LORA-MOO: Learning Ordinal Relations and Angles for Expensive Many-Objective Optimization

Anonymous Author(s) Affiliation Address email

Abstract

 Many-objective optimization (MOO) simultaneously optimizes many conflicting objectives to identify the Pareto front - a set of diverse solutions that represent different optimal balances between conflicting objectives. For expensive MOO problems, due to their costly function evaluations, computationally cheap surrogates have been widely used in MOO to save evaluation budget. However, as the number of objectives increases, the cost of learning and surrogation, as well as the difficulty of maintaining solution diversity, increases rapidly. In this paper, we propose LORA-MOO, a surrogate-assisted MOO algorithm that learns surrogates from spherical coordinates. This includes an ordinal-regression-based surrogate for 10 convergence and $M - 1$ regression-based surrogates for diversity. M is the number of objectives. Such a surrogate modeling method makes it possible to use a single ordinal surrogate to do the surrogate-assisted search, and the remaining surrogates are used to select solution for expensive evaluations, which enhances the optimization efficiency. The ordinal regression surrogate is developed to predict ordinal relation values as radial coordinates, estimating how desirable the candidate solutions are in terms of convergence. The solution diversity is maintained via angles between solutions, which is a parameter-free. Experimental results show that LORA-MOO significantly outperforms other surrogate-assisted MOO methods on most MOO benchmark problems and real-world applications.

1 Introduction

 Many-objective optimization problems (MOOPs) are widely exist in many real-world applications, such as production scheduling [\[26\]](#page-10-0), traffic signal control [\[33\]](#page-11-0), and water resource engineering [\[21\]](#page-10-1). These MOOPs have conflicting objectives to optimize, and thus all objectives cannot reach their optimum simultaneously. As a result the optimum of MOOPs is the *Pareto front (PF)*: A set of non-dominated solutions that represent different optimal balance between conflicting objectives. 26 Multi-/many-objective optimization $(MOO)^1$ $(MOO)^1$ aims to find non-dominated solutions that are close to the PF and also well distributed along the PF, indicating that MOO should consider both convergence and diversity.

 Various evolutionary optimization algorithms have been proposed to solve MOOPs [\[10\]](#page-9-0). These optimization algorithms usually require plenty of solution samplings and evaluations to find converged and diverse non-dominated solutions. However, in many real-world MOOPs, the evaluation of solution performance could be expensive [\[41\]](#page-11-1). In these expensive MOOPs, the evaluation budget only allows

a limited number of solutions to be evaluated on the expensive objective functions. To address

expensive MOOPs, evolutionary optimization algorithms are combined with computationally cheap

 $¹$ Multi-objective optimization has 2 or 3 objectives, many-objective optimization has 4 or more objectives.</sup>

 surrogates to enhance sampling efficiency and save evaluations, which are known as surrogate-assisted evolutionary algorithms (SAEAs).

 Yet, it is a perennial challenge to use surrogates in a more effective and efficient way for SAEAs, especially when optimization problems have many objectives. For example, conventional SAEAs usually use regression-based surrogates to approximate each objective function separately [\[5,](#page-9-1) [34\]](#page-11-2). For MOOPs, many objectives indicate maintaining many surrogates for surrogate-assisted search and selection, which results in a low efficiency of SAEAs. In addition, it is difficult to maintain solution diversity in high-dimensional objective space. Some SAEAs [\[24,](#page-10-2) [43,](#page-11-3) [5\]](#page-9-1) need to investigate proper parametric strategies to generate reference vectors or divide objective space into subspaces. Recently, a family of classification-based SAEAs [\[31,](#page-10-3) [17\]](#page-10-4) attempted to use a single surrogate to learn pairwise dominance relations. However, the training with pairwise relations implies an exponential increase in the size of training dataset. Therefore, a natural question is that whether we can reduce the cost of maintaining many surrogates without increasing the cost of training a single surrogate. Furthermore, whether we can use an non-parametric diversity maintenance strategy to handle the objective space of MOOPs, instead of designing complex reference vectors or points?

 In this paper, we propose a different way to implement surrogate-assisted evolutionary optimization for expensive MOOPs, named LORA-MOO, where a single surrogate is developed to learn ordinal relations for convergence purpose, and several angular surrogates are generated from spherical coordinates to maintain diversity. Our major contributions are summarized as follows:

 • We develop a novel ordinal-regression-based model to approximate the ordinal landscape of expensive MOOPs. Our ordinal surrogate is able to handle many objectives simultaneously and assist MOO algorithms to complete the model-based search. Artificial ordinal relations are generated via a clustering method to improve the learning quality of ordinal relations for many objectives. Unlike the pairwise relations learned through classification, the ordinal relations would not increase the size of training dataset, hence high efficiency.

 • We introduce the idea of spherical coordinates approximation into surrogate-assisted evo- lutionary optimization and proposed LORA-MOO to solve expensive MOOPs. Different from existing SAEAs which learn approximation models from Cartesian coordinates, we fit several regression-based surrogates to approximate angular coordinates, while our ordinal surrogate can be treated as a radial coordinate. An non-parametric approach is developed to select diverse solutions for expensive evaluations via our angular coordinate surrogates.

 • Extensive experiments on benchmark and real-world optimization problems are conducted under a range of scales and numbers of objectives. Empirical results show that our LORA- MOO is effective. It is able to obtain a well-distributed solution set that outperforms the state-of-the-arts.

2 Related Work

2.1 Multi-/Many-Objective Surrogate-Assisted Evolutionary Algorithms

 Regression-based SAEAs. Regression-based SAEAs employ regression-based surrogates such as Kriging [\[36,](#page-11-4) [39\]](#page-11-5) to approximate either the objective values of solutions or the objective functions of expensive problems [\[22\]](#page-10-5). To maintain solution diversity, ParEGO [\[24\]](#page-10-2) employs a Kriging model to iteratively approximate an aggregate objective function which aggregates all objectives into one via a set of pre-defined scale vectors. In MOEA/D-EGO [\[43\]](#page-11-3), plenty of scale vectors are generated uniformly to decompose the target MOOP into many single-objective subproblems. K-RVEA [\[5\]](#page-9-1) also designs a set of scale vectors as reference vectors to maintain solution diversity. Similarity or density estimation is an alternative option for maintaining diversity. For instance, KTA2 [\[34\]](#page-11-2) estimates the distribution status of non-dominated solutions by defining a similarity or density indicator.

81 Classification-based SAEAs. In model-based optimization, the optimization is guided by the relation between solutions rather than accurate objective values. Therefore, there is a tendency for recently proposed SAEAs to use classification-based surrogates to learn the relation between solutions directly. CSEA [\[31\]](#page-10-3) trains a neural network to justify whether candidate solutions can be dominated by given 85 reference points or not. $θ$ -DEA-DP [\[42\]](#page-11-6) uses two neural networks to predict the Pareto dominance 86 relation and θ-dominance relation between two solutions, respectively. REMO [\[17\]](#page-10-4) employs a neural network to fit a ternary classifier, which is able to learn the dominance relation between

pairs of solutions. Compared with regression-based SAEAs, although classification-based SAEAs

 take advantage of learning solution relations directly, their drawbacks are also clear: The prediction of solution relations lacks the information of how solutions are distributed in the objective space,

making it difficult for classification-based SAEAs to maintain solution diversity. In [\[31,](#page-10-3) [17\]](#page-10-4), a radial

projection selection approach is adapted to select diverse reference points. However, its effect on

- diversity maintenance is limited. In addition, although classification-based SAEAs maintain only one
- surrogate, the cost of learning pairwise relations from large datasets is inevitably increased.

SAEAs based on Other Surrogates. HSMEA [\[15\]](#page-9-2) uses an ensemble of multiple surrogates in the

optimization. In addition, a new category of surrogates, namely ordinal regression surrogate [\[40\]](#page-11-7) or

level-based classification surrogate [\[28\]](#page-10-6), is proposed recently to combine regression-based surrogates

with classification-based surrogates. However, the shortcoming remains the same as these surrogates

lack the information of solution distribution, especially when the number of objectives is large.

2.2 Multi-Objective Bayesian Optimization

 MOBO. Bayesian Optimization (BO) [\[35,](#page-11-8) [18\]](#page-10-7) is also a typical model-based optimization method for expensive optimization, while multi-objective BO (MOBO) methods are designed for expensive MOOPs [\[7,](#page-9-3) [8,](#page-9-4) [27,](#page-10-8) [1\]](#page-9-5). Some MOBO generalizes the acquisition functions such as upper confidence bound (UCB) [\[46\]](#page-11-9), expected improvement (EI) [\[14\]](#page-9-6), Thompson sampling [\[3\]](#page-9-7), to solve expensive MOOPs. In addition, entropy search methods have also been employed in MOBO [\[2,](#page-9-8) [37\]](#page-11-10). To maintain solution diversity, the EI of a multi-objective performance indicator, Hypervolume (HV) [\[45\]](#page-11-11), was used as the acquisition function in recent MOBO [\[6,](#page-9-9) [27\]](#page-10-8). Based on the Hypervolume improvement (HVI), PSL [\[27\]](#page-10-8) proposes a learning method to approximate the whole Pareto set for MOBO, and PDBO [\[1\]](#page-9-5) automatically selects the best acquisition function for objective functions in each iteration. However, the time complexity of computing HV increases exponentially with the number of objectives, which may limit the application of MOBO methods on optimization problems with many objectives.

 Connection to SAEAs. Both SAEAs and MOBO are model-based optimization methods. A SAEA is also a MOBO if it uses probability models as surrogates, and a MOBO is also a SAEA if it searches candidate solutions with evolutionary search algorithms. Therefore, some model-based optimization methods belong to both SAEAs and MOBO [\[24,](#page-10-2) [14,](#page-9-6) [43\]](#page-11-3).

3 LORA-MOO: Optimization via Learning Ordinal Relations and Angles

This section first introduces the LORA-MOO framework, followed by detailed algorithm descriptions.

3.1 LORA-MOO Framework

- The pseudocode of LORA-MOO is depicted in Alg. [1,](#page-3-0) it consists of four phases:
- 121 1. Initialization: An initial dataset of size $11D 1$ (As suggested in the literature [\[24\]](#page-10-2)) are sampled from the decision space using the Latin hypercube sampling (LHS) [\[30\]](#page-10-9) (line 1), 123 where D is the dimensionality of decision variables. The sampled solutions are evaluated on 124 objective functions f and then saved in an archive S_A (line 2).
- 125 2. Surrogate modeling: For all solutions $x \in S_A$, quantify their ordinal values (line 4) and 126 calculate their angular coordinates (line 9). The set of ordinal values S_o is used to train 127 the ordinal surrogate h_o (line 5). The angular coordinates are used to fit $M - 1$ angular 128 surrogates h_{ai} separately (line 10).
- 129 3. Sampling (Search and Selection): Run an optimizer on surrogate h_o to generate a population 130 of candidate solutions P (line 6). Select optimal candidate solutions x_1^*, x_2^* from P based 131 on surrogates h_o , h_{ai} , respectively (lines 7 and 11).
- 132 4. Update: Evaluate new optimal candidate solutions x_1^*, x_2^* on expensive objective functions 133 f, update archive S_A and the number of used function evaluations FE (lines 8 and 12). The 134 algorithm will go to phase 2 until the evaluation budget FE_{max} has run out.

Algorithm 1 LORA-MOO framework

Input: M objective functions of the optimization problem $f(x) = (f_1(x), \ldots, f_M(x));$

Evaluation budget: The number of allowed function evaluations FE_{max} .

Procedure:

- 1: Sample a set of solutions $\{x_1, \ldots, x_{11D-1}\}\$ and evaluate them on f.
- 2: Save all evaluated solutions $(x, f(x))$ in an archive S_A . Set the number of used function evaluations $FE = |S_A|$.
- 3: while $FE < FE_{max}$ do
- 4: Ordinal training set $S_0 \leftarrow$ Quantify ordinal values for all $x_i \in S_A$ (Alg. [2\)](#page-14-0).
- 5: Ordinal surrogate $h_o \leftarrow$ Train Kriging(S_A, S_o).
- 6: Population of candidate solutions $P \leftarrow$ Run an optimizer on h_o (Alg. [3\)](#page-15-0).
- 7: $x_1^* \leftarrow$ Use the ordinal surrogate to select a solution from P by convergence criterion.
- 8: Evaluate x_1^* and update $S_A = S_A \cup \{ (x_1^*, f(x_1^*)) \}, F E = F E + 1$.
- 9: Angular training set $S_a \leftarrow$ Calculate angular coordinates for all $x_i \in S_A$.
- 10: M-1 angular surrogates $h_{ai} \leftarrow$ Train Kriging $(S_A, S_a), i = 1, ..., M 1$.
- $11:$ $x_2^* \leftarrow$ Use angular surrogates to select a solution from P by diversity criterion (Alg. [4\)](#page-15-1).
- 12: Evaluate x_2^* and update $S_A = S_A \cup \{ (x_2^*, f(x_2^*)) \}, FE = FE + 1$.

13: end while

Output: Non-dominated solutions in archive S_A .

¹³⁵ 3.2 Surrogate Modeling

136 The ordinal surrogate h_o is mainly trained on dominance-based ordinal relations, additional clustering-137 based artificial ordinal relations will be introduced for training if the number of objectives M is 138 large. In addition, for an M-objective problem, $M-1$ angular surrogates h_{ai} are trained on angular ¹³⁹ coordinates. These surrogates are used in the selection procedure for solution diversity but are idle in ¹⁴⁰ the search procedure.

¹⁴¹ 3.2.1 Learning dominance-based ordinal relations.

¹⁴² In LORA-MOO, the concept of ordinal regression [\[40\]](#page-11-7) is adapted to learn dominance-based ordinal 143 relations. Clearly, the dominance-based ordinal relation between a set of reference points S_{RP} and a 144 given solution x is quantified as a relation value. Such a relation value is a numerical value that used 145 for training the ordinal-regression surrogate h_o . The quantification of relation values consists of two 146 steps: The selection of reference points S_{RP} and the computation of relation values.

147 Selection of Reference Points. We propose the definition of λ -dominance relationship to simplify ¹⁴⁸ the selection of reference points.

