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Abstract
Robust reinforcement learning (RL) seeks to train
policies that can perform well under environment
perturbations or adversarial attacks. Existing
approaches typically assume that the space of
possible perturbations remains the same across
timesteps. However, in many settings, the space
of possible perturbations at a given timestep de-
pends on past perturbations. We formally in-
troduce temporally-coupled perturbations, pre-
senting a novel challenge for existing robust RL
methods. To tackle this challenge, we propose
GRAD, a novel game-theoretic approach that
treats the temporally-coupled robust RL prob-
lem as a partially-observable two-player zero-sum
game. By finding an approximate equilibrium in
this game, GRAD ensures the agent’s robustness
against temporally-coupled perturbations. Empiri-
cal experiments on a variety of continuous control
tasks demonstrate that our proposed approach ex-
hibits significant robustness advantages compared
to baselines against both standard and temporally-
coupled attacks, in both state and action spaces.

1. Introduction
In recent years, reinforcement learning (RL) has demon-
strated remarkable success in tackling complex decision-
making problems in various domains. However, the vul-
nerability of deep RL algorithms to test-time changes in
the environment or adversarial attacks has raised significant
concerns for real-world applications. Developing robust
RL algorithms that can defend against these adversarial at-
tacks is crucial for the safety, reliability and effectiveness of
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RL-based systems.

In most existing research on robust RL (Huang et al., 2017;
Liang et al., 2022; Sun et al., 2022; Tessler et al., 2019;
Zhang et al., 2020), the adversary is able to perturb the ob-
servation or action every timestep under a static constraint.
Specifically, the adversary’s perturbations are constrained
within a predefined space, such as an Lp norm, which re-
mains unchanged from one timestep to the next. This stan-
dard assumption in the robust RL literature can be referred
to as a non-temporally-coupled assumption. This static
constraint, however, can result in much different way of
perturbation at every consecutive time steps. For example,
the attacker may be able to blow the wind hard southeast at
time t but northwest at time t+1 within this Lp norm under
this static constraint. In contrast, in the realm of real-world
settings, the adversary may not have complete flexibility to
perturb the environment differently across timesteps. For
example, it is unlikely for the wind to move in one direction
in one second, then in the opposite direction in the next
second. In these temporally-coupled settings, employing
a robust policy learning technique designed for the static
attack strategy would result in an excessively conservative
policy. However, by formulating the robust RL problem
as a partially-observable two-player game, we introduce a
game-theoretic algorithm which lets the agent automatically
adapt to the adversary under any attack constraints, either
standard or temporally-coupled.

In this paper, we propose a novel approach: Game-theoretic
Response approach for Adversarial Defense (GRAD) that
leverages Policy Space Response Oracles (PSRO) (Lanctot
et al., 2017) for robust training in the temporally-coupled
setting. Our method aims to enhance the agent’s resilience
against the most powerful adversary in both state and action
spaces. We model the interaction between the agent and
the temporally-coupled adversary as a two-player zero-sum
game and employ PSRO to ensure the agent’s best response
against the learned adversary and find an approximate equi-
librium. This game-theoretic framework empowers our
approach to effectively maximize the agent’s worst-case
rewards by adapting to the strongest adversarial strategies.

Our contributions are three-fold: First, we propose a novel
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class of temporally-coupled adversarial attacks to identify
the realistic pitfalls of prior threat models and propose a
challenge for existing robust RL methods which overlook
the strength of temporally-coupled adversaries. Secondly,
we introduce a game-theoretic response approach, referred
to as GRAD, for robust training with a temporally-coupled
adversary. We elaborate the theoretical advantages of our
approach compared to existing robust RL methods. Lastly,
we provide extensive empirical results that demonstrate the
effectiveness of our approach in defending against both
temporally-coupled attacks and standard (non-temporally
coupled) attacks. Our evaluations span across various con-
tinuous control tasks, considering perturbations in both
state and action spaces. Figure 1 shows interpretable phe-
nomenons of GRAD agent and robust baselines under dif-
ferent types of attacks in Humanoid.

Our robust model: more robust and stable under different types of  attacks

Robust baselines: robust under standard attacks, fall down under the temporally-coupled attacks

Standard Attacks Temporally-coupled Attacks

Figure 1. The robust GRAD agents (top) and the state-of-the-art
robust WocaR-RL (Liang et al., 2022)(bottom) show different
learned behaviors. Under standard non-temporally-coupled attacks,
both agents maintain basic body stability, with the GRAD agent
attempting to avoid lateral rotations. However, under temporally-
coupled attacks, the baseline agent is prone to falling towards one
side, while GRAD maintains a higher level of robustness.

2. Related Work
Robust RL against adversaries perturbations
Regularization-based methods (Zhang et al., 2020;
Shen et al., 2020; Oikarinen et al., 2021) enforce the policy
to have similar outputs under similar inputs, which achieves
certifiable performance for DQN in some Atari games.
But in continuous control tasks, these methods may not
reliably improve the worst-case performance. A recent
work by Korkmaz (Korkmaz, 2021) points out that these
adversarially trained models may still be sensible to new
perturbations. Attack-driven methods train DRL agents
with adversarial examples. Some early works (Kos & Song,
2017; Behzadan & Munir, 2017; Mandlekar et al., 2017;
Pattanaik et al., 2018; Franzmeyer et al., 2022) apply weak
or strong gradient-based attacks on state observations to
train RL agents against adversarial perturbations. Zhang
et al. (Zhang et al., 2021) and Sun et al. (Sun et al., 2022)
propose to alternately train an RL agent and a strong RL
adversary, namely ATLA, which significantly improves the
policy robustness against rectangle state perturbations. A
recent work by Liang et al. (Liang et al., 2022) introduce a
more principled adversarial training framework which does
not explicitly learn the adversary, and both the efficiency

and robustness of RL agents are boosted. There is also a
line of work studying theoretical guarantees of adversarial
defenses in RL (Lütjens et al., 2020; Oikarinen et al., 2021;
Fischer et al., 2019; Kumar et al., 2022; Wu et al., 2022;
Sun et al., 2023) in various settings.

