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Abstract

This paper investigates the task generalisability of
Koopman-based representations for chaotic dynami-
cal systems, focusing on their transferability across
prediction and control tasks. Using the Lorenz sys-
tem as a testbed, we propose a three-stage method-
ology: learning Koopman embeddings through au-
toencoding, pre-training a transformer on next-state
prediction, and fine-tuning for safety-critical control.
Our results show that Koopman embeddings out-
perform both standard and physics-informed PCA
baselines, achieving accurate and data-efficient per-
formance. Notably, fixing the pre-trained trans-
former weights during fine-tuning leads to no perfor-
mance degradation, indicating that the learned rep-
resentations capture reusable dynamical structure
rather than task-specific patterns. These findings
support the use of Koopman embeddings as a foun-
dation for multi-task learning in physics-informed
machine learning. A project page is available at
https://kikisprdx.github.io/.

1 Introduction

Neural networks (NNs) have demonstrated effective-
ness in modelling chaotic dynamics since the work
of Navone and Ceccatto [1], who showed that NNs
can be as effective as regressive and statistical meth-
ods in certain simplified cases, such as simulating a
1D Lorenz system. A trend in modern chaos mod-
elling has been the integration of physics-informed
methods with deep learning architectures. Of par-
ticular importance is Koopman operator theory [2],
which provides a mathematical framework for trans-
forming non-linear dynamical systems into linear
representations [3]. This linearisation enables the
development of more stable and interpretable models
of chaotic dynamics, with recent work demonstrat-
ing that transformer architectures, combined with
Koopman embeddings demonstrate competitive per-
formance in autoregressive prediction across multiple
chaotic systems [4] and can even incorporate con-
trol inputs directly [5]. The transformer’s ability to
capture long-range temporal dependencies makes it
particularly well-suited for modelling such dynamics
[6], while Koopman embeddings provide theoreti-
cal grounding and improved generalisation across
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systems. While these developments have led to sub-
stantial improvements in next-state prediction, the
extent to which the resulting representations support
downstream tasks such as control remains an open
question. In Natural Language Processing (NLP),
a common paradigm involves pre-training models
on next-token prediction tasks, such as estimating
p(xi41|z<y), followed by fine-tuning on downstream
objectives [7, 8]. This strategy has proven highly
effective in yielding generalisable and reusable rep-
resentations across diverse tasks and domains [7].
Inspired by this success, recent work in robotics has
also begun to adopt similar approaches: transform-
ers pre-trained on data prediction tasks are repur-
posed for control and manipulation [9]. However,
the potential of such transfer learning strategies
has, to the best of our knowledge, not yet been ex-
plored in the context of chaotic dynamical systems.
Notably, there exists a structural parallel between
sequential prediction in NLP and state forecasting
in dynamical systems, where the goal is to estimate
p(se+1ls<t) from past observations [4]. Here, s; de-
notes the system’s state at time ¢, analogous to a
token z; in a sequence. This analogy suggests that
pre-training on next-state prediction may serve as
a powerful pretext task for learning representations
that transfer to downstream objectives in chaotic
systems. To evaluate this possibility, we investigate
whether Koopman embeddings learned from a self-
supervised prediction task can be reused for down-
stream control. Effective transfer would suggest that
these embeddings capture genuine physical structure
rather than task-specific artefacts, while poor trans-
fer would imply limited generalisability across tasks.
In addition to assessing the effectiveness of transfer,
this question is also practically relevant: if such em-
beddings are reusable, expensive physics-informed
representations could be amortised across multiple
tasks, leading to more efficient model development
pipelines alongside shorter training times. We assess
this hypothesis through empirical evaluation on the
popular Lorenz system, comparing the performance
of Koopman embeddings on a safety-critical con-
trol task' against two types of Principal Component
Analysis (PCA) baselines: one purely data-driven
and another incorporating system-specific physical

'We use ’control’ terminology following literature conven-
tion, though our focus is on safety function estimation that
would serve as a basis for control implementation [10-12].
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priors. Furthermore, we contrast fixed and fine-
tuned transformer configurations to isolate the con-
tribution of the learned embedding from that of the
downstream optimisation process.

Contributions: The main contributions of this
work are threefold. First, it introduces a novel
perspective on transfer learning in chaotic dynami-
cal systems by drawing a conceptual parallel with
natural language processing, where pre-training on
next-token prediction has proven highly effective
for enabling downstream generalisation. This anal-
ogy motivates the use of next-state prediction as a
pretext task for learning reusable representations
in physical domains. Second, it demonstrates that
Koopman embeddings trained on next-state predic-
tion generalise effectively to downstream control,
supporting the hypothesis that such representations
encode transferable physical structure. Third, it
presents a structured evaluation framework based
on PCA and transformer ablations, isolating the
contribution of physics-informed structure to trans-
fer performance and emphasising the importance of
embedding design in cross-task generalisation.

2 Preliminaries

To investigate the transferability of learned repre-
sentations in chaotic systems, we begin by reviewing
the key modelling challenges and mathematical tools
underlying our study. We first describe the Lorenz
system, a classical benchmark for studying chaos, fol-
lowed by a discussion of Koopman operator theory,
which provides a principled approach to linearising
non-linear dynamics. Finally, we define the two core
tasks used to assess the generalisability of learned
representations: next-state prediction and safety
function approximation.

2.1 Modelling Chaotic Systems

Chaotic systems pose fundamental challenges for
machine learning due to their intrinsic non-linearity
and extreme sensitivity to initial conditions. In such
systems, small perturbations in state can lead to ex-
ponential divergence in future trajectories, making
accurate long-term prediction difficult and rendering
learned models highly unstable [13]. This behaviour
complicates the development of generalisable and
reusable representations, as even minor errors in
modelling can lead to drastic qualitative changes in
system behaviour. The Lorenz system is a canon-
ical example of deterministic chaos and has been
widely studied as a benchmark for evaluating ma-
chine learning approaches in non-linear dynamics [1,
4, 12, 14]. Its persistent chaotic behaviour across a
wide range of initial conditions makes it a suitable
testbed for evaluating the transferability of learned

representations. In particular, the consistency of its
dynamic complexity [13], ensures that any observed
transfer effects can be attributed to properties of the
learned embeddings rather than variability in the
underlying system dynamics. The Lorenz system is
defined by a set of ordinary differential equations
where its dynamics are characterised by a strange
attractor, a bounded set in the system’s phase space
to which chaotic trajectories converge despite their
non-periodic and highly sensitive nature [15]. The
specific ordinary differential equations, alongside
implementation details and adopted numerical inte-
gration settings, are provided in Appendix A.1.