- ¹⁴⁹ Definition 1. *(*λ*-Dominance Relationship)*
- 150 *A solution* x^1 is said to λ -dominate another solution x^2 (denoted by $x^1 \prec_\lambda x^2$) if and only if:

$$
g_{\lambda}(\boldsymbol{x}^1) \prec g_{\lambda}(\boldsymbol{x}^2), \qquad (1)
$$

151 *where* $\lambda \geq 0$ *is the dominance coefficient and* g_{λ} *is a smooth objective function defined as:*

$$
f_{in}(\mathbf{x}) = \frac{f_i(\mathbf{x}) - z_i^*}{|z_i^{nad} - z_i^*|},
$$
\n(2)

152

$$
g_{\lambda,i}(\boldsymbol{x}) = f_{in}(\boldsymbol{x}) + \lambda max(f_{jn}(\boldsymbol{x})), j \in \{1, \ldots, M\},\tag{3}
$$

153 where f_{in} denotes a normalized objective function, $\boldsymbol{z}^* = \{z_1^*, \ldots, z_M^*\}$, $\boldsymbol{z}^{nad} = \{z_1^{nad}, \ldots, z_M^{nad}\}$ ¹⁵⁴ *are ideal point and nadir point for the current non-dominated solutions, respectively.*

155 More detailed definitions about the background of MOO are available in Appendix [A.](#page-12-0) All non- λ -156 dominated solutions in S_A are selected as reference points S_{RP} . There are two reasons to introduce 157 the definition of λ -dominance:

158 • The λ -dominance can smoothen the original PF by excluding dominance resistant solutions (DRSs) [\[16,](#page-9-10) [38\]](#page-11-12). DRSs are solutions that are best or close to best on one or several objectives but extremely poor on at least one of the remaining objectives. Such a solution is apparently not desirable but may be regarded as one of the best solutions since there may not exist any other solutions dominating it in the solution set.

163 • Second, λ -dominance can eliminate some similar non-dominated solutions from the Pareto set, which can be used to adjust the size of Pareto set. When the number of objectives M is large, it is possible that a majority of past evaluated samples are non-dominated to each other. To balance the number of reference points and remaining samples, we introduce the 167 dominance coefficient λ to sightly reduce the ratio of reference points in S_A . This alleviates the situation of extreme imbalance of samples in different ordinal levels (see the division of ordinal levels below).

¹⁷⁰ Computation of Relation Values. To quantify ordinal relation values, we first calculate extension 171 coefficients $ec(x)$ for each $x \in S_A$. $ec(x)$ is defined as the minimal coefficient $ec \ge 1$ to make a 172 solution x non- λ -dominated to all solutions x' in the extended reference:

$$
ec(\boldsymbol{x}) = \arg\min_{ec \geq 1} \nexists \boldsymbol{x}' \in S_{RP} : (\boldsymbol{x}' * ec) \prec_{\lambda} \boldsymbol{x}.
$$
 (4)

173 Although extension coefficient $ec(x)$ quantifies the distance between a solution x and reference S_{RP} , ¹⁷⁴ it has not been used to train the ordinal regression-based surrogate directly. To generate a stable 175 ordinal regression-based surrogate, solutions in S_A are divided into $N_o = max(n_o, |S_A|/|S_{RP}|)$ 176 ordinal levels, where n_o is a pre-defined parameter denoting the minimal number of ordinal levels. 177 The solutions in S_{RP} are classified into the non-dominated ordinal level, thus the relation value $v_1 =$ 178 1.0 is assigned to them. Remaining solutions in S_A are sorted by their extension coefficients $ec(x)$ 179 and then divided into N_o -1 ordinal levels uniformly. The relation value $v_i = 1 - \frac{i-1}{N_o-1}$ will be 180 assigned to the solutions x in the i^{th} ordinal level. Lastly, relation values serve as radial coordinates ¹⁸¹ and a Kriging model is employed to approximate them.

¹⁸² 3.2.2 Artificial clustering-based ordinal relations.

183 When the number of objectives M is large, most evaluated solutions in archive S_A could be non-¹⁸⁴ dominated solutions, indicating that these solutions will be divided into the same non-dominated 185 ordinal level and thus treated as reference points S_{RP} . This is harmful to the ordinal surrogate ¹⁸⁶ modeling due to the extreme imbalance between the numbers of training samples in different ordinal 187 levels. To reduce the ratio of S_{RP} , we use a clustering method to generate $n_clusters$ clusters 188 for S_{RP} , where n_clusters is the half of the size of S_{RP} . All solutions $x \in S_{RP}$ are mapped to ¹⁸⁹ the closest cluster centers. The solutions with the shortest projection on each cluster center will be 190 selected as the new S_{RP} , while the remaining solutions will be moved to the next ordinal level. Such 191 artificial ordinal relations greatly reduce the ratio of S_{RP} in S_A . In LORA-MOO, we set a ratio 192 threshold rp_ratio for S_{RP} , once the ratio of S_{RP} is larger than rp_ratio , artificial ordinal relations ¹⁹³ will be generated for surrogate modeling. Details are available in Appendix [C,](#page-13-0) Alg. [2](#page-14-0) and Fig. [5.](#page-14-1)

¹⁹⁴ 3.2.3 Surrogates for Angular Coordinates.

195 Given a solution $x \in S_A$ with Cartesian coordinates $(f_1(x), \ldots, f_M(x))$, The angular coordinates 196 of solution x are transformed with the following rules:

$$
\varphi_i = \arccos \frac{f_i(\boldsymbol{x}) - z_i^*}{\sqrt{(f_i(\boldsymbol{x}) - z_i^*)^2 + \dots + (f_M(\boldsymbol{x}) - z_M^*)^2}}, i = 1, \dots, M - 1,
$$
\n(5)

197 where z^* is the ideal point. The resulting angular coordinates $(\varphi_1, \ldots, \varphi_{M-1})$ are used to fit $M-1$ ¹⁹⁸ regression-based surrogates separately. In LORA-MOO, we use the Kriging model to approximate ¹⁹⁹ angular coordinates. The introduction and usage of Kriging model is given in Appendix [B.](#page-12-1)

²⁰⁰ 3.3 Sampling: Search and Selection

201 In this subsection, we describe how to use surrogate h_o to search for candidate solutions and how to as use surrogates h_o and h_{ai} to select optimal ones from candidate solutions for expensive evaluations.

²⁰³ 3.3.1 Search: Generation of Candidate Solutions.

204 An advantage of LORA-MOO is that it searches for candidate solutions on ordinal surrogate h_o 205 only, leaving all angular surrogates h_{ai} idle in this search procedure. This saves a lot of time from ²⁰⁶ predicting with all surrogates. LORA-MOO employs an optimizer (e.g. PSO [\[13\]](#page-9-11)) to generate a 207 population of candidate solutions P (Detailed pseudo-code is available in Appendix [C,](#page-13-0) Alg. [3\)](#page-15-0). The initial population for optimization search consists of two parts. The first half initial solutions are generated randomly from the decision space, while the remaining initial solutions are mutants of 210 current reference points S_{RP} . To ensure the diversity of initial candidate solutions, a KNN clustering 211 method is applied to divide S_{RP} into several different clusters, from each cluster, an equal number of mutants are generated as initial candidate solutions. The global optimal population P produced by PSO is the candidate solutions for further environmental selection.

3.3.2 Selection Criteria.

 To take both convergence and diversity into consideration, in each iteration, LORA-MOO selects two 216 optimal candidate solutions x_1^*, x_2^* from P for objective function evaluations. x_1^*, x_2^* are sampled on the basis of convergence and diversity, respectively.

 Convergence Criterion for environmental selection is the expected improvement (EI) [\[14\]](#page-9-6) of ordinal values, which is similar to many MOBO methods [\[24,](#page-10-2) [43\]](#page-11-3). Since the output of our ordinal surrogate 220 $h_o(x)$ is an 1-D numerical value, the solution with maximal 1-D EI in \hat{P} is selected as x_1^* .

221 **Diversity Criterion** to sample x_2^* from P is defined as angles d_{ang} between candidate solutions 222 and reference points S_{RP} . Firstly, the minimal degree between each candidate solution and S_{RP} is measured. Among these minimal degrees md_{ang} , the solution with max (md_{ang}) is selected as x_2^* (Detailed pseudo-code is available in Appendix [C,](#page-13-0) Alg. [4\)](#page-15-1).

4 Experiments

 To evaluate the optimization performance of LORA-MOO on expensive MOOPs, we conduct experiments to compare LORA-MOO with other SAEAs on different MOOPs, including a series of scalable multi-/many-objective benchmark optimization problems DTLZ [\[11\]](#page-9-12), WFG [\[19\]](#page-10-10), and a real-world network architecture search (NAS) problem.

4.1 Experimental Setups

Optimization Problem Setup. To ensure a fair comparison, the following optimization problem setup is the same as the setup that has been widely used in the literature [\[5,](#page-9-1) [31,](#page-10-3) [34,](#page-11-2) [17\]](#page-10-4). In our experiments, initial datasets of size $FE_{init} = 11 D - 1$ are used to initialize surrogates, while the 234 maximum number of allowed evaluations FE_{max} is 300. The statistical results are obtained from 30 independent runs. For each run, different comparison algorithms share the same initial dataset.

 Comparison Algorithms. We compare LORA-MOO with 6 state-of-the-art SAEAs, some of them also known as MOBO methods. These comparison algorithms can be classified into three categories:

- Regression-based MOO methods: ParEGO [\[24\]](#page-10-2), K-RVEA [\[5\]](#page-9-1), and KTA2 [\[34\]](#page-11-2). ParEGO is a classic regression-based SAEA and also a MOBO, which serves as a baseline. K-RVEA is a typical SAEA which uses reference vector to guide the diversity maintenance. KTA2 is a newly proposed algorithm to use an independent archive to keep solution diversity.
- Classification-based MOO methods: CSEA [\[31\]](#page-10-3), REMO [\[17\]](#page-10-4). CSEA is a classic classification-based SAEA which serves as a baseline. REMO is a newly proposed SAEA which represents the state-of-the-art performance of classification-based SAEAs.
- Ordinal-regression-based MOO method: OREA [\[40\]](#page-11-7) is a new category of SAEA that is different from common regression-based and classification-based SAEAs. We compare with it since it is directly related to our radial surrogate.

 Note that some classic SAEAs and MOBO methods such as MOEA/D-EGO [\[43\]](#page-11-3) and CPS-MOEA [\[44\]](#page-11-13) are not compared in our experiments as they failed to outperform other comparison algorithms on any DTLZ problem [\[17\]](#page-10-4). Some HV-based MOBO methods are not compared as they are failed to solve many objectives.

Parameter Setup. For the surrogate modeling, the Kriging models used in all comparison algorithms are implemented using DACE [\[32\]](#page-10-11), just as [\[24\]](#page-10-2) suggested. For regression-based Kriging surrogates, 254 the range of hyper-parameter $\theta \in [10^{-5}, 100]$. And for the neural networks in CSEA and REMO, the parameters are the same as suggested in the literature. In the sampling strategy, the mutation operator 256 used to initialize candidate solutions is polynomial mutation [\[9\]](#page-9-13), the mutation probability $p_m = 1/d$

Figure 1: IGD curves averaged over 15 runs on the WFG5 problem instances for LORA-MOO with different parameter setups (shaded area is \pm std of the mean).

257 and mutation index $\eta_m = 20$, as recommended in [\[34,](#page-11-2) [17\]](#page-10-4). The size of offspring population is 100. ²⁵⁸ The settings of the PSO optimizer are the range of hyper-parameter in the ordinal-regression-based ²⁵⁹ surrogate are the same as suggested in [\[40\]](#page-11-7).

260 For the specific parameters exist in LORA-MOO, such as the dominance coefficient λ and the 261 threshold ratio of reference points to introduce clustering-based ordinal relations rp_ratio . As there is no relevant study in the literature for their setups, we conducted ablation studies to investigate the effect of these parameters on the performance of LORA-MOO. The results are summarized in 264 Section [4.2](#page-6-0) and reported in Appendix \overline{F} . The source code of LORA-MOO ^{[2](#page-6-1)} will be available online. Performance Indicator. To have a comprehensive estimation of optimization performance, we use three different performance indicators in our experiments: The inverted generational distance (IGD) [\[4\]](#page-9-14), the inverted generational distance plus (IGD+) [\[20\]](#page-10-12), and the Hypervolume (HV) [\[45\]](#page-11-11). IGD and IGD+ use a set of truth Pareto front to measure the quality of a set of non-dominated solutions in terms of convergence and diversity. A smaller IGD or IGD+ value indicates better MOO performance. HV use a reference point to calculate the area covered by a set of non-dominated solutions, a large HV value is preferable to MOO. See Appendix [D](#page-15-2) for details and setups about performance indicators.

²⁷² 4.2 Ablation Studies

273 We conduct ablation studies on DTLZ and WFG benchmark problems with $D = 10$ variables and $274 \text{ } M = \{3, 6, 10\}$ objectives. LHS [\[30\]](#page-10-9) is used to sample initial dataset. The effects of four parameters 275 are investigated: They are the minimal number of ordinal levels n_o , the dominance coefficient λ , the 276 ratio threshold of reference points rp_ratio , and the clustering number for reproduction n_c . Three ²⁷⁷ representative results obtained on the WFG5 problem with 3 and 10 objectives are depicted in Fig. [1.](#page-6-2) ²⁷⁸ Complete results and statistical analysis of ablation studies are reported in Appendix [F.](#page-16-0)

279 As shown in Fig. [1](#page-6-2) (left), when $M = 10$, a large n_o results in poor optimization performance. This is 280 because the ratio of non-dominated solutions in the archive tends to be large when M is large, hence, 281 setting a large n_o will lead to a lack of training samples in each dominated ordinal levels, which is 282 detrimental to the performance of surrogate modeling. As such, n_o in LORA-MOO is set to 4.

283 The result in Fig. [1](#page-6-2) (middle) shows that using λ -dominance to sightly modify the original dominance 284 relations is beneficial to the effectiveness of LORA-MOO. When $\lambda = 0$, no λ -dominance would be ²⁸⁵ used and the corresponding LORA-MOO variant has the worst performance among all the variants. In 286 addition, setting a large λ could cause severe damage to the original dominance relations. Therefore, 287 we set λ to 0.2.

²⁸⁸ The effect of introducing artificial ordinal relations via clustering is demonstrated in Fig. [1](#page-6-2) (right). 289 When the ratio threshold of reference points rp_ratio is 1 and $M = 10$, no artificial ordinal relations ²⁹⁰ are introduced to further divide ordinal levels for plenty of non-dominated solutions in the archive. ²⁹¹ Consequently, the imbalance of sample numbers in different ordinal levels leads to poor optimization 292 performance. However, dominance relations are preferable to artificial ordinal relations when $M = 3$ 293 and the size of ordinal levels are well balanced. Hence, we set $rp_ratio = 0.5$.

