
NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

On the Generalisation of Koopman Representations for Chaotic
System Control

Anonymous Full Paper
Submission 9

Abstract001

This paper investigates the generalisability of002

Koopman-based representations for chaotic dynami-003

cal systems, focusing on their transferability across004

prediction and control tasks. Using the Lorenz sys-005

tem as a testbed, we propose a three-stage method-006

ology: learning Koopman embeddings through au-007

toencoding, pre-training a transformer on next-state008

prediction, and fine-tuning for safety-critical control.009

Our results show that Koopman embeddings outper-010

form both standard and physics-informed PCA base-011

lines, achieving accurate and data-efficient perfor-012

mance. Notably, fixing the pre-trained transformer013

weights during fine-tuning leads to no performance014

degradation, indicating that the learned representa-015

tions capture reusable dynamical structure rather016

than task-specific patterns. These findings support017

the use of Koopman embeddings as a foundation018

for multi-task learning in physics-informed machine019

learning.020

1 Introduction021

Neural networks (NNs) have demonstrated effective-022

ness in modelling chaotic dynamics since the work023

of Navone and Ceccatto [1], who showed that NNs024

can be as effective as regressive and statistical meth-025

ods in certain simplified cases, such as simulating a026

1D Lorenz system. A trend in modern chaos mod-027

elling has been the integration of physics-informed028

methods with deep learning architectures. Of par-029

ticular importance is Koopman operator theory [2],030

which provides a mathematical framework for trans-031

forming non-linear dynamical systems into linear032

representations [3]. This linearisation enables the033

development of more stable and interpretable models034

of chaotic dynamics, with recent work demonstrat-035

ing that transformer architectures, combined with036

Koopman embeddings demonstrate competitive per-037

formance in autoregressive prediction across multiple038

chaotic systems [4] and can even incorporate con-039

trol inputs directly [5]. The transformer’s ability to040

capture long-range temporal dependencies makes it041

particularly well-suited for modelling such dynamics042

[6], while Koopman embeddings provide theoreti-043

cal grounding and improved generalisation across044

systems. While these developments have led to sub-045

stantial improvements in next-state prediction, the046

extent to which the resulting representations support 047

downstream tasks such as control remains an open 048

question. In Natural Language Processing (NLP), 049

a common paradigm involves pre-training models 050

on next-token prediction tasks, such as estimating 051

p(xt+1|x≤t), followed by fine-tuning on downstream 052

objectives [7, 8]. This strategy has proven highly 053

effective in yielding generalisable and reusable rep- 054

resentations across diverse tasks and domains [7]. 055

Inspired by this success, recent work in robotics has 056

also begun to adopt similar approaches: transform- 057

ers pre-trained on data prediction tasks are repur- 058

posed for control and manipulation [9]. However, 059

the potential of such transfer learning strategies 060

has, to the best of our knowledge, not yet been ex- 061

plored in the context of chaotic dynamical systems. 062

Notably, there exists a structural parallel between 063

sequential prediction in NLP and state forecasting 064

in dynamical systems, where the goal is to estimate 065

p(st+1|s≤t) from past observations [4]. Here, st de- 066

notes the system’s state at time t, analogous to a 067

token xt in a sequence. This analogy suggests that 068

pre-training on next-state prediction may serve as 069

a powerful pretext task for learning representations 070

that transfer to downstream objectives in chaotic 071

systems. To evaluate this possibility, we investi- 072

gate whether Koopman embeddings learned from 073

a self-supervised prediction task can be reused for 074

downstream control. Effective transfer would sug- 075

gest that these embeddings capture genuine physical 076

structure rather than task-specific artefacts, while 077

poor transfer would imply limited generalisability. 078

In addition to assessing the effectiveness of transfer, 079

this question is also practically relevant: if such em- 080

beddings are reusable, expensive physics-informed 081

representations could be amortised across multiple 082

tasks, leading to more efficient model development 083

pipelines alongside shorter training times. We assess 084

this hypothesis through empirical evaluation on the 085

popular Lorenz system, comparing the performance 086

of Koopman embeddings on a safety-critical con- 087

trol task1 against two types of Principal Component 088

Analysis (PCA) baselines: one purely data-driven 089

and another incorporating system-specific physical 090

priors. Furthermore, we contrast fixed and fine- 091

tuned transformer configurations to isolate the con- 092

1We use ’control’ terminology following literature conven-
tion, though our focus is on safety function estimation that
would serve as a basis for control implementation [10–12].

1

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

tribution of the learned embedding from that of the093

downstream optimisation process.094

Contributions: The main contributions of this095

work are threefold. First, it introduces a novel096

perspective on transfer learning in chaotic dynami-097

cal systems by drawing a conceptual parallel with098

natural language processing, where pre-training on099

next-token prediction has proven highly effective100

for enabling downstream generalisation. This anal-101

ogy motivates the use of next-state prediction as a102

pretext task for learning reusable representations103

in physical domains. Second, it demonstrates that104

Koopman embeddings trained on next-state predic-105

tion generalise effectively to downstream control,106

supporting the hypothesis that such representations107

encode transferable physical structure. Third, it108

presents a structured evaluation framework based109

on PCA and transformer ablations, isolating the110

contribution of physics-informed structure to trans-111

fer performance and emphasising the importance of112

embedding design in cross-task generalisation.113

2 Preliminaries114

To investigate the transferability of learned repre-115

sentations in chaotic systems, we begin by reviewing116

the key modelling challenges and mathematical tools117

underlying our study. We first describe the Lorenz118

system, a classical benchmark for studying chaos, fol-119

lowed by a discussion of Koopman operator theory,120

which provides a principled approach to linearising121

non-linear dynamics. Finally, we define the two core122

tasks used to assess the generalisability of learned123

representations: next-state prediction and safety124

function approximation.125

2.1 Modelling Chaotic Systems126

Chaotic systems pose fundamental challenges for127

machine learning due to their intrinsic non-linearity128

and extreme sensitivity to initial conditions. In such129

systems, small perturbations in state can lead to ex-130

ponential divergence in future trajectories, making131

accurate long-term prediction difficult and rendering132

learned models highly unstable [13]. This behaviour133

complicates the development of generalisable and134

reusable representations, as even minor errors in135

modelling can lead to drastic qualitative changes in136

system behaviour. The Lorenz system is a canon-137

ical example of deterministic chaos and has been138

widely studied as a benchmark for evaluating ma-139

chine learning approaches in non-linear dynamics [1,140

4, 12, 14]. Its persistent chaotic behaviour across a141

wide range of initial conditions makes it a suitable142

testbed for evaluating the transferability of learned143

representations. In particular, the consistency of its144

dynamic complexity [13], ensures that any observed145

transfer effects can be attributed to properties of the 146

learned embeddings rather than variability in the 147

underlying system dynamics. The Lorenz system is 148

defined by a set of ordinary differential equations 149

where its dynamics are characterised by a strange 150

attractor, a bounded set in the system’s phase space 151

to which chaotic trajectories converge despite their 152

non-periodic and highly sensitive nature [15]. The 153

specific ordinary differential equations, alongside 154

implementation details and adopted numerical inte- 155

gration settings, are provided in Appendix A.1. 156

2.2 The Koopman Operator: Lin- 157

earising Non-linearity 158

Given the non-linear and chaotic nature of the 159

Lorenz system, analysing or predicting its behavior 160

directly in the original state space can be challenging. 161

This motivates the use of alternative representations 162

that simplify the system’s dynamics. A particularly 163

powerful approach is offered by Koopman operator 164

theory, which provides a linear perspective on non- 165

linear dynamical systems. The central idea behind 166

Koopman theory is that although one might observe 167

the dynamics of physical systems in their natural 168

coordinates, where they typically exhibit non-linear 169

behaviour, there exists a transformation into a space 170

of observables in which the same dynamics evolve 171

linearly. This transformation facilitates analysis and 172

prediction using linear methods, even for inherently 173

non-linear systems. More formally, for a discrete- 174

time dynamical system st+1 = F (st), the Koopman 175

operator K acts on observable functions g(s) (rather 176

than on the states directly) such that: 177

Kg(s) = g(F (s)), (1) 178

implying that the evolution of observables follows a 179

linear rule: 180

g(st+1) = Kg(st). (2) 181

This perspective enables a linear treatment of 182

otherwise complex systems. Notably, Geneva and 183

Zabaras [14] have demonstrated that learning such 184

transformations from data can yield stable and in- 185

terpretable representations for modeling physical 186

systems. In this work, we leverage Koopman theory 187

to study the generalisation properties of learned dy- 188

namical representations, focusing in particular on 189

whether this linearisation facilitates robust forecast- 190

ing across chaotic trajectories. 191

2.3 Task Formulation 192

We consider two distinct regression tasks derived 193

from the Lorenz system, both operating on the same 194

input states but differing in the temporal scope of 195

prediction and the type of system understanding 196

they require. 197

2

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

20 10 0 10 20
X Coordinate

0

10

20

30

40

50
Z

Co
or

di
na

te
(a) Task A: Next-State Prediction

Past States
Context States
Start Point
Next Prediction point

20 10 0 10 20
X Coordinate

(b) Task B: Global Safety Calculation
Start Point
Past States
Future States
Hypothetical States
Query Point (q)