2.2 The Koopman Operator: Lin-

earising Non-linearity

Given the non-linear and chaotic nature of the
Lorenz system, analysing or predicting its behaviour
directly in the original state space can be challenging.
This motivates the use of alternative representations
that simplify the system’s dynamics. A particularly
powerful approach is offered by Koopman operator
theory, which provides a linear perspective on non-
linear dynamical systems. The central idea behind
Koopman theory is that although one might observe
the dynamics of physical systems in their natural
coordinates, where they typically exhibit non-linear
behaviour, there exists a transformation into a space
of observables in which the same dynamics evolve
linearly. This transformation facilitates analysis and
prediction using linear methods, even for inherently
non-linear systems. More formally, for a discrete-
time dynamical system s;11 = F(s;), the Koopman
operator K acts on observable functions g(s) (rather
than on the states directly) such that:

Kg(s) = g(F(s)), (1)

implying that the evolution of observables follows a
linear rule:

(2)

This perspective enables a linear treatment of
otherwise complex systems. Notably, Geneva and
Zabaras [14] have demonstrated that learning such
transformations from data can yield stable and in-
terpretable representations for modelling physical
systems. In this work, we leverage Koopman theory
to study the generalisation properties of learned dy-
namical representations, focusing in particular on
whether this linearisation facilitates robust forecast-
ing across chaotic trajectories.

g(st+1) = Kg(st).

2.3 Task Formulation

We consider two distinct regression tasks derived
from the Lorenz system, both operating on the same
input states but differing in the temporal scope of
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Figure 1. Conceptual visualisation illustrating the local, short-horizon nature of next-state prediction (Task A)
with the global, long-horizon calculation of the safety function (Task B). Panel (a) illustrates Task A, where a
model predicts the single ”Next Prediction State” (yellow) using only a finite history of preceding ” Context States”
(blue). In contrast, panel (b) shows that determining the safety value U(q) for the same ”Query State” requires a
global understanding of system dynamics. This is represented by the multiple ”Hypothetical States” (the set of
disturbed positions reachable from the current query state under possible disturbances), where their colour maps
to the ground-truth safety value, indicating the risk as they evolve through safety region Q.

prediction and the type of system understanding
they require.

Task A: Next-state prediction is a local fore-
casting task that models the immediate evolution
of the system according to s;11 = F'(s¢). Success in
this task depends primarily on capturing short-term
dependencies and local dynamics [4, 13]. It serves as
a natural self-supervised objective to induce predic-
tive structure in learned representations of chaotic
systems.

Task B: Safety function prediction, in contrast,
is inherently global. The goal is to approximate a
function U(q) that quantifies the minimum control
effort needed to ensure that a trajectory originating
at state ¢ remains within a predefined safe region @
indefinitely. In this work, we defined region @ by
the bounds z € [0,50],y € [—50,50],z € [—50, 50].
We chose this region to encompass the likely loca-
tion of the Lorenz strange attractor of the right
wing. Moreover, this task, which is based on the
framework of Valle et al. [12], requires the model to
implicitly account for the system’s behaviour over
an unbounded time horizon, including its sensitivity
to disturbances. Formally, the safety function corre-
sponds to the converged solution Uy, of the recursive
relation, which is independent of initialisation:

Us1(gi) ¢ max miny (wax (||F (g, £5) = g5, U(9;)))

3)
where ¢; and ¢; denote discrete state samples, &,
represents bounded noise and F(qg;,&s) represents
the system dynamics under noise. Although this
function is computed through a finite numerical

approximation over a discretised state space (see
Appendix A.4), it remains a substantially more chal-
lenging and global task than next-state prediction.
While the latter requires understanding local transi-
tions, the safety function necessitates a model that
encodes the structural knowledge of long-term tra-
jectories and the system’s attractor geometry. The
contrast between these local and global prediction
tasks forms the basis of our transfer learning evalu-
ation, as illustrated in Figure 1.

3 Methodology

This section details the experimental framework used
to evaluate whether representations learned through
next-state prediction in Koopman space can transfer
to downstream safety value prediction tasks. We
begin by describing the Koopman embedding model
architecture, which provides the structural induc-
tive biases for encoding the Lorenz system dynamics.
Subsequently, we outline our experimental design,
covering data generation and preprocessing, training
protocols, baseline model comparisons, and evalua-
tion methods.

3.1 Koopman Embedding Implemen-
tation

Building upon the theoretical framework introduced
in Section 2.2, we start by implementing a neural
network-based finite-dimensional approximation of
the Koopman operator, aimed at linearising the
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Figure 2. Example double-banded skew-symmetric
Koopman operator structure as defined by Equation 5
(shown here as 8 X8 - actual implementation uses 32x 32).

chaotic dynamics of the Lorenz system in a learned
latent space. The model architecture consists of
three components: an encoder ¢. : R? — R32 that
maps Lorenz states to a 32-dimensional embedding
space, a decoder ¢4 : R32 — R? that reconstructs
the original states from this latent representation,
and a Koopman operator K € R32%32 that governs
linear evolution in the embedding space. See Ap-
pendix A.2 for implementation specifications. The
learning objective enforces that

De(st11) = Koe(st), (4)
thereby promoting linear predictability of future
states in latent space. Inspired by Geneva and
Zabaras [4], we do not learn the operator K as
a fully dense matrix. Instead, we impose a physi-
cally motivated structure that decomposes K into
the sum of two components:

K=D + Sbanda (5)
where D € R32%32 is a diagonal matrix repre-
senting element-wise growth and decay rates, and
Shand € R32%32 i a banded skew-symmetric matrix
capturing local rotational dynamics in latent space.

This structured decomposition introduces a strong
inductive bias that reflects underlying physical phe-
nomena. The diagonal component D models dissi-
pative dynamics, such as energy decay, whereas the
skew-symmetric bands of Sy,nq capture conserva-
tive oscillatory behaviour reminiscent of rotational
or periodic dynamics [16-18]. This separation facili-
tates the modelling of complex non-linear systems
such as the Lorenz attractor, enabling the encoder
to discover compact representations of both energy-
preserving and dissipative processes [3]. Figure 2
illustrates the structure of the Koopman operator
used in our implementation, with colour-coded en-
tries denoting the diagonal and the first two skew-
symmetric bands.