²⁹⁴ 4.3 Optimization on Benchmark Problems

²⁹⁵ The optimization performance of LORA-MOO is evaluated on DTLZ and WFG benchmark problems 296 with $D = 10$ variables and $M = \{3, 4, 6, 8, 10\}$ objectives. The IGD values obtained on DTLZ

 2 The link of code and data will be released here once the paper is accepted.

Table 1: Statistical results of the IGD value obtained by the comparison algorithms on the 35 DTLZ optimization problems over 30 runs. Symbols '+', '≈', '−' denote LORA-MOO is statistically significantly superior to, equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last three rows are the total win/tie/loss results on DTLZ, WFG, and both of them, respectively.

Problems	M	ParEGO	KRVEA	KTA ₂	CSEA	REMO	OREA	LORA-MOO (ours)
DTLZ1	$\overline{\mathcal{E}}$	$5.98e+1(3.81e+0)+$	$8.88e+1(2.16e+1)+$	$4.75e+1(1.55e+1)$ \approx	$6.30e+1(1.69e+1)+$	$5.06e+1(1.49e+1)+$	$4.44e+1(1.38e+1)$	$4.35e+1(1.80e+1)$
	$\overline{4}$	$4.68e+1(3.71e+0)+$	$6.45e+1(1.47e+1)+$	$4.08e+1(1.60e+1)$ \approx	$3.69e+1(1.08e+1)$ \approx	$3.92e+1(1.11e+1)$ \approx	$3.80e+1(1.23e+1)$ \approx	$4.06e+1(1.34e+1)$
	6	$3.04e+1(2.74e+0)+$	$3.22e+1(7.66e+0)+$	$2.03e+1(8.12e+0)+$	$1.56e+1(4.96e+0)$ \approx	$1.22e+1(4.65e+0)$ -	$1.74e+1(3.98e+0)$ \approx	$1.58e+1(6.17e+0)$
	8	$1.23e+1(2.99e+0)+$	$8.52e+0(2.97e+0)+$	$4.54e+0(2.66e+0)$ \approx	$5.08e+0(2.47e+0)$ \approx	$3.33e+0(1.93e+0) \approx$	$5.87e+0(2.91e+0)+$	$3.83e+0(2.35e+0)$
	10	$4.37e-1(1.63e-1)+$	$3.32e-1(9.91e-2)+$	$3.00e-1(8.76e-2)+$	$2.90e-1(7.13e-2)+$	$2.42e-1(6.97e-2)$ \approx	$2.58e-1(6.33e-2)$	2.31e-1(3.89e-2)
DTLZ2	3	$3.38e-1(2.84e-2)+$	$1.32e-1(2.77e-2)+$	$6.17e-2(3.13e-3)$ \approx	$2.26e-1(2.61e-2)+$	$1.65e-1(2.18e-2)+$	$8.59e-2(8.51e-3)+$	$6.19e-2(3.48e-3)$
	$\overline{4}$	$4.23e-1(2.79e-2)+$	$2.06e-1(2.95e-2)+$	$1.41e-1(5.45e-3)$ \approx	$2.92e-1(1.89e-2)+$	$2.43e-1(2.33e-2)+$	$1.83e-1(1.37e-2)+$	$1.38e-1(9.86e-3)$
	6	$5.53e-1(2.17e-2)+$	$3.40e-1(1.20e-2)+$	$3.24e-1(2.63e-2)+$	$4.42e-1(3.37e-2)+$	$3.77e-1(3.16e-2)+$	$3.96e-1(2.57e-2)+$	$2.67e-1(8.78e-3)$
	8	$6.53e-1(1.86e-2)+$	$4.19e-1(2.65e-2)+$	$4.44e-1(1.86e-2)+$	$5.95e-1(2.77e-2)+$	$5.10e-1(3.90e-2)+$	$5.56e-1(2.19e-2)+$	$3.80e-1(1.46e-2)$
	10	$6.95e-1(2.23e-2)+$	$5.92e-1(4.25e-2)+$	4.50e-1(1.00e-2) \approx	$6.76e-1(2.52e-2)+$	$5.85e-1(3.72e-2)+$	$6.55e-1(2.66e-2)+$	$4.54e-1(1.41e-2)$
DTLZ3	$\overline{\mathbf{3}}$	$1.66e+2(1.31e+1)+$	$2.43e+2(4.61e+1)+$	$1.52e+2(4.73e+1)$ \approx	$1.62e+2(4.84e+1)$ \approx	$1.49e+2(3.88e+1)$ \approx	$1.26e+2(3.18e+1)$	$1.57e+2(3.83e+1)$
	$\overline{4}$	$1.42e+2(1.57e+1)+$	$1.83e+2(4.00e+1)+$	$1.18e+2(3.49e+1)$ \approx	$1.29e+2(3.58e+1)$ \approx	$1.16e+2(3.00e+1)$ \approx	$1.22e+2(4.13e+1)$ \approx	$1.25e+2(4.20e+1)$
	6	$9.17e+1(1.59e+1)+$	$1.06e+2(2.96e+1)+$	$6.65e+1(2.63e+1)$ \approx	$5.27e+1(1.56e+1)$	$5.23e+1(1.71e+1)$ \approx	$5.24e+1(1.68e+1)$ \approx	$5.96e+1(2.05e+1)$
	8	$4.13e+1(9.84e+0)+$	$2.96e+1(1.15e+1)+$	$1.74e+1(1.10e+1)$ \approx	$1.60e+1(9.76e+0)$ \approx	$1.60e+1(7.70e+0)$ \approx	$1.50e+1(6.27e+0)$ \approx	$1.27e+1(8.33e+0)$
	10	$1.36e+0(3.15e-1)+$	$1.23e+0(4.27e-1)+$	$9.95e-1(2.25e-1)+$	$1.01e+0(2.45e-1)+$	$9.53e-1(2.74e-1)+$	$8.77e-1(1.08e-1)+$	$8.14e-1(1.33e-1)$
DTLZ4		$6.70e-1(7.61e-2)+$	$3.32e-1(1.11e-1)+$	$3.49e-1(1.09e-1)+$	$4.62e-1(1.36e-1)+$	$2.31e-1(1.15e-1)+$	$2.39e-1(1.65e-1)+$	$1.89e-1(2.34e-1)$
	$\overline{4}$	$7.18e-1(6.40e-2)+$	$4.07e-1(8.73e-2)+$	$4.77e-1(9.70e-2)+$	$4.31e-1(6.36e-2)+$	3.36e-1(7.02e-2) \approx	$3.45e-1(1.52e-1)$ \approx	$3.48e-1(1.60e-1)$
	6	$7.06e-1(3.07e-2)+$	$5.04e-1(5.42e-2)+$	$6.05e-1(8.43e-2)+$	$4.94e-1(4.55e-2)+$	$4.97e-1(4.95e-2)+$	4.47e-1(4.89e-2) \approx	$4.55e-1(6.53e-2)$
	8	$6.81e-1(1.48e-2)+$	$5.49e-1(3.42e-2)+$	$6.24e-1(5.48e-2)+$	$5.85e-1(4.20e-2)+$	$6.16e-1(4.03e-2)+$	5.29e-1(3.79e-2) \approx	$5.32e-1(2.38e-2)$
	10	$6.77e-1(1.26e-2)+$	$6.07e-1(2.42e-2)+$	$6.36e-1(3.58e-2)+$	$6.38e-1(2.38e-2)+$	$6.71e-1(2.69e-2)+$	5.90e-1(1.94e-2) \approx	$5.90e-1(2.51e-2)$
DTLZ5		$2.16e-1(4.45e-2)+$	$1.19e-1(3.38e-2)+$	$1.34e-2(2.83e-3)$ \approx	$1.18e-1(2.56e-2)+$	$7.36e-2(2.03e-2)+$	$2.02e-2(4.77e-3)+$	$1.26e-2(2.55e-3)$
	4	$1.89e-1(3.70e-2)+$	$7.05e-2(2.25e-2)+$	$4.24e-2(8.84e-3)+$	$1.16e-1(2.23e-2)+$	$9.02e-2(2.48e-2)+$	$3.48e-2(7.82e-3)+$	$2.85e-2(9.37e-3)$
	6	$1.41e-1(2.32e-2)+$	$3.53e-2(1.02e-2)$	$8.87e-2(1.91e-2)+$	$7.72e-2(2.57e-2)+$	$5.53e-2(1.90e-2)+$	$4.62e-2(1.50e-2)$ \approx	$4.26e-2(1.11e-2)$
	8	$7.72e-2(1.22e-2)+$	$1.99e-2(4.92e-3)$ -	$6.43e-2(8.60e-3)+$	$3.81e-2(1.03e-2)+$	$3.10e-2(7.33e-3)$ \approx	$2.59e-2(6.96e-3)$ -	$2.84e-2(4.88e-3)$
	10	$2.25e-2(1.87e-3)+$	$1.25e-2(1.90e-3)+$	$2.04e-2(2.55e-3)+$	$1.27e-2(1.46e-3)+$	$9.35e-3(2.00e-3)$ -	$1.03e-2(1.62e-3)$ \approx	$1.06e-2(2.36e-3)$
DTLZ6		$3.15e-1(1.62e-1)+$	$3.06e+0(5.21e-1)+$	$1.83e+0(4.37e-1)+$	$4.86e+0(6.30e-1)+$	$4.27e+0(5.49e-1)+$	$3.09e-1(3.99e-1)+$	$1.18e-1(1.57e-1)$
	$\overline{4}$	$3.56e-1(2.12e-1)$ \approx	$2.46e+0(3.84e-1)+$	$1.85e+0(5.06e-1)+$	$5.13e+0(4.23e-1)+$	$4.08e+0(6.16e-1)+$	$1.43e+0(8.89e-1)+$	$3.29e-1(2.22e-1)$
	6	$2.66e-1(1.37e-1)$ -	$1.36e+0(2.73e-1)+$	$1.51e+0(5.85e-1)+$	$3.15e+0(4.35e-1)+$	$2.33e+0(5.70e-1)+$	$2.05e+0(6.16e-1)+$	$9.89e-1(1.02e+0)$
	8	$1.61e-1(6.17e-2)$ \approx	$5.28e-1(1.50e-1)+$	$8.64e-1(3.88e-1)+$	$1.56e+0(4.28e-1)+$	$9.64e-1(4.38e-1)+$	$1.06e+0(3.95e-1)+$	$3.56e-1(4.31e-1)$
	10	$1.72e-1(1.45e-1)+$	$7.73e-2(3.13e-2)$ \approx	$1.01e-1(4.97e-2)+$	$2.09e-1(2.28e-1) +$	7.91e-2(1.11e-1) \approx	$1.50e-1(7.37e-2)+$	7.05e-2(3.25e-2)
DTLZ7	3	$2.45e-1(4.80e-2)+$	1.35e-1(2.37e-2) \approx	$2.19e-1(2.40e-1)$	$1.75e+0(6.32e-1)+$	$1.27e+0(5.65e-1)+$	$2.73e-1(1.58e-1)+$	$2.01e-1(1.93e-1)$
	$\overline{4}$	$6.59e-1(1.02e-1)+$	3.38e-1(7.61e-2) \approx	$3.73e-1(1.68e-1)$ \approx	$2.94e+0(6.59e-1)+$	$2.06e+0(7.31e-1)+$	$8.92e-1(4.27e-1)+$	$4.20e-1(2.21e-1)$
	6	$1.21e+0(1.58e-1)$ -	$6.04e-1(4.57e-2)$ -	$6.46e-1(1.68e-1)$	$4.92e+0(9.92e-1)+$	$3.09e+0(6.71e-1)+$	$4.03e+0(1.84e+0)+$	$1.71e+0(6.54e-1)$
	8	$1.45e+0(1.24e-1)$	$8.71e-1(7.01e-2)$ -	$1.02e+0(1.65e-1)$ -	$6.12e+0(1.85e+0)+$	$3.82e+0(5.39e-1)+$	$4.55e+0(2.63e+0)+$	$2.44e+0(6.78e-1)$
	10	$1.67e+0(1.24e-1)+$	$1.12e+0(4.25e-2)$ -	$1.30e+0(2.04e-1)$ \approx	$1.99e+0(3.05e-1)+$	$1.99e+0(3.36e-1)+$	$1.63e+0(2.42e-1)+$	$1.34e+0(9.19e-2)$
$+/\approx$ ' —	on DTLZ	30/2/3	27/3/5	19/13/3	28/7/0	23/10/2	20/13/2	
$+/\approx$ /-	on WFG	39/4/2	21/10/14	23/6/16	41/1/3	38/3/4	43/1/1	
$+/\approx$ /-	on both	69/6/5	48/13/19	42/19/19	69/8/3	61/13/6	63/14/3	

 297 problems with different M are reported in Table [1.](#page-7-0) It shows that LORA-MOO achieves the best ²⁹⁸ optimization results among all the comparison algorithms in terms of IGD values, followed by KTA2

²⁹⁹ and KRVEA. The IGD values obtained on the WFG problems, the IGD+ and HV results, and the

300 results obtained under different scales ($D=5$ or 20) are reported in Appendix [H.](#page-22-0) A consistent result ³⁰¹ can be concluded from the IGD+ and HV values. The results on the 3- and 10-objective problems are

plotted in Fig. [2.](#page-7-1)

Figure 2: IGD(log) curves averaged over 30 runs on the DTLZ problems for the comparison algorithms (shaded area is \pm std of the mean). Top: 10 variables and 3 objectives. Bottom: 10 variables and 10 objectives. More figures are displayed in Appendices [G](#page-22-1) and [H.](#page-22-0)

³⁰³ 4.4 Real-World Network Architecture Search Problem

Further comparison is conducted on a real-world network architecture search (NAS) problem, the best three algorithms listed in Table [1](#page-7-0) are compared: LORA-MOO, KTA2, and KRVEA. The NAS problem tested is the NASbench201 implemented in EvoXBench [\[29\]](#page-10-13), it has 6 variables and 5 objectives. Details of this NAS problem is provided in Appendix [E.](#page-16-1) Considering NASbench201 is a real-world application and we do not know its exact PF, we use HV to evaluate optimization performance since HV can be calculated without the exact PF. In practice, $log(HV_{\text{diff}})$ is employed to amplify the visual difference of the obtained HV values:

$$
log(HV_{\text{diff}}) = log(HV_{\text{max}} - HV)
$$

- 304 where HV_{max} is the maximal HV value on this problem that is provided in EvoXBench.
- 305

309

Fig. [3](#page-8-0) plots the result. As can be seen in the figure, LORA-MOO outperforms KTA2 and KRVEA on this NAS problem. Although KTA2 and KRVEA have quicker convergence rate than LORA-MOO at the beginning of the optimization, both of them slow down their convergence speed as the number of evaluations increases. Particularly, KTA2 is trapped on local optima and thus fails to reach better results. In comparison, LORA-MOO reaches better NAS results when the evaluation number is larger than 250. Figure 3: $Log(HV_{diff})$ curves averaged over 30 runs

on the NAS problem for the comparison algorithms.