Robust RL against action perturbations. Besides ob-
servation perturbations, attacks can happen in many other
scenarios. For example, the agent’s executed actions can be
perturbed (Pan et al., 2022; Tan et al., 2020; Tessler et al.,
2019; Lee et al., 2021; Lanier et al., 2022). Moreover, in a
multi-agent game, an agent’s behavior can create adversarial
perturbations to a victim agent (Gleave et al., 2020). Pinto
et al. (Pinto et al., 2017) model the competition between
the agent and the attacker as a zero-sum two-player game,
and train the agent under a learned attacker to tolerate both
environment shifts and adversarial disturbances.

Two-player zero-sum games. There are a number of
related deep reinforcement learning methods for two-
player zero-sum games. CFR-based techniques such as
Deep CFR (Brown et al., 2019a), DREAM (Steinberger
et al., 2020), and ESCHER (McAleer et al., 2023), use
deep reinforcement learning to approximate CFR. Policy-
gradient techniques such as RPG (Srinivasan et al., 2018),
NeuRD (Hennes et al., 2020), Friction-FoReL (Perolat
et al., 2021; 2022), and MMD (Sokota et al., 2022), ap-
proximate Nash equilibrium via modified actor-critic algo-
rithms. Our robust RL approach takes the double oracle tech-
niques such as PSRO (Lanctot et al., 2017) as the backbone.
PSRO-based algorithms have been shown to outperform the
previously-mentioned algorithms in certain games (McAleer
et al., 2021). More related work on robust MDP, safe RL
and game-theoretic RL is discussed in Appendix B.

3. Preliminaries
Notations and Background. A Markov decision pro-
cess (MDP) can be defined as a tuple ⟨S,A,P,R, γ⟩,
where S and A represent the state space and the action
space, R is the reward function: R : S × A → R,
P : S × A → ∆(S) represents the set of probability dis-
tributions over the state space S and γ ∈ (0, 1) is the dis-
count factor. The agent selects actions based on its policy,
π : S → ∆(A), which is represented by a function approxi-
mator (e.g. a neural network) that is updated during training
and fixed during testing. The value function is denoted by
V π(s) := EP,π[

∑∞
t=0 γ

tR(st, at) | s0 = s], which mea-
sures the expected cumulative discounted reward that an
agent can obtain from state s ∈ S by following policy π.

State Adversaries. State adversary is a type of test-time
attacker that perturbs the agent’s state observation returned
by the environment at each time step and aims to reduce
the expected episode reward gained by the agent. While the
input to the agent’s policy is perturbed, the underlying state
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in the environment remains unchanged. State adversaries,
such as those presented in (Zhang et al., 2020; 2021; Sun
et al., 2022), typically consider perturbations on a continu-
ous state space under a certain attack budget ϵ. The attacker
perturbs a state s into s̃ ∈ Bϵ(s), where Bϵ(s) is a ℓp norm
ball centered at s with radius ϵ.

Action Adversaries. Action adversaries’ goal is to manip-
ulate the behavior of the agent by directly perturbing the
action a executed by the agent to ã before the environment
receives it (altering the output of the agent’s policy), causing
it to deviate from the optimal policy. In addition to directly
perturbing actions, recent work (Tessler et al., 2019) has
also considered the setting where the action adversary se-
lects a different, adversarial action with the probability α as
an uncertainty constraint. In this paper, we focus solely on
continuous-space perturbations and employ an admissible
action perturbation budget as a commonly used ℓp threat
model, similar to the state perturbation.

Zero-sum Game. We model the game between the agent
and the adversary as a two-player zero-sum game that is
a tuple ⟨S,Πa,Πv,P,R, γ⟩, where Πa and Πv denote the
sets of policies for the agent and the adversary, respectively.
In this framework, both the transition kernels P and the
reward functionR of the victim agent depend on not only
its own policy πa ∈ Πa, but also the adversary’s policy
πv ∈ Πv . The adversary’s reward R(st, āt) is defined as the
negative of the victim agent’s reward R(st, at), reflecting
the zero-sum nature of the game.

Double Oracle Algorithm (DO) and Policy Space Re-
sponse Oracles (PSRO). Double oracle (McMahan et al.,
2003) is an algorithm for finding a NE in normal-form
games. The algorithm operates by keeping a population
of strategies Πt at time t. Each iteration, a NE π∗,t is com-
puted for the game restricted to strategies in Πt. Then, a best
response BRi(π

∗,t
−i ) to this NE is computed for each player i

and added to the population, Πt+1
i = Πt

i ∪ {BRi(π
∗,t
−i )} for

i ∈ {1, 2}. Although in the worst case DO must expand all
pure strategies before π∗,t converges to a NE in the original
game, in many games DO terminates early and outperforms
alternative methods. An open problem is characterizing
games where DO will outperform other methods.

Policy Space Response Oracles (PSRO) (Lanctot et al.,
2017; Muller et al., 2019; Feng et al., 2021; McAleer et al.,
2022b;a) are a method for approximately solving very large
games. PSRO maintains a population of reinforcement learn-
ing policies and iteratively trains a best response to a mixture
of the opponent’s population. PSRO is a fundamentally dif-
ferent method than the previously described methods in that
in certain games it can be much faster but in other games it
can take exponentially long in the worst case. Neural Exten-
sive Form Double Oracle (NXDO) (McAleer et al., 2021)
combines PSRO with extensive-form game solvers and can

be used to converge faster that PSRO. The full algorithms
of DO and PSRO are in Appendix A.

4. Methodology
In this section, we formally define temporally-coupled at-
tacks and introduce our game-theoretic response approach
for adversarial defense against the proposed attacks.

4.1. Temporally-coupled Attack

In adversarial RL, it is common and reasonable to impose
restrictions on the power of an adversary. To achieve this, we
introduce the concept of standard admissible perturbations,
as defined in Definition 4.1, which restricts the adversary to
perturb a state st or an action at to a predefined set.