3.2 Dataset Generation and Splitting

We generated datasets from the Lorenz system using
the RK45 integration method (d¢t = 0.01), yielding

2,048 training trajectories (256 steps each), 64 vali-
dation trajectories (1,024 steps each), and 256 test
trajectories (1,024 steps each). For sequence length
N, next-step prediction uses time steps 0 to N —1 as
input to predict steps 1 to N. Ground-truth safety
values are computed on a 27, 000-point discretised
grid using Equation 3 [10-12]. These safety values
are generated from the same Lorenz system dataset,
matching trajectory-wise. However, only 252 test
trajectories are included, as four trajectories were
entirely outside our predefined safety region Q.

3.3 Training Protocol

The training process consists of three sequential
stages, each corresponding to a distinct model com-
ponent and task: Koopman autoencoder training,
transformer pre-training, and fine-tuning for safety
function prediction. These stages are designed to
progressively encode the dynamics of the Lorenz at-
tractor into a transferable embedding space, model
its evolution over time, and finally adapt this knowl-
edge to a downstream control-relevant prediction
task [19-21]. The various shared components and
training objectives across the stages, are illustrated
in Figure 3. Furthermore, hyperparameter optimisa-
tion, training and infrastructure considerations are
provided in Appendices A.5, A.6 and A.7, respec-
tively.

In the first stage, the Koopman autoencoder’s
objective is to learn a latent representation in which
the chaotic system dynamics evolve approximately
linearly over time. This embedding forms the founda-
tion for downstream predictive modelling. Training
uses 64-step sequences with a 16-step stride, yield-
ing 75% overlap across 2,048 temporally shuffled se-
quences. The encoder ¢, maps 3D Lorenz states to
a 32-dimensional Koopman embedding space, while
the decoder ¢4 reconstructs the original states. The
neural implementation of Koopman embeddings re-
quires a multi-component loss function to ensure
both accurate state reconstruction and proper linear
dynamics learning. Building on the work of Geneva
and Zabaras [4], we formulate a composite objective
function that balances three critical components: re-
construction fidelity, dynamics prediction accuracy,
and operator regularisation:

5]

T-1

L= [MoMSE(s}, 6a(6c(s))))
i=1 j=0
+ MMSE(s, 1, ¢a(Koe(st)))

+ ol K] (6)
where D represents the number of trajectories, T'
the timesteps per trajectory, ¢ indexes individual tra-
jectories, 7 indexes timesteps within each trajectory,
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Figure 3. An illustration of the three-stage training methodology, which is detailed in Section 3.3. Stage 1
(Representation Learning): A Koopman autoencoder is trained to learn a latent representation where the
system’s dynamics evolve linearly. An input state s; is mapped by an encoder ¢. to a latent vector y:. This
latent state is then propagated forward by the Koopman operator matrix K, and the decoder ¢4 produces the
next-state prediction $;41. The model is trained to minimise both dynamics prediction and state reconstruction
error. Stage 2 (Transformer Pre-training): The encoder ¢. is frozen and used to convert a sequence of input
states into a sequence of latent embeddings. A transformer model 7 is then pre-trained on this latent sequence to
perform autoregressive next-state prediction (Task A). Stage 3 (Transformer Fine-tuning): The pre-trained
transformer’s weights are frozen. A new NN prediction head is attached, which takes the transformer’s final hidden
state and a query state g as a concatenated input. This head is then fine-tuned to predict the safety value (Task

B).

and Ag, A1, Ao are hyperparameters weighting the
loss components. Term one (Ag) enforces reconstruc-
tion fidelity by ensuring the encoder-decoder pipeline
accurately reconstructs original states. Term two
(A1) constitutes the dynamics loss, enforcing proper
Koopman operator evolution ¢(sj+1) =~ Ke.(s;).
Term three (A2) provides L2 regularisation on the op-
erator matrix to prevent overfitting by encouraging
simpler linear dynamics [4]. Finally, the individ-
ual loss components use mean squared error (MSE)
defined as:

N 1% X
MSE(y,9) = n Z Iy — yiH27 (7)
i=1

where, n denotes the number of evaluation samples,
7; the predicted value, y; the corresponding ground-
truth value. The full hyperparameters for training
the autoencoder are listed in Appendix A.6.

In the second stage, a decoder-only transformer
is pre-trained to model Koopman dynamics in em-
bedding space via Task A. This phase encourages
the transformer to capture temporal dependencies
in the linearly evolving latent space, without modi-
fying the Koopman encoder. By doing so, we ensure
that the latent representations remain fixed and in-

dependent from the sequence model. Training uses
64-step non-overlapping sequences, while validation
uses longer 256-step sequences to assess generalisa-
tion across extended time horizons. The transformer
employs a pre-LayerNorm architecture, with four
attention heads [22, 23]. Teacher-forcing is applied
during training using ground-truth embeddings for
next-step prediction [24]. Loss is computed in the
embedding space via MSE, as defined in Equation 7.

The final stage fine-tunes the frozen transformer
for Task B: safety function prediction. Here, the
transformer serves as a fixed backbone encoding the
complete history of system dynamics. The predic-
tion head, a multi-layer perception, receives as input
the concatenation of the transformer’s final hidden
state and a 3D query state, producing a scalar safety
score. This score quantifies the control effort re-
quired to keep the system within a predefined safety
region. Ground-truth values are obtained via a re-
cursive numerical method, using the same training
sequences and data as Stage 2 but augmented with
the corresponding safety values. Training optimises
the MSE between predicted and ground-truth scores.
Freezing the transformer ensures that safety head
performance reflects the representational quality of



the pre-trained dynamics model. This design iso-
lates the effect of representation transfer by assessing
whether the pre-trained dynamics can generalise to
a conceptually different prediction task.

3.4 Baseline Methods

To isolate the contributions of Koopman embeddings
to downstream performance, we compare against
three baseline configurations. Each model adheres
to an identical training procedure, including data
handling, sequence sampling, and transformer ar-
chitecture, as detailed in Section 3.3. Moreover, a
detailed overview of architectural components can
be viewed in Appendix A.2. These baselines are
referenced throughout the remainder of the paper as
follows: Koopman (U) for the unfrozen transformer
variant, PCA (PI) for the physics-informed PCA
baseline, and PCA for the standard PCA baseline.
Our main model of interest, the frozen Koopman-
based transformer, is denoted as Koopman (F). We
note that the Koopman (U) configuration mirrors
the entire training process of Koopman (F), with
the key distinction that the transformer’s weights
remain trainable during Task B. This setup enables
the transformer to adapt its internal representa-
tion while the safety head learns to estimate control
effort, thus assessing the benefit of end-to-end fine-
tuning [7]. In the PCA (PI) baseline, the Koopman
encoder-decoder is replaced by a physics-informed,
multi-stage PCA pipeline.