Value at q depends on
all possible futures

Region Q

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ground-Truth Safety Value U(q)

Figure 1. Conceptual visualisation illustrating the local, short-horizon nature of next-state prediction (Task A)
with the global, long-horizon calculation of the safety function (Task B). Panel (a) illustrates Task A, where a
model predicts the single ”Next Prediction point” (yellow) using only a finite history of preceding ”Context States”
(blue). In contrast, panel (b) shows that determining the safety value U(q) for the same ”Query Point” requires a
global understanding of system dynamics. This is represented by the multiple ”Hypothetical States” which diverge
from the query point, where their colour maps to the ground-truth safety value, indicating the risk as they evolve
through safety region Q.

Task A: Next-state prediction is a local fore-198

casting task that models the immediate evolution199

of the system according to st+1 = F (st). Success in200

this task depends primarily on capturing short-term201

dependencies and local dynamics [4, 13]. It serves as202

a natural self-supervised objective to induce predic-203

tive structure in learned representations of chaotic204

systems.205

Task B: Safety function prediction, in contrast,206

is inherently global. The goal is to approximate a207

function U(q) that quantifies the minimum control208

effort needed to ensure that a trajectory originating209

at state q remains within a predefined safe region Q210

indefinitely. In this work, we defined region Q by211

the bounds x ∈ [0, 50], y ∈ [−50, 50], z ∈ [−50, 50].212

We chose this region to encompass the likely loca-213

tion of the Lorenz strange attractor of the right214

wing. Moreover, this task, which is based on the215

framework of Valle et al. [12], requires the model to216

implicitly account for the system’s behaviour over217

an unbounded time horizon, including its sensitivity218

to disturbances. Formally, the safety function corre-219

sponds to the converged solution U∞ of the recursive220

relation, which is independent of initialisation:221

Uk+1(qi)← max
ξs

min
qj∈Q

(max (||F (qi, ξs)− qj ||, Uk(qj)))

(3)222

where qi and qj denote discrete state samples, ξs223

represents bounded noise and F (qi, ξs) represents224

the system dynamics under noise. Although this225

function is computed through a finite numerical226

approximation over a discretised state space (see227

Appendix A.4), it remains a substantially more chal-228

lenging and global task than next-state prediction. 229

While the latter requires understanding local transi- 230

tions, the safety function necessitates a model that 231

encodes the structural knowledge of long-term tra- 232

jectories and the system’s attractor geometry. The 233

contrast between these local and global prediction 234

tasks forms the basis of our transfer learning evalu- 235

ation, as illustrated in Figure 1. 236

3 Methodology 237

This section details the experimental framework used 238

to evaluate whether representations learned through 239

next-state prediction in Koopman space can transfer 240

to downstream safety value prediction tasks. We 241

begin by describing the Koopman embedding model 242

architecture, which provides the structural induc- 243

tive biases for encoding the Lorenz system dynamics. 244

Subsequently, we outline our experimental design, 245

covering data generation and preprocessing, training 246

protocols, baseline model comparisons, and evalua- 247

tion methods. 248

3.1 Koopman Embedding Implemen- 249

tation 250

Building upon the theoretical framework introduced 251

in Section 2.2, we start by implementing a neural 252

network-based finite-dimensional approximation of 253

the Koopman operator, aimed at linearising the 254

chaotic dynamics of the Lorenz system in a learned 255

latent space. The model architecture consists of 256

3

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Diagonal

1st Skew band

2nd Skew band

Figure 2. Example double-banded skew-symmetric
Koopman operator structure as defined by Equation 5
(shown here as 8×8 - actual implementation uses 32×32).

three components: an encoder ϕe : R3 → R32 that257

maps Lorenz states to a 32-dimensional embedding258

space, a decoder ϕd : R32 → R3 that reconstructs the259

original states from this latent representation, and a260

Koopman operator K ∈ R32×32 that governs linear261

evolution in the embedding space. The learning262

objective enforces that263

ϕe(st+1) ≈ Kϕe(st), (4)264

thereby promoting linear predictability of future265

states in latent space. Inspired by Geneva and266

Zabaras [4], we do not learn the operator K as267

a fully dense matrix. Instead, we impose a physi-268

cally motivated structure that decomposes K into269

the sum of two components:270

K = D + Sband, (5)271

where D ∈ R32×32 is a diagonal matrix repre-272

senting element-wise growth and decay rates, and273

Sband ∈ R32×32 is a banded skew-symmetric matrix274

capturing local rotational dynamics in latent space.275

This structured decomposition introduces a strong276

inductive bias that reflects underlying physical phe-277

nomena. The diagonal component D models dissi-278

pative dynamics, such as energy decay, whereas the279

skew-symmetric bands of Sband capture conserva-280

tive oscillatory behaviour reminiscent of rotational281

or periodic dynamics [16–18]. This separation facili-282

tates the modelling of complex non-linear systems283

such as the Lorenz attractor, enabling the encoder284

to discover compact representations of both energy-285

preserving and dissipative processes [3]. Figure 2286

illustrates the structure of the Koopman operator287

used in our implementation, with colour-coded en-288

tries denoting the diagonal and the first two skew-289

symmetric bands.290

3.2 Dataset Generation and Splitting291

We generated datasets from the Lorenz system using292

the RK45 integration method (dt = 0.01), yielding293

2, 048 training trajectories (256 steps each), 64 vali-294

dation trajectories (1, 024 steps each), and 256 test295

trajectories (1, 024 steps each). For sequence length296

N , next-step prediction uses time steps 0 to N−1 as297

input to predict steps 1 to N . Ground-truth safety 298

values are computed on a 27, 000-point discretised 299

grid using Equation 3 [10–12]. These safety values 300

are generated from the same Lorenz system dataset, 301

matching trajectory-wise. However, only 252 test 302

trajectories are included, as four trajectories were 303

entirely outside our predefined safety region Q. 304

3.3 Training Protocol 305

The training process consists of three sequential 306

stages, each corresponding to a distinct model com- 307

ponent and task: Koopman autoencoder training, 308

transformer pre-training, and fine-tuning for safety 309

function prediction. These stages are designed to 310

progressively encode the dynamics of the Lorenz at- 311

tractor into a transferable embedding space, model 312

its evolution over time, and finally adapt this knowl- 313

edge to a downstream control-relevant prediction 314

task [19–21]. The various shared components and 315

training objectives across the stages, are illustrated 316

in Figure 3. Furthermore, training hyperparameters 317

and infrastructure considerations are provided in 318

Appendix A.6 and A.7, respectively. 319

In the first stage, the Koopman autoencoder’s 320

objective is to learn a latent representation in which 321

the chaotic system dynamics evolve approximately 322

linearly over time. This embedding forms the founda- 323

tion for downstream predictive modelling. Training 324

uses 64-step sequences with a 16-step stride, yield- 325

ing 75% overlap across 2,048 temporally shuffled se- 326

quences. The encoder ϕe maps 3D Lorenz states to 327

a 32-dimensional Koopman embedding space, while 328

the decoder ϕd reconstructs the original states. The 329

neural implementation of Koopman embeddings re- 330

quires a multi-component loss function to ensure 331

both accurate state reconstruction and proper linear 332

dynamics learning. Building on the work of Geneva 333

and Zabaras [4], we formulate a composite objective 334

function that balances three critical components: re- 335

construction fidelity, dynamics prediction accuracy, 336

and operator regularisation: 337

L =

D∑
i=1

T−1∑
j=0

[
λ0MSE(sij , ϕd(ϕe(s

i
j))) 338

+ λ1MSE(sij+1, ϕd(Kϕe(s
i
j))) 339

+ λ2||K||2
]

(6) 340

where D represents the number of trajectories, T 341

the timesteps per trajectory, i indexes individual tra- 342

jectories, j indexes timesteps within each trajectory, 343

and λ0, λ1, λ2 are hyperparameters weighting the 344

loss components. Term one (λ0) enforces reconstruc- 345

tion fidelity by ensuring the encoder-decoder pipeline 346

accurately reconstructs original states. Term two 347

(λ1) constitutes the dynamics loss, enforcing proper 348

4

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Stage 1

st

(x, y, z)

ϕe K

×yt yt+1

ϕd

Reconstruction

ŝt+1

Dynamics
Prediction

Stage 2

. . .

