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ABSTRACT

This paper considers classification problems with hierarchically organized classes.
We force the classifier (hyperplane) of each class to belong to a sphere manifold,
whose center is the classifier of its super-class. Then, individual sphere manifolds
are connected based on their hierarchical relations. Our technique replaces the
last layer of a neural network by combining a spherical fully-connected layer with
a hierarchical layer. This regularization is shown to improve the performance
of widely used deep neural network architectures (ResNet and DenseNet) on
publicly available datasets (CIFAR100, CUB200, Stanford dogs, Stanford cars,
and Tiny-ImageNet).

1 INTRODUCTION

Applying inductive biases or prior knowledge to inference models is a popular strategy to improve
their generalization performance (Battaglia et al., 2018). For example, a hierarchical structure is
found based on the similarity or shared characteristics between samples and thus becomes a basic
criterion to categorize particular objects. The known hierarchical structures provided by the datasets
(e.g., ImageNet (Deng et al., 2009) classified based on the WordNet graph; CIFAR100 (Krizhevsky,
2009) in ten different groups) can help the network identify the similarity between the given samples.

In classification tasks, the final layer of neural networks maps embedding vectors to a discrete target
space. However, there is no mechanism forcing similar categories to be distributed close to each
other in the embedding. Instead, we may observe classes to be uniformly distributed after training,
as this simplifies the separation by the last fully-connected layer. This behavior is a consequence
of seeing the label structure as ‘flat,’ i.e., when we omit to consider the hierarchical relationships
between classes (Bilal et al., 2017).

To alleviate this problem, in this study, we force similar classes to be closer in the embedding by
forcing their hyperplanes to follow a given hierarchy. One way to realize that is by making children
nodes dependent on parent nodes and constraining their distance through a regularization term.
However, the norm itself does not give a relevant information on the closeness between classifiers.
Indeed, two classifiers are close if they classify two similar points in the same class. This means
similar classifiers have to indicate a similar direction. Therefore, we have to focus on the angle
between classifiers, which can be achieved through spherical constraints.

Contributions. In this paper, we propose a simple strategy to incorporate hierarchical information
in deep neural network architectures with minimal changes to the training procedure, by modifying
only the last layer. Given a hierarchical structure in the labels under the form of a tree, we explicitly
force the classifiers of classes to belong to a sphere, whose center is the classifier of their super-class,
recursively until we reach the root (see Figure 2). We introduce the spherical fully-connected layer
and the hierarchically connected layer, whose combination implements our technique. Finally, we
investigate the impact of Riemannian optimization instead of simple norm normalization.

By its nature, the proposed technique is quite versatile because the modifications only affect the
structure of last fully-connected layer of the neural network. Thus, it can be combined with many other
strategies (like spherical CNN from Xie et al. (2017), or other deep neural network architectures).

Related works. Hierarchical structures are well-studied, and their properties can be effectively
learned using manifold embedding. The design of the optimal embedding to learn the latent hierarchy
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is a complex task, and was extensively studied in the past decade. For example, Word2Vec (Mikolov
et al., 2013b;a) and Poincaré embedding (Nickel & Kiela, 2017) showed a remarkable performance
in hierarchical representation learning. (Du et al., 2018) forced the representation of sub-classes to
“orbit” around the representation of their super-class to find similarity based embedding. Recently,
using elliptical manifold embedding (Batmanghelich et al., 2016), hyperbolic manifolds (Nickel &
Kiela, 2017; De Sa et al., 2018; Tifrea et al., 2018), and a combination of the two (Gu et al., 2019;
Bachmann et al., 2019), shown that the latent structure of many data was non-Euclidean (Zhu et al.,
2016; Bronstein et al., 2017; Skopek et al., 2019). (Xie et al., 2017) showed that spheres (with
angular constraints) in the hidden layers also induce diversity, thus reducing over-fitting in latent
space models.

Mixing hierarchical information and structured prediction is not new, especially in text analysis
(Koller & Sahami, 1997; McCallum et al., 1998; Weigend et al., 1999; Wang et al., 1999; Dumais &
Chen, 2000). Partial order structure of the visual-semantic hierarchy is exploited using a simple order
pair with max-margin loss function in (Vendrov et al., 2016). The results of previous studies indicate
that exploiting hierarchical information during training gives better and more resilient classifiers,
in particular when the number of classes is large (Cai & Hofmann, 2004). For a given hierarchy, it
is possible to design structured models incorporating this information to improve the efficiency of
the classifier. For instance, for support vector machines (SVMs), the techniques reported in (Cai &
Hofmann, 2004; 2007; Gopal et al., 2012; Sela et al., 2011) use hierarchical regularization, forcing
the classifier of a super-class to be close to the classifiers of its sub-classes. However, the intuition is
very different in this case, because SVMs do not learn the embedding.

In this study, we consider that the hierarchy of the class labels is known. Moreover, we do not change
prior layers of the deep neural network, and only work on the last layer that directly contributed
to build hyperplanes for a classification purpose. Our work is thus orthogonal to those works on
embedding learning, but not incompatible.