Initially, a three-dimensional PCA is fit on the raw
state vectors from the training set. This transforma-
tion is then applied not only to the system states but
also to a collection of derived quantities, including
first and second-order derivatives of the Lorenz sys-
tem. These are mapped into a common coordinate
frame and enriched with engineered features such as
radial distance and angular velocity, yielding a nine-
dimensional intermediate representation. A second
PCA, trained on this extended dataset, reduces the
features to match the embedding dimension used in
the transformer. The resulting embedding captures
domain-specific structure through physically mean-
ingful components. While this approach benefits
from strong prior knowledge, it lacks the generality
and learning capacity of a trained encoder. The
transformer and safety head are trained on this em-
bedding using MSE in the predicted safety score. A
complete overview of the feature engineering strat-
egy is provided in Appendix A.3. Nevertheless, as
noted by Shinn [25], PCA applied to smooth dynam-
ical systems like the Lorenz attractor can produce
spurious oscillatory patterns that may not reflect
true latent structure.

Lastly, the standard PCA baseline serves as the
most minimal configuration. Here, the system states
are projected into a three-dimensional space that re-

tains 100% of the original variance, with no physics-
based augmentation [26]. While this embedding can
assist transformer convergence by partially linearis-
ing the input space, the model struggled to converge
when trained solely on the next-state prediction task
(Task A). Despite this limitation, the baseline is re-
tained to isolate the contribution of the training
protocol itself-specifically, to assess how much of
the downstream performance stems from the safety
head alone. Like PCA (PI), this baseline is opti-
mised using standard MSE loss between predicted
and ground-truth safety values.

3.5 Evaluation Metrics

To quantify model performance across these stages,
we employ three complementary metrics. MSE (as
seen in Equation 7) is used as a primary loss and
evaluation metric. Due to its squaring of error terms,
MSE penalises larger deviations, which is particu-
larly important in safety-critical scenarios where
large prediction errors may indicate hazardous fail-
ures. Mean Absolute Error (MAE, i.e. Equation 8) is
also reported, offering a more interpretable measure
of average prediction deviation that is less sensitive
to outliers. Finally, we compute the coefficient of
determination (R?, i.e. Equation 9), which captures
the proportion of variance in the ground-truth safety
values that is explained by the model’s predictions.
This metric provides a global view of how well the
model reconstructs the overall safety landscape from
Koopman-derived features.

N R X
MAE(y, §) = > lyi = dil, (8)
=1

oy Ny — 4l I?
Sy — 72

where ¥ is the mean of all ground-truth values.

4 Results

Performance evaluation across 252 test trajectories
reveals transfer learning advantages for Koopman
embeddings over PCA-based baselines. We present
a complete quantitative analysis across our chosen
metrics, followed by spatial error analysis to identify
possible patterns in model divergence across different
regions of the Lorenz strange attractor that region )
encompasses. Table 1 and 2 summarise quantitative
metrics while Figure 4 maps error distributions for
our qualitative analysis.

4.1 Quantitative Analysis

Our initial evaluation on the Task A pre-training
revealed that the standard PCA model failed to
converge on the forecasting task. We nevertheless



Table 1. Safety function prediction performance across
models mean(u) £ standard deviations(c). All metrics
were computed on 252 test trajectories within the safety
region. Statistical significance assessed via Wilcoxon
signed-rank tests [27] with Bonferroni correction applied:
a = 0.0083 [28].

Model MSE (x107%) MAE (x10~2) R2

Koopman (F)  3.08 £ 6.55  1.16 + 0.53  0.991 + 0.089
Koopman (U) 5.59 &+ 17.14 1.20 £ 059  0.989 + 0.089
PCA (PI) 5.28 + 8.83 148 £0.65  0.989 & 0.090
PCA 16.80 + 17.93  2.83+£0.98  0.983 & 0.091

Table 2. Pairwise significance comparison (p-values)
between models for control performance, assessed via
Wilcoxon signed-rank tests with Bonferroni correction
(o = 0.0083). The results yielded identical significance
outcomes for each pairwise comparison across all three
evaluation metrics: MSE, MAE, and R2. Below in the
table, "ns” stands for not significant (p > 0.05).

Model Koopman (F) Koopman (U) PCA (PI) PCA
Koopman (U) 0.335 (ns) — — —
PCA (PI) <0.001 <0.001 p p—
PCA <0.001 <0.001 <0.001 —

retained this model for the final safety evaluation
(Task B) to serve as a baseline, isolating the contri-
bution of the neural network safety head. The full
pre-training performance for all models is detailed
in Appendix B.1.

Koopman (F), demonstrates superior performance
across all metrics, achieving the lowest mean MSE of
(3.0846.55) x 10~4, the lowest MAE of (1.1640.53) x
102, and the highest R? of 0.991 + 0.089. The un-
frozen Koopman variant, Koopman (U)’s accuracy
comparably, with an MSE of (5.59 4+ 17.14) x 10~%,
an MAE of (1.20 & 0.59) x 1072, and an R? of
0.989 + 0.089. However, Koopman (U) demon-
strated less consistent performance, as seen with
its standard deviation of 17.14. Both Koopman ap-
proaches significantly outperform the PCA-based
baselines. PCA (PI) achieves intermediate perfor-
mance with an MSE of (5.284:8.83) x 1074, an MAE
of (1.48 £0.65) x 1072, and an R? of 0.989 + 0.090.
Lastly, the baseline PCA shows the poorest capa-
bilities, with an MSE of (16.80 + 17.93) x 1074,
an MAE of (2.83 4+ 0.98) x 1072, and an R? of
0.983 + 0.091. Statistical testing establishes a clear
performance hierarchy in Table 2. Koopman (F) and
Koopman (U) models demonstrate a statistically sig-
nificant advantage over both the PCA (PI) and PCA
baselines (all p < 0.001). Furthermore, the PCA
(PI) model significantly outperforms the PCA model
(p < 0.001). Notably, no significant difference exists
between frozen and unfrozen Koopman approaches
(p = 0.335), suggesting that representation quality
drives transfer performance. We provide the com-
plete pairwise statistical analysis in Appendix B.2,
which covers the full twenty-one comparisons.