³⁰⁶ 4.5 Runtime Comparison

³⁰⁷ We compare the runtime on benchmark problems for all the comparison algorithms to in-³⁰⁸ vestigate the relation between their optimization efficiency and the number of objectives M.

Fig. [4](#page-8-1) illustrates how the runtime of each comparison algorithm varies as the M increases. It can be observed that the runtime of KTA2 increases exactly in the same rate as M increases. In comparison, the runtime of LORA-MOO increases slightly when M increases. This demonstrates that using angular surrogates only at the end of environmental selection process is beneficial to the optimization efficiency of LORA-MOO. In addition, the runtimes of ParEGO, CSEA, REMO, and OREA do not increase significantly with M since they do not maintain specific surrogates to manage the diversity of non-dominated solutions. Consequently, their overall performance reported in Table [1](#page-7-0) is not desirable. Overall, LORA-MOO finds a good trade-off between optimization efficiency and optimization results.

Figure 4: Comparison of runtime averaged over 30 runs on benchmark problems $D = 10$ variables and $M = 3, 4, 6, 8,$ and 10 objectives for the comparison algorithms. For each algorithm, its runtimes are normalized by the runtime it costed on 3-objective problems.

310 **5** Conclusion

 In this paper, we propose an efficient MOO method, LORA-MOO, to solve expensive MOOPs. Different from existing surrogate modeling approaches, our LORA-MOO learns surrogate models from ordinal relations and spherical coordinates. Only one ordinal surrogate is used in the model- based search, which hugely improve the efficiency of optimization. Our empirical studies have demonstrated that our LORA-MOO significantly outperforms other state-of-the-art efficient MOO methods, including SAEAs and MOBO methods.

317 References

- [1] Alaleh Ahmadianshalchi, Syrine Belakaria, and Janardhan Rao Doppa. Pareto front-diverse batch multi-objective Bayesian optimization. In *Proceedings of the 38th AAAI Conference on Artificial*
- *Intelligence (AAAI'24)*, pages 10784–10794, 2024.
- [2] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for multi-objective Bayesian optimization. In *Advances in Neural Information Processing Systems 32 (NeurIPS'19)*, pages 7825–7835, 2019.
- [3] Syrine Belakaria, Aryan Deshwal, Nitthilan Kannappan Jayakodi, and Janardhan Rao Doppa. Uncertainty-aware search framework for multi-objective Bayesian optimization. In *Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI'20)*, pages 10044–10052, 2020.
- [4] Peter AN Bosman and Dirk Thierens. The balance between proximity and diversity in multiob- jective evolutionary algorithms. *IEEE Transactions on Evolutionary Computation*, 7(2):174–188, 2003.

 [5] Tinkle Chugh, Yaochu Jin, Kaisa Miettinen, Jussi Hakanen, and Karthik Sindhya. A surrogate- assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. *IEEE Transactions on Evolutionary Computation*, 22(1):129–142, 2016.

 [6] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervol- ume improvement for parallel multi-objective Bayesian optimization. In *Advances in Neural Information Processing Systems 33 (NeurIPS'20)*, pages 9851–9864, 2020.

- [7] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel Bayesian optimization of multiple noisy objectives with expected hypervolume improvement. In *Advances in Neural Information Processing Systems 34 (NeurIPS'21)*, pages 2187–2200, 2021.
- [8] Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective Bayesian optimization over high-dimensional search spaces. In *Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI'22)*, pages 507–517, 2022.
- [9] Kalyanmoy Deb and Mayank Goyal. A combined genetic adaptive search (GeneAS) for engi-neering design. *Computer Science and Informatics*, 26(4):30–45, 1996.

 [10] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box

- constraints. *IEEE Transactions on Evolutionary Computation*, 18(4):577–601, 2013.
- [11] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable test problems for evolutionary multiobjective optimization. In *Evolutionary Multiobjective Optimization*, pages 105–145. Springer, London, U.K., 2005.
- [12] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural archi- tecture search. In *Proceedings of the 8th International Conference on Learning Representations (ICLR'20)*, 2020.
- [13] Russell Eberhart and James Kennedy. Particle swarm optimization. In *Proceedings of the 1995 IEEE International Conference on Neural Networks (ICNN'95)*, pages 1942–1948, 1995.

 [14] Michael TM Emmerich, Kyriakos C Giannakoglou, and Boris Naujoks. Single-and multiobjec- tive evolutionary optimization assisted by Gaussian random field metamodels. *IEEE Transactions on Evolutionary Computation*, 10(4):421–439, 2006.

- [15] Ahsanul Habib, Hemant Kumar Singh, Tinkle Chugh, Tapabrata Ray, and Kaisa Miettinen. A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi/many- objective optimization. *IEEE Transactions on Evolutionary Computation*, 23(6):1000–1014, 2019.
- [16] Thomas Hanne. On the convergence of multiobjective evolutionary algorithms. *European Journal of Operational Research*, 117(3):553–564, 1999.
- [17] Hao Hao, Aimin Zhou, Hong Qian, and Hu Zhang. Expensive multiobjective optimization by relation learning and prediction. *IEEE Transactions on Evolutionary Computation*, 26(5):1157– 1170, 2022.
- [18] Xiaobin Huang, Lei Song, Ke Xue, and Chao Qian. Stochastic Bayesian optimization with unknown continuous context distribution via kernel density estimation. In *Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI'24)*, pages 12635–12643, 2024.
- [19] Simon Huband, Philip Hingston, Luigi Barone, and Lyndon While. A review of multiobjective test problems and a scalable test problem toolkit. *IEEE Transactions on Evolutionary Computation*, $372 \qquad 10(5):477 - 506, 2006.$
- [20] Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. Modified distance calculation in generational distance and inverted generational distance. In *Proceedings of the 8th International Conference on Evolutionary Multi-criterion Optimization (EMO'15)*, pages 110–125, 2015.
- [21] M. Janga Reddy and D. Nagesh Kumar. Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: A state-of-the-art review. *H2Open Journal*, 3(1):135–188, 2021.
- [22] Yaochu Jin. A comprehensive survey of fitness approximation in evolutionary computation. *Soft Computing*, 9(1):3–12, 2005.
- [23] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive black-box functions. *Journal of Global Optimization*, 13(4):455–492, 1998.
- [24] Joshua Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. *IEEE Transactions on Evolutionary Computation*, 10(1):50–66, 2006.
- [25] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Sam Kwong. An evolutionary many-objective opti- mization algorithm based on dominance and decomposition. *IEEE Transactions on Evolutionary Computation*, 19(5):694–716, 2014.
- [26] Lin Lin and Mitsuo Gen. Hybrid evolutionary optimisation with learning for production scheduling: State-of-the-art survey on algorithms and applications. *International Journal of Production Research*, 56(1-2):193–223, 2018.
- [27] Xi Lin, Zhiyuan Yang, Xiaoyuan Zhang, and Qingfu Zhang. Pareto set learning for expen- sive multi-objective optimization. In *Advances in Neural Information Processing Systems 35 (NeurIPS'22)*, pages 19231–19247, 2022.
- [28] Zhuo Liu, Xiaolin Xiao, Feng-Feng Wei, and Wei-Neng Chen. A classification-assisted level- based learning evolutionary algorithm for expensive multiobjective optimization problems. In *Pro- ceedings of the 24th Annual Conference on Genetic and Evolutionary Computation (GECCO'22)*, pages 547–555, 2022.
- [29] Zhichao Lu, Ran Cheng, Yaochu Jin, Kay Chen Tan, and Kalyanmoy Deb. Neural architec- ture search as multiobjective optimization benchmarks: Problem formulation and performance assessment. *IEEE Transactions on Evolutionary Computation (Early Access)*, 2023.
- [30] Michael D. McKay, Richard J. Beckman, and William J. Conover. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. *Technometrics*, 42(1):55–61, 2000.
- [31] Linqiang Pan, Cheng He, Ye Tian, Handing Wang, Xingyi Zhang, and Yaochu Jin. A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective opti-mization. *IEEE Transactions on Evolutionary Computation*, 23(1):74–88, 2018.
- [32] Jerome Sacks, William J. Welch, Toby J. Mitchell, and Henry P. Wynn. Design and analysis of computer experiments. *Statistical Science*, 4(4):409–423, 1989.

 [33] Palwasha W. Shaikh, Mohammed El-Abd, Mounib Khanafer, and Kaizhou Gao. A review on swarm intelligence and evolutionary algorithms for solving the traffic signal control problem. *IEEE Transactions on Intelligent Transportation Systems*, 23(1):48–63, 2020.

 [34] Zhenshou Song, Handing Wang, Cheng He, and Yaochu Jin. A Kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization. *IEEE Transactions on Evolu-tionary Computation*, 25(6):1013–1027, 2021.

- [35] Lei Song, Ke Xue, Xiaobin Huang, and Chao Qian. Monte Carlo tree search based variable se- lection for high dimensional Bayesian optimization. In *Advances in Neural Information Processing Systems 35 (NeurIPS'22)*, pages 28488–28501, 2022.
- [36] Michael L. Stein. *Interpolation of Spatial Data: Some Theory for Kriging*. Springer Science & Business Media, New York, NY, 1999.

 [37] Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki Karasuyama. Multi-objective Bayesian optimization using Pareto-frontier entropy. In *Proceedings of the 37th International Conference on Machine Learning (ICML'20)*, pages 9279–9288, 2020.

- [38] Zhenkun Wang, Yew-Soon Ong, and Hisao Ishibuchi. On scalable multiobjective test problems with hardly dominated boundaries. *IEEE Transactions on Evolutionary Computation*, 23(2):217– 231, 2018.
- [39] Christopher KI Williams and Carl Edward Rasmussen. *Gaussian Processes for Machine Learning*. MIT press, Cambridge, MA, 2006.
- [40] Xunzhao Yu, Xin Yao, Yan Wang, Ling Zhu, and Dimitar Filev. Domination-based ordinal regression for expensive multi-objective optimization. In *Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI'19)*, pages 2058–2065, 2019.
- [41] Xunzhao Yu, Ling Zhu, Yan Wang, Dimitar Filev, and Xin Yao. Internal combustion engine calibration using optimization algorithms. *Applied Energy*, 305:117894, 2022.
- [42] Yuan Yuan and Wolfgang Banzhaf. Expensive multi-objective evolutionary optimization assisted by dominance prediction. *IEEE Transactions on Evolutionary Computation*, 26(1):159–173, 2022.
- [43] Qingfu Zhang, Wudong Liu, Edward Tsang, and Botond Virginas. Expensive multiobjective optimization by MOEA/D with gaussian process model. *IEEE Transactions on Evolutionary Computation*, 14(3):456–474, 2010.
- [44] Jinyuan Zhang, Aimin Zhou, and Guixu Zhang. A classification and pareto domination based multiobjective evolutionary algorithm. In *Proceedings of the 17th IEEE Congress on Evolutionary Computation (CEC'15)*, pages 2883–2890, 2015.
- [45] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolutionary algorithms - a comparative case study. In *Proceedings of the 5th International Conference on Parallel Problem Solving from Nature (PPSN V)*, pages 292–301, 1998.
- 446 [46] Marcela Zuluaga, Andreas Krause, et al. ϵ -pal: An active learning approach to the multi-objective optimization problem. *Journal of Machine Learning Research*, 17(104):1–32, 2016.

⁴⁴⁸ A Background of Many-Objective Optimization

⁴⁴⁹ We consider minimization problems and many-objective optimization problems (MOOPs) can be ⁴⁵⁰ formulated as follows:

Definition 2. *(Expensive Many-Objective Optimization Problem) Given* M expensive objective functions f_1, \ldots, f_M and an evaluation budget FE_{max} , obtain the *Pareto set for the following many-objective optimization problem:*

$$
\operatornamewithlimits{argmin}_{\boldsymbol x \in X} f(\boldsymbol x) = (f_1(\boldsymbol x), \dots, f_M(\boldsymbol x))
$$

 \mathcal{A}_{451} *where* $X \subseteq \mathbb{R}^D$ is the decision space of the problem.

⁴⁵² The Pareto set is defined through the following definitions: Pareto set and Pareto front are defined as ⁴⁵³ follows:

Definition 3. *Pareto dominance:*

A solution x^1 *is said to dominate another solution* x^2 *(denoted by* $x^1 \prec x^2$ *) if and only if:*

$$
\forall k \in \{1, 2, \dots, M\} : f_k(\boldsymbol{x}^1) \le f_k(\boldsymbol{x}^2) \wedge \exists k \in \{1, 2, \dots, M\} : f_k(\boldsymbol{x}^1) < f_k(\boldsymbol{x}^2)
$$

Definition 4. *Non-dominated solution:*

A non-dominated solution x ? *in the decision space* X *is a solution that cannot be dominated by any other solutions in* X*:*

$$
\nexists x \in X: x \prec x^\star
$$

Definition 5. *Pareto set:*

Pareto set S_{ps} *is the set of all non-dominated solutions in the decision space* X *:*

$$
S_{ps} = \{ \boldsymbol{x}^{\star} \in X | \nexists \boldsymbol{x} \in X : \boldsymbol{x} \prec \boldsymbol{x}^{\star} \}
$$

Definition 6. *Pareto front:*

Pareto front S_{pf} *is the corresponding unique set of the Pareto set in the objective space:*

$$
S_{pf} = \{f(\boldsymbol{x})|\boldsymbol{x} \in S_{ps}\}
$$

⁴⁵⁴ B Kriging Model

 Kriging model, also known as Gaussian process model [\[23\]](#page-10-14) or design and analysis of computer experiments (DACE) model [\[32\]](#page-10-11), is a stochastic process model used to approximate an unknown objective function. LORA-MOO uses Kriging models to implement angular surrogates and the radial surrogate, to avoid potential confusion and help the understanding of our algorithm, the working mechanism of the Kriging model is described below.