Comparison with hyperbolic/Poincaré/graph networks. Hyperbolic network is a recent technique
that shows impressive results for hierarchical representation learning. Poincaré networks (Nickel
& Kiela, 2017) were originally designed to learn the latent hierarchy of data using low-dimension
embedding. To alleviate their drawbacks due to a transductive property which cannot be used for
unseen graph inference, hyperbolic neural networks equipped set aggregation operations have been
proposed (Chami et al., 2019; Liu et al., 2019). These methods have been mostly focused on learning
embedding using a hyperbolic activation function for hierarchical representation. Our technique is
orthogonal to these works: First, we assume that the hierarchical structure is not learnt but already
known. Second, our model focuses on generating individual hyperplanes of embedding vectors
given by the network architecture. While spherical geometry has a positive curvature, moreover,
that of hyperbolic space has a constant negative curvature. However, our technique and hyperbolic
networks are not mutually exclusive. Meanwhile focusing on spheres embedded in Rd in this study, it
is straightforward to consider spheres embedded in hyperbolic spaces.

2 HIERARCHICAL REGULARIZATION

2.1 DEFINITION AND NOTATIONS

Figure 1: To reference the node at the bottom,
we use the notation np with p = {1, 3, 2}. We
use curly brackets {} to write a path, and angle
brackets 〈·〉 for the concatenation of paths.

We assume we have samples with hierarchically
ordered classes. For instance, apple, banana,
and orange are classes that may belong to the
super-class “fruits.” This represents hierarchical
relationships with trees, as depicted in Figure 1.

We identify nodes in the graph through the path
taken in the tree. To represent the leaf (high-
lighted in blue in Figure 1), we use the notation
n{1,3,2}. This means it is the second child of
the super-class n{1,3}, and recursively, until we
reach the root.
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More formally, we identify nodes as np, where p is the path to the node. A path uniquely defines a
node where only one possible path exists. Using the concatenation, between the path p and its child i,
a new path p̃ can be defined as follows,

p̃ = 〈p, i〉 (1)

We denote P the set of all paths in the tree starting from the root, with cardinality |P|. Notice that |P|
is also the number of nodes in the tree (i.e., number of classes and super-classes). We distinguish the
set P from the set L, the set of paths associated to nodes whose label appears in the dataset. Although
L may equal to P , this is not the case in our experiments. We show an example in Appendix A.

2.2 SIMILARITY BETWEEN OBJECTS AND THEIR REPRESENTATION

Let X be the network input (e.g. an image), and φθ(X) be its representation, i.e., the features of X
extracted by a deep neural network parameterized by θ. We start with the following observation:

Given a representation, super-class separators should be similar to separators for their sub-classes.

This assumption implies the following direct consequence.

All objects whose labels belong to the same super-class have a similar representation.

That is a natural property that we may expect from a good representation. For instance, two dogs
from different breeds should share more common features than that of a dog shares with an apple.
Therefore, the parameter of the classifiers that identify dog’s breed should also be similar. Their
difference lies in the parameters associated to some specific features that differentiate breeds of dogs.

Although this is not necessarily satisfied with arbitrary hierarchical classification, we observe this
in many existing datasets. For instance, Caltech-UCSD Birds 200 and Stanford dogs are datasets
that classify, respectively, birds and dogs in term of their breeds. A possible example where this
assumption may not be satisfied is a dataset whose super-classes are “labels whose first letter is «·».”

2.3 HIERARCHICAL REGULARIZATION

Starting from a simple observation in the previous section, we propose a regularization technique that
forces the network to have similar representation for classes along a path p, which implies having
similar representation between similar objects. More formally, if we have an optimal classifier wp for
the super-class p and a classifier w〈p,i〉 for the class 〈p, i〉, we expect that

‖wp − w〈p,i〉‖ is small. (2)

If this is satisfied, separators for objects in the same super-class are also similar because

‖w〈p,i〉 − w〈p,j〉‖ = ‖(w〈p,i〉 − wp)− (w〈p,j〉 − wp)‖ ≤ ‖wp − w〈p,i〉‖︸ ︷︷ ︸
small

+ ‖wp − w〈p,j〉‖︸ ︷︷ ︸
small

. (3)

However, the optimal classifier for an arbitrary representation φθ(X) may not satisfy equation 2.
The naive and direct way to ensure equation 2 is through hierarchical regularization, which forces
classifiers in the same path to be close to each other.

2.4 HIERARCHICAL LAYER AND HIERARCHICALLY CONNECTED LAYER

In the previous section, we described the hierarchical regularization technique given a hierarchical
structure in the classes. In this section, we show how to conveniently parametrize equation 2. We first
express the classifier as a sum of vectors δ defined recursively as follows:

w〈p,i〉 = wp + δ〈p,i〉, δ{} = 0, (4)

where {} is the root. It is possible to consider δ{} 6= 0, which shifts separating hyper-planes. We do
not consider this case in this paper. Given equation 4, we have that ‖δ〈p,i〉‖ is small in equation 2.
Finally, it suffices to penalize the norm of δ〈p,i〉 during the optimization. Notice that, by construction,
the number of δ’s is equal to the number of nodes in the hierarchical tree.
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Next, consider the output of CNNs for classification,

φθ(·)TW, (5)

where θ denotes the parameters of the hidden layers, W = [w1, . . . , w|L|] denotes the last fully-
connected layer, and wi denotes the separator for the class i. For simplicity, we omit potential
additional nonlinear functions, such as a softmax, on top of the prediction.