4.2 Qualitative Analysis

An important consideration when comparing the
trained Koopman models to the PCA baselines is the
potential of artefacts inherent to PCA when applied
to time-series data [25]. These artefacts act as by-
products rather than true features of the underlying
system. For this reason, our PCA-based baseline
may be susceptible to this effect. In particular, the
PCA (PI) model, which includes time derivatives
that may directly result in ”phantom oscillations”
that are not descriptive of the underlying dynamics
of the system, but are nevertheless correlated [25].
Therefore, PCA (PI)’s performance may derive from
fitting these PCA artefacts.

Figure 4 reveals the underlying mechanisms be-
hind the performance differences observed in Table 1.
The spatial distribution of prediction errors across
the strange attractor provides insight into how dif-
ferent embedding methods capture the chaotic dy-
namics. Numbered velocity vectors (1-4, clockwise
from top left) indicate the mean trajectory direction
and magnitude at key regions. Across all models,
we observe a notable concentration of error in the
central transition region, where trajectories cross
between the attractor’s lobes (near x = 0). One
likely cause is the high dynamical sensitivity in this
area, where future states are most uncertain [13].
However, another possible explanation is related to
the methodological design, as models were trained
to evaluate strictly within region @) - this transition
boundary may result in unstable training. Visually,
there is no significant difference in the error distri-
bution between the Koopman (F) and Koopman
(U) models, as indicated by the marginal histograms
in Figure 4 that show the total error summed at
each coordinate. PCA methods show greater error
concentration in dynamically complex areas, such
as regions of high curvature where trajectories re-
volve around the strange attractor (e.g. near vectors
1, 2, and 4). The interaction with the strange at-
tractor [15] likely necessitates high sensitivity to
conditions, resulting in an increased concentration
of errors. The Lorenz system demonstrates dissipa-
tivity [13], meaning its trajectories, while chaotic,
are bounded and converge to a finite strange attrac-
tor. This boundedness confines trajectories within a
specific volume, which leads to a build-up of trajec-
tory density around the attractor, creating regions
of concentrated trajectories as seen by the consistent
error space in Figure 4. These concentrated regions,
combined with the inherent sensitivity to initial con-
ditions within the strange attractor, may explain
the observed error concentrations. This dissaptivity
property is challenging for NNs to learn, as has also
been highlighted by Tang et al. [30]. Furthermore, a
stark contrast is evident between the two PCA-based
methods. While the successfully pre-trained PCA
(PI) model exhibits elevated errors, the base PCA
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(see Appendix B.3 for details).

model displays significant errors with widespread
issues, particularly across every vector region. As
seen in Table 1, PCA achieved the worst results.

5 Conclusion

This work explored whether Koopman embeddings
offer transferable representations of chaotic dynam-
ics for safety-critical tasks. Our findings support
this hypothesis: Koopman-based models consis-
tently outperform Principal Component Analysis
(PCA) baselines in downstream safety prediction,
particularly in regions of high dynamical sensitivity.
As shown in our quantitative and error analyses,
the Koopman (F) and (U) models achieve higher
control-safety performance and fewer high-risk er-
rors. This advantage is likely due to their ability to
encode generalisable dynamical structure, preserving
key physical relationships across tasks [3]. Notably,
this performance holds even when the transformer

is frozen, highlighting that Koopman embeddings
capture genuine physical features rather than task-
specific patterns, a hallmark of effective transfer
learning [7, 31]. In practical terms, this allows for
smaller, more efficient models. For instance, our
Koopman autoencoder enables the use of a 4-layer
transformer instead of an 11-layer PCA counterpart,
reducing peak GPU usage by more than half during
fine-tuning (see Appendix B.4). Finally, by leverag-
ing pre-training and fine-tuning strategies inspired
by Natural Language Processing, we demonstrated
that transformer architectures can effectively model
chaotic temporal dependencies such as those in the
Lorenz system. Future work could apply these rep-
resentations to formal safety methods like Control
Barrier Functions [32], building upon recent theoret-
ical advances in generalised Koopman operators for

controlled systems to offer provable guarantees [5].
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A Methodology Details

A.1 Lorenz System

The following system of differential equations defines
the Lorenz system:

dx

T =o(y —); (10)
Y alp-2) -y (1)
% =zy — Bz (12)

Where o = 10, p = 28, and 8 = 8/3 are the stan-
dard parameters settings that guarantee constant
chaotic behaviour [13]. Trajectories from the Lorenz
system are simulated using scipy [33], employing
the RK45 integration method [34] with a time step
of dt = 0.01. To ensure the reproducibility of chaotic
dynamics, integration tolerances are set to rtol =
10719 and atol = 107!, respectively controlling
the relative and absolute error of the solver [13].

A.2 Model Architecture Specifica-
tions

The following architectures refer to our main Koop-
man (F) model. However, architectural structure is
identical across all other baseline models with certain
parameters differing, which are detailed throughout
this section.

The Koopman autoencoder: Uses a symmet-
ric architecture where encoder Input(3D) — Lin-
ear(3,500) — ReLU — Linear(500,32) — Layer-
Norm and decoder Linear(32,500) — ReLU — Lin-
ear(500,3) [23, 35].

Transformer Implementation: The trans-
former model implements a pre-LayerNorm
decoder-only architecture. All models use GELU
activation, and sinusoidal positional encoding [22,
36]. Weights are initialised from normal distribution
N(0,0.05%).

While the number of attention heads and lay-
ers differs across model types (detailed in Ap-
pendix A.6), all transformers follow the same gen-
eral structure: input and output dimensions equal
the embedding dimension, with feedforward layers
scaled to 4 x embedding_dim. The architecture pro-
cesses embeddings through multiple transformer
decoder layers, applies final layer normalisation,
and uses a linear output projection that preserves
the embedding dimensionality. Therefore a single
transformer block follows: LayerNorm — Multi-
HeadAttention — Residual — LayerNorm — Lin-
ear(embedding dim, 4xembedding dim) — GELU

— Linear(4xembedding dim, embedding dim) —
Dropout — Residual. Where embedding dim cor-
responds to the embedding dimension of the trans-
former’s respective embedder.

Hence, the full transformer model follows the fol-
lowing structure: Input(embedding dim) — Posi-
tionalEncoding — [TransformerBlock x N] — Lay-
erNorm — Linear(embedding dim, embedding dim)
— Output(embedding dim). Where N refers to the
transformer layers.