460 A common way to approximate an unknown objective function with n observations is linear regression: 461

$$
y(\boldsymbol{x}^i) = \sum_{k=1}^N \beta_k f_k(\boldsymbol{x}^i) + \epsilon^i,
$$
\n(6)

462 where x^i is the i^{th} sample point observed from the objective function. $f_k(x^i)$, β_k are a linear or 463 nonlinear function of x^i and its coefficient, respectively. N is the number of functions $f(x)$. ϵ^i is an 464 independent error term, which is normally distributed with mean zero and variance σ^2 .

465 However, a stochastic process model such as Kriging does not assume that the error terms ϵ are 466 independent. Hence, an error term ϵ^i is rewritten as $\epsilon(\vec{x}^i)$. Moreover, these error terms are assumed 467 to be related or correlated to each other. The correlation between two error terms $\epsilon(x^i)$ and $\epsilon(x^j)$ is ⁴⁶⁸ inversely proportional to the distance between the corresponding points [\[23\]](#page-10-14). The correlation function ⁴⁶⁹ in the Kriging model is defined as:

$$
Corr(\epsilon(\boldsymbol{x}^{i}), \epsilon(\boldsymbol{x}^{j})) = exp[-dis(\boldsymbol{x}^{i}, \boldsymbol{x}^{j})],
$$
\n(7)

470 where the distance between two points x^i and x^j are measured using the special weighted distance ⁴⁷¹ formula shown below:

$$
dis(\boldsymbol{x}^i, \boldsymbol{x}^j) = \sum_{k=1}^D \theta_i |x_k^i - x_k^j|^{p_k},\tag{8}
$$

472 where D is the number of decision variables, $\boldsymbol{\theta} \in \mathbb{R}_{\geq 0}^D$ and $\mathbf{p} \in [1,2]^D$ are parameters of the Kriging 473 model. It can be seen from Eq.[\(7\)](#page-12-2) that the correlation is ranged within $(0, 1]$ and is increasing as the 474 distance between two points decreases. Particularly, in Eq.[\(8\)](#page-12-3), the parameter θ_k can be explained as 475 the importance of the decision variable x_k , and the parameter p_k can be interpreted as the smoothness 476 of the correlation function in the k^{th} coordinate direction.

⁴⁷⁷ Due to the effectiveness of correlation modelling, the regression model in Eq.[\(6\)](#page-12-4) can be simplified ⁴⁷⁸ without degrading modelling performance [\[23\]](#page-10-14). Clearly, all regression terms are replaced with a ⁴⁷⁹ constant term, thus the Kriging regression model can be rewritten as follows:

$$
y(\boldsymbol{x}^i) = \mu + \epsilon(\boldsymbol{x}^i),\tag{9}
$$

480 where μ is the mean of this stochastic process, $\epsilon(\mathbf{x}^i) \sim \mathcal{N}(0, \sigma^2)$.

⁴⁸¹ B.1 Training the Kriging model

482 To train the Kriging model and estimate the parameters θ , p in Eq.[\(8\)](#page-12-3), the following likelihood ⁴⁸³ function is maximised:

$$
\frac{1}{(2\pi)^{n/2}(\sigma^2)^{n/2}|\mathbf{R}|^{1/2}}exp[-\frac{(\mathbf{y}-\mathbf{1}\mu)^T\mathbf{R}^{-1}(\mathbf{y}-\mathbf{1}\mu)}{2\sigma^2}],
$$
\n(10)

484 where $|R|$ is the determinant of the correlation matrix, each element in the matrix is obtained using 485 Eq.[\(7\)](#page-12-2). \boldsymbol{y} is the *n*-dimensional vector of dependent variables that observed from the objective function. 486 The mean value μ and variance σ^2 in Eq.[\(9\)](#page-13-1) and Eq.[\(10\)](#page-13-2) can be estimated by:

$$
\hat{\mu} = \frac{\mathbf{1}^T \mathbf{R}^{-1} \mathbf{y}}{\mathbf{1}^T \mathbf{R}^{-1} \mathbf{1}},\tag{11}
$$

487

$$
\hat{\sigma} = \frac{1}{n} (\mathbf{y} - \mathbf{1}\hat{\mu})^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{1}\hat{\mu}).
$$
\n(12)

⁴⁸⁸ B.2 Prediction with the Kriging model

489 For a new solution x^* , the Kriging model predicts the approximation of $\hat{y}(x^*)$ and the uncertainty 490 $\hat{s}^2(x^*)$ as follows:

$$
\hat{y}(\boldsymbol{x}^*) = \hat{\mu} + \mathbf{r}' \mathbf{R}^{-1} (\mathbf{y} - \mathbf{1}\hat{\mu}),\tag{13}
$$

491

$$
\hat{s}^2(\boldsymbol{x}^*) = \hat{\sigma}^2 (1 - \mathbf{r}' \mathbf{R}^{-1} \mathbf{r}),\tag{14}
$$

492 where **r** is a *n*-dimensional vector of correlations between $\epsilon(\mathbf{x}^*)$ and the error terms at the training ⁴⁹³ data, which can be calculated via Eq.[\(7\)](#page-12-2).

⁴⁹⁴ Further details and a comprehensive description of the Kriging model and Gaussian Process can be 495 found in [\[39\]](#page-11-5). In this paper, all regression-based Kriging models have $\theta \in [10^{-5}, 100]^D$, $\mathbf{p} = 2^D$.

⁴⁹⁶ C Additional Description of LORA-MOO

⁴⁹⁷ This section describes LORA-MOO with more details.

⁴⁹⁸ C.1 Quantification of Ordinal Relations

⁴⁹⁹ In order to learn the ordinal landscape of MOOPs, we need to quantify the ordinal relations between soo solutions into numerical values. Alg. [2](#page-14-0) illustrates the pseudocode of quantifying ordinal relations^{[3](#page-13-3)}, ⁵⁰¹ it describes line 4 in Alg. [1](#page-3-0) of the main file. It can be seen that Alg. [2](#page-14-0) is mainly working on the ⁵⁰² quantification of dominance-based ordinal relations. Artificial ordinal relations will not be added 503 unless the ratio of reference points is larger than ratio threshold rp_{ratio} (line 5).

 An illustration of artificial clustering-based ordinal relations is given in Fig. [5.](#page-14-1) By using clustering methods, artificial ordinal relations are generated for training ordinal regression surrogates. Picking one solution from each cluster ensures the diversity of non-dominated solutions in the first ordinal level L_1 . Meanwhile, the selection within each cluster is based on the projection length on cluster

⁵⁰⁸ center, which is beneficial to the convergence of non-dominated solutions.

 3 Symbol '←' indicates the result of a function, Symbol '=' indicates an assignment operation.

Algorithm 2 Quantify Ordinal Relations for LORA-MOO

Input:

 S_A : Archive of evaluated solutions;

 rp_ratio : Ratio threshold of reference points in S_A ;

 n_o : Minimal number of ordinal levels.

Procedure:

- 1: $S_{RP} \leftarrow$ Non-dominated solutions in S_A that are non- λ -dominated to any other solution in S_A .
- 2: Non-dominated level (The first ordinal level) $L_1 \leftarrow S_{RP}$.
- 3: The number of non-dominated ordinal levels $n_{ndl} = 1$.
- 4: Ratio of reference points $ratio = \frac{|S_{RP}|}{|S_A|}$ $\frac{|S_{RP}|}{|S_A|}$.
- 5: if $ratio > rp_{ratio}$ then
- 6: $n_{ndl} = n_{ndl} + 1$. /* Add Artificial Ordinal Relations. */
- 7: Divide S_{RP} into $\frac{|S_{RP}|}{2}$ clusters via KNN clustering.
- 8: For x in each cluster, calculate the projection length of x on the corresponding cluster center.
- 9: $L_1 \leftarrow$ Solutions x with the shortest projection on each cluster.
- 10: $L_2 \leftarrow$ Remaining $\frac{|S_{RP}|}{2}$ solutions in S_{RP} .
- 11: end if
- 12: Calculate extension coefficient $ec(x)$ for all $x \in S_A$.
- 13: The number of ordinal levels $N_o = \max(n_o, \frac{|S_A|}{|S_B|})$ $\frac{|S_A|}{|S_{RP}|}$).
- 14: L_i ← According to the order of $ec(x)$, uniformly divide solutions $x \in (S_A S_{RP})$ into N_o n_{ndl} levels.
- 15: Ordinal relation value $v_i = 1 \frac{i-1}{N_o-1}$ for $x \in L_i$.

Output: An ordinal training set S_o consisting of ordinal relation values v_i .

Figure 5: Illustration of artificial clustering-based ordinal relations. Left: Non-dominated solutions without artificial ordinal relations. Right: Non-dominated solutions with artificial ordinal relations. Red solutions are new non-dominated solutions in L_1 , remaining blue solutions are moved to next ordinal level L_2 . Dash circles are clusters, green vectors are cluster centers.

⁵⁰⁹ C.2 Generation of candidate solutions

⁵¹⁰ Algo. [3](#page-15-0) gives the pseudocode of generating candidate solutions, it is the implementation of line 6 in 511 Alg. [1](#page-3-0) of the main file. In lines 1-9, a population P_0 is generated. Since reference points S_{RP} are the 512 optimal solutions in S_A in terms of convergence, a half initial solutions are generated from S_{RP} (lines 513 2-8). To obtain a diverse subset of S_{RP} , LORA-MOO divides S_{RP} into n_c clusters before sampling ⁵¹⁴ solutions (line 2). Once population initialization is completed (line 9), a normal PSO is conducted to ⁵¹⁵ produce candidate solutions (lines 11-16). Please be noted that, although we are solving expensive 516 MOOPs, only a single ordinal surrogate h_o is used in the reproduction process (line 14). This is a 517 great advantage of LORA-MOO since existing regression-based SAEAs involve all M surrogates in ⁵¹⁸ the reproduction process. Hence, LORA-MOO is more efficient than these regression-based SAEAs.

⁵¹⁹ C.3 Angle-Based Diversity Selection

520 Alg. [4](#page-15-1) gives the pseudocode of selecting the second optimal solution x_2^* from P via our angle-based ⁵²¹ diversity criterion, it is the implementation of line 11 in Alg. [1](#page-3-0) of the main file. This angle-based

Input:

 S_{RP} : Reference points used in the ordinal regression;

- h_o : Ordinal regression surrogate;
- n_c : The number of clusters to initialize population P ;
- | P |: The size of population P;
- G_{max} : The number of generations for reproduction.

Procedure:

- 1: $P_r \leftarrow$ Randomly sample $\frac{|P|}{2}$ solutions from the decision space.
- 2: Divide S_{RP} into n_c clusters via KNN clustering.
- 3: $P_c = \emptyset$.
- 4: for $i = 1$ to n_c do
- 5: $P_{ci} \leftarrow$ Randomly sample $\frac{|P|}{2n_c}$ solutions from i^{th} cluster.
- 6: $P_{ci} \leftarrow \text{Mutation } (P_{ci})$.
- 7: $P_c = P_c \cup P_{ci}$.
- 8: end for
- 9: Initial population $P_0 = P_r \cup P_c$.
- 10: $h_o(P_0) \leftarrow$ Evaluate P_0 on ordinal surrogate h_o .
- 11: Global Optimal Population $P_{global} = P_0$.
- 12: for $i = 1$ to G_{max} do
- 13: $P_i \leftarrow \text{PSO operation on } P_{i-1}$ and P_{global} .
- 14: $h_o(P_i) \leftarrow$ Evaluate P_i on ordinal surrogate h_o .
- 15: Update P_{global} using $h_o(P_i)$ and $h_o(P_{i-1})$.

16: end for

Output: A generation of candidate solutions $P = P_{global}$.

Algorithm 4 Angle-Based Diversity Selection in LORA-MOO

Input:

 S_{RP} : Reference points used in the ordinal regression; P: Population of candidate solutions; $h_{a1}, \ldots, h_{a(M-1)}$: M-1 angular surrogates;

Procedure:

- 1: $h(ai)(P) \leftarrow$ Evaluate P on angular surrogates h_{ai} , i = 1, ..., $M 1$.
- 2: for $j = 2$ to $|P|$ do
- 3: $x_j \leftarrow$ The j^{th} solution in P. /* Assume the first solution in P is selected as x_1^* already. */
- 4: $d_{ang} \leftarrow$ Calculate the angles between x_j and all reference points in S_{RP} .
- 5: $md_{ang} \leftarrow$ The angle between x_j and its nearest reference point.
- 6: end for
- 7: $x_2^* \leftarrow$ The candidate solution in P with maximal md_{ang} .
- **Output:** The second candidate solution x_2^* .

 diversity selection does not require extra parameters for generating guidance vectors, it selects the candidate solution that is mostly deviate from solutions in S_{RP} . Note that all angular surrogates are only used to evaluate one population P during the whole reproduction and environmental selection 525 procedures. Therefore, although LORA-MOO fits M surrogates in total (one ordinal surrogate and $526 \,$ M-1 angular surrogates), its runtime cost is less than other SAEAs which fit M surrogates from Cartesian coordinates.

⁵²⁸ D Details of Performance Indicators Used in Our Experiments

 In our experiments, we use IGD [\[4\]](#page-9-14), IGD+ [\[20\]](#page-10-12), and HV [\[45\]](#page-11-11) to measure the performance of many 530 objective optimization. Both IGD and IGD+ require a subset of Pareto front as reference points. In our experiments, the number of IGD/IGD+ reference points is set to 5000 for 3-, 4-, and 6-objective optimization problems, as widely used in the literature [\[40\]](#page-11-7). Considering the large objective space,

Problem	Reference Points
DTLZ.	$(1,0,\ldots,1.0) \in \mathbb{R}^M$
WFG	$(1,0,\ldots,1.0) \in \mathbb{R}^M$
NASBench201	(1.0, 1.0, 1.0, 1.0, 1.0)

Table 2: The HV reference points for all problems in this work.

 we set the number of IGD/IGD+ reference points to 10000 for 8- and 10-objective optimization problems to achieve a more accurate estimation of optimization performance. The method proposed in [\[25\]](#page-10-15) is employed to generate well-distributed IGD/IGD+ reference points.

 In comparison, the calculation of HV values does not require a subset of Pareto front as reference points. For a set of non-dominated solutions, its HV is the volume in the objective space it dominates from the set to a single reference point. Table [2](#page-16-2) lists the reference point used for calculating HV values. All HV values are calculated using the reference point and the normalized solutions. A solution x is normalize by the upper bound and lower bound of Pareto front:

$$
\frac{x - lb_{pf}}{ub_{pf} - lb_{pf}},\tag{15}
$$

541 where ub_{pf} , lb_{pf} are the upper bound and lower bound of Pareto front, respectively.