We have parametrized wi following the recursive formula in equation 4. To define the matrix
formulation of equation 4, we first introduce the Hierarchical layer H which plays an important role.
This hierarchical layer can be identified to the adjacency matrix of the hierarchical graph.
Definition 1. (Hierarchical layer). Consider ordering over the sets P and L, i.e., for i = 1, . . . , |P|
and j = 1, . . . , |L|,

P = {p1, . . . , pi, . . . , p|P|} and L = {p1, . . . , pj , . . . , p|L|}.
In other words, we associate to all nodes an index. Then, the hierarchical layer H is defined as

H ∈ B|P|×|L|, Hi, j = 1 if npi � npj , 0 otherwise. (6)

where npi � npj means npj is a parent of npi .

We illustrate an example of H in Appendix A. The next proposition shows that equation 5 can be
written using a simple matrix-matrix multiplication, involving the hierarchical layer.
Proposition 1. Consider a representation φθ(·), where φθ(·) ∈ Rd. LetW be the matrix of separators

W = [wp1 , . . . , wp|L| ], pi ∈ L, (7)
where the separators are parametrized as equation 4. Let ∆ be defined as

∆ ∈ Rd×|P|, ∆ = [δp1 , . . . , δp|P| ], (8)

where P and L are defined in Section 2.1. Consider the hierarchical layer defined in Definition 1.
Then, the matrix of separators W can be expressed as

W = ∆H. (9)

We can see W = ∆H as a combination of an augmented fully-connected layer, combined with the
hierarchical layer that selects the right columns of ∆, hence the term hierarchically connected layer.
The `2 regularization of the δ can be conducted by the parameter weight decay, which is widely used
in training of neural networks. The hierarchical layer H is fixed, while ∆ is learnable. This does not
affect the complexity of the back-propagation significantly, as ∆H is a simple linear form.

The size of the last layer slightly increases, from |L| × d to |P| × d, where d is the dimension of the
representation φθ(·). For instance, in the case of Tiny-ImageNet, the number of parameters of the
last layer only increases by roughly 36% ; nevertheless, the increased number of parameters of the
last layer is still usually negligible in comparison with the total number of parameters for classical
network architectures.

3 HIERARCHICAL SPHERES

The hierarchical (`2) regularization introduced in the previous section induces separated hyper-planes
along a path to be close to each other. However, this approach has a significant drawback.

We rewind equation 2, which models the similarity of two separators wp and w〈p, i〉. The similarity
between separators (individual hyper-planes) should indicate that they point roughly the same
direction, i.e., ∥∥∥∥ wp

‖wp‖
−

w〈p, i〉

‖w〈p, i〉‖

∥∥∥∥ is small. (10)

However, this property is not necessarily captured by equation 2. For instance, assume that wp =
−w〈p, i〉, i.e., the separators point in two opposite directions (and thus completely different). Then,
equation 2 can be arbitrarily small in the function of ‖wp‖ but not in equation 10:∥∥wp − w〈p, i〉∥∥ = 2‖wp‖ ;

∥∥∥∥ wp
‖wp‖

−
w〈p, i〉

‖w〈p, i〉‖

∥∥∥∥ = 2. (11)
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Figure 2: (Left) Example of hyper-planes wp, formed through the sum of δp. The hyper-plane
w{1,3,2,1} associated to the class n{1,3,2,1} is in green, the construction with the δ’s in blue, and
all intermediate w in red. (Right) Riemannian versus “projected” gradient descent. Riemannian
optimization follows approximately geodesics, while projected gradient steps can jump very far from
δtp.

This can be avoided, for example, by deploying the regularization parameter (or weight decay)
independently for each ‖δp‖. However, it is costly in terms of hyper-parameter estimation.

In order to enforce the closeness of embedding vectors whose paths are similar, we penalize large
norms of δ. We also want to bound it away from zero to avoid the problem of separators that point in
different direction may have a small norm. This naturally leads to a spherical constraint. Indeed, we
transform the `2 regularization over δp by fixing its norm in advance, i.e.,

‖δp‖ = Rp > 0. (12)

In other words, we define δp on a sphere of radiusRp. The fully-connected layer ∆ is then constrained
on spheres, hence it is named spherical fully-connected layer.

Hence, we have w〈p,i〉 constrained on a sphere centered at wp. This constraint prevents the direction
of w〈p,i〉 from being too different from that of wp, while bounding the distance away from zero. This
does not add hyperparameters: instead of weight decay, we have the radius Rp of the sphere.

3.1 RADIUS DECAY W.R.T. PATH LENGTH

We allow the radius of the spheres, Rp, to be defined as a function of the path. In this study, we use a
simple strategy called radius decay, where Rp decreases w.r.t. the path length:

Rp = R0γ
|p|, (13)

where R0 is the initial radius, γ is the radius decay parameter, and |p| is the length of the path. The
optimal radius decay can be easily found using cross-validation. The radius decay is applied prior to
learning (as opposed to weight-decay); then, the radius remains fixed during the optimization. As
opposed to weight-decay, whose weight are multiplied by some constant smaller than one after each
iteration, the radius decay here depends only on the path length, and the radius remains fixed during
the optimization process.