Definition 4.1 (ϵ-Admissible Adversary Perturbations). An
adversarial perturbation pt is considered admissible in the
context of a state adversary if, for a given state st at timestep
t, the perturbed state s̃t defined as s̃t = st + pt satisfies
∥st − s̃t∥ ≤ ϵ, where ϵ is the state budget constraint. Simi-
larly, if pt is generated by an action adversary, the perturbed
action ãt defined as ãt = at+ pt should be under the action
constraint of ∥at − ãt∥ ≤ ϵ.

Standard
Perturbations

Temporally-coupled
Perturbations

Figure 2. Standard perturbations and Temporally-coupled pertur-
bations in a 2d example.
While the budget constraint ϵ is commonly applied in prior
adversarial attacks, it may not be applicable in many real-
world scenarios where the attacker needs to consider the
past perturbations when determining the current perturba-
tions. Specifically, in the temporal dimension, perturbations
exhibit a certain degree of correlation. To capture this char-
acteristic, we introduce the concept of temporally-coupled
attackers. We propose a temporally-coupled constraint as
defined in Definition 4.2, which sets specific limitations
on the perturbation at the current timestep based on the
previous timestep’s perturbation.

Definition 4.2 (ϵ̄-Temporally-coupled Perturbations). A
temporally-coupled state perturbation pt is deemed ac-
ceptable if it satisfies the temporally-coupled constraint
ϵ̄: ∥st − s̃t − (st+1 − s̃t+1)∥a ≤ ϵ̄ where s̃t and s̃t+1

are the perturbed states obtained by adding pt and pt+1

to st and st+1, respectively. For action adversaries, the
temporally-coupled constraint ϵ̄ is similarly denoted as
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∥at − ãt − (at+1 − ãt+1)∥ ≤ ϵ̄, where ãt and ãt+1 are
the perturbed actions.

When an adversary is subjected to both of these constraints,
it is referred to as a temporally-coupled adversary in this
paper. Each timestep’s perturbation is restricted within
a certain range ϵ, similar to other regular adversarial at-
tacks. However, it is further confined within a smaller
range ϵ̄ based on the previous timestep’s perturbation. This
temporally-coupled design offers two significant benefits.

Considering the temporal coupling between perturbations
over time by constraining the next perturbations in a smaller
range and discouraging drastic changes in attack direction,
the adversary can launch continuous and stronger attacks
while preserving a certain degree of stability. Intuitively, if
the adversary consistently attacks in one direction, it can
be more challenging for the victim to preserve balance and
defend effectively compared to when the perturbations alter-
nate between the left and right directions.

Then, the temporally-coupled constraint also enables the
adversary to efficiently discover the optimal attack strat-
egy by narrowing down the range of choices for each
timestep’s perturbation. Reducing the search space does
not necessarily weaken the adversary; in fact, it can po-
tentially make the adversary stronger if the optimal attack
lies within the temporally-determined search space, which
is supported by our empirical results. By constraining the
adversary to a more focused exploration of attack strategies,
the temporally-coupled constraint facilitates the discovery
and exploitation of more effective and targeted adversarial
tactics that exhibit less variation at consecutive timesteps.
This characteristic enhances the adversary’s ability to launch
consistent and potent attacks.

Practically, it is crucial to carefully determine ϵ̄ to guarantee
that this additional temporally-coupled constraint does not
impede the performance of attacks but rather amplifies their
effectiveness. The effectiveness of different choices for ϵ̄
was empirically evaluated in our empirical studies, high-
lighting the benefits it brings to adversarial learning. By
leveraging such a temporally-coupled adversary, we pro-
pose a novel approach for robust training that enhances the
agent’s robustness. The detailed advantages of this approach
will be elaborated in the following section.

4.2. GRAD: Game-theoretic Response approach for
Adversarial Defense

Existing works primarily focus on the non-temporally-
coupled assumption and thus may not be suitable in many
real-world scenarios, but by treating the game-theoretic
framework with a temporally-coupled adversary, our robust
RL approach offers a more generalized solution that covers
both standard and temporally-coupled settings.

In our Game-theoretic Response approach for Adversar-

Algorithm 1 Game-theoretic Response approach for Adver-
sarial Defense (GRAD)

Input: Initial policy sets for the agent and adversary
Π : {Πa,Πv}
Compute expected utilities as empirical payoff matrix
UΠ for each joint π : {πa, πv} ∈ Π
Compute meta-Nash equilibrium σa and σv over policy
sets (Πa,Πv)
for epoch in {1, 2, . . .} do

for many iterations Nπa
do

Sample the adversary policy πv ∼ σv

Train π′
a with trajectories against the fixed adversary

πv: Dπ′
a
:= {(ŝkt , akt , rkt , ŝkt+1)}

∣∣B
k=1

(when the fixed adversary only attacks the action
space, ŝt = st.)

end for
Πa = Πa ∪ {π′

a}
for many iterations Nπv do

Sample the agent policy πa ∼ σa

Train the adversary policy π′
v with trajectories:

Dπ′
v
:= {(skt , ākt ,−rkt , skt+1)}

∣∣B
k=1

(π′
v applies attacks to the fixed victim agent πa based

on āt using different methods)
end for
Πv = Πv ∪ {π′

v}
Compute missing entries in UΠ from Π
Compute new meta strategies σa and σv from UΠ