E Details of the NASbench201 Problem

 NASbench201 [\[12\]](#page-9-15) are discrete optimization problems that aim to identify the optimal architecture for neural networks. The search space is defined by a cell with 4 nodes inside, forming a directed acyclic graph as illustrated in Fig. [6.](#page-16-3) The decision variables are 6 edges, each edge is associated

Figure 6: Diagram of a network architecture in NASbench201.

with an operation selected from a predefined operation set {zeroize, skip-connect, 1x1 convolution,

 3x3 convolution, 3x3 average pool}. Therefore, a network architecture can be encoded into a 6- dimensional decision vector with 5 discrete numbers. In total, there are 5^6 = 15,625 different candidates

for neural architecture search.

 The optimization objectives in NASbench201 varies in different optimization problems. In this paper, our NASbench201 problem consider 5 objectives, including the accuracy in CI-FAR10 dataset, groundtruth floating point operations (FLOPs), the number of parameters, latency, and energy cost. All these objectives are normalized to [0, 1] in the optimization. The optimization problem can be formulated as

$$
F(\boldsymbol{x}) = \{f_{acc}(\boldsymbol{x}), f_{FLOPs}(\boldsymbol{x}), f_{param}(\boldsymbol{x}), f_{latency}(\boldsymbol{x}), f_{energy}(\boldsymbol{x})\},\tag{16}
$$

555 where decision vector $x \in \{0, 1, 2, 3, 4\}^6$.

F Complete Results of Ablation Studies

 In this section, we report complete results of our ablation studies that are not displayed in the main paper. We conduct four ablation studies to investigate the effect of the following four parameters on the optimization performance of LORA-MOO.

 1. n_o : The minimal number of ordinal levels. A parameter in the modeling of our ordinal-regression-based surrogate h_o .

- 562 2. λ : The dominance coefficient. A parameter in the modeling of our ordinal-regression-based 563 surrogate h_o .
- 564 3. rp_{ratio} : The ratio threshold of reference points S_{RP} . A parameter to determine whether to ⁵⁶⁵ introduce artificial ordinal relations via clustering.
- 566 4. n_c : The number of clusters generated from reference points S_{RP} to initialize PSO population. ⁵⁶⁷ A parameter in the generation of candidate solutions.

 Setup of Ablation Studies. Our ablation studies are conducted on 7 DTLZ and 9 WFG benchmark optimization problems. These benchmark problems have different features, such as unimodal, multi- modal, scaled, degenerated, and discontinuous. Therefore, the effect of four parameters can be investigated comprehensively. Considering our paper focuses on many-objective optimization instead of scalable optimization, we are interested in the optimization performance under different numbers of objectives M rather than the performance under different numbers of decision variables D. Hence, we set $D = 10$ for all benchmark optimization problems, as suggested in literature [\[5,](#page-9-1) [31,](#page-10-3) [34,](#page-11-2) [17\]](#page-10-4). In 575 comparison, we set $M = \{3, 6, 10\}$ to observe the optimization performance with different objectives. Other setups are the same as described in Section [4.1](#page-5-0) of the main file.

577 F.1 Influence of Minimal Number of Ordinal Levels n_o .

 578 This subsection investigates the influence of minimal number of ordinal levels n_o on the optimization 579 performance. We set $n_0 = \{10, 8, 6, 4, 3\}$ to generate five LORA-MOO variants. For all variants, in 580 this ablation study, we tentatively set $\lambda = 0.2$, $rp_{ratio} = 2/3$, $n_c = 5$ for a fair comparison. The IGD+ 581 values obtained by five LORA-MOO variants with different n_o are reported in Table [3.](#page-18-0)

582 In the last five rows of Table [3,](#page-18-0) the summary of statistical test results shows that $n_o = 4$ is the optimal ⁵⁸³ parameter setup for LORA-MOO, because it is the only variant that is significantly superior to or 584 equivalent to all other variants. In comparison, the LORA-MOO variant with $n_o = 10, 8, 6, 3$ are ⁵⁸⁵ significantly inferior to other 4, 1, 1, 2 LORA-MOO variants, respectively.

586 F.2 Influence of Dominance Coefficient λ .

⁵⁸⁷ In this subsection, we analyze the influence of λ-dominance coefficient λ on the optimization 588 performance. We set $\lambda = \{0, 0.1, 0.2, 0.3\}$ to generate four LORA-MOO variants. As determined in 589 the previous ablation study, we set $n_o = 4$ for all variants. The remaining two parameters rp_{ratio} and $590 \text{ } n_c$ are set to 2/3 and 5, respectively. The IGD+ values obtained by four LORA-MOO variants with 591 different λ are reported in Table [4.](#page-19-0)

592 The last four rows of Table [4](#page-19-0) shows that $\lambda = 0.2$ is the optimal parameter setup for LORA-MOO. 593 The variant of $\lambda = 0.2$ is significantly superior to both the variants of $\lambda = 0$ and $\lambda = 0.1$, and it is 594 equivalent to the variant of $\lambda = 0.3$. We note that the variant of $\lambda = 0.3$ is also significantly superior 595 to both the variants of $\lambda = 0$ and $\lambda = 0.1$. However, this variant wins/ties/losses 30/105/9 statistical 596 tests in total, while the variant of $\lambda = 0.2$ wins/ties/losses 32/109/3 statistical tests in total. Therefore, 597 setting $\lambda = 0.2$ is preferable to setting $\lambda = 0.3$.

598 Note that all other LORA-MOO variants outperform the variant of $\lambda = 0$, this implies that excluding ⁵⁹⁹ some samples from the set of non-dominated solutions is beneficial to the performance of ordinal ⁶⁰⁰ regression. The effectiveness of using our λ-dominance approach in LORA-MOO is demonstrated.

601 **F.3** Influence of Ratio Threshold rp_{ratio} .

 602 In this subsection, we investigate the influence of ratio threshold rp_{ratio} on the optimization perfor- 603 mance. rp_{ratio} is the threshold to determine when to add artificial ordinal relations for the training 604 of ordinal surrogate h_o . We set $rp_{ratio} = \{1, 2/3, 1/2, 1/3\}$ to generate four LORA-MOO variants. 605 For all variants, we set n_o , λ to 4, 0.2, respectively, which are consistent with our conclusions in 606 previous ablation studies. Parameter n_c is tentatively set to 5. The IGD+ values obtained by four 607 LORA-MOO variants with different r_{Pratio} are reported in Table [5.](#page-20-0) It should be noted that, when the 608 number of objectives $M = 3$, the results of $rp_{ratio} = 1$ are the same as the results of $rp_{ratio} = 2/3$, 609 because the ratio of reference points in archive S_A is always lower than 2/3. Consequently, when M $610 = 3$, setting ratio threshold rp_{ratio} to either 1 or 2/3 makes no difference to the optimization process 611 of LORA-MOO. Similarly, the results of $r_{Pratio} = 1/3$ on some problems are the same as the results

Table 3: Statistical results of the IGD+ value obtained by LORA-MOO with different n_o on 48 benchmark optimization problems over 15 runs. The last five rows count the total results of Wilcoxon rank sum tests (significance level is 0.05). '+', '≈', and '−' denote the corresponding LORA-MOO variant is statistically significantly superior to, almost equivalent to, and inferior to the compared variants in Wilcoxon tests, respectively.

Problems	M	$n_o=10$	$n_e = 8$	$\overline{n_o}$ =6	$n_o=4$	$n_o = 3$
DTLZ1	3	$4.63e+1(1.60e+1)$	$4.64e+1(1.23e+1)$	$5.61e+1(2.04e+1)$	$4.84e+1(1.34e+1)$	$4.58e+1(1.85e+1)$
	6	$1.35e+1(7.10e+0)$	$1.77e+1(5.08e+0)$	$1.87e+1(6.85e+0)$	$1.64e+1(3.24e+0)$	$1.50e+1(7.84e+0)$
	10	$1.56e-1(3.58e-2)$	$1.60e-1(3.60e-2)$	$1.63e-1(6.95e-2)$	$1.60e-1(2.67e-2)$	$1.63e-1(3.51e-2)$
DTLZ2	3	$4.50e-2(3.90e-3)$	$4.54e-2(4.16e-3)$	$4.38e-2(2.61e-3)$	$4.45e-2(4.72e-3)$	$4.39e-2(3.88e-3)$
	6	$2.67e-1(1.47e-2)$	2.73e-1(1.93e-2)	$2.64e-1(1.67e-2)$	$2.57e-1(1.91e-2)$	$2.51e-1(2.20e-2)$
	10	$3.04e-1(1.55e-2)$	$2.97e-1(1.63e-2)$	$2.94e-1(1.24e-2)$	$3.00e-1(1.31e-2)$	$3.11e-1(1.78e-2)$
DTLZ3		$1.50e+2(4.72e+1)$	$1.60e+2(4.92e+1)$	$1.55e+2(5.03e+1)$	$1.48e+2(4.92e+1)$	$1.45e+2(4.10e+1)$
	6	$5.43e+1(1.85e+1)$	$5.65e+1(1.99e+1)$	$6.92e+1(2.39e+1)$	$6.68e+1(1.64e+1)$	$6.24e+1(2.34e+1)$
	10	$4.51e-1(4.40e-2)$	$4.68e-1(6.10e-2)$	$4.35e-1(3.71e-2)$	$4.72e-1(5.45e-2)$	$4.85e-1(7.87e-2)$
DTLZ4	$\overline{3}$	$1.03e-1(1.28e-1)$	$8.77e-2(1.30e-1)$	$9.16e-2(1.25e-1)$	$1.05e-1(1.27e-1)$	$1.15e-1(1.33e-1)$
	6	$1.74e-1(3.63e-2)$	$1.60e-1(3.35e-2)$	$1.84e-1(3.79e-2)$	$1.75e-1(3.57e-2)$	$1.68e-1(2.11e-2)$
	10	$2.29e-1(1.05e-2)$	2.29e-1(9.43e-3)	$2.36e-1(1.27e-2)$	$2.38e-1(1.35e-2)$	2.42e-1(1.71e-2)
DTLZ5		$8.65e-3(1.39e-3)$	$8.76e-3(1.53e-3)$	$9.03e-3(1.67e-3)$	$9.26e-3(1.22e-3)$	$9.26e-3(2.23e-3)$
	6	$3.43e-2(7.07e-3)$	$3.28e-2(7.74e-3)$	$3.24e-2(7.73e-3)$	$3.25e-2(8.25e-3)$	$3.33e-2(9.38e-3)$
	10	$4.06e-3(6.52e-4)$	3.99e-3(4.47e-4)	3.94e-3(4.04e-4)	3.97e-3(9.34e-4)	$4.02e-3(1.10e-3)$
DTLZ6		$5.09e-2(5.72e-2)$	$1.05e-1(2.57e-1)$	$2.45e-2(8.80e-3)$	$4.67e-2(4.92e-2)$	$3.12e-2(1.58e-2)$
	6	$9.45e-1(1.13e+0)$	$5.16e-1(6.72e-1)$	$5.42e-1(8.28e-1)$	$7.52e-1(9.50e-1)$	$1.34e+0(1.04e+0)$
	10	$4.48e-2(3.90e-2)$	$2.50e-2(7.37e-3)$	$5.14e-2(4.26e-2)$	$4.18e-2(4.66e-2)$	$4.72e-2(4.57e-2)$
DTLZ7	3	$1.19e-1(1.00e-1)$	$9.47e-2(1.15e-1)$	$1.16e-1(7.80e-2)$	$1.61e-1(2.77e-1)$	$1.46e-1(1.27e-1)$
	6	$1.90e+0(9.89e-1)$	$1.72e+0(6.52e-1)$	$1.77e+0(7.63e-1)$	$1.25e+0(4.72e-1)$	$1.54e+0(8.80e-1)$
	10	$1.19e+0(9.00e-2)$	$1.18e+0(9.13e-2)$	$1.17e+0(8.41e-2)$	$1.17e+0(8.97e-2)$	$1.22e+0(1.13e-1)$
WFG1	3	$1.65e+0(5.78e-2)$	$1.65e+0(3.73e-2)$	$1.64e+0(3.86e-2)$	$1.67e+0(4.67e-2)$	$1.65e+0(5.96e-2)$
	6	$2.24e+0(5.47e-2)$	$2.20e+0(6.93e-2)$	$2.23e+0(4.37e-2)$	$2.22e+0(6.80e-2)$	$2.21e+0(5.52e-2)$
	10	$2.62e+0(8.72e-2)$	$2.58e+0(7.39e-2)$	$2.59e+0(7.81e-2)$	$2.62e+0(8.93e-2)$	$2.58e+0(1.16e-1)$
WFG ₂	3	$2.39e-1(3.16e-2)$	$2.49e-1(4.94e-2)$	$2.68e-1(4.81e-2)$	$2.52e-1(4.94e-2)$	$2.66e-1(4.58e-2)$
	6	$5.91e-1(1.79e-1)$	$5.85e-1(9.10e-2)$	$5.61e-1(1.29e-1)$	$5.43e-1(1.51e-1)$	$5.67e-1(1.07e-1)$
	10	$1.50e+0(3.53e-1)$	$1.41e+0(2.62e-1)$	$1.42e+0(3.21e-1)$	$1.47e+0(4.49e-1)$	$1.39e+0(2.82e-1)$
WFG3	3	$2.42e-1(4.10e-2)$	$2.66e-1(3.75e-2)$	$2.57e-1(3.28e-2)$	$2.41e-1(3.21e-2)$	$2.56e-1(5.04e-2)$
	6	$6.19e-1(8.08e-2)$	$6.28e-1(6.58e-2)$	$6.15e-1(9.32e-2)$	$5.92e-1(7.43e-2)$	$6.19e-1(1.22e-1)$
	10	$6.24e-1(9.78e-2)$	$6.07e-1(8.67e-2)$	$6.18e-1(8.74e-2)$	$6.60e-1(8.00e-2)$	$6.61e-1(8.80e-2)$
WFG4	$\overline{\overline{3}}$	$2.62e-1(5.18e-2)$	$2.52e-1(1.99e-2)$	$2.51e-1(1.27e-2)$	$2.48e-1(1.04e-2)$	$2.38e-1(8.69e-3)$
	6	$1.41e+0(2.17e-1)$	$1.34e+0(1.96e-1)$	$1.27e+0(2.31e-1)$	$1.30e+0(2.41e-1)$	$1.58e+0(4.08e-1)$
	10	$4.12e+0(5.64e-1)$	$3.63e+0(6.43e-1)$	$3.55e+0(5.77e-1)$	$3.99e+0(7.21e-1)$	$4.08e+0(7.57e-1)$
WFG5	$\overline{\overline{3}}$	$2.93e-1(4.46e-2)$	$2.89e-1(5.58e-2)$	$3.01e-1(9.11e-2)$	$3.10e-1(5.46e-2)$	$3.19e-1(9.97e-2)$
	6	$1.69e+0(8.33e-2)$	$1.72e+0(8.16e-2)$	$1.66e+0(9.57e-2)$	$1.69e+0(1.53e-1)$	$1.83e+0(1.34e-1)$
	10	$4.76e+0(2.87e-1)$	$4.57e+0(3.19e-1)$	$4.10e+0(3.07e-1)$	$3.71e+0(3.87e-1)$	$3.71e+0(4.39e-1)$
WFG6	3	$4.66e-1(4.13e-2)$	$4.91e-1(4.44e-2)$	$4.51e-1(4.36e-2)$	$4.76e-1(6.61e-2)$	$4.58e-1(8.29e-2)$
	6	$1.70e+0(1.48e-1)$	$1.65e+0(9.89e-2)$	$1.61e+0(1.10e-1)$	$1.67e+0(1.35e-1)$	$1.81e+0(2.71e-1)$
	10	$3.88e+0(6.68e-1)$	$3.60e+0(3.51e-1)$	$3.64e+0(2.96e-1)$	$3.45e+0(4.44e-1)$	$3.72e+0(5.21e-1)$
WFG7	3	$3.12e-1(2.16e-2)$	$3.02e-1(2.17e-2)$	$3.00e-1(2.68e-2)$	$3.02e-1(2.75e-2)$	$2.99e-1(2.96e-2)$
	6	$1.78e+0(1.05e-1)$	$1.69e+0(1.27e-1)$	$1.73e+0(1.38e-1)$	$1.67e+0(1.85e-1)$	$1.74e+0(2.32e-1)$
	10	$5.15e+0(3.94e-1)$	$5.11e+0(2.97e-1)$	$4.89e+0(2.62e-1)$	$4.97e+0(3.07e-1)$	$4.94e+0(4.00e-1)$
WFG8	$\overline{\overline{3}}$	$5.84e-1(5.34e-2)$	$6.09e-1(5.54e-2)$	$6.07e-1(4.89e-2)$	$5.68e-1(4.78e-2)$	$5.70e-1(4.15e-2)$
	6	$2.19e+0(1.08e-1)$	$2.11e+0(9.97e-2)$	$2.15e+0(1.22e-1)$	$2.25e+0(1.12e-1)$	$2.37e+0(1.76e-1)$
	10	$5.22e+0(4.43e-1)$	$5.31e+0(3.08e-1)$	$4.99e+0(3.75e-1)$	$5.16e+0(5.37e-1)$	$5.37e+0(4.82e-1)$
WFG9	$\overline{\overline{3}}$	$3.79e-1(7.28e-2)$	$3.85e-1(1.20e-1)$	$3.73e-1(8.90e-2)$	$4.12e-1(1.17e-1)$	$4.17e-1(1.11e-1)$
	6	$1.87e+0(1.95e-1)$	$1.73e+0(2.02e-1)$	$1.78e+0(2.45e-1)$	$1.77e+0(2.57e-1)$	$1.76e+0(1.35e-1)$
	10	$5.03e+0(2.28e-1)$	$4.63e+0(4.11e-1)$	$4.44e+0(4.68e-1)$	$3.96e+0(3.83e-1)$	$3.73e+0(2.50e-1)$
$+/\approx/$	$n_o=10$	$-/-/-$	1/41/6	2/40/6	0/44/4	3/41/4
\approx /- $^{+/}$	$n_o=8$	6/41/1	$-/-/-$	2/43/3	3/42/3	4/40/4
$^{+/}$ \approx /-	$n_o = 6$	6/40/2	3/43/2	$-/-/-$	3/41/4	7/38/3
$+$ \approx / $-$	$n_o = 4$	4/44/0	3/42/3	4/41/3	$-/-/-$	2/45/1
$+/\approx$ /-	$n_o = 3$	4/41/3	4/40/4	3/38/7	1/45/2	$-/-/-$