The simplest way to apply the radius decay is by using the following predefined diagonal matrix D,

Di, i = R0γ
|pi|, pi ∈ P, 0 otherwise, (14)

where pi follows the ordering from Definition 1. Finally, the last layer of the neural network reads,

φθ(·)︸ ︷︷ ︸
Network

∆DH︸ ︷︷ ︸
Last layer

. (15)

The only learnable parameter in the last layer is ∆.

3.2 OPTIMIZATION

There are several ways to optimize the network in the presence of the spherical fully-connected layer:
by introducing the constraint in the model, “naively” by performing normalization after each step, or
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by using Riemannian optimization algorithms. For simplicity, we consider the minimization problem,

min
θ,∆

f(θ,∆), (16)

where θ are the parameters of the hidden layers, ∆ the spherical fully-connected layer from equation 8,
and f the empirical expectation of the loss of the neural network. For clarity, we use noiseless
gradients, but all results also apply to stochastic ones. The superscript ·t denotes the t-th iteration.

3.2.1 INTEGRATION OF THE CONSTRAINT IN THE MODEL

We present the simplest way to force the column of ∆ to lie on a sphere, as this does not require a
dedicated optimization algorithm. It is sufficient to normalize the column of ∆ by their norm in the
model. By introducing a dummy variable ∆̃, which is the normalized version of ∆, the last layer of
the neural network equation 15 reads

∆̃ =
[
. . . ,

δp
‖δp‖ , . . .

]
, φθ(·)∆̃DH. (17)

Then, any standard optimization algorithm can be used for the learning phase. Technically, ∆ is not
constrained on a sphere, but the model will act as if ∆ follows such constraint.

3.2.2 OPTIMIZATION OVER SPHERES: RIEMANNIAN (STOCHASTIC) GRADIENT DESCENT

The most direct way to optimize over a sphere is to normalize the columns of ∆ by their norm after
each iteration. However, this method has no convergence guarantee, and requires a modification in
the optimization algorithm. Instead, we perform Riemannian gradient descent which we explain only
briefly in this manuscript. We give the derivation of Riemannian gradient for spheres in Appendix B.

Riemannian gradient descent involves two steps: first, a projection to the tangent space, and then, a
retraction to the manifold. The projection step computes the gradient of the function on the manifold
(as opposed to the ambient space Rd), such that its gradient is tangent to the sphere. Then, the
retraction simply maps the new iterate to the sphere. With this two-step procedure, all directions
pointing outside the manifold, (i.e., orthogonal to the manifold, thus irrelevant) are discarded by the
projection. These two steps are summarized below,

st = (δtp)
T∇δpf(θt,∆t) · δtp −∇δpf(θt,∆t), δt+1

p =
δtp+htst

‖δtp+htst‖ , (18)

where st is the projection of the descent direction to the tangent space, and δt+1
p is the retraction

of the gradient descent step with stepsize h. In our numerical experiments, we used the Geoopt
optimizer (Kochurov et al., 2020), which implements Riemannian gradient descent on spheres.

4 NUMERICAL EXPERIMENTS

We experimented the proposed method using five publicly available datasets, namely CI-
FAR100 (Krizhevsky, 2009), Caltech-UCSD Birds 200 (CUB200) (Welinder et al., 2010), Stanford-
Cars (Cars) (Krause et al., 2013), Stanford-dogs (Dogs) (Khosla et al., 2011), and Tiny-ImageNet
(Tiny-ImNet) (Deng et al., 2009). CUB200, Cars, and Dogs datasets are used for fine-grained visual
categorization (recognizing bird, dog bleeds, or car models), while CIFAR100 and Tiny-ImNet
datasets are used for the classification of objects and animals. Unlike the datasets for object classifica-
tion, the fine-grained visual categorization datasets show low inter-class variances. See Appendix C.2
and C.3 for more details about the dataset and their hierarchy, respectively.

4.1 DEEP NEURAL NETWORK MODELS AND TRAINING SETTING

We used the deep neural networks (ResNet (He et al., 2016) and DenseNet (Huang et al., 2017)). The
input size of the datasets CUB200, Cars, Dogs, and Tiny-ImNet is 224× 224, and 32× 32 pixels
for CIFAR100. Since the input-size of CIFAR100 does not fit to the original ResNet and DenseNet,
we used a smaller kernel size (3 instead of 7) at the first convolutional layer and a smaller stride (1
instead of 2) at the first block.
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Remark: we do not use pretrained networks. All networks are trained from scratch, i.e., we did
not use pre-trained models. This is because most publicly available pre-trained models used ImageNet
for training while Dogs and Tiny-ImNet are parts of ImageNet.

We used the stochastic gradient descent (SGD) over 300 epochs, with a mini-batch of 64 and a
momentum parameter of 0.9 for training. The learning rate schedule is the same for all experiments,
starting at 0.1, then decaying by a factor of 10 after 150, then 255 epochs. All tests are conducted
using NVIDIA Tesla V100 GPU with the same random seed. Settings in more detail are provided
in the supplementary material. We emphasize that we used the same parameters and learning rate
schedule for all scenarios. Those parameters and schedule were optimized for SGD on plain networks,
but are probably sub-optimal for our proposed methods.