Safety Function Implementation: The safety
predictor head processes the concatenated trans-
former final hidden state (32D) and query state (3D)
through Linear(35, 128) — ReLU — Linear(128, 64)
— ReLU — Linear(64,1).

A.3 Physics-Informed PCA Feature
Engineering

The features for the PCA (PI) baseline, shown
in Table A.1, were constructed in three stages to
create a 9-dimensional intermediate representation:

1. PCA Coordinates: The components 21, 22, 23
represent the coordinates of the system in a
new, decorrelated basis. They are obtained by
applying a Principal Component Analysis (PCA)
transformation to the original state vector s.

2. Transformed Derivatives: The time derivatives
of the system’s state, denoted #,7y, and Z, are
calculated using the Lorenz differential equations
[13]. While the table shows this calculation in the
original state space, the resulting velocity vectors
are subsequently projected into the PCA basis to
ensure they are represented consistently with the
coordinates from step 1.

3. Engineered Features:

a. The sine and cosine of the phase an-
gle. This angle is calculated using
the two-argument arctangent function,
atan2(zz, z1), which captures the angular
position of the trajectory in the primary
PCA plane.

b. The radial distance from the origin in the
principal plane, calculated as the Euclidean
norm /z? + 22. This feature captures the
magnitude of the state’s projection onto
this plane.

A.4 Safety Function Computation

The safety function Us(q) represents the minimum
control effort required to maintain trajectories start-
ing from state ¢ within a specified safe region
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Table A.1. Component calculation for features in the Physics-Informed PCA baseline.

# Feature Group

Feature Components

PCA Coordinates

2.  Transformed Derivatives

3. Engineered Features

Z1,%22,%23
z=o0(y—x)
y=z(p—2)—y
t=uwy— Pz

a) sin(atan2(z2, 21)),

cos(atan2(zz, z1))

b) y/# + 23

indefinitely [11]. The goal is to keep the system’s
trajectory within this region, regardless of whether
it is affected by bounded disturbances.

The safety function is generated using a recursive
numerical method known as a sculpting algorithm
[10, 11], which is equivalent to value iteration for
learning the global safe set. We follow the implemen-
tation from Valle et al. [12], who likewise applied
this approach to a Lorenz system. The safety func-
tion is represented as a large matrix of safety values
corresponding to a discrete state space. Fach safety
value represents the danger that a trajectory at that
state poses in leaving the designated region.

A.4.1 Discretisation

Due to computational limits, we discretise into a
30 x 30 x 30 grid (27,000 points) spanning the safety
region bounds, z € [0,50], y € [-50,50], z €
[—50,50]. We calculate each state’s safety value
from its closest grid point and use linear interpo-
lation to approximate the safety value at the state
position. Furthermore, only disturbances within the
safety region are considered valid. If a disturbed
state lands outside the area, the norm is set to the
distance to the closest point back to the grid, as is
also done by Valle et al. [12].

A.4.2 Disturbance Model (&)

The safety function is computed under a worst-case
disturbance. We define the disturbance vector, £ €
R3 as an additive noise term applied to the system
dynamics @ = f(x)+¢. The disturbance is generated
from a hypercube, bounded by [-0.1,0.1]3. We
sample 50 noise vectors uniformly at random from
within this hypercube.

1. Apply all 50 sampled disturbances to compute
next states, through Euler integration: x’ =
z+ (f(x) + &)At, where At = 0.01.

2. For each disturbed state z’, we find the mini-
mum cost (L2 norm) for the original state C;(x),

to reach any grid point z:

Ci(x) = min max([l2" — z[l2, Uprev(2)), (13)

z€Grid

where Uppey(2) is its safety value from the pre-
vious iteration.

3. Assign the worst-case cost across all noise
scenarios as a new safety value: Upey(z) =
max; C;(x).

The iteration continues until max, |Upew(x) —
Uprev(x)| < 107% or 500 iterations are reached. In
our case, convergence occurred after 36 iterations.
Convergence is guaranteed as described by Sabuco
et al. [10].

A.5 Hyperparameter Optimisation

We ensure experimental fairness by comparing all
models at their strongest configuration, evaluated at
their best performance on the validation set. This
implies stopping training once we’ve hit a consider-
able plateau in validation loss, yielding no further
gain from optimisation or manual intervention.

For all new components and baselines without
established precedents, we made use of the Optuna
framework [37], which implements Bayesian opti-
misation with a Tree-structured Parzen Estimator
(TPE) sampler [38].

Optimisation in Optuna makes use of an objec-
tive function, which returns a metric that the TPE
sampler attempts to minimise. In addition, the ob-
jective function defines which hyperparameters will
be optimised, the ranges of search and the steps of
hyperparameter changes. For this reason, all objec-
tive functions started with wide ranges and were
narrowed based on performance. On trials where the
expected objective function return is lower than the
best observed value, Optuna uses a median pruner
that may interrupt a trial that under-performs com-
pared to previous trials. Such trials are considered
pruned.
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A.5.1 Task A: Next State Prediction

For Koopman Models, (F) & (U), we aimed to main-
tain consistency with prior work. For this reason, we
used established hyperparameters from Geneva and
Zabaras [4]. As our work serves as an extension of
their methodology, retaining these settings mitigates
the risk of introducing bias.

Conversely, the PCA and PCA (PI) baselines
lacked established hyperparameter precedents for
the next state prediction task. The objective func-
tion for all models was set to minimise validation
loss.

Two main challenges influenced our optimisation
process. Firstly, the search space was not uniform
across all models, given that the backbone rep-
resentations range from raw state inputs in PCA
(d = 3) and physics-informed features in PCA (PI)
(d = 9) to the high-dimensional Koopman embed-
dings (d = 32). Additionally, PCA baselines specif-
ically proved to be significantly sensitive to hyper-
parameter selection, resulting in substantial time
spent tuning. Frequently, Optuna’s TPE sampler
converged to regions of the search space with sub-
optimal performance, proposing similar configura-
tions with minimal improvement, causing the me-
dian pruner to terminate trials early. To address all
these issues, we performed exploratory runs to iden-
tify optimal hyperparameters that the automated
search had difficulty identifying.