Input Sequence

ϕe
Transformer

T
ŷt+T

Next State
Prediction

zt, ..., zt+T−1

Use Trained Encoder

Stage 3

ϕe

Self-Attn

FFN

Context VectorUse Trained Transformer

st

(x, y, z)

+

Concat

Safety Head
(Trainable MLP)

Uk+1(qi)

Safety Value

zt, ..., zt+T−1

Figure 3. An illustration of the three-stage training methodology, which is detailed in Section 3.3. Stage 1
(Representation Learning): A Koopman autoencoder is trained to learn a latent representation where the
system’s dynamics evolve linearly. An input state st is mapped by an encoder ϕe to a latent vector yt. This
latent state is then propagated forward by the Koopman operator matrix K, and the decoder ϕd produces the
next-state prediction ŝt+1. The model is trained to minimise both dynamics prediction and state reconstruction
error. Stage 2 (Transformer Pre-training): The encoder ϕe is frozen and used to convert a sequence of input
states into a sequence of latent embeddings. A transformer model T is then pre-trained on this latent sequence to
perform autoregressive next-state prediction (Task A). Stage 3 (Transformer Fine-tuning): The pre-trained
transformer’s weights are frozen. A new NN prediction head is attached, which takes the transformer’s final hidden
state and a query state q as a concatenated input. This head is then fine-tuned to predict the safety value (Task
B).

Koopman operator evolution ϕe(sj+1) ≈ Kϕe(sj).349

Term three (λ2) provides L2 regularisation on the op-350

erator matrix to prevent overfitting by encouraging351

simpler linear dynamics [4]. Finally, the individ-352

ual loss components use mean squared error (MSE)353

defined as:354

MSE(y, ŷ) =
1

n

n∑
i=1

||yi − ŷi||2, (7)355

where, n denotes the number of evaluation samples,356

ŷi the predicted value, yi the corresponding ground-357

truth value. The full hyperparameters for training358

the autoencoder are listed in Appendix A.6.359

In the second stage, a decoder-only transformer360

is pre-trained to model Koopman dynamics in em-361

bedding space via Task A. This phase encourages362

the transformer to capture temporal dependencies363

in the linearly evolving latent space, without modi-364

fying the Koopman encoder. By doing so, we ensure365

that the latent representations remain fixed and in-366

dependent from the sequence model. Training uses367

64-step non-overlapping sequences, while validation368

uses longer 256-step sequences to assess generalisa-369

tion across extended time horizons. The transformer370

employs a pre-LayerNorm architecture, with four 371

attention heads [22, 23]. Teacher-forcing is applied 372

during training using ground-truth embeddings for 373

next-step prediction [24]. Loss is computed in the 374

embedding space via MSE, as defined in Equation 7. 375

The final stage fine-tunes the frozen transformer 376

for Task B: safety function prediction. Here, the 377

transformer serves as a fixed backbone encoding the 378

complete history of system dynamics. The predic- 379

tion head, a multi-layer perception, receives as input 380

the concatenation of the transformer’s final hidden 381

state and a 3D query state, producing a scalar safety 382

score. This score quantifies the control effort re- 383

quired to keep the system within a predefined safety 384

region. Ground-truth values are obtained via a re- 385

cursive numerical method, using the same training 386

sequences and data as Stage 2 but augmented with 387

the corresponding safety values. Training optimises 388

the MSE between predicted and ground-truth scores. 389

Freezing the transformer ensures that safety head 390

performance reflects the representational quality of 391

the pre-trained dynamics model. This design iso- 392

lates the effect of representation transfer by assessing 393

whether the pre-trained dynamics can generalise to 394

5

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

a conceptually different prediction task.395

3.4 Baseline Methods396

To isolate the contributions of Koopman embeddings397

to downstream performance, we compare against398

three baseline configurations. Each model adheres399

to an identical training procedure, including data400

handling, sequence sampling, and transformer ar-401

chitecture, as detailed in Section 3.3. Moreover, a402

detailed overview of architectural components can403

be viewed in Appendix A.2. These baselines are404

referenced throughout the remainder of the paper as405

follows: Koopman (U) for the unfrozen transformer406

variant, PCA (PI) for the physics-informed PCA407

baseline, and PCA for the standard PCA baseline.408

Our main model of interest, the frozen Koopman-409

based transformer, is denoted as Koopman (F). We410

note that the Koopman (U) configuration mirrors411

the entire training process of Koopman (F), with412

the key distinction that the transformer’s weights413

remain trainable during Task B. This setup enables414

the transformer to adapt its internal representa-415

tion while the safety head learns to estimate control416

effort, thus assessing the benefit of end-to-end fine-417

tuning [7]. In the PCA (PI) baseline, the Koopman418

encoder-decoder is replaced by a physics-informed,419

multi-stage PCA pipeline.420

Initially, a three-dimensional PCA is fit on the raw421

state vectors from the training set. This transforma-422

tion is then applied not only to the system states but423

also to a collection of derived quantities, including424

first and second-order derivatives of the Lorenz sys-425

tem. These are mapped into a common coordinate426

frame and enriched with engineered features such as427

radial distance and angular velocity, yielding a nine-428

dimensional intermediate representation. A second429

PCA, trained on this extended dataset, reduces the430

features to match the embedding dimension used in431

the transformer. The resulting embedding captures432

domain-specific structure through physically mean-433

ingful components. While this approach benefits434

from strong prior knowledge, it lacks the generality435

and learning capacity of a trained encoder. The436

transformer and safety head are trained on this em-437

bedding using MSE in the predicted safety score. A438

complete overview of the feature engineering strat-439

egy is provided in Appendix A.3. Nevertheless, as440

noted by Shinn [25], PCA applied to smooth dynam-441

ical systems like the Lorenz attractor can produce442

spurious oscillatory patterns that may not reflect443

true latent structure.444

Lastly, the standard PCA baseline serves as the445

most minimal configuration. Here, the system states446

are projected into a three-dimensional space that re-447

tains 100% of the original variance, with no physics-448

based augmentation [26]. While this embedding can449

assist transformer convergence by partially linearis-450

ing the input space, the model struggled to converge 451

when trained solely on the next-state prediction task 452

(Task A). Despite this limitation, the baseline is re- 453

tained to isolate the contribution of the training 454

protocol itself-specifically, to assess how much of 455

the downstream performance stems from the safety 456

head alone. Like PCA (PI), this baseline is opti- 457

mised using standard MSE loss between predicted 458

and ground-truth safety values. 459

3.5 Evaluation Metrics 460

To quantify model performance across these stages, 461

we employ three complementary metrics. MSE (as 462

seen in Equation 7) is used as a primary loss and 463

evaluation metric. Due to its squaring of error terms, 464

MSE penalises larger deviations, which is particu- 465

larly important in safety-critical scenarios where 466

large prediction errors may indicate hazardous fail- 467

ures. Mean Absolute Error (MAE, i.e. Equation 8) is 468

also reported, offering a more interpretable measure 469

of average prediction deviation that is less sensitive 470

to outliers. Finally, we compute the coefficient of 471

determination (R2, i.e. Equation 9), which captures 472

the proportion of variance in the ground-truth safety 473

values that is explained by the model’s predictions. 474

This metric provides a global view of how well the 475

model reconstructs the overall safety landscape from 476

Koopman-derived features. 477

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|, (8) 478

R2(y, ŷ) = 1−
∑n

i=1 ||yi − ŷi||2∑n
i=1 ||yi − ȳ||2

, (9) 479

where ȳ is the mean of all ground-truth values. 480

4 Results 481

Performance evaluation across 252 test trajectories 482

reveals transfer learning advantages for Koopman 483

embeddings over PCA-based baselines. We present 484

a complete quantitative analysis across our chosen 485

metrics, followed by spatial error analysis to identify 486

possible patterns in model divergence across different 487

regions of the Lorenz strange attractor that region Q 488

encompasses. Table 1 and 2 summarise quantitative 489

metrics while Figure 4 maps error distributions for 490

our qualitative analysis. 491

4.1 Quantitative Analysis 492

Our initial evaluation on the Task A pre-training 493

revealed that the standard PCA model failed to 494

converge on the forecasting task. We nevertheless 495

retained this model for the final safety evaluation 496

(Task B) to serve as a baseline, isolating the contri- 497

bution of the neural network safety head. The full 498

6

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Safety function prediction performance across
models mean(µ)± standard deviations(σ). All metrics
were computed on 252 test trajectories within the safety
region. Statistical significance assessed via Wilcoxon
signed-rank tests [27] with Bonferroni correction applied:
α = 0.0083 [28].