4.2 RESULTS

Tables 1 and 2 show a comparison of the results obtained with several baseline methods and our
methods. The first method, “Plain”, is a plain network for subclass classification without hierarchical
information. The second one, “Multitask” is simply the plain network with multitask (subclass and
super-class classification) setting using the hierarchical information. The third one, “Hierarchy”, uses
our parametrizationW = ∆H with the hierarchical layer H, but the columns of ∆ are not constrained
on spheres. Then, “+Manifold” means that ∆ is restricted on a sphere using the normalization
technique from Section 3.2.1. Finally, “+Riemann” means we used Riemannian optimization from
Section 3.2.2. We show the experimental results on fine-grained visual classification (Table 1) and
general object classification (Table 2).

Note that the multitask strategy in our experiment (and contrary to our regularization technique) does
require an additional hyper-parameter that combines the two losses, because we train classifiers for
super-classes and sub-classes simultaneously.

4.2.1 FINE-GRAINED CATEGORIZATION

As shown in Table 1, our proposed parameterization significantly improves the test accuracy over
the baseline networks (ResNet-18/50, DenseNet-121/160). Even the simple hierarchical setting
which uses the hierarchical layer only (without spheres) shows superior performance compared
to the baseline networks. Integrating the manifolds with Riemannian SGD further improves the
generalization performance.

Surprisingly, the plain network with deeper layers shows degraded performance. This can be attributed
to overfitting which does not occur with our regularization technique, where larger networks show
better performance, indicating the high efficiency of our approach.

Table 1: Test accuracy (%) for fine-grained classification. Radius decay is fixed at 0.5.

Baseline Proposed parametrization
Dataset Architecture Plain Multitask Hierarchy +Manifold +Riemann

CUB200

ResNet-18 54.88 53.99 58.28 60.42 60.98
ResNet-50 54.09 52.17 57.59 59.00 60.01
DenseNet-121 50.55 56.61 61.10 60.22 61.98
DenseNet-161 50.91 60.67 60.67 62.73 63.55

Dogs

ResNet-18 59.17 59.88 60.30 61.83 61.36
ResNet-50 57.44 58.97 59.31 59.81 63.70
DenseNet-121 56.00 64.39 62.19 64.95 65.89
DenseNet-161 55.49 64.23 65.28 65.68 65.90

Cars

ResNet-18 79.83 82.85 84.96 84.74 84.16
ResNet-50 82.86 82.86 83.34 84.51 84.65
DenseNet-121 79.78 85.39 85.97 86.00 85.54
DenseNet-161 79.85 85.79 86.23 86.90 85.76

7



Under review as a conference paper at ICLR 2021

Table 2: Test accuracy (%) for object classification. Radius decay is fixed at 0.5 and 0.9 for CIFAR100
and Tiny-Imnet, respectively.

Baseline Proposed parametrization
Dataset Architecture Plain Multitask Hierarchy +Manifold +Riemann

CIFAR100

ResNet-18 69.47 69.37 70.89 70.06 71.89
ResNet-50 71.04 71.74 73.75 73.76 73.97
DenseNet-121 74.50 75.62 76.38 76.52 76.28
DenseNet-161 75.30 76.57 77.01 77.01 76.64

Tiny-ImNet

ResNet-18 64.70 64.81 64.33 64.74 65.13
ResNet-50 66.43 66.39 66.52 66.67 65.69
DenseNet-121 64.27 67.15 67.19 67.86 67.45
DenseNet-161 67.22 67.62 67.63 68.95 67.82

4.2.2 OBJECT CLASSIFICATION

We show test accuracy (%) of our proposed methods with different network models using CIFAR-100
and Tiny-ImNet, in Table 2. From the table, it can be seen that the proposed method has better
accuracy than the baseline methods. Compared to the fine-grained classification datasets, the general
object classification datasets have less similar classes on the same super-class. In these datasets, our
method achieved relatively small gains.

A higher inter-class variance may explain the lower improvement compared to fine-grained categoriza-
tion. Nevertheless, for Tiny-ImNet, e.g., ResNet-18 (11.28M parameters) with our parametrization
achieves better classification performance than plain ResNet-50 (23.91M parameters). The same
applies to DenseNet-121 and DenseNet-161. These results indicate that our regularization tech-
nique, which does not introduce new parameters in the embedding layer, can achieve a classification
performance similar to that of more complex models.

4.3 RIEMANNIAN VS. PROJECTED SGD

Overall, Riemannian SGD showed slightly superior performance compared to projected SGD for
fine-grained datasets, although, in most cases, the performance was similar. For instance, with the
Dogs dataset on Resnet-50, Riemannian SGD shows a performance 4% higher than the projected
SGD. For object classification, Riemannian SGD performs a bit more poorly. We suspect that, owing
to the different radius decay parameters (0.5 in Table 1 and 0.9 in Table 2), the learning rate of
Riemannian SGD should have been changed to a larger value.

5 CONCLUSION AND FUTURE WORK

We presented a simple regularization method for neural networks using a given hierarchical structure
of the classes. The method involves of the reformulation of the fully connected layer of the neural
network using the hierarchical layer. We further improved the technique using spherical constraints,
transforming the last layer into a spherical fully-connected layer. Finally, we compared the optimiza-
tion of the neural network using several strategies. The reformulation using the hierarchical layer
∆H and the spherical constraint had a considerable impact on the generalization accuracy of the
network. The Riemannian optimization had a lower overall impact, showing sometimes significant
improvement and sometimes similar to its projected counterpart.