612 obtained by setting rp_{ratio} to 1/2, because on these problems, the ratio of reference points in S_A is ⁶¹³ always higher than 1/2.

614 As shown in Table [5,](#page-20-0) the variant of $rp_{ratio} = 1/2$ outperforms other variants and achieves the optimal 615 behavior. Therefore, we set $rp_{ratio} = 1/2$ for LORA-MOO. In comparison, the variants of rp_{ratio} $616 = 2/3$ and $rp_{ratio} = 1/3$ have competitive performance, both of them are inferior to the variant of 617 $rp_{ratio} = 1/2$ but significantly superior to the variant of $rp_{ratio} = 1$.

618 Setting $rp_{ratio} = 1$ indicates this LORA-MOO variant will never introduce artificial ordinal relations

⁶¹⁹ for the learning of the ordinal surrogate. The ordinal surrogate in this variant is trained completely on

Table 4: Statistical results of the IGD+ value obtained by LORA-MOO with different λ on 48 benchmark optimization problems over 15 runs. The last four rows count the total results of Wilcoxon rank sum tests (significance level is 0.05). '+', '≈', and '−' denote the corresponding LORA-MOO variant is statistically significantly superior to, almost equivalent to, and inferior to the compared variants in Wilcoxon tests, respectively.

Problems	М	$\lambda = 0$	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$
DTLZ1	3	$7.51e+1(1.74e+1)$	$6.88e+1(1.28e+1)$	$4.84e+1(1.34e+1)$	$4.96e+1(1.56e+1)$
	6	$2.74e+1(5.30e+0)$	$1.73e+1(3.80e+0)$	$1.64e+1(3.24e+0)$	$1.41e+1(7.02e+0)$
	10	$1.62e-1(5.15e-2)$	$1.43e-1(2.33e-2)$	$1.60e-1(2.67e-2)$	$1.53e-1(2.28e-2)$
DTLZ2	3	$4.95e-2(3.32e-3)$	$4.89e-2(5.80e-3)$	$4.45e-2(4.72e-3)$	$4.81e-2(4.10e-3)$
	6	$2.51e-1(2.91e-2)$	$2.56e-1(2.48e-2)$	$2.57e-1(1.91e-2)$	$2.67e-1(1.34e-2)$
	10	2.97e-1(1.72e-2)	2.94e-1(1.54e-2)	$3.00e-1(1.31e-2)$	$2.92e-1(1.35e-2)$
DTLZ3	$\overline{3}$	$1.91e+2(6.02e+1)$	$1.80e+2(2.31e+1)$	$1.48e+2(4.92e+1)$	$1.57e+2(4.54e+1)$
	6	$9.01e+1(3.13e+1)$	$8.06e+1(2.18e+1)$	$6.68e+1(1.64e+1)$	$6.05e+1(2.03e+1)$
	10	$5.74e-1(2.57e-1)$	$4.60e-1(5.69e-2)$	$4.72e-1(5.45e-2)$	$4.48e-1(4.14e-2)$
DTLZ4	$\overline{\overline{3}}$	$9.37e-2(1.30e-1)$	$1.16e-1(1.35e-1)$	$1.05e-1(1.27e-1)$	$1.02e-1(1.28e-1)$
	6	$1.72e-1(2.91e-2)$	$1.63e-1(3.51e-2)$	$1.75e-1(3.57e-2)$	$1.61e-1(1.96e-2)$
	10	$2.36e-1(1.29e-2)$	$2.37e-1(1.77e-2)$	2.38e-1(1.35e-2)	2.28e-1(1.05e-2)
DTLZ5	$\overline{\overline{3}}$	$1.40e-2(2.50e-3)$	$1.13e-2(3.34e-3)$	$9.26e-3(1.22e-3)$	$7.96e-3(1.58e-3)$
	6	$5.00e-2(9.20e-3)$	$4.52e-2(1.60e-2)$	$3.25e-2(8.25e-3)$	$3.48e-2(5.12e-3)$
	10	$5.16e-3(9.20e-4)$	4.44e-3(1.43e-3)	3.97e-3(9.34e-4)	4.10e-3(3.97e-4)
DTLZ6	3	$1.54e-1(1.65e-1)$	$4.14e-2(1.61e-2)$	$4.67e-2(4.92e-2)$	$4.13e-2(2.30e-2)$
	6	$1.72e+0(7.66e-1)$	$1.52e+0(1.08e+0)$	$7.52e-1(9.50e-1)$	$2.45e-1(4.79e-1)$
	10	$9.60e-2(7.76e-2)$	$6.08e-2(5.26e-2)$	$4.18e-2(4.66e-2)$	$2.99e-2(9.13e-3)$
DTLZ7	$\overline{3}$	$6.57e-2(1.85e-2)$	$1.25e-1(1.06e-1)$	$1.61e-1(2.77e-1)$	$1.05e-1(1.80e-1)$
	6	$2.74e+0(1.22e+0)$	$1.53e+0(8.21e-1)$	$1.25e+0(4.72e-1)$	$1.66e+0(1.06e+0)$
	10	$1.19e+0(9.70e-2)$	$1.18e+0(8.58e-2)$	$1.17e+0(8.97e-2)$	$1.27e+0(1.61e-1)$
WFG1	$\overline{3}$	$1.74e+0(4.92e-2)$	$1.67e+0(4.82e-2)$	$1.67e+0(4.67e-2)$	$1.64e+0(3.52e-2)$
	6	$2.30e+0(3.54e-2)$	$2.22e+0(8.09e-2)$	$2.22e+0(6.80e-2)$	$2.23e+0(7.54e-2)$
	10	$2.71e+0(6.98e-2)$	$2.63e+0(7.80e-2)$	$2.62e+0(8.93e-2)$	$2.63e+0(7.71e-2)$
WFG ₂	$\overline{\overline{3}}$	$2.94e-1(5.47e-2)$	$2.69e-1(5.46e-2)$	$2.52e-1(4.94e-2)$	$2.55e-1(3.46e-2)$
	6	$6.84e-1(1.47e-1)$	$5.38e-1(1.05e-1)$	$5.43e-1(1.51e-1)$	$6.65e-1(2.55e-1)$
	10	$1.67e+0(5.02e-1)$	$1.27e+0(2.80e-1)$	$1.47e+0(4.49e-1)$	$1.37e+0(3.46e-1)$
WFG3	3	$4.08e-1(4.84e-2)$	$3.25e-1(3.53e-2)$	$2.41e-1(3.21e-2)$	$2.70e-1(5.19e-2)$
	6	$8.23e-1(6.96e-2)$	7.51e-1(9.15e-2)	$5.92e-1(7.43e-2)$	$4.94e-1(6.55e-2)$
	10	7.58e-1(7.71e-2)	$7.71e-1(1.08e-1)$	$6.60e-1(8.00e-2)$	$6.35e-1(1.04e-1)$
WFG4	$\overline{\overline{3}}$	$2.55e-1(1.63e-2)$	$2.56e-1(1.48e-2)$	$2.48e-1(1.04e-2)$	$2.57e-1(1.44e-2)$
	6	$1.28e+0(2.24e-1)$	$1.31e+0(2.39e-1)$	$1.30e+0(2.41e-1)$	$1.37e+0(2.50e-1)$
	10	$3.85e+0(5.45e-1)$	$3.84e+0(5.48e-1)$	$3.99e+0(7.21e-1)$	$3.79e+0(4.91e-1)$
WFG5	$\overline{3}$	$3.84e-1(1.18e-1)$	$2.89e-1(6.47e-2)$	$3.10e-1(5.46e-2)$	$3.11e-1(6.94e-2)$
	6	$1.77e+0(1.36e-1)$	$1.72e+0(1.43e-1)$	$1.69e+0(1.53e-1)$	$1.72e+0(1.20e-1)$
	10	$3.70e+0(4.80e-1)$	$3.58e+0(2.79e-1)$	$3.71e+0(3.87e-1)$	$4.38e+0(2.67e-1)$
WFG6	$\overline{\mathbf{3}}$	$4.78e-1(7.23e-2)$	$4.63e-1(5.50e-2)$	$4.76e-1(6.61e-2)$	$4.74e-1(4.87e-2)$
	6	$1.62e+0(1.67e-1)$	$1.59e+0(1.21e-1)$	$1.67e+0(1.35e-1)$	$1.60e+0(1.52e-1)$
	10	$3.48e+0(2.80e-1)$	$3.43e+0(3.18e-1)$	$3.45e+0(4.44e-1)$	$3.70e+0(3.85e-1)$
WFG7	$\overline{\mathbf{3}}$	$3.16e-1(2.20e-2)$	$3.13e-1(3.79e-2)$	$3.02e-1(2.75e-2)$	$3.17e-1(4.42e-2)$
	6	$1.62e+0(1.57e-1)$	$1.68e+0(1.80e-1)$	$1.67e+0(1.85e-1)$	$1.69e+0(1.88e-1)$
	10	$4.88e+0(4.14e-1)$	$4.99e+0(3.94e-1)$	$4.97e+0(3.07e-1)$	$4.98e+0(2.87e-1)$
WFG8	$\overline{\overline{3}}$	$5.96e-1(4.58e-2)$	$6.09e-1(3.63e-2)$	$5.68e-1(4.78e-2)$	$5.96e-1(3.58e-2)$
	6	$2.21e+0(1.49e-1)$	$2.20e+0(1.18e-1)$	$2.25e+0(1.12e-1)$	$2.20e+0(7.76e-2)$
	10	$5.07e+0(4.48e-1)$	$4.96e+0(4.84e-1)$	$5.16e+0(5.37e-1)$	$5.09e+0(3.92e-1)$
WFG9	$\overline{\overline{3}}$	$3.72e-1(3.91e-2)$	$3.82e-1(9.02e-2)$	$4.12e-1(1.17e-1)$	$3.80e-1(1.00e-1)$
	6	$1.76e+0(2.07e-1)$	$1.67e+0(1.86e-1)$	$1.77e+0(2.57e-1)$	$1.81e+0(1.69e-1)$
	10	$3.87e+0(3.66e-1)$	$4.13e+0(3.55e-1)$	$3.96e+0(3.83e-1)$	$4.76e+0(2.31e-1)$
\approx $^{+}$ ÷,	$\lambda=0$	$-/-/-$	0/35/13	0/29/19	3/27/18
$\overline{\approx}$ $+$ L	$\lambda = 0.1$	13/35/0	$-/-/-$	0/38/10	3/36/9
$+$ $\approx/$ $\overline{}$	$\lambda=0.2$	19/29/0	10/38/0	$-/-/-$	3/42/3
$+/\approx$ /-	$\lambda=0.3$	18/27/3	9/36/3	3/42/3	$-/-/-$

 the basis of dominance ordinal relations. When the number of objectives M is large, a majority of 621 evaluated solutions in archive S_A are non-dominated, leading to a large ratio of reference points S_{RP} in S_A . As a result, there would be a significant imbalance between the number of evaluated solutions in each ordinal level, which causes a poor performance on ordinal surrogate and LORA-MOO. In 624 particular, on most 10-objective WFG problems, the variant of $rp_{ratio} = 1$ performs worse than all other variants. This observation shows the detrimental effect of imbalance solutions in ordinal levels on the optimization performance, which also demonstrates the effectiveness of using artificial ordinal relations in LORA-MOO to address many-objective optimization problems.