Model MSE (×10−4) MAE (×10−2) R2

Koopman (F) 3.08 ± 6.55 1.16 ± 0.53 0.991 ± 0.089
Koopman (U) 5.59 ± 17.14 1.20 ± 0.59 0.989 ± 0.089
PCA (PI) 5.28 ± 8.83 1.48 ± 0.65 0.989 ± 0.090
PCA 16.80 ± 17.93 2.83 ± 0.98 0.983 ± 0.091

Table 2. Pairwise significance comparison (p-values)
between models for control performance. The signifi-
cance results shown were consistent for each pairwise
comparison across all three evaluation metrics: MSE,
MAE, and R2.

Model Koopman (F) Koopman (U) PCA (PI) PCA

Koopman (U) 0.335 (ns) — — —
PCA (PI) <0.001 <0.001 — —
PCA <0.001 <0.001 <0.001 —

pre-training performance for all models is detailed499

in Appendix B.1.500

Koopman (F), demonstrates superior performance501

across all metrics, achieving the lowest mean MSE of502

(3.08±6.55)×10−4, the lowest MAE of (1.16±0.53)×503

10−2, and the highest R2 of 0.991± 0.089. The un-504

frozen Koopman variant, Koopman (U)’s accuracy505

comparably, with an MSE of (5.59± 17.14)× 10−4,506

an MAE of (1.20 ± 0.59) × 10−2, and an R2 of507

0.989 ± 0.089. However, Koopman (U) demon-508

strated less consistent performance, as seen with509

its standard deviation of 17.14. Both Koopman ap-510

proaches significantly outperform the PCA-based511

baselines. PCA (PI) achieves intermediate perfor-512

mance with an MSE of (5.28±8.83)×10−4, an MAE513

of (1.48± 0.65)× 10−2, and an R2 of 0.989± 0.090.514

Lastly, the baseline PCA shows the poorest capa-515

bilities, with an MSE of (16.80 ± 17.93) × 10−4,516

an MAE of (2.83 ± 0.98) × 10−2, and an R2 of517

0.983± 0.091. Statistical testing establishes a clear518

performance hierarchy in Table 2. Koopman (F) and519

Koopman (U) models demonstrate a statistically sig-520

nificant advantage over both the PCA (PI) and PCA521

baselines (all p < 0.001). Furthermore, the PCA522

(PI) model significantly outperforms the PCA model523

(p < 0.001). Notably, no significant difference exists524

between frozen and unfrozen Koopman approaches525

(p = 0.335), suggesting that representation quality526

drives transfer performance. We provide the com-527

plete pairwise statistical analysis in Appendix B.2,528

which covers the full twenty-one comparisons.529

4.2 Qualitative Analysis530

An important consideration when comparing the531

trained Koopman models to the PCA baselines is the532

potential of artefacts inherent to PCA when applied 533

to time-series data [25]. These artefacts act as by- 534

products rather than true features of the underlying 535

system. For this reason, our PCA-based baseline 536

may be susceptible to this effect. In particular, the 537

PCA (PI) model, which includes time derivatives 538

that may directly result in ”phantom oscillations” 539

that are not descriptive of the underlying dynamics 540

of the system, but are nevertheless correlated [25]. 541

Therefore, PCA (PI)’s performance may derive from 542

fitting these PCA artefacts. 543

Figure 4 reveals the underlying mechanisms be- 544

hind the performance differences observed in Table 1. 545

The spatial distribution of prediction errors across 546

the strange attractor provides insight into how dif- 547

ferent embedding methods capture the chaotic dy- 548

namics. Numbered velocity vectors (1-4, clockwise 549

from top left) indicate the mean trajectory direction 550

and magnitude at key regions. Across all models, 551

we observe a notable concentration of error in the 552

central transition region, where trajectories cross 553

between the attractor’s lobes (near x = 0). One 554

likely cause is the high dynamical sensitivity in this 555

area, where future states are most uncertain [13]. 556

However, another possible explanation is related to 557

the methodological design, as models were trained 558

to evaluate strictly within region Q - this transition 559

boundary may result in unstable training. Visually, 560

there is no significant difference in the error distri- 561

bution between the Koopman (F) and Koopman 562

(U) models, as indicated by the marginal histograms 563

in Figure 4 that show the total error summed at 564

each coordinate. PCA methods show greater error 565

concentration in dynamically complex areas, such 566

as regions of high curvature where trajectories re- 567

volve around the strange attractor (e.g. near vectors 568

1, 2, and 4). The interaction with the strange at- 569

tractor [15] likely necessitates high sensitivity to 570

conditions, resulting in an increased concentration 571

of errors. The Lorenz system demonstrates dissipa- 572

tivity [13], meaning its trajectories, while chaotic, 573

are bounded and converge to a finite strange attrac- 574

tor. This boundedness confines trajectories within a 575

specific volume, which leads to a build-up of trajec- 576

tory density around the attractor, creating regions 577

of concentrated trajectories as seen by the consistent 578

error space in Figure 4. These concentrated regions, 579

combined with the inherent sensitivity to initial con- 580

ditions within the strange attractor, may explain 581

the observed error concentrations. This dissaptivity 582

property is challenging for NNs to learn, as has also 583

been highlighted by Tang et al. [30]. Furthermore, a 584

stark contrast is evident between the two PCA-based 585

methods. While the successfully pre-trained PCA 586

(PI) model exhibits elevated errors, the base PCA 587

model displays significant errors with widespread 588

issues, particularly across every vector region. As 589

seen in Table 1, PCA achieved the worst results. 590

7

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Koopman (F) Koopman (U)

PCA (PI) PCA

0 5 10 15
X Coordinate

0

10

20

30

40
Z

Co
or

di
na

te

Region R Boundary (x = 0)
Attractor Center
Velocity Direction

1

2

3

4

0

5

To
ta

l L
1

Er
ro

r

0 5
Total L1 Error

0 5 10 15
X Coordinate

0

10

20

30

40

Z
Co

or
di

na
te 1

2

3

4

0

5

To
ta

l L
1

Er
ro

r

0 5
Total L1 Error

0 5 10 15
X Coordinate

0

10

20

30

40

Z
Co

or
di

na
te 1

2

3

4

0

5

To
ta

l L
1

Er
ro

r

0 5
Total L1 Error

0 5 10 15
X Coordinate

0

10

20

30

40
Z

Co
or

di
na

te 1

2

3

4

0

5

To
ta

l L
1

Er
ro

r

0 5
Total L1 Error

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Accumulated L1 Error Across All Trajectories

Figure 4. Comparative accumulated L1 error across the test dataset. The L1 error is defined as L1 = |ytrue−ypred|.
The figure displays the X–Z projection for four models. Light regions indicate low error; darker regions represent
higher error concentrations. Contextual markers denote the boundary of the training regionQ (s = 0), corresponding
to the Lorenz attractor’s equilibrium point [29]. Vector lines show mean velocity and direction in each quadrant
(see Appendix B.3 for details).