A.5.2 Task B: Safety Head optimisation

For the downstream safety value prediction, all mod-
els used a similar Optuna procedure to what was
used for PCA baselines in Task A. The objective
function was based on the validation loss, consistent
with Task A. Despite all safety heads following a
similar architecture (a feed-forward neural network
head), we also experienced varying degrees of con-
vergence stability across models (failure to minimise
loss). This is likely due to the varying sizes of the
final hidden layers of the Task A pre-trained mod-
els. For this reason, the search space parameters for
Optuna search still required manual tweaking.

A.6 Training Hyperparameters

Hyperparameter configuration influences model
learning and convergence for each specific task. More
info on hyperparameter tuning can be seen in Ap-
pendix section A.5.

The learning rate (Ir), which dictates the step
size for weight updates, was varied to suit the spe-
cific requirements of each task. A learning-rate of
1 x 10~ was used for the Koopman autoencoder,
while transformer pre-training used 1 x 10~% (Task
A, Table A.2). Higher rates like 6.83 x 1073 and
1.04 x 103 were found to be optimal for fine-tuning

the safety head in Task B (Table A.3). The training
duration, defined by the number of epochs, was also
tailored to each stage, ranging from 300 epochs for
Task A training (Table A.2) to shorter periods, such
as 90 epochs, for Task B (Table A.3). The batch
size, or the number of samples per gradient up-
date, was adjusted to balance gradient stability and
memory constraints, with larger sizes, such as 512
(Table A.2), used for the autoencoder and a smaller
size 32 (Table A.2, A.4), for the transformers. The
Adam optimiser proved to be sufficient for all Task A
training stages, with AdamW used for Task B train-
ing for Koopman (U) and PCA (PI) training [39, 40].
Architectural parameters define the model’s capacity,
including the embedding dimension, which sets the
size of the latent space. This dimension was chosen
to match the expected representational needs of each
method: 32 for the Koopman models (Table A.2)
to enforce a dense, high-dimensional representation
where complex dynamics can be linearised; 9 for
the PCA (PI) model (Table A.4), corresponding to
the number of components created via its specific
feature engineering; and 3 for the standard PCA
baseline (Table A.5), matching the system’s three
physical dimensions. For transformers, the context
length parameter was kept aligned with Geneva and
Zabaras [4]’s implementation across all models with
a context length of 64 (e.g. Table A.2). However, the
number of transformer layers and attention heads
were embedding type dependent. The final safety
head’s structure was defined by its layer dimensions.
The Koopman autoencoder’s training loss function
used the following three loss weights [4]: Ag for state
reconstruction, Ay for linear dynamics enforcement,
and \g for regularising the Koopman operator itself
(Table A.2), supplemented by a minor weight decay
to prevent overfitting.

Beyond the parameters optimised by Optuna, sev-
eral configurations were fixed to ensure consistency.
The transformer architecture implements a feed-
forward network (FFN) dimension four times the
size of its embedding dimension. For the Koopman
autoencoder specifically, a distinct weight initiali-
sation strategy was employed: while the encoder
and decoder used standard Kaiming uniform initial-
isation, the Koopman matrix was deterministically
initialised with linearly decreasing diagonal values
and weakly coupled off-diagonals to promote stabil-
ity.

Sequence generation also followed a set protocol:
For Stage 1 (Koopman autoencoder), training used
overlapping sequences of 64 steps with a 16-step
stride. The safety head fine-tuning in Stage 3 used
a similar protocol with the same 16-step stride. In
contrast, Stage 2 (transformer pre-training) used
non-overlapping 256-step sequences. For all models,
validation and test sequences were longer (1,024
sequence steps) and non-overlapping to provide a
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more challenging test of generalisation.

A.7 Training Infrastructure

The implementation relies on PyTorch [41] with
automatic mixed precision (AMP). A single NVIDIA
4070 (6GB) GPU is used for training, with the aid of
MLflow [42] for experiment tracking, metric logging,
and energy consumption tracking. To offset any
possible over-optimisation, the test set was held
until final evaluation.
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Table A.2. Hyperparameters for Koopman Autoencoder Training and Transformer Pre-training (Task A).

Parameter Koopman Autoencoder Task A
Learning rate (Ir) 1x1073 1x107*
Number of epochs 300 200
Batch size 512 16
Optimiser type Adam Adam
Embedding dimension 32 32
Context length - 64
Learning rate decay 0.95 -
Weight decay 1x10°8 1x 10710
Reconstruction Loss \g 1x 10* -
Dynamics Loss A1 1.0 -
Regularisation Loss A2 0.1 -

Table A.3. Hyperparameters for Safety Head Fine-tuning (Task B) for Koopman (F) and Koopman (U) models.

Parameter Koopman (F) Task B Koopman (U) Task B
Learning rate (Ir) 6.83 x 107* 1.04 x 1073
Number of epochs 80 50

Batch size 16 16

Optimiser type Adam Adamw
Embedding dimension 32 32
Transformer layers 4 4
Transformer heads 4 4

Safety head layer 1 128 112

Safety head layer 2 64 64

Table A.4. Hyperparameters for PCA (PI) Transformer Pre-training and Safety Head Fine-tuning.

Parameter Task A Task B
Learning rate (Ir) 2.15x 1073  7.52x 1073
Number of epochs 300 90
Batch size 16 512
Optimiser type Adam AdamW
Embedding dimension 9 9
Weight decay 1x10°1° 1x 10710
Context length 64 -
Transformer layers 11 -
Transformer heads 9 -
Safety head layer 1 - 112
Safety head layer 2 - 64
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Table A.5. Hyperparameters for Standard PCA Baseline Pre-training and Safety Head Fine-tuning.

Parameter Task A Task B
Learning rate (Ir) 1x107* 6.89 x 1073
Number of epochs 5 90
Batch size 16 512
Optimiser type Adam Adam
Embedding dimension 3 3
Context length 64 =
Transformer layers 3 -
Transformer heads 3 -
Safety head layer 1 - 32
Safety head layer 2 - 32
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B Results Detalils

B.1 Task A: Pre-training Perfor-
mance

The performance of Task A, detailed in Table B.1,
reveals differences in the capabilities of each em-
bedding type. Our evaluation uses a continuous,
256-step auto-regressive rollout starting with just a
single ground truth state. The MSE values of the
reconstructed state are calculated over four consec-
utive 64-step windows [4].

The results indicate that the PCA model failed
to converge to a useful predictive state. Its initial
error of 121.35 is excessively high for a physical
system and remains poor across the entire predic-
tion horizon, indicating it was unable to learn the
underlying dynamics. More revealing is the compar-
ison between the two successful models. While the
PCA (PI) model achieved the lowest initial error
(62.33), its performance quickly degraded. The er-
ror nearly doubled in the subsequent window. This
rapid ”fall-off” suggests that while it learned short-
term patterns, the representation was not stable for
long-horizon forecasting.