end for
Return: current meta Nash equilibrium on whole popu-
lation σa and σv

ial Defense (GRAD) framework as a modification of
PSRO (Lanctot et al., 2017), an agent and a temporally-
coupled adversary are trained as part of a two-player game.
They play against each other and update their policies in re-
sponse to each other’s policies. The adversary is modeled as
a separate agent who attempts to maximize the impact of at-
tacks on the original agent’s performance and whose action
space is constrained by both ϵ and ϵ̄. Note that existing ro-
bust RL approaches such as (Liang et al., 2022) heavily rely
on the ϵ-budget assumption, while the temporally-coupled
constraints or other types of attack constraints are not con-
sidered or addressed. In contrast, GRAD naturally con-
siders both the traditional ϵ-budget constraint and the new
temporally-coupled constraint when calculating the best re-
sponse. Meanwhile, the original agent’s objective function
is based on the reward obtained from the environment, tak-
ing into account the perturbations imposed by the adversary.
The process continues until an approximate equilibrium is
reached, at which point the original agent is considered to
be robust to the attacks learned by the adversary. We show
our full algorithm in Algorithm 1.
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For different types of attackers, the agent generates different
trajectories while training against a fixed attacker. If the
attacker only targets the state, then the agent’s training data
will consist of the altered state ŝ after adding the pertur-
bations from the fixed attacker. If the attacker targets the
agent’s action, the agent’s policy output a will be altered as
â by the attacker, even if the agent receives the correct state
s during training. However, this action alteration may not
be detectable in the trajectories collected by the agent. As
for the adversary’s training, after defining the adversary’s
attack method and policy model, the adversary applies at-
tacks to the fixed agent and collects the original state, along
with the negative of the agent’s reward −r, to train the ad-
versary. Furthermore, the differences between GRAD and
ATLA (Zhang et al., 2021) are explained in Appendix C.

5. Experiments
Evaluation Metrics By employing diverse sets of attack-
ers: those specialized in perturbing the state space, those fo-
cusing on the action space and those capable of adaptably tar-
geting both spaces, we conduct a comprehensive evaluation
of the state-of-the-art robustness of our proposed method,
GRAD, in comparison to existing robust baselines. This
evaluation sheds light on the effectiveness of GRAD across
a wide range of attack scenarios and highlights its robustness
against different types of adversaries. In terms of evalua-
tion metrics, we report the average test episodic rewards
both under no attack and against the strongest traditional or
temporally-coupled adversarial attacks to reflect both the
natural performance and robustness of trained agents.

We calculated the average normalized rewards for each eval-
uation metric and each robust agent in all the environments
as in Figure 3a, 3b and 3c. Table 1 presents the detailed
comparison of robust moedels under diverse types of best
temporally-coupled attacks, while more details of our exper-
iments and full results can be found in Appendix D.

Case I: Against attacks on state space

For state adversaries, among the ATLA (Zhang et al., 2021;
Sun et al., 2022) methods, PA-ATLA-PPO is the most ro-
bust, which trains with the standard strongest PA-AD at-
tacker. As a modification, we train PA-ATLA-PPO* with a
temporally-coupled PA-AD attacker, which is the type of
adversary trained with GRAD agent. For a more intuitive
and fair comparison, we only present the rewards of the
best-performing ATLA agents under the type of attacks they
were trained with.

In the absence of any attacks, GRAD maintains a competi-
tive natural reward, which indicates that the agent’s perfor-
mance does not degrade significantly in the environment
where is no adversary after approaching an approximate
Nash equilibrium with the adversary. Even without train-
ing with regular attackers, our method demonstrates signifi-

cantly better robustness under the non-temporally-coupled
type of attack, particularly in the highest-dimensional and
challenging environment, Humanoid, where it outperforms
other methods by a large margin. Under our proposed
temporally-coupled attacks, the average performance of
our approach surpasses the state-of-the-art by up to 45%,
highlighting the strong robustness of the policies learned by
GRAD against all types of state adversarial attacks.

Case II: Against attacks on action space

In addition to state attacks, we assess the robustness of our
methods against action adversaries that perturb the actions
taken by the agent. We are the first to train an RL-based
action adversary using the trajectory outlined in Algorithm 1,
which leads to a more significant drop in rewards compared
to action noise and showcases the worst-case performance
of our robust agents under action perturbations.

Among our baselines, we include AR-PPO, although it is not
robust against strong action adversaries and performs well
only under random noise. Another modification we made
is AC-ATLA-PPO, where we train the agent alternately
with the aforementioned action adversary. Similar to PA-
ATLA-PPO*, we also train AC-ATLA-PPO* agents with a
temporally-coupled action adversary, which is also utilized
to train our GRAD agents.

In general, while action perturbation may not cause as strong
of a "damage" as state perturbation, our GRAD method still
achieves superior robustness. In terms of natural reward,
GRAD performs comparably with other baselines. While
the advantage of GRAD may not be apparent or significant
under standard action attacks in less challenging environ-
ments, it surpasses other methods by more than 10% on Ant
and Humanoid. Under temporally-coupled action attacks,
GRAD consistently outperforms the most robust baseline
by an average of over 20%, particularly exhibiting excep-
tional robustness on Humanoid. These results demonstrate
the effective defense of GRAD against different types of
adversarial attacks in the action space.

Case III: Against attacks on either state or action spaces

In prior works, adversarial attacks typically focus on per-
turbing either the agent’s observations or introducing noise
to the action space. However, in real-world scenarios, agents
may encounter both types of attacks. To address this chal-
lenge, we propose an adversary called the State or Action
Adversary (SA-AD), which allows the adversary to choose
between attacking the agent’s state or action at each time
step, integrating this choice into the adversary’s action space.
Similar to the previous experiments, We train SA-ATLA-
PPO with SA regular attacker, while SA-ATLA-PPO* and
GRAD are trained with temporally-coupled SA attackers.

Our experimental results demonstrate that GRAD obtains
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Figure 3. Histograms 3a, 3b and 3c: normalized average rewards for GRAD and baselines across five environments, which mitigate the
impact of varying reward ranges across environments. Each bar represents the distribution of rewards obtained by robust agents under
state, action, or adaptable attacks. Figure 3d presents ablation results against temporally-coupled adversaries with different ϵ̄.