5 Conclusion591

This work explored whether Koopman embeddings592

offer transferable representations of chaotic dynam-593

ics for safety-critical tasks. Our findings support594

this hypothesis: Koopman-based models consis-595

tently outperform Principal Component Analysis596

(PCA) baselines in downstream safety prediction,597

particularly in regions of high dynamical sensitivity.598

As shown in our quantitative and error analyses,599

the Koopman (F) and (U) models achieve higher600

control-safety performance and fewer high-risk er-601

rors. This advantage is likely due to their ability to602

encode generalisable dynamical structure, preserving603

key physical relationships across tasks [3]. Notably,604

this performance holds even when the transformer605

is frozen, highlighting that Koopman embeddings606

capture genuine physical features rather than task-607

specific patterns, a hallmark of effective transfer608

learning [7, 31]. In practical terms, this allows for609

smaller, more efficient models. For instance, our 610

Koopman autoencoder enables the use of a 4-layer 611

transformer instead of an 11-layer PCA counterpart, 612

reducing peak GPU usage by more than half during 613

fine-tuning (see Appendix B.4). Finally, by leverag- 614

ing pre-training and fine-tuning strategies inspired 615

by Natural Language Processing, we demonstrated 616

that transformer architectures can effectively model 617

chaotic temporal dependencies such as those in the 618

Lorenz system. Future work could apply these rep- 619

resentations to formal safety methods like Control 620

Barrier Functions [32], building upon recent theoret- 621

ical advances in generalised Koopman operators for 622

controlled systems to offer provable guarantees [5]. 623

8

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References624

[1] H. Navone and H. Ceccatto. “Learning chaotic625

dynamics by neural networks”. In: Chaos, Soli-626

tons & Fractals 6 (1995), pp. 383–387.627

[2] B. O. Koopman. “Hamiltonian Systems and628

Transformation in Hilbert Space”. In: Proceed-629

ings of the National Academy of Sciences 17.5630

(1931), pp. 315–318.631

[3] M. Budǐsić, R. Mohr, and I. Mezić. “Applied632

koopmanism”. In: Chaos: An Interdisciplinary633

Journal of Nonlinear Science 22.4 (2012).634

[4] N. Geneva and N. Zabaras. “Transformers for635

modeling physical systems”. In: Neural Net-636

works 146 (2022), pp. 272–289.637

[5] M. Lazar. From Product Hilbert Spaces to the638

Generalized Koopman Operator and the Non-639

linear Fundamental Lemma. 2025. arXiv: 2508.640

07494 [math.OC]. url: https://arxiv.org/641

abs/2508.07494.642

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszko-643

reit, L. Jones, A. N. Gomez, L. Kaiser, and644

I. Polosukhin. “Attention is all you need”. In:645

Advances in neural information processing sys-646

tems 30 (2017).647

[7] J. Howard and S. Ruder. “Universal Language648

Model Fine-tuning for Text Classification”.649

In: (July 2018). Ed. by I. Gurevych and Y.650

Miyao, pp. 328–339. doi: 10.18653/v1/P18-651

1031. url: https : / / aclanthology . org /652

P18-1031/.653

[8] A. Radford, K. Narasimhan, T. Salimans,654

I. Sutskever, et al. “Improving language un-655

derstanding by generative pre-training”. In:656

(2018).657

[9] I. Radosavovic, B. Shi, L. Fu, K. Goldberg, T.658

Darrell, and J. Malik. “Robot learning with659

sensorimotor pre-training”. In: Conference on660

Robot Learning. PMLR. 2023, pp. 683–693.661

[10] J. Sabuco, M. A. Sanjuán, and J. A. Yorke.662

“Dynamics of partial control”. In: Chaos: An663

Interdisciplinary Journal of Nonlinear Science664

22.4 (2012).665

[11] R. Capeáns, J. Sabuco, M. A. Sanjuán, and666

J. A. Yorke. “Partially controlling transient667

chaos in the Lorenz equations”. In: Philosophi-668

cal Transactions of the Royal Society A: Math-669

ematical, Physical and Engineering Sciences670

375.2088 (2017), p. 20160211.671

[12] D. Valle, R. Capeans, A. Wagemakers, and672

M. A. Sanjuán. “AI-driven control of chaos:673

A transformer-based approach for dynami-674

cal systems”. In: Communications in Nonlin-675

ear Science and Numerical Simulation (2025),676

p. 109085.677

[13] E. N. Lorenz. “Deterministic Nonperiodic 678

Flow 1”. In: Universality in Chaos, 2nd edition. 679

Routledge, 2017, pp. 367–378. 680

[14] N. Geneva and N. Zabaras. “Modeling the 681

dynamics of PDE systems with physics- 682

constrained deep auto-regressive networks”. In: 683

Journal of Computational Physics 403 (2020), 684

p. 109056. 685

[15] J. Milnor. “On the concept of attractor”. In: 686

Communications in Mathematical Physics 99.2 687

(1985), pp. 177–195. 688

[16] M. O. Williams, I. G. Kevrekidis, and C. W. 689

Rowley. “A data–driven approximation of the 690

koopman operator: Extending dynamic mode 691

decomposition”. In: Journal of Nonlinear Sci- 692

ence 25 (2015), pp. 1307–1346. 693

[17] P. W. Battaglia, J. B. Hamrick, V. Bapst, 694

A. Sanchez-Gonzalez, V. Zambaldi, M. Mali- 695

nowski, A. Tacchetti, D. Raposo, A. Santoro, 696

R. Faulkner, et al. “Relational inductive bi- 697

ases, deep learning, and graph networks”. In: 698

arXiv preprint arXiv:1806.01261 (2018). 699

[18] Y. Liu, A. Sholokhov, H. Mansour, and 700

S. Nabi. “Physics-Informed Koopman Net- 701

work for time-series prediction of dynami- 702

cal systems”. In: ICLR 2024 Workshop on 703

AI4DifferentialEquations In Science. 2024. 704

[19] Y. Bengio, J. Louradour, R. Collobert, and J. 705

Weston. “Curriculum Learning”. In: Proceed- 706

ings of the 26th Annual International Confer- 707

ence on Machine Learning. ACM, 2009, pp. 41– 708

48. doi: 10.1145/1553374.1553380. 709

[20] M. Inubushi and S. Goto. “Transfer learning 710

for nonlinear dynamics and its application to 711

fluid turbulence”. In: Physical Review E 102.4 712

(2020), p. 043301. 713

[21] L. Yu, M. Z. Yousif, M. Zhang, S. Hoyas, R. 714

Vinuesa, and H.-C. Lim. “Three-dimensional 715

ESRGAN for super-resolution reconstruction 716

of turbulent flows with tricubic interpolation- 717

based transfer learning”. In: Physics of Fluids 718

34.12 (2022). 719

[22] A. Radford, J. Wu, R. Child, D. Luan, D. 720

Amodei, I. Sutskever, et al. “Language mod- 721

els are unsupervised multitask learners”. In: 722

OpenAI blog 1.8 (2019), p. 9. 723

[23] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, 724

C. Xing, H. Zhang, Y. Lan, L. Wang, and 725

T. Liu. “On layer normalization in the trans- 726

former architecture”. In: International con- 727

ference on machine learning. PMLR. 2020, 728

pp. 10524–10533. 729

9

https://arxiv.org/abs/2508.07494
https://arxiv.org/abs/2508.07494
https://arxiv.org/abs/2508.07494
https://arxiv.org/abs/2508.07494
https://arxiv.org/abs/2508.07494
https://arxiv.org/abs/2508.07494
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://aclanthology.org/P18-1031/
https://aclanthology.org/P18-1031/
https://aclanthology.org/P18-1031/
https://doi.org/10.1145/1553374.1553380