In this paper, we used the proposed regularization technique only on classical architectures. In the
future, it would be interesting to use it on other architectures, e.g. Inception and SqueezeNet, for
embedding, e.g. Poincaré, and other applications, e.g. Natural Language Processing (NLP). Moreover,
in this paper, we used a given hierarchy mostly based on taxonomy designed by experts. This
hierarchical structure, which is convenient for humans, may not be most convenient for classification
algorithms. A self-supervised algorithm that learns classification and the hierarchy may be convenient
because we do not need to access a hierarchy and lead to better results (because the structure will be
more adapted to the task).
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A EXAMPLE OF HIERARCHICAL STRUCTURE

Consider a dataset composed by the following labels: cats, dogs, apple, orange. These labels can be
organized trough a hierarchical structure, with super-classes animal and fruit. In such case, the set P
is composed by

P =
{
{fruit}, {animal}, {fruit, apple}, {fruit, orange}, {animal, cat}, {animal, dog}

}
,

while the set L is composed by

L =
{
{fruit, apple}, {fruit, orange}, {animal, cat}, {animal, dog}

}
.

Then, its hierarchical layer reads (labels were added to ease the reading)

H =

{fruit, apple} {fruit, orange} {animal, cat} {animal, dog}
{fruit} 1 1 0 0
{animal} 0 0 1 1
{fruit, apple} 1 0 0 0
{fruit, orange} 0 1 0 0
{animal, cat} 0 0 1 0
{animal, dog} 0 0 0 1

B OPTIMIZATION OVER SPHERES: RIEMANIAN (STOCHASTIC) GRADIENT
DESCENT

We quickly recall some elements of optimization on manifolds, see e.g. Boumal (2020); Absil et al.
(2007). For simplicity, we consider the optimization problem

min
x∈Sd−1

f(x) (19)

where Sd−1 is the sphere manifold with radius one centered at zero and embedded in Rd. The generic
Riemannian gradient descent with stepsize h reads

sk = −gradf(xk) (20)
xk+1 = Rxk

(hsk) (21)
where gradf is the gradient of f on the sphere, which is a vector that belongs to the tangent space
Txk
Sd−1 (plane tangent to the sphere that contains xk), and Rxk

is a second-order retraction, i.e.,
a mapping from the tangent space Txk

Sd−1 to the sphere Sd−1 that satisfies some smoothness
properties. The vector sk (that belongs to the tangent sphere) represents the local descent direction.
We illustrate those quantities in Figure 3. Stochastic Riemannian gradient descent directly follows
from (Bonnabel, 2013), replacing the gradient by its stochastic version.

In the special case of the sphere, we have an explicit formula for the tangent space and its projection,
for the Riemannian gradient, and for the retraction:

TxSd−1 = {y : yTx = 0} ; Px(y) = y − (xT y)x; (22)

gradf(x) = Px(∇f(x)) ; Rx(y) =
x+ y

‖x+ y‖
. (23)

The retraction is not necessarily unique, but this one satisfies all requirement to ensure good conver-
gence properties. The gradient descent algorithm on a sphere thus reads

sk =
(
(xTk∇f(xk)

)
xk −∇f(xk) (24)

xk+1 =
xk + hksk
‖xk + hksk‖

(25)

In our case, we have a matrix ∆, whose each column δp belongs to a sphere. It suffices to apply
the Riemannian gradient descent separately on each δp. For practical reasons, we used the toolbox
Geoopt (Kochurov et al., 2020; Bécigneul & Ganea, 2018) for numerical optimization.
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Figure 3: Illustration of a Riemanian gradient step on a manifoldM. In blue, the projection operator
from the ambient space (in our case, Rd) to the tangent space Txk

M. This maps the standard gradient
of the function, ∇f , to its Riemannian gradient gradf . Then, in red we have the retraction that
maps vector from the tangent space Txk

M to the manifold M. This converts the gradient step
xk − hgradf(xk) (that belongs to the tangent space) to xk+1 (that belongs to the manifold).

Table 3: Size of the datasets used in our experiments. |L| denote the number of classes in the dataset,
and |P | the total number of classes and super-classes.

Dataset CIFAR100 CUB200 Stanford Cars Stanford dogs Tiny-ImNet

|L| 100 200 196 121 200
|P| 120 270 205 194 295
# Samples 50k 6k 16k 21k 100k

C NUMERICAL EXPERIMENTS: SUPPLEMENTARY MATERIALS

C.1 DEEP NEURAL NETWORK MODELS AND TRAINING DETAILS

We used ResNet which consists of the basic blocks or the bottleneck blocks with output channels [64,
128, 256, 512] in Conv. layers. A dimensionality of an input vector to the FC layer is 512. We used
DenseNet which includes hyperparameters such as [“growth rate”, “block configuration”, and “initial
feature dimension”] for ’DenseNet-121’ [32, (6, 12, 24, 16), 64] and ‘DenseNet-161’ [48, (6, 12, 36,
24), 96], respectively. A dimensionality of an input vector for DenseNets to the FC layer is 64 and 96.