Best Attack Model Hopper Walker2d Halfcheetah Ant Humanoid

Temporally-
Coupled

State Attack

PA-ATLA-PPO* 2286 ± 29 2095 ± 34 3572 ± 31 2594 ± 19 1462 ± 27
WocaR-PPO 2298 ± 13 2562 ± 18 4136 ± 28 3046 ± 10 1974 ± 33

GRAD (Ours) 2867 ± 36 2945 ± 27 4526 ± 29 3519 ± 24 2864 ± 28

Temporally-
Coupled

Action Attack

AC-ATLA-PPO* 2625 ± 15 2780 ± 26 3815 ± 36 3382 ± 27 3092 ± 17
AR-PPO 974 ± 15 1120 ± 28 1439 ± 21 679 ± 18 585 ± 29

WocaR-PPO 2673 ± 28 2860 ± 32 4018 ± 37 3260 ± 27 3132 ± 35
GRAD (Ours) 3125 ± 26 3179 ± 20 4320 ± 27 3619 ± 34 4156 ± 29

Temporally-
Coupled

SA Attack

SA-ATLA-PPO* 1994 ± 20 2492 ± 28 3694 ± 23 3145 ± 26 1972 ± 19
WocaR-PPO 2297 ± 25 2497 ± 22 3935 ± 29 2887 ± 32 2180 ± 23

GRAD (Ours) 3051 ± 33 2932 ± 24 4096 ± 28 3336 ± 22 3295 ± 34

Table 1. Average episode rewards ± standard error over 100 episodes for robust baselines and our GRAD. Bold numbers indicate the best
results under different types of temporally-coupled attacks. The gray rows are the most robust agents.

similar natural rewards compared to the ATLA baselines,
which is consistent with the findings from previous experi-
ments. To summarize the results under SA attacks, our find-
ings indicate that the combination of two different forms of
attacks can effectively target robust agents in most scenarios,
providing strong evidence of their robustness. In the case
of regular SA attackers, GRAD outperforms other methods
in all five environments, with a margin of over 20% in the
Humanoid environment. Moreover, when defending against
temporally-coupled attacks, GRAD significantly enhances
robustness by more than 30% in multiple environments,
with a minimum improvement of 10%. These results clearly
demonstrate the robustness of GRAD against attackers that
can target different domains.

Ablation studies for temporally-coupled constraint ϵ̄.
As defined in our framework, the temporally-coupled con-
straint ϵ̄ limits the perturbations within a range that varies
between timesteps. When ϵ̄ is set too large, the constraint
becomes ineffective, resembling a standard attacker.

Conversely, setting ϵ̄ close to zero overly restricts pertur-
bations, leading to a decline in attack performance. An
appropriate value for ϵ̄ is critical for effective temporally-
coupled attacks. Figure 3d illustrates the performance of
robust models against temporally-coupled state attackers
trained with different maximum ϵ̄. For WocaR-PPO, the

temporally-coupled attacker achieves optimal attack perfor-
mance when the values of ϵ̄ are set to 0.02. As the ϵ̄ values
increase and the temporally-coupled constraint weakens,
the agent’s performance improves, indicating a decrease in
the adversary’s attack effectiveness. In the case of GRAD
agents, they consistently maintain robust performance as
the ϵ̄ values become larger. This observation highlights
the impact of temporal coupling on the vulnerability of ro-
bust baselines to such attacks. In contrast, GRAD agents
consistently demonstrate robustness against these attacks.

Conclusions In this paper, we introduce a novel attack
model to challenge deep RL models, based on a temporally-
coupled constraint that can naturally arise in real life. Since
existing robust RL methods usually focus on a traditional
threat model that perturbs state observations or actions ar-
bitrarily within an Lp norm ball, they become too conser-
vative and can fail to perform a good defense under the
temporally-coupled attacks. In contrast, we propose a game-
theoretical response approach GRAD, which finds the best
response against attacks with various constraints including
temporally-coupled ones. Extensive experiments in continu-
ous control tasks show that GRAD significantly outperforms
prior robust RL methods against various adversaries which
emphasizes the empirical potential and contributions of our
method in improving RL robustness.
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Moravčík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D.,
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A. Preliminary Algorithms
Here is the full game-theoretic algorithms of Double Oracle and Policy Space Response Oracles as introduced in 3.

Algorithm 2 Double Oracle (McMahan et al., 2003)

Result: Nash Equilibrium
Input: Initial population Π0

repeat {for t = 0, 1, . . .}
πr ← NE in game restricted to strategies in Πt

for i ∈ {1, 2} do
Find a best response βi ← BRi(π

r
−i)

Πt+1
i ← Πt

i ∪ {βi}
end for

until No novel best response exists for either player
Return: πr

Algorithm 3 Policy Space Response Oracles (Lanctot et al., 2017)

Result: Nash Equilibrium
Input: Initial population Π0

repeat {for t = 0, 1, . . .}
πr ← NE in game restricted to strategies in Πt

for i ∈ {1, 2} do
Find a best response βi ← BRi(π

r
−i)

Πt+1
i ← Πt

i ∪ {βi}
end for

until Approximate exploitability is less than or equal to zero
Return: πr

B. Additional Related Work
B.1. Robust Markov decision process and safe RL.

There are several lines of work that study RL under safety/risk constraints (Heger, 1994; Gaskett, 2003; Garcıa & Fernández,
2015; Bechtle et al., 2020; Thomas et al., 2021) or under intrinsic uncertainty of environment dynamics (Lim et al., 2013;
Mankowitz et al., 2020). In particular, there are several works discussing coupled or non-rectangular uncertainty sets, which
allow less conservative and more efficient robust policy learning by incorporating realistic conditions that naturally arise in
practice. Mannor et al. (Mannor et al., 2012) propose to model coupled uncertain parameters based on the intuition that the
total number of states with deviated parameters will be small. Mannor et al. (Mannor et al., 2016) identify “k-rectangular”
uncertainty sets defined by the cardinality of possible conditional projections of uncertainty sets, which can lead to more
tractable solutions. Another recent work by Goyal et al. (Goyal & Grand-Clement, 2023) propose to model the environment
uncertainty with factor matrix uncertainty sets, which can efficiently compute an optimal robust policy.