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[24] R. J. Williams and D. Zipser. “A learning al-730

gorithm for continually running fully recurrent731

neural networks”. In: Neural computation 1.2732

(1989), pp. 270–280.733

[25] M. Shinn. “Phantom oscillations in principal734

component analysis”. In: Proceedings of the735

National Academy of Sciences 120.48 (2023),736

e2311420120.737

[26] C. M. Bishop and N. M. Nasrabadi. Pattern738

recognition and machine learning. Vol. 4. 4.739

Springer, 2006.740

[27] F. Wilcoxon. “Individual comparisons by rank-741

ing methods”. In: Breakthroughs in statistics:742

Methodology and distribution. Springer, 1992,743

pp. 196–202.744

[28] O. J. Dunn. “Multiple Comparisons Among745

Means”. In: Journal of the American Statis-746

tical Association 56.293 (1961), pp. 52–64.747

issn: 01621459, 1537274X. url: http : / /748

www.jstor.org/stable/2282330 (visited749

on 07/31/2025).750

[29] B. L. Shen, M. Wang, P. Yan, H. Yu, J. Song,751

and C. J. Da. “Stable and unstable regions of752

the Lorenz system”. In: Scientific Reports 8.1753

(2018), p. 14982.754

[30] S. Tang, T. Sapsis, and N. Azizan. “Learn-755

ing chaotic dynamics with embedded dissipa-756

tivity”. In: arXiv preprint arXiv:2410.00976757

(2024).758

[31] M. Sabatelli. Contributions to deep trans-759

fer learning: from supervised to reinforcement760

learning. Universite de Liege (Belgium), 2022.761

[32] A. D. Ames, S. Coogan, M. Egerstedt, G. No-762

tomista, K. Sreenath, and P. Tabuada. “Con-763

trol barrier functions: Theory and applica-764

tions”. In: 2019 18th European control con-765

ference (ECC). Ieee. 2019, pp. 3420–3431.766

[33] P. Virtanen, R. Gommers, T. E. Oliphant,767

M. Haberland, T. Reddy, D. Cournapeau, E.768

Burovski, P. Peterson, W. Weckesser, J. Bright,769

S. J. van der Walt, M. Brett, J. Wilson, K. J.770

Millman, N. Mayorov, A. R. J. Nelson, E.771

Jones, R. Kern, E. Larson, C. J. Carey, İ.772

Polat, Y. Feng, E. W. Moore, J. VanderPlas,773

D. Laxalde, J. Perktold, R. Cimrman, I. Hen-774

riksen, E. A. Quintero, C. R. Harris, A. M.775

Archibald, A. H. Ribeiro, F. Pedregosa, P. van776

Mulbregt, and S. 1. Contributors. “SciPy 1.0:777

Fundamental Algorithms for Scientific Com-778

puting in Python”. In: Nature Methods 17.3779

(2020), pp. 261–272. doi: 10.1038/s41592-780

019-0686-2.781

[34] E. Fehlberg. Low-order classical Runge-Kutta 782

formulas with stepsize control and their appli- 783

cation to some heat transfer problems. Tech. 784

rep. NASA-TR-R-315. Washington, D.C.: Na- 785

tional Aeronautics and Space Administration, 786

1969. 787

[35] V. Nair and G. E. Hinton. “Rectified Lin- 788

ear Units Improve Restricted Boltzmann Ma- 789

chines”. In: Proceedings of the 27th Inter- 790

national Conference on Machine Learning 791

(ICML-10). 2010, pp. 807–814. 792

[36] D. Hendrycks and K. Gimpel. “Gaussian Error 793

Linear Units (GELUs)”. In: arXiv preprint 794

arXiv:1606.08415 (2016). 795

[37] T. Akiba, S. Sano, T. Yanase, T. Ohta, and 796

M. Koyama. “Optuna: A Next-Generation Hy- 797

perparameter Optimization Framework”. In: 798

Proceedings of the 25th ACM SIGKDD Inter- 799

national Conference on Knowledge Discovery 800

& Data Mining. New York, NY, USA: Associa- 801

tion for Computing Machinery, 2019, pp. 2623– 802

2631. isbn: 9781450362016. doi: 10.1145/ 803

3292500.3330701. 804

[38] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. 805

Kégl. “Algorithms for Hyper-Parameter Opti- 806

mization”. In: Advances in Neural Information 807

Processing Systems 24. Ed. by J. Shawe-Taylor, 808

R. S. Zemel, P. L. Bartlett, F. Pereira, and 809

K. Q. Weinberger. Curran Associates, Inc., 810

2011, pp. 2546–2554. 811

[39] D. P. Kingma and J. Ba. “Adam: A method for 812

stochastic optimization”. In: arXiv preprint 813

arXiv:1412.6980 (2014). 814

[40] I. Loshchilov and F. Hutter. “Decoupled 815

weight decay regularization”. In: arXiv 816

preprint arXiv:1711.05101 (2017). 817

[41] A. Paszke, S. Gross, F. Massa, A. Lerer, J. 818

Bradbury, G. Chanan, T. Killeen, Z. Lin, N. 819

Gimelshein, L. Antiga, A. Desmaison, A. Kopf, 820

E. Yang, Z. DeVito, M. Raison, A. Tejani, 821

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, 822

and S. Chintala. “PyTorch: An Imperative 823

Style, High-Performance Deep Learning Li- 824

brary”. In: Advances in Neural Information 825

Processing Systems 32. Ed. by H. Wallach, H. 826

Larochelle, A. Beygelzimer, F. d’Alché-Buc, 827

E. Fox, and R. Garnett. Curran Associates, 828

Inc., 2019, pp. 8026–8037. 829

[42] M. Zaharia et al. MLflow: A Machine Learning 830

Lifecycle Platform. Version 2.14.1. 2024. url: 831

https://mlflow.org/. 832

10

http://www.jstor.org/stable/2282330
http://www.jstor.org/stable/2282330
http://www.jstor.org/stable/2282330
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://mlflow.org/

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A Methodology Details833

A.1 Lorenz System834

The following system of differential equations defines835

the Lorenz system:836

dx

dt
= σ(y − x); (10)837

dy

dt
= x(ρ− z)− y; (11)838

dz

dt
= xy − βz (12)839

Where σ = 10, ρ = 28, and β = 8/3 are the stan-840

dard parameters settings that guarantee constant841

chaotic behaviour [13]. Trajectories from the Lorenz842

system are simulated using scipy [33], employing843

the RK45 integration method [34] with a time step844

of dt = 0.01. To ensure the reproducibility of chaotic845

dynamics, integration tolerances are set to rtol =846

10−10 and atol = 10−10, respectively controlling847

the relative and absolute error of the solver [13].848

A.2 Model Architecture Specifica-849

tions850

The following architectures refer to our main Koop-851

man (F) model. However, architectural structure is852

identical across all other baseline models with certain853

parameters differing, which are detailed throughout854

this section.855

The Koopman autoencoder: Uses a symmet-856

ric architecture where encoder Input(3D) → Lin-857

ear(3,500) → ReLU → Linear(500,32) → Layer-858

Norm and decoder Linear(32,500) → ReLU → Lin-859

ear(500,3) [23, 35].860

Transformer Implementation: The trans-861

former model implements a pre-LayerNorm862

decoder-only architecture. All models use GELU863

activation, and sinusoidal positional encoding [22,864

36]. Weights are initialised from normal distribution865

N(0, 0.052).866

867

While the number of attention heads and lay-868

ers differs across model types (detailed in Ap-869

pendix A.6), all transformers follow the same gen-870

eral structure: input and output dimensions equal871

the embedding dimension, with feedforward layers872

scaled to 4× embedding dim. The architecture pro-873

cesses embeddings through multiple transformer874

decoder layers, applies final layer normalisation,875

and uses a linear output projection that preserves876

the embedding dimensionality. Therefore a single877

transformer block follows: LayerNorm → Multi-878

HeadAttention → Residual → LayerNorm → Lin-879

ear(embedding dim, 4×embedding dim) → GELU880

→ Linear(4×embedding dim, embedding dim) → 881

Dropout → Residual. Where embedding dim cor- 882

responds to the embedding dimension of the trans- 883

former’s respective embedder. 884

Hence, the full transformer model follows the fol- 885

lowing structure: Input(embedding dim) → Posi- 886

tionalEncoding → [TransformerBlock × N] → Lay- 887

erNorm → Linear(embedding dim, embedding dim) 888

→ Output(embedding dim). Where N refers to the 889

transformer layers. 890

Safety Function Implementation: The safety 891

predictor head processes the concatenated trans- 892

former final hidden state (32D) and query state (3D) 893

through Linear(35, 128) → ReLU → Linear(128, 64) 894

→ ReLU → Linear(64,1). 895

A.3 Physics-Informed PCA Feature 896

Engineering 897

The features for the PCA (PI) baseline, shown 898

in Table A.1, were constructed in three stages to 899

create a 9-dimensional intermediate representation: 900

901

1. PCA Coordinates: The components z1, z2, z3 902

represent the coordinates of the system in a 903

new, decorrelated basis. They are obtained by 904

applying a Principal Component Analysis (PCA) 905

transformation to the original state vector s. 906

907

2. Transformed Derivatives: The time derivatives 908

of the system’s state, denoted ẋ, ẏ, and ż, are 909

calculated using the Lorenz differential equations 910

[13]. While the table shows this calculation in the 911

original state space, the resulting velocity vectors 912

are subsequently projected into the PCA basis to 913

ensure they are represented consistently with the 914

coordinates from step 1. 915

916

3. Engineered Features: 917

a. The sine and cosine of the phase an- 918

gle. This angle is calculated using 919

the two-argument arctangent function, 920

atan2(z2, z1), which captures the angular 921

position of the trajectory in the primary 922

PCA plane. 923

b. The radial distance from the origin in the 924

principal plane, calculated as the Euclidean 925

norm
√
z21 + z22 . This feature captures the 926

magnitude of the state’s projection onto 927

this plane. 928

A.4 Safety Function Computation 929

The safety function U∞(q) represents the minimum 930

control effort required to maintain trajectories start- 931

ing from state q within a specified safe region Q 932

11

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table A.1. Component calculation for features in the Physics-Informed PCA baseline.