In contrast, the Koopman model demonstrates
long-term stability. Its prediction error remained
consistently low and stable across all four horizons,
never significantly exceeding an MSE score of 75.

B.2 Complete Statistical Analysis

This section provides the complete pairwise statis-
tical comparison results across all metrics for full
transparency and reproducibility.

Table B.2 presents the statistical analysis under-
lying the summary results in Table 2. Our pairwise
testing reveals a clear hierarchy. The Koopman (F)
model’s performance was compared to each of the
other models. No statistically significant difference
was found when comparing the Koopman (U) model
to the Koopman model (F) across MSE (p = 0.3355),
MAE (p = 0.6897), or R? (p = 0.2625). However,
the Koopman (F) model significantly outperformed
the PCA (PI) model on all three metrics: MSE
(p < 0.001), MAE (p < 0.001), and R? (p < 0.001).
Likewise, it demonstrated a significant advantage
over the PCA model across MSE (p < 0.001), MAE
(p < 0.001), and R? (p < 0.001).

Similarly, the Koopman (U) outperformed the
PCA (PI) model across MSE (p < 0.001), MAE
(p < 0.001), and R? (p < 0.001). It also performed
significantly better than the PCA model on all met-
rics: MSE (p < 0.001), MAE (p < 0.001), and R?
(p < 0.001).

Finally, the comparison between the two PCA-
based methods revealed that the PCA (PI) model
was significantly better than the PCA model across

all three metrics: MSE (p < 0.001), MAE (p <
0.001), and R? (p < 0.001).

In summary, both Koopman models (F) and
(U) significantly outperformed all PCA-based ap-
proaches. Among the PCA variants, PCA (PI)
showed greater performance compared to the base
PCA model, but inferior to the Koopman ap-
proaches.

B.3 Velocity Vector Calculation for
Error Accumulation Plot

The velocity vectors shown in the error accumula-
tion analysis (Figure 4) are included to contextualise
the error patterns with respect to the underlying
dynamics of the Lorenz attractor. Their calcula-
tion follows a systematic procedure based on the
test dataset after final result collection. Firstly, the
two-dimensional X-Z state space is partitioned into
four quadrants using the spatial median of the data
points. For each of these four regions, the mean
position (centroid) is computed to determine the
vector’s location. As such, the mean velocity of all
states within that same quadrant is calculated. The
resulting arrows in the figure indicate the predomi-
nant direction of the flow within each quadrant and
size corresponds to the velocity’s magnitude.

B.4 Computational Resources

This section details the computational resources con-
sumed during the key training stages. The metrics,
collected via MLflow [42], offer insight into the com-
putational cost associated with each approach by
measuring peak memory usage and power consump-
tion. We believe this data complements our perfor-
mance analysis by providing a practical measure of
the efficiency of each approach.

Table B.3 outlines peak resource consumption
across all training stages. The data reveals a clear
trade-off between upfront training cost and down-
stream efficiency. During stage 1 training, the Koop-
man autoencoder required intensive computation
with peak power consumption of 56.4 W. However,
this initial investment pays off during fine-tuning:
the Koopman (F) model consumed only 24.6 W peak
power, while the PCA (PI) model hit a peak of 59.8
W - more than double the Koopman fine-tuning
consumption.

Even though PCA-based models do not require
any sort of training, we observe lower peak wattage
during transformer training: Koopman stage 2 con-
sumed 45.0W compared to PCA PI's 55.3W.
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Table B.1. Transformer pre-training performance on Task A. Values represent the reconstructed State MSE,
calculated over sequential 64-step windows of a single 256-step auto-regressive prediction. Convergence was
determined based on the stability of error.

State MSE per Prediction Horizon (Steps)

Embedding Type [0-64) [64-128) [128-192)  [192-256)  Converged?

Koopman 73.75 75.34 74.65 73.86 Yes
PCA (PI) 62.33 121.15 116.66 116.41 Yes
PCA 121.35 133.48 140.90 137.06 No

Table B.2. Complete pairwise statistical comparison results across all metrics. P-values from Wilcoxon signed-rank
tests with Bonferroni correction (o = 0.0083).

Method 1 Method 2 Metric P-value Significant Winner

Koopman (F) Koopman (U) MSE 0.3355 No —
Koopman (F) Koopman (U) MAE 0.6897 No —
Koopman (F) Koopman (U) R? 0.2625 No —
Koopman (F) PCA (PI) MSE <0.001 Yes Koopman (F)
Koopman (F) PCA (PI) MAE <0.001 Yes Koopman (F)
Koopman (F) PCA (PI) R? <0.001 Yes Koopman (F)
Koopman (F) PCA MSE <0.001 Yes Koopman (F)
Koopman (F) PCA MAE <0.001 Yes Koopman (F)
Koopman (F) PCA R? <0.001 Yes Koopman (F)
Koopman (U) PCA (PI) MSE <0.001 Yes Koopman (U)
Koopman (U) PCA (PI) MAE <0.001 Yes Koopman (U)
Koopman (U) PCA (PI) R? <0.001 Yes Koopman (U)
Koopman (U) PCA MSE <0.001 Yes Koopman (U)
Koopman (U) PCA MAE <0.001 Yes Koopman (U)
Koopman (U) PCA R? <0.001 Yes Koopman (U)
PCA (PI) PCA MSE <0.001 Yes PCA (PI)
PCA (PI) PCA MAE <0.001 Yes PCA (PI)
PCA (PI) PCA R? <0.001 Yes PCA (PI)
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Table B.3. Peak computational resource usage during training.

Training Stage / Model GPU Power (W) GPU RAM (MB) System RAM (GB)

Stage 1: Autoencoder Training

Koopman Autoencoder 56.4 1919.2 23537.1

Stage 2: Transformer Pre-training (Task A)

Koopman Transformer 45.0 1574.0 22827.7
PCA (PI) Transformer 55.3 756.8 7292.7
PCA Transformer 17.7 626.8 9114.6

Stage 3: Safety Head Fine-tuning (Task B)

Koopman (F) 24.6 746.5 13826.3
Koopman (U) 28.4 740.8 13196.7
PCA (PI) 59.8 954.0 13560.8
PCA 59.4 882.0 13072.8
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