B.2. Game-Theoretic Reinforcement Learning

Superhuman performance in two-player games usually involves two components: the first focuses on finding a model-free
blueprint strategy, which is the setting we focus on in this paper. The second component improves this blueprint online
via model-based subgame solving and search (Burch et al., 2014; Moravcik et al., 2016; Brown et al., 2018; 2020; Brown
& Sandholm, 2017b; Schmid et al., 2021). This combination of blueprint strategies with subgame solving has led to
state-of the art performance in Go (Silver et al., 2017), Poker (Brown & Sandholm, 2017a; 2018; Moravčík et al., 2017),
Diplomacy (Gray et al., 2020), and The Resistance: Avalon (Serrino et al., 2019). Methods that only use a blueprint
have achieved state-of-the-art performance on Starcraft (Vinyals et al., 2019), Gran Turismo (Wurman et al., 2022),
DouDizhu (Zha et al., 2021), Mahjohng (Li et al., 2020), and Stratego (McAleer et al., 2020; Perolat et al., 2022). In the rest
of this section we focus on other model-free methods for finding blueprints.
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Deep CFR (Brown et al., 2019b; Steinberger, 2019) is a general method that trains a neural network on a buffer of
counterfactual values. However, Deep CFR uses external sampling, which may be impractical for games with a large
branching factor, such as Stratego and Barrage Stratego. DREAM (Steinberger et al., 2020) and ARMAC (Gruslys et al.,
2020) are model-free regret-based deep learning approaches. ReCFR (Liu et al., 2022) propose a bootstrap method for
estimating cumulative regrets with neural networks. ESCHER (McAleer et al., 2023) remove the importance sampling term
of Deep CFR and show that doing so allows scaling to large games.

Neural Fictitious Self-Play (NFSP) (Heinrich & Silver, 2016) approximates fictitious play by progressively training a best
response against an average of all past opponent policies using reinforcement learning. The average policy converges to an
approximate Nash equilibrium in two-player zero-sum games.

There is an emerging literature connecting reinforcement learning to game theory. QPG (Srinivasan et al., 2018) shows
that state-conditioned Q-values are related to counterfactual values by a reach weighted term summed over all histories in
an infostate and proposes an actor-critic algorithm that empirically converges to a NE when the learning rate is annealed.
NeuRD (Hennes et al., 2020), and F-FoReL (Perolat et al., 2021) approximate replicator dynamics and follow the regularized
leader, respectively, with policy gradients. Actor Critic Hedge (ACH) (Fu et al., 2022) is similar to NeuRD but uses an
information set based value function. All of these policy-gradient methods do not have theory proving that they converge
with high probability in extensive form games when sampling trajectories from the policy. In practice, they often perform
worse than NFSP and DREAM on small games but remain promising approaches for scaling to large games (Perolat et al.,
2022).

C. Methodology
Difference between GRAD and ATLA While both GRAD and ATLA (Zhang et al., 2021) require training an adversary
alongside the agent using RL, there is a key difference in their training approaches. In GRAD, both the agent and the
adversary have two policy sets. During each training epoch, the agent aims to find an approximate best response to the fixed
adversary, and vice versa for the adversary. This iterative process promotes the emergence of stable and robust policies.
After each epoch, the trained policies are added to the respective policy sets. GRAD has the capability to continuously
explore and learn new policies that are not present in the current policy set, thereby enabling ongoing improvement for both
the agent and the adversary, which allows for a more thorough exploration of the policy space. In contrast, ATLA employs a
limited number of iterations to train each agent in each round, which is not sufficient to allow the agent and adversary to find
each other’s best response within the policy space.

It is also worth noting that the original ATLA utilizes standard attack methods to train the adversary. However, several
experimental observations indicate that agents trained with non-temporally-coupled adversaries tend to exhibit a conservative
and overfitted behavior towards specific types of adversaries.

D. Experiment Details and Additional Results
D.1. Setup and Baselines

Our experiments are conducted on five various and challenging MuJoCo environments: Hopper, Walker2d, Halfcheetah,
Ant, and Humanoid, all using the v2 version of MuJoCo. We use the Proximal Policy Optimization (PPO) algorithm as
the policy optimizer and a Long Short-Term Memory (LSTM) network as the policy network for all of the robust training
methods we evaluate. To maintain methodological consistency and minimize potential discrepancies arising from different
PPO implementations across methods, we ensure highly similar benchmark results. For attack constraint ϵ, we use the
commonly adopted values ϵ for each environment. For the temporally-coupled constraint ϵ̄, we set the optimal maximum ϵ̄
as ϵ/5 (with minor adjustments in some environments). Other choices of ϵ̄ will be further discussed in the ablation studies.

We compare our approach GRAD with other robust RL baselines in this paper. Robust training frameworks can be
categorized into two types. The first type requires training with a specified adversary during training, such as the alternating
training framework (ATLA (Zhang et al., 2021)) and GRAD. The second type does not require training with an adversary,
such as WocaR-PPO (Liang et al., 2022) and AR-PPO (PPO variant of AR-DDPG (Tessler et al., 2019)). The baselines
we chose demonstrate state-of-the-art or great robustness in prior works. The first type of approaches require training
agents with adversaries targeting specific attack domains and the second type of baselines can be evaluated directly for their
robustness without the need for additional adversary training.
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D.2. Implementation details

We provide detailed implementation information for our proposed method (GRAD) and baselines.

Reproducibility We train each agent configuration with 10 seeds and report the one with the median robust performance,
rather than the best one. More implementation details are in Appendix D.2.

Training Steps For GRAD, we specify the number of training steps required for different environments. In the Hopper,
Walker2d, and Halfcheetah environments, we train for 10 million steps. In the Ant and Humanoid environments, we extend
the training duration to 20 million steps. For the ATLA baselines, we train for 2 million steps and 10 million steps in
environments of varying difficulty.