Feature Group Feature Components

1. PCA Coordinates z1, z2, z3

2. Transformed Derivatives ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

3. Engineered Features a) sin(atan2(z2, z1)),

cos(atan2(z2, z1))

b)
√

z21 + z22

indefinitely [11]. The goal is to keep the system’s933

trajectory within this region even when affected by934

bounded disturbances.935

The ground-truth values for this function are com-936

puted using a recursive numerical method known937

as the sculpting algorithm, which operates on a dis-938

cretized state space, [10, 11]. Values are computed939

using a recursive numerical method that discretises940

the state space into a 27,000-point grid spanning the941

safety region bounds x ∈ [0, 50], y ∈ [−50, 50], z ∈942

[−50, 50] outlined in [12].943

A.5 Hyperparameter Optimisation944

All hyperparameter optimisation is done with the945

Optuna library [37], which implements Bayesian op-946

timisation with Tree-structured Parzen Estimator947

(TPE) sampling [38]. This optimisation approach948

adaptively explores the hyperparameter space, learn-949

ing from the results of previous trials to efficiently950

identify promising configurations.951

A.6 Training Hyperparameters952

Hyperparameter configuration influences model953

learning and convergence for each specific task. More954

info on hyperparamter tuning can be seen in Ap-955

pendix section A.5.956

The learning rate (lr), which dictates the step957

size for weight updates, was varied to suit the spe-958

cific requirements of each task. A learning-rate of959

1 × 10−3 was used for the Koopman autoencoder,960

while transformer pre-training used 1× 10−4 (Task961

A, Table A.2). Higher rates like 6.83 × 10−3 and962

1.04× 10−3 were found to be optimal for fine-tuning963

the safety head in Task B (Table A.3). The training964

duration, defined by the number of epochs, was also965

tailored to each stage, ranging from 300 epochs for966

Task A training (Table A.2) to shorter periods, such967

as 90 epochs, for Task B (Table A.3). The batch968

size, or the number of samples per gradient up-969

date, was adjusted to balance gradient stability and970

memory constraints, with larger sizes, such as 512971

(Table A.2), used for the autoencoder and a smaller972

size 32 (Table A.2, A.4), for the transformers. The 973

Adam optimiser proved to be sufficient for all Task A 974

training stages, with AdamW used for Task B train- 975

ing for Koopman (U) and PCA (PI) training [39, 40]. 976

Architectural parameters define the model’s capacity, 977

including the embedding dimension, which sets the 978

size of the latent space. This dimension was chosen 979

to match the expected representational needs of each 980

method: 32 for the Koopman models (Table A.2) 981

to enforce a dense, high-dimensional representation 982

where complex dynamics can be linearised; 9 for 983

the PCA (PI) model (Table A.4), corresponding to 984

the number of components created via its specific 985

feature engineering; and 3 for the standard PCA 986

baseline (Table A.5), matching the system’s three 987

physical dimensions. For transformers, the context 988

length parameter was kept aligned with Geneva and 989

Zabaras [4]’s implementation across all models with 990

a context length of 64 (e.g. Table A.2). However, the 991

number of transformer layers and attention heads 992

were embedding type dependent. The final safety 993

head’s structure was defined by its layer dimensions. 994

The Koopman autoencoder’s training loss function 995

used the following three loss weights [4]: λ0 for state 996

reconstruction, λ1 for linear dynamics enforcement, 997

and λ2 for regularising the Koopman operator itself 998

(Table A.2), supplemented by a minor weight decay 999

to prevent overfitting. 1000

Beyond the parameters optimised by Optuna, sev- 1001

eral configurations were fixed to ensure consistency. 1002

The transformer architecture implements a feed- 1003

forward network (FFN) dimension four times the 1004

size of its embedding dimension. For the Koopman 1005

autoencoder specifically, a distinct weight initiali- 1006

sation strategy was employed: while the encoder 1007

and decoder used standard Kaiming uniform initial- 1008

isation, the Koopman matrix was deterministically 1009

initialised with linearly decreasing diagonal values 1010

and weakly coupled off-diagonals to promote stabil- 1011

ity. 1012

Sequence generation also followed a set protocol: 1013

For Stage 1 (Koopman autoencoder), training used 1014

overlapping sequences of 64 steps with a 16-step 1015

12

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

stride. The safety head fine-tuning in Stage 3 used1016

a similar protocol with the same 16-step stride. In1017

contrast, Stage 2 (transformer pre-training) used1018

non-overlapping 256-step sequences. For all models,1019

validation and test sequences were longer (1,0241020

sequence steps) and non-overlapping to provide a1021

more challenging test of generalisation.1022

A.7 Training Infrastructure1023

The implementation relies on PyTorch [41] with1024

automatic mixed precision (AMP). A single NVIDIA1025

4070 (6GB) GPU is used for training, with the aid of1026

MLflow [42] for experiment tracking, metric logging,1027

and energy consumption tracking. To offset any1028

possible over-optimisation, the test set was held1029

until final evaluation.1030

13

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table A.2. Hyperparameters for Koopman Autoencoder Training and Transformer Pre-training (Task A).

Parameter Koopman Autoencoder Task A

Learning rate (lr) 1× 10−3 1× 10−4

Number of epochs 300 200

Batch size 512 16

Optimiser type Adam Adam

Embedding dimension 32 32

Context length - 64

Learning rate decay 0.95 -

Weight decay 1× 10−8 1× 10−10

Reconstruction Loss λ0 1× 104 -

Dynamics Loss λ1 1.0 -

Regularisation Loss λ2 0.1 -

Table A.3. Hyperparameters for Safety Head Fine-tuning (Task B) for Koopman (F) and Koopman (U) models.

Parameter Koopman (F) Task B Koopman (U) Task B

Learning rate (lr) 6.83× 10−3 1.04× 10−3

Number of epochs 80 50

Batch size 16 16

Optimiser type Adam Adamw

Embedding dimension 32 32

Transformer layers 4 4

Transformer heads 4 4

Safety head layer 1 128 112

Safety head layer 2 64 64

Table A.4. Hyperparameters for PCA (PI) Transformer Pre-training and Safety Head Fine-tuning.

Parameter Task A Task B

Learning rate (lr) 2.15× 10−3 7.52× 10−3

Number of epochs 300 90

Batch size 16 512

Optimiser type Adam AdamW

Embedding dimension 9 9

Weight decay 1× 10−10 1× 10−10

Context length 64 -

Transformer layers 11 -

Transformer heads 9 -

Safety head layer 1 - 112

Safety head layer 2 - 64

14

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table A.5. Hyperparameters for Standard PCA Baseline Pre-training and Safety Head Fine-tuning.

