centroid
options. Bottom: The white circles represent the interface regions for each pair of abstract states used to
synthesize interface options.ere
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Environments L1-L3 75m× 75m

Env L1 Env L2 Env L3

Figure 8: Test environments of the size 75m× 75m with the identified abstract states. These images show 2D
projections of high-dimensional region-based Voronoi diagrams. Each colored partition represents an abstract
state. Top: The white circles represent centroids of the predicted critical regions used to synthesize centroid
options. Bottom: The white circles represent the interface regions for each pair of abstract states used to
synthesize interface options.
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G Evaluation Configuration and Hyper Parameters

All experiments were conducted on an Ubuntu 18.04 system with 3.6 GHz 24 thread AMD Thread-
ripper PRO 5965WX with 64 GB memory. All algorithms were implemented using Python. We did
not use GPU to train our DRL approaches given RRT-Replan can not use GPUs.

The hyperparameters other than the 2400 and 9000 seconds of timeout for each approach are as
follows.

SAC Parameters:

Parameter Value
network architecture [256,256]
action noise 0.1
learning_starts 1000 steps
enf_coef auto
optimize_memory True
learning rate 0.003
use_sde True
batch size 256
buffer size 1000000

RRT Parameters

Parameter Value
step size 0.05 / 0.5
goal tolerance 0.2
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