Network Structure Our algorithm (GRAD) adopts the same PPO network structure as the baselines to maintain consis-
tency. The network comprises a single-layer LSTM with 64 hidden neurons. Additionally, an input embedding layer is
employed to project the state dimension to 64, and an output layer is used to project 64 to the output dimension. Both the
agents and the adversaries use the same policy and value networks to facilitate training and evaluation. Furthermore, the
network architecture for the best response and meta Nash remains consistent with the aforementioned configuration.

Schedule of ϵ and ϵ̄ During the training process, we gradually increase the values of ϵ and ϵ̄ from 0 to their respective
target maximum values. This incremental adjustment occurs over the first half of the training steps. We reference the
attack budget ϵ used in other baselines for the corresponding environments. This ensures consistency and allows for a fair
comparison with existing methods. The target value of ϵ̄ is determined based on the adversary’s training results, which is set
as ϵ/5. In some smaller dimensional environments, ϵ̄ can be set to ϵ/10. We have observed that the final performance of the
trained robust models does not differ by more than 5% when using these values for ϵ̄.

Training Time The training time for GRAD varies based on the specific environment and its associated difficulty. On a
single V100 GPU, training GRAD typically requires over 20 hours for the Hopper, Walker2d, and Halfcheetah environments.
For the more complex Ant and Humanoid environments, the training duration extends to approximately 40 hours. The
training time required for defense against state adversaries or action adversaries is relatively similar.

Observation and Reward Normalization To ensure consistency with PPO implementation and maintain comparability
across different codebases, we apply observation and reward normalization. Normalization helps to standardize the input
observations and rewards, enhancing the stability and convergence of the training process. We have verified the performance
of vanilla PPO on different implementations, and the results align closely with our implementation of GRAD based on Ray
rllib.

Hyperparameter Selection Hyperparameters such as learning rate, entropy bonus coefficient, and other PPO-specific
parameters are crucial for achieving optimal performance. Referring to the results obtained from vanilla PPO and the ATLA
baselines as references, a small-scale grid search is conducted to fine-tune the hyperparameters specific to GRAD. Because
of the significant training time and cost associated with GRAD, we initially perform a simplified parameter selection using
the Inverted Pendulum as a test environment.

D.3. Full Results

Here are the comprehensive results for the robust models under different scenarios: no attack, the best standard attacks, and
the best temporally-coupled attacks on the state space, action space, or both spaces.

D.4. Adversary Alogrithms

State Adversaries Aimed to introduce the attack methods utilized during training and testing in our experiments. When
it comes to state adversaries, PA-AD as Alogrithm 4 stands out as the strongest attack compared to other state attacks.
Therefore, we report the best state attack rewards under PA-AD attacks.

Action Adversaries In terms of action adversaries, an RL-based action adversary as Alogrithm 5 can inflict more severe
damage on agents’ rewards compared to OU noise and parameter noise in (Tessler et al., 2019).

Adaptable Adversaries For adaptable adversaries capable of perturbing both state and action spaces, considering the
attack budget and cost, we prefer not to allow the adversary to perturb both spaces simultaneously at one timestep. Hence, it
is necessary for the adversary to decide which space to perturb for each timestep. In alg:sa-ad, we introduce an additional
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Environment Hopper Walker2d Halfcheetah Ant Humanoid

ϵ / state dim 0.075 / 11 0.05 / 17 0.15 / 17 0.15 / 111 0.1 / 376

Natural
Reward

(no attack)

PA-ATLA-PPO 3425 ± 22 4153 ± 31 6175 ± 29 5340 ± 11 5792 ± 18
PA-ATLA-PPO* 3476 ± 31 4032 ± 29 6291 ± 37 5431 ± 28 5659 ± 19

WocaR-PPO 3588 ± 12 4102 ± 34 6032 ± 14 5576 ± 21 5781 ± 30
GRAD (Ours) 3345 ± 15 4089 ± 24 6149 ± 27 5376 ± 21 5772 ± 23

Best
Standard

State Attack

PA-ATLA-PPO 2532 ± 31 2241 ± 17 3849 ± 28 2874 ± 25 1435 ± 22
WocaR-PPO 2570 ± 23 2715 ± 16 4225 ± 20 3145 ± 19 2236 ± 26

GRAD (Ours) 2899 ± 27 3108 ± 25 4447 ± 28 3397 ± 18 2787 ± 25

Best
Temporally-coupled

State Attack

PA-ATLA-PPO* 2286 ± 29 2095 ± 34 3572 ± 31 2594 ± 19 1462 ± 27
WocaR-PPO 2298 ± 13 2562 ± 18 4136 ± 28 3046 ± 10 1974 ± 33

GRAD (Ours) 2867 ± 36 2945 ± 27 4526 ± 29 3519 ± 24 2864 ± 28

Table 2. Average episode rewards ± standard error over 100 episodes for three state robust baselines and our GRAD. Bold numbers
indicate the best results under different types of attacks on state spaces. The gray rows are the most robust agents.

Environment Hopper Walker2d Halfcheetah Ant Humanoid

ϵ / action dim 0.2 / 3 0.2 / 6 0.2 / 6 0.15 / 8 0.15 / 17

Natural
Reward

(no attack)

AC-ATLA-PPO 3576 ± 43 4228 ± 26 5915 ± 28 5557 ± 33 6014 ± 49
AC-ATLA-PPO* 3492 ± 28 4052 ± 29 5853 ± 32 5549 ± 21 5980 ± 30

AR-PPO 3188 ± 28 3767 ± 15 5248 ± 35 5074 ± 34 5379 ± 42
GRAD (Ours) 3482 ± 20 4159 ± 26 6047 ± 29 5512 ± 38 5894 ± 35

Best
Standard

Action Attack

AC-ATLA-PPO 2872 ± 18 3108 ± 22 3994 ± 41 2752 ± 33 3120 ± 39
AR-PPO 1235 ± 26 1305 ± 31 1523 ± 24 1120 ± 10 1117 ± 37

WocaR-PPO 2943 ± 18 3269 ± 28 3840 ± 29 3345 ± 21 3419 ± 37
GRAD (Ours) 3039 ± 20 3298 ± 35 4016 ± 28 3569 ± 26 4106 ± 32

Best
Temporally-

Coupled
Action Attack

AC-ATLA-PPO* 2625 ± 15 2780 ± 26 3815 ± 36 3382 ± 27 3092 ± 17
AR-PPO 974 ± 15 1120 ± 28 1439 ± 21 679 ± 18 585 ± 29

WocaR-PPO 2673 ± 28 2860 ± 32 4018 ± 37 3260 ± 27 3132 ± 35
GRAD (Ours) 3125 ± 26 3179 ± 20 4320 ± 27 3619 ± 34 4156 ± 29

Table 3. Average episode rewards ± standard error for over 100 episodes action robust baselines and our GRAD under no attack and best
action attacks.