Parameters in our proposed method using ResNet and DenseNet are optimized using the SGD with
several settings: we fixed 1) the weight initialization with Random-Seed number ‘0’ in pytorch, 2)
learning rate schedule [0.1, 0.01, 0.001], 3) with momentum 0.9, 4) regularization: weight decay with
0.0001. A bias term in the FC layer is not used. The images (CUB200, Cars, Dogs, and Tiny-ImNet)
in training and test sets are resized to 256× 256 size. Then, the image is cropped with 224× 224 size
at random location in training and at center location in test. Horizontal flipping is applied in training.
The learning rate decay by 0.1 at [150, 225] epochs from an initial value of 0.1. The experiments are
conduced using GPU “NVIDIA TESLA V100". We used one GPU for ResNet-18, and two GPUs for
ResNet-50, DenseNet-121, and DenseNet-161.

C.2 DATASET

We summarize the important information of the previous datasets in Table 3. The next section
describe how we build the hierarchical tree for each dataset.

C.3 HIERARCHY FOR DATASETS

In this section, we describe how we build the hierarchy tree for each dataset. We provide also the
files containing the hierarchy used in the experiments in the folder Hierarchy_files.
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Before explaining how we generate the hierarchy, we quickly describe the content of the files. Their
name follow the pattern DATASETNAME_child_parent_pairs.txt. The first line in the file
corresponds to the number of entries. Then, the file is divided into two columns, representing pairs
of (child, parent). This means if the pair (n1, n2) exists in the file, the node n2 is the direct
parent of the node n1. All labels have been converted into indexes.

C.3.1 CIFAR100

The hierarchy of Cifar100 is given by the authors.

C.3.2 CUB200

We classified the breed of birds into different groups, in function of the label name. For instance,
the breeds Black_footed_Albatross, Laysan_Albatross and Sooty_Albatross are
classified in the same super-class Albatross.

C.3.3 STANFORD CARS

We manually classified the dataset into nine different super-classes: SUV, Sedan, Coupe, Hatchback,
Convertible, Wagon, Pickup, Van and Mini-Van. In most cases, the super-class name appears in the
name of the label.

C.3.4 STANFORD DOGS

The hierarchy is recovered trough the breed presents at the end of the name of each dog specie. For
instance, English Setter, Irish Setter, and Gordon Setter are classified under the class Setter.

C.3.5 (TINY) IMAGENET

The labels of (tiny-)Imagenet are also Wordnet classes. We used the Wordnet hierarchy to build the
ones of (Tiny) Imagenet. There are also two post-processing steps:

1. Wordnet hierarchy is not a tree, which means one node can have more than one ancestor.
The choice was systematic: we arbitrarily chose as unique ancestor the first one in the sorted
list.

2. In the case where a node has one and only one child, the node and its child are merged.

C.4 GENERALIZATION PERFORMANCE ALONG DIFFERENT RADIUS DECAY VALUES

In this section, we show in Table 4 how the radius decay affects the test accuracy. In all experiments,
we used the Resnet18 architecture with Riemannian gradient descent to optimize the spherical
fully-connected layer.

Globally, we see that radius decay may influence the accuracy of the network. However, in most
cases, the performance is not very sensitive to this parameter. The exception is for tiny-imagenet,
where the hierarchy tree has many levels, and thus small values degrade a lot the accuracy.
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Table 4: Influence of radius decay on the test performance for ResNet18.

Radius Decay CUB200 Dogs Cars CIFAR100 Tiny-ImageNet

0.50 60.98 61.35 84.74 71.65 38.38
0.55 60.74 61.28 84.75 71.16 47.77
0.60 60.84 60.93 84.53 71.21 55.66
0.65 59.79 60.09 84.80 71.03 60.44
0.70 58.72 60.19 84.43 71.01 62.03
0.75 58.87 60.57 84.72 70.44 63.28
0.80 58.89 60.12 84.70 70.79 64.10
0.85 57.47 60.46 84.67 70.29 64.45
0.90 58.51 60.07 84.47 70.49 64.16
0.95 56.51 58.67 84.78 70.63 64.14
1.00 57.13 58.21 84.63 70.76 64.60

C.5 LEARNING RADIUS DECAY

Here, we replace the diagonal matrix D in equation 14 with a learnable parameter matrix which is
trained using backpropagation without an additional constraint or a loss function for simplicity. As
shown in Table 5, this learnable radius is not effective the in terms of an classification performance
compared to that the predefined radius decay.

Table 5: Test accuracy (%) with a learnable radius. Clearly, using learnable parameter degrades
considerably the performance using the predefined radius decay (shown in parentheses, selected from
Table 1).

Proposed parametrization
Dataset Architecture Hierarchy +Manifold +Riemann

CUB200 ResNet-18 53.40 (58.28) 58.35 (60.42) 58.24 (60.98)
Cars ResNet-18 81.51 (84.96) 82.54 (84.74) 82.40 (84.16)

C.6 LEARNING WITH RANDOM HIERARCHY

As shown in Table 6, the methods with a randomly generated hierarchy showed a degraded perfor-
mance compared to that with a reasonable hierarchical information.

Table 6: Test accuracy (%) with a random hierarchy tree. Radius decay is fixed at 0.5. Clearly, using
a random hierarchy degrades considerably the performance (shown in parentheses, selected from
Table 1 which are the results with the original hierarchical tree). This validates the importance of the
proper hierarchy information.