Parameter Task A Task B

Learning rate (lr) 1× 10−3 6.89× 10−3

Number of epochs 5 90

Batch size 16 512

Optimiser type Adam Adam

Embedding dimension 3 3

Context length 64 -

Transformer layers 3 -

Transformer heads 3 -

Safety head layer 1 - 32

Safety head layer 2 - 32

15

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B Results Details1031

B.1 Task A: Pre-training Perfor-1032

mance1033

The performance of Task A, detailed in Table B.1,1034

reveals differences in the capabilities of each em-1035

bedding type. Our evaluation uses a continuous,1036

256-step auto-regressive rollout starting with just a1037

single ground truth state. The MSE values of the1038

reconstructed state are calculated over four consec-1039

utive 64-step windows [4].1040

The results indicate that the PCA model failed1041

to converge to a useful predictive state. Its initial1042

error of 121.35 is excessively high for a physical1043

system and remains poor across the entire predic-1044

tion horizon, indicating it was unable to learn the1045

underlying dynamics. More revealing is the compar-1046

ison between the two successful models. While the1047

PCA (PI) model achieved the lowest initial error1048

(62.33), its performance quickly degraded. The er-1049

ror nearly doubled in the subsequent window. This1050

rapid ”fall-off” suggests that while it learned short-1051

term patterns, the representation was not stable for1052

long-horizon forecasting.1053

In contrast, the Koopman model demonstrates1054

long-term stability. Its prediction error remained1055

consistently low and stable across all four horizons,1056

never significantly exceeding an MSE score of 75.1057

B.2 Complete Statistical Analysis1058

This section provides the complete pairwise statis-1059

tical comparison results across all metrics for full1060

transparency and reproducibility.1061

Table B.2 presents the statistical analysis under-1062

lying the summary results in Table 2. Our pairwise1063

testing reveals a clear hierarchy. The Koopman (F)1064

model’s performance was compared to each of the1065

other models. No statistically significant difference1066

was found when comparing the Koopman (U) model1067

to the Koopman model (F) across MSE (p = 0.3355),1068

MAE (p = 0.6897), or R2 (p = 0.2625). However,1069

the Koopman (F) model significantly outperformed1070

the PCA (PI) model on all three metrics: MSE1071

(p < 0.001), MAE (p < 0.001), and R2 (p < 0.001).1072

Likewise, it demonstrated a significant advantage1073

over the PCA model across MSE (p < 0.001), MAE1074

(p < 0.001), and R2 (p < 0.001).1075

Similarly, the Koopman (U) outperformed the1076

PCA (PI) model across MSE (p < 0.001), MAE1077

(p < 0.001), and R2 (p < 0.001). It also performed1078

significantly better than the PCA model on all met-1079

rics: MSE (p < 0.001), MAE (p < 0.001), and R2
1080

(p < 0.001).1081

Finally, the comparison between the two PCA-1082

based methods revealed that the PCA (PI) model1083

was significantly better than the PCA model across1084

all three metrics: MSE (p < 0.001), MAE (p < 1085

0.001), and R2 (p < 0.001). 1086

In summary, both Koopman models (F) and 1087

(U) significantly outperformed all PCA-based ap- 1088

proaches. Among the PCA variants, PCA (PI) 1089

showed greater performance compared to the base 1090

PCA model, but inferior to the Koopman ap- 1091

proaches. 1092

B.3 Velocity Vector Calculation for 1093

Error Accumulation Plot 1094

The velocity vectors shown in the error accumula- 1095

tion analysis (Figure 4) are included to contextualise 1096

the error patterns with respect to the underlying 1097

dynamics of the Lorenz attractor. Their calcula- 1098

tion follows a systematic procedure based on the 1099

test dataset after final result collection. Firstly, the 1100

two-dimensional X-Z state space is partitioned into 1101

four quadrants using the spatial median of the data 1102

points. For each of these four regions, the mean 1103

position (centroid) is computed to determine the 1104

vector’s location. As such, the mean velocity of all 1105

states within that same quadrant is calculated. The 1106

resulting arrows in the figure indicate the predomi- 1107

nant direction of the flow within each quadrant and 1108

size corresponds to the velocity’s magnitude. 1109

B.4 Computational Resources 1110

This section details the computational resources con- 1111

sumed during the key training stages. The metrics, 1112

collected via MLflow [42], offer insight into the com- 1113

putational cost associated with each approach by 1114

measuring peak memory usage and power consump- 1115

tion. We believe this data complements our perfor- 1116

mance analysis by providing a practical measure of 1117

the efficiency of each approach. 1118

Table B.3 outlines peak resource consumption 1119

across all training stages. The data reveals a clear 1120

trade-off between upfront training cost and down- 1121

stream efficiency. During stage 1 training, the Koop- 1122

man autoencoder required intensive computation 1123

with peak power consumption of 56.4 W. However, 1124

this initial investment pays off during fine-tuning: 1125

the Koopman (F) model consumed only 24.6 W peak 1126

power, while the PCA (PI) model hit a peak of 59.8 1127

W - more than double the Koopman fine-tuning 1128

consumption. 1129

Even though PCA-based models do not require 1130

any sort of training, we observe lower peak wattage 1131

during transformer training: Koopman stage 2 con- 1132

sumed 45.0W compared to PCA PI’s 55.3W. 1133

16

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table B.1. Transformer pre-training performance on Task A. Values represent the reconstructed State MSE,
calculated over sequential 64-step windows of a single 256-step auto-regressive prediction. Convergence was
determined based on the stability of error.

State MSE per Prediction Horizon (Steps)

Embedding Type [0-64) [64-128) [128-192) [192-256) Converged?

Koopman 73.75 75.34 74.65 73.86 Yes

PCA (PI) 62.33 121.15 116.66 116.41 Yes

PCA 121.35 133.48 140.90 137.06 No

Table B.2. Complete pairwise statistical comparison results across all metrics. P-values from Wilcoxon signed-rank
tests with Bonferroni correction (α = 0.0083).

Method 1 Method 2 Metric P-value Significant Winner

Koopman (F) Koopman (U) MSE 0.3355 No —

Koopman (F) Koopman (U) MAE 0.6897 No —

Koopman (F) Koopman (U) R2 0.2625 No —

Koopman (F) PCA (PI) MSE <0.001 Yes Koopman (F)

Koopman (F) PCA (PI) MAE <0.001 Yes Koopman (F)

Koopman (F) PCA (PI) R2 <0.001 Yes Koopman (F)

Koopman (F) PCA MSE <0.001 Yes Koopman (F)

Koopman (F) PCA MAE <0.001 Yes Koopman (F)

Koopman (F) PCA R2 <0.001 Yes Koopman (F)

Koopman (U) PCA (PI) MSE <0.001 Yes Koopman (U)

Koopman (U) PCA (PI) MAE <0.001 Yes Koopman (U)

Koopman (U) PCA (PI) R2 <0.001 Yes Koopman (U)

Koopman (U) PCA MSE <0.001 Yes Koopman (U)

Koopman (U) PCA MAE <0.001 Yes Koopman (U)

Koopman (U) PCA R2 <0.001 Yes Koopman (U)

PCA (PI) PCA MSE <0.001 Yes PCA (PI)

PCA (PI) PCA MAE <0.001 Yes PCA (PI)

PCA (PI) PCA R2 <0.001 Yes PCA (PI)

17

NLDL
#9

NLDL
#9

NLDL 2026 Full Paper Submission #9. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table B.3. Peak computational resource usage during training.

Training Stage / Model GPU Power (W) GPU RAM (MB) System RAM (GB)

Stage 1: Autoencoder Training

Koopman Autoencoder 56.4 1919.2 23537.1

Stage 2: Transformer Pre-training (Task A)

Koopman Transformer 45.0 1574.0 22827.7

PCA (PI) Transformer 55.3 756.8 7292.7

PCA Transformer 17.7 626.8 9114.6

Stage 3: Safety Head Fine-tuning (Task B)

Koopman (F) 24.6 746.5 13826.3

Koopman (U) 28.4 740.8 13196.7

PCA (PI) 59.8 954.0 13560.8

PCA 59.4 882.0 13072.8

18

	Introduction
	Preliminaries
	Modelling Chaotic Systems
	The Koopman Operator: Linearising Non-linearity
	Task Formulation

	Methodology
	Koopman Embedding Implementation
	Dataset Generation and Splitting
	Training Protocol
	Baseline Methods
	Evaluation Metrics

	Results
	Quantitative Analysis
	Qualitative Analysis

	Conclusion
	Methodology Details
	Lorenz System
	Model Architecture Specifications
	Physics-Informed PCA Feature Engineering
	Safety Function Computation
	Hyperparameter Optimisation
	Training Hyperparameters
	Training Infrastructure

	Results Details
	Task A: Pre-training Performance
	Complete Statistical Analysis
	Velocity Vector Calculation for Error Accumulation Plot
	Computational Resources