Environment Hopper Walker2d Halfcheetah Ant Humanoid

Natural
Reward

(no attack)

SA-ATLA-PPO 3498 ± 34 4195 ± 36 6078 ± 38 5442 ± 28 5913 ± 34

SA-ATLA-PPO* 3372 ± 29 4219 ± 31 5979 ± 37 5510 ± 29 5949 ± 22

GRAD (Ours) 3420 ± 18 4218 ± 27 6123 ± 18 5517 ± 21 5799 ± 27

Best
Standard
SA Attack

SA-ATLA-PPO 2294 ± 27 2503 ± 34 4028 ± 28 2750 ± 32 1981 ± 25

WocaR-PPO 2469 ± 18 2594 ± 32 4012 ± 26 3024 ± 23 2263 ± 28

GRAD (Ours) 2846 ± 24 2897 ± 31 4168 ± 37 3286 ± 20 3042 ± 24

Best
Temporally-coupled

SA Attack

SA-ATLA-PPO* 1994 ± 20 2492 ± 28 3694 ± 23 3145 ± 26 1972 ± 19

WocaR-PPO 2297 ± 25 2497 ± 22 3935 ± 29 2887 ± 32 2180 ± 23

GRAD (Ours) 3051 ± 33 2932 ± 24 4096 ± 28 3336 ± 22 3295 ± 34

Table 4. Average episode rewards ± standard error over 100 episodes for adaptable adversarial defense baselines and our GRAD.
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dimension θt ∈ [−1, 1] in the adversary’s action space to determine the attack domain. If θt0, the adversary perturbs the
observation state st to s̃t; otherwise, it attacks the agent’s policy output action at to ãt. Building upon PA-AD (Sun et al.,
2022), the adversary director only needs to learn ât, which is composed of the policy perturbation d̂t concatenated with θ.
Depending on the adversary’s choice θ, different actors will craft state or action perturbations for a given policy perturbation
direction d̂. This means that the SA-AD attacker only requires an additional dimension for domain choice compared to the
PA-AD attacker, without significantly increasing the complexity of adversary training, thereby minimizing the impact on
adversary performance. We show the adaptable attack method in Algorithm 6.

Algorithm 4 Policy Adversarial Actor Director (PA-AD)

Input: Initialization of adversary director’s policy v; victim policy π, the actor function g for the state space S, initial
state s0
for t = 0, 1, 2, . . . do

Director v samples a policy perturbing direction and perturbed choice, ât ∼ ν(·|st)
Actor perturbs st to s̃t = g(ât, st)
Victim takes action at ∼ π(·|s̃t), proceeds to st+1, receives rt
Director saves (st, ât,−rt, st+1) to the adversary buffer
Director updates its policy v using any RL algorithms

end for

D.5. Attack Budget ϵ

In Figure 4, we report the performance of baselines and GRAD under different attack budget ϵ. As the value of ϵ increases,
the rewards of robust agents under different types of attacks decrease accordingly. However, our approach consistently
demonstrates superior robustness as the attack budget changes.

Algorithm 5 Action Adversary (AC-AD)

Input: Initialization of action adversary policy v; victim policy π, initial state s0
for t = 0, 1, 2, . . . do

adversary v samples an action perturbations ât ∼ ν(·|st),
victim policy π outputs action at ∼ π(·|st)
the environment receives ãt = at + ât, returns st+1 and rt
adversary saves (st, ât,−rt, st+1) to the adversary buffer
adversary updates its policy v

end for

Algorithm 6 State or Action Adversary (SA-AD)

Input: Initialization of adversary director’s policy v; victim policy π, the actor function gs for the state space S and ga
for the action space A, initial state s0
for t = 0, 1, 2, . . . do

Director v samples a policy perturbing direction and perturbed choice, ât ∼ ν(·|st), where ât = (d̂t, θt), θt ∈ [−1, 1]
if θt ≥ 0 then

Actor perturbs st to s̃t = gs(d̂t, st)
Victim takes action at ∼ π(·|s̃t), proceeds to st+1, receives rt

else
victim policy outputs action at ∼ π(·|st)
Actor perturbs at to ãt = ga(d̂t, at)
The environment receives ãt, returns st+1 and rt

end if
Director saves (st, ât,−rt, st+1) to the adversary buffer
Director updates its policy v using any RL algorithms

end for
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(a) State attacks: Hopper
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(b) Action attacks: Hopper
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(c) Adaptable attacks: Hopper
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(d) State attacks: Humanoid
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(e) Action attacks: Humanoid
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(f) Adaptable attacks: Humanoid

Figure 4. Comparisons under state or action or adaptable temporally-coupled attacks w.r.t. diverse attack budgets ϵ’s on Hopper and
Humanoid.

D.6. Temporally-coupled ϵ

We also investigate the impact of temporally-coupled constraints ϵ̄ on attack performance, as we explained in our experiment
section.
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(a) State attacks: Ant
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(b) Action attacks: Ant
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(c) Adaptable attacks: Ant
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(d) State attacks: Humanoid
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(e) Action attacks: Humanoid
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(f) Adaptable attacks: Humanoid

Figure 5. Comparisons under state or action or adaptable temporally-coupled attacks with diverse temporally-coupled constraints ϵ’s on
Ant and Humanoid.