Baseline Proposed parametrization
Dataset Architecture Multitask Hierarchy +Manifold +Riemann

CUB200 ResNet-18 47.55 (53.99) 50.28 (58.28) 56.96 (60.42) 56.43 (60.98)
Cars ResNet-18 79.98 (82.85) 81.07 (84.96) 82.02 (84.74) 81.84 (84.16)

C.7 SUPER-CLASS CLASSIFICATION EFFICIENCY

As shown in Table 7, our proposed methods (Hierarchy, +Manifold, and +Riemann) outperformed a
multitask (multilabel) classification method in terms of test accuracy performance. Note that, in the
multitask classification, a loss function for classification using superclasses is used additionally.

14



Under review as a conference paper at ICLR 2021

Table 7: Test accuracy (%) for super-class classification. Radius decay is fixed at 0.5. For the
super-class classification, without any modification of the proposed layers, we trained the model on
the dataset, then calculate classification accuracy using the δ’s corresponding to the parent classes.

Baseline Proposed parametrization
Dataset Architecture Multitask Hierarchy +Manifold +Riemann

CUB200 ResNet-18 53.68 58.87 61.17 62.22
Cars ResNet-18 86.88 87.91 91.23 90.97

C.8 VISUALIZATION OF EMBEDDING VECTORS

In this section, we visualized an embedding vector which is an input of the last classification layer.
As suggested by the reviewer, first, we show a distribution of two-dimensional vector (R2) learned
by the networks. To obtain these vectors, we added new layers (i.e. a mapping function Rm 7→ R2,
m = 512) prior to the last FC layer of ResNet-18. As two-dimensional vector is not enough to
represent a discriminative feature for the fine-grained dataset which have a large number of classes
different from MNIST dataset with ten classes with gray level images, we observe multidimensional
vectors used in the ResNet. Second, we use t-SNE, to visualize the high dimensional embedding vector
(R512) of the original ResNet, which is one of popular methods for exploring high-dimensional vector,
introduced by van der Maaten and Hinton. Even though this method is known to have limitation which
is highly dependent on hyperparameters such perplexity values, it is still useful to observe distribution
of those high dimensional vectors by using fixed hyperparameters. For a deterministic way of
visualization on 2D plane regardless of hyperparameters, finally, we visualized the embedding vectors
using the traditional dimension reduction technique, namely Principal Component Analysis (PCA).
Note that t-SNE and PCA have complementary characteristics (e.g., stochastic vs. deterministic,
non-linear vs. linear, capturing local vs. global structures).

1) Learned two-dimensional representation. We show a distribution of two-dimensional em-
bedding vector which is used for a classification. As shown in Figure 4, embedding vectors of
our proposed methods are distributed more closely (clustered) with regard to their superclasses
(Figure 4c,4d, and 4e). We used Cars dataset since the number of superclasses (nine super-classes)
is small enough to show their distribution clearly. We show the results where the classification
performances of all compared methods are similar. We captured the distribution of embedding vectors
from an early epoch due to their a slow convergence rate. Two-dimensional vector seems too small to
classify images of 196 classes which is highly non-linearly distributed.

2) Observation of locality preserving structure via t-SNE. We visualize high-dimension embed-
ding vector extracted from ResNet-18 which is mapped into two-dimensional space by preserving
local pairwise relationship of those vectors, using t-Distributed Stochastic Neighboring Entities (t-
SNE). As in Figure 5, embedding vectors of our proposed methods are clearly clustered (Figure 5c,5d,
and 5e) with regard to their superclasses compared to that of the baseline methods (Figure 5a and 5b).

3) Observation of global structure via PCA. Using PCA, we capture a global structure of high
dimensional embedding vectors by projection onto two-dimensional space. As shown in Figure 6,
embedding vectors extracted from ResNet-18 of our proposed methods have less-Gaussian shape
distribution (Figure 6d and 6e) with regard to their superclasses than that of the baseline methods
(Figure 6a and 5b). We observe that individual distribution of each classes is similar to that of
Figure 4.
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(a) Baseline (b) Multitask

(c) Hierarchy (d) +Manifold (e) +Riemann

Figure 4: Visualization of 2-dimensional embedding vector. We added the fully connected layer (Rm×2,
e.g., for ResNet18, m = 512) prior to the last FC layer. (a) Baseline, (b) Baseline (Multitask), and proposed
parameterization ((c) Hierarchy, (d) +Manifold, and (e) +Riemann).

(a) Baseline (b) Multitask

(c) Hierarchy (d) +Manifold (e) +Riemann

Figure 5: Visualization of a high dimensional embedding vector using t-SNE on 2D plane. (a) Baseline,
(b) Baseline (Multitask), and proposed parameterization ((c) Hierarchy, (d) +Manifold, and (e) +Riemann).
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(a) Baseline (b) Multitask

(c) Hierarchy (d) +Manifold (e) +Riemann

Figure 6: Visualization of a high dimensional embedding vector on 2D plane using PCA. (a) Baseline (b)
Baseline (Multitask), and proposed parameterization ((c) Hierarchy, (d) +Manifold, and (e) +Riemann).
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