Table 5: Statistical results of the IGD+ value obtained by LORA-MOO with different r_{Pratio} on 48 benchmark optimization problems over 15 runs. The last four rows count the total results of Wilcoxon rank sum tests (significance level is 0.05). '+', '≈', and '−' denote the corresponding LORA-MOO variant is statistically significantly superior to, almost equivalent to, and inferior to the compared variants in Wilcoxon tests, respectively.

Problems	$\overline{\mathrm{M}}$	$rp_{ratio}=1$	$rp_{ratio} = 2/3$	$rp_{ratio}=1/2$	$rp_{ratio}=1/3$
DTLZ1	3	$4.84e+1(1.34e+1)$	$4.84e+1(1.34e+1)$	$4.75e+1(1.54e+1)$	$4.75e+1(1.54e+1)$
	6	$1.83e+1(1.06e+1)$	$1.64e+1(3.24e+0)$	$1.35e+1(6.23e+0)$	$1.35e+1(6.23e+0)$
	10	$1.63e-1(2.74e-2)$	$1.60e-1(2.67e-2)$	$1.58e-1(2.81e-2)$	$1.58e-1(2.81e-2)$
DTLZ2	3	$4.45e-2(4.72e-3)$	$4.45e-2(4.72e-3)$	$4.37e-2(3.41e-3)$	$3.60e-2(3.69e-3)$
	6	2.57e-1(1.93e-2)	2.57e-1(1.91e-2)	$1.80e-1(1.17e-2)$	$1.80e-1(7.34e-3)$
	10	$3.74e-1(8.09e-3)$	$3.00e-1(1.31e-2)$	$2.87e-1(1.71e-2)$	$2.87e-1(1.71e-2)$
DTLZ3	$\overline{\overline{3}}$	$1.48e+2(4.92e+1)$	$1.48e+2(4.92e+1)$	$1.54e+2(4.89e+1)$	$1.54e+2(4.89e+1)$
	6	$6.52e+1(2.87e+1)$	$6.68e+1(1.64e+1)$	$6.01e+1(2.61e+1)$	$6.01e+1(2.61e+1)$
	10	$4.23e-1(5.63e-2)$	$4.72e-1(5.45e-2)$	$4.84e-1(5.71e-2)$	$4.84e-1(5.71e-2)$
DTLZ4	3	$1.05e-1(1.27e-1)$	$1.05e-1(1.27e-1)$	$1.06e-1(1.32e-1)$	$1.06e-1(1.32e-1)$
	6	$1.70e-1(3.56e-2)$	$1.75e-1(3.57e-2)$	$1.79e-1(4.06e-2)$	$1.79e-1(4.06e-2)$
	10	$2.33e-1(1.26e-2)$	$2.38e-1(1.35e-2)$	$2.38e-1(1.56e-2)$	$2.49e-1(1.46e-2)$
DTLZ5	3	$9.26e-3(1.22e-3)$	$9.26e-3(1.22e-3)$	$8.98e-3(1.67e-3)$	$8.71e-3(1.89e-3)$
	6	$3.40e-2(9.35e-3)$	$3.25e-2(8.25e-3)$	$3.31e-2(7.84e-3)$	$2.81e-2(1.15e-2)$
	10	$3.83e-3(6.08e-4)$	3.97e-3(9.34e-4)	4.85e-3(1.78e-3)	4.92e-3(1.54e-3)
DTLZ6	3	$4.67e-2(4.92e-2)$	$4.67e-2(4.92e-2)$	$6.38e-2(7.62e-2)$	$2.56e-2(6.58e-3)$
	6	$4.70e-1(7.64e-1)$	$7.52e-1(9.50e-1)$	$7.28e-1(1.00e+0)$	$1.25e+0(1.13e+0)$
	10	$3.38e-2(1.18e-2)$	$4.18e-2(4.66e-2)$	$3.92e-2(3.62e-2)$	$3.27e-2(2.08e-2)$
DTLZ7	$\overline{\overline{3}}$	$1.61e-1(2.77e-1)$	$1.61e-1(2.77e-1)$	$1.36e-1(1.32e-1)$	$7.58e-2(2.50e-2)$
	6	$1.41e+0(9.24e-1)$	$1.25e+0(4.72e-1)$	$1.21e+0(7.32e-1)$	$1.28e+0(6.69e-1)$
	10	$1.17e+0(8.28e-2)$	$1.17e+0(8.97e-2)$	$1.23e+0(1.33e-1)$	$1.23e+0(1.33e-1)$
WFG1	$\overline{\overline{3}}$	$1.67e+0(4.67e-2)$	$1.67e+0(4.67e-2)$	$1.67e+0(4.86e-2)$	$1.67e+0(4.86e-2)$
	6	$2.20e+0(6.03e-2)$	$2.22e+0(6.80e-2)$	$2.21e+0(5.69e-2)$	$2.21e+0(5.69e-2)$
	10	$2.61e+0(1.15e-1)$	$2.62e+0(8.93e-2)$	$2.55e+0(1.15e-1)$	$2.55e+0(1.15e-1)$
WFG ₂		$2.52e-1(4.94e-2)$	$2.52e-1(4.94e-2)$	$2.48e-1(5.57e-2)$	$2.48e-1(5.57e-2)$
	6	$5.73e-1(1.75e-1)$	$5.43e-1(1.51e-1)$	$5.35e-1(9.94e-2)$	$5.35e-1(9.94e-2)$
	10	$1.37e+0(3.08e-1)$	$1.47e+0(4.49e-1)$	$1.36e+0(3.13e-1)$	$1.25e+0(3.81e-1)$
WFG3	$\overline{3}$	$2.41e-1(3.21e-2)$	$2.41e-1(3.21e-2)$	$2.51e-1(3.82e-2)$	$2.51e-1(3.26e-2)$
	6	$5.82e-1(4.97e-2)$	$5.92e-1(7.43e-2)$	$5.83e-1(8.20e-2)$	$6.05e-1(9.65e-2)$
	10	$6.09e-1(4.65e-2)$	$6.60e-1(8.00e-2)$	$6.93e-1(1.22e-1)$	$6.63e-1(1.05e-1)$
WFG4	$\overline{\overline{3}}$	$2.48e-1(1.04e-2)$	$2.48e-1(1.04e-2)$	$2.49e-1(2.61e-2)$	$2.96e-1(9.20e-2)$
	6	$2.06e+0(4.21e-1)$	$1.30e+0(2.41e-1)$	$1.35e+0(3.15e-1)$	$1.35e+0(3.15e-1)$
	10	$5.51e+0(6.14e-1)$	$3.99e+0(7.21e-1)$	$3.86e+0(6.03e-1)$	$3.86e+0(6.03e-1)$
WFG5	$\overline{3}$	$3.10e-1(5.46e-2)$	$3.10e-1(5.46e-2)$	$3.06e-1(1.05e-1)$	$4.28e-1(1.46e-1)$
	6	$1.93e+0(1.20e-1)$	$1.69e+0(1.53e-1)$	$1.72e+0(1.26e-1)$	$1.72e+0(1.26e-1)$
	10	$5.50e+0(3.80e-1)$	$3.71e+0(3.87e-1)$	$3.63e+0(4.80e-1)$	$3.63e+0(4.80e-1)$
WFG6	3	$4.76e-1(6.61e-2)$	$4.76e-1(6.61e-2)$	$4.87e-1(1.00e-1)$	$6.26e-1(1.19e-1)$
	6	$2.21e+0(2.26e-1)$	$1.67e+0(1.35e-1)$	$1.62e+0(1.85e-1)$	$1.62e+0(1.85e-1)$
	10	$5.43e+0(4.78e-1)$	$3.45e+0(4.44e-1)$	$3.19e+0(2.14e-1)$	$3.19e+0(2.14e-1)$
WFG7	$\overline{\mathbf{3}}$	3.02e-1 $(2.75e-2)$	$3.02e-1(2.75e-2)$	$2.95e-1(2.76e-2)$	$2.98e-1(3.12e-2)$
	6	$2.10e+0(2.12e-1)$	$1.67e+0(1.85e-1)$	$1.58e+0(1.47e-1)$	$1.58e+0(1.47e-1)$
	10	$5.85e+0(5.16e-1)$	$4.97e+0(3.07e-1)$	$4.76e+0(4.89e-1)$	4.76e+0(4.89e-1)
WFG8	$\overline{3}$	$5.68e-1(4.78e-2)$	$5.68e-1(4.78e-2)$	$5.71e-1(4.02e-2)$	$5.83e-1(4.65e-2)$
	6	$2.61e+0(2.09e-1)$	$2.25e+0(1.12e-1)$	$2.21e+0(1.21e-1)$	$2.21e+0(1.21e-1)$
	10	$6.41e+0(4.20e-1)$	$5.16e+0(5.37e-1)$	$5.06e+0(5.80e-1)$	$5.06e+0(5.80e-1)$
WFG9	$\overline{\overline{3}}$	$4.12e-1(1.17e-1)$	$4.12e-1(1.17e-1)$	$3.81e-1(1.02e-1)$	$3.66e-1(8.95e-2)$
	6	$1.86e+0(2.00e-1)$	$1.77e+0(2.57e-1)$	$1.48e+0(2.27e-1)$	$1.45e+0(1.77e-1)$
	10	$5.57e+0(2.73e-1)$	$3.96e+0(3.83e-1)$	$4.02e+0(4.62e-1)$	$4.02e+0(4.62e-1)$
$^{+/}$ \approx	$rp_{ratio}=1$	$-/-/-$	2/34/12	2/32/14	5/28/15
\approx $^{+/}$	$rp_{ratio} = 2/3$	12/34/2	$-/-/-$	0/46/2	3/42/3
\approx $^+$	rp_{ratio} =1/2	14/32/2	2/46/0	$-/-/-$	2/45/1
$\bar{\approx}/-$ $^{+}$	$rp_{ratio}=1/3$	15/28/5	3/42/3	1/45/2	$-/-/-$

628 F.4 Influence of Clustering Number for Reproduction n_c .

629 This subsection analyzes the influence of clustering number n_c on the optimization performance. n_c 630 is used in the reproduction process to initialize the PSO population. We set $n_c = \{1, 3, 5, 7, 10\}$ to ⁶³¹ generate five LORA-MOO variants. According to the conclusions of previous ablation studies, in this 632 ablation study, we set $n_o = 4$, $\lambda = 0.2$, $rp_{ratio} = 1/2$ for all variants. The IGD+ values obtained by 633 five LORA-MOO variants with different n_c are reported in Table [6.](#page-21-0)

634 It can be observed that both the variants of $n_c = 5$ and $n_c = 7$ outperform three other variants and are ⁶³⁵ inferior to one variant, showing the optimal performance over other variants in this ablation study. 636 In comparison, the variants of $n_c = 3$ and $n_c = 10$ are significantly superior to two variants but are

Table 6: Statistical results of the IGD+ value obtained by LORA-MOO with different n_c on 48 benchmark optimization problems over 15 runs. The last five rows count the total results of Wilcoxon rank sum tests (significance level is 0.05). '+', '≈', and '−' denote the corresponding LORA-MOO variant is statistically significantly superior to, almost equivalent to, and inferior to the compared variants in Wilcoxon tests, respectively.

Problems	M	$n_c=1$	$n_c = 3$	$n_c = 5$	$n_c=7$	$n_c = 10$
DTLZ1	3	$6.45e+1(1.31e+1)$	$5.77e+1(2.13e+1)$	$4.75e+1(1.54e+1)$	$4.02e+1(1.46e+1)$	$3.91e+1(1.53e+1)$
	6	$2.22e+1(5.99e+0)$	$1.67e+1(4.35e+0)$	$1.35e+1(6.23e+0)$	$1.55e+1(5.29e+0)$	$1.56e+1(7.51e+0)$
	10	$1.52e-1(3.01e-2)$	$1.67e-1(4.03e-2)$	$1.58e-1(2.81e-2)$	$1.58e-1(3.11e-2)$	$1.64e-1(3.19e-2)$
DTLZ2	3	$4.40e-2(3.06e-3)$	$4.38e-2(4.17e-3)$	$4.37e-2(3.41e-3)$	$4.48e-2(3.51e-3)$	$4.29e-2(4.38e-3)$
	6	$1.84e-1(1.50e-2)$	$1.79e-1(1.02e-2)$	$1.80e-1(1.17e-2)$	$1.79e-1(9.20e-3)$	$1.80e-1(1.49e-2)$
	10	$2.89e-1(1.00e-2)$	$2.97e-1(1.40e-2)$	$2.87e-1(1.71e-2)$	$2.90e-1(1.22e-2)$	$2.85e-1(1.09e-2)$
DTLZ3		$1.89e+2(4.68e+1)$	$1.61e+2(3.71e+1)$	$1.54e+2(4.89e+1)$	$1.58e+2(3.45e+1)$	$1.57e+2(3.17e+1)$
	6	7.44e+1(2.34e+1)	$6.06e+1(1.32e+1)$	$6.01e+1(2.61e+1)$	$6.65e+1(2.14e+1)$	$6.44e+1(2.63e+1)$
	10	$4.65e-1(1.12e-1)$	$4.70e-1(8.67e-2)$	$4.84e-1(5.71e-2)$	$4.92e-1(1.38e-1)$	$4.61e-1(4.94e-2)$
DTLZ4	$\overline{\overline{3}}$	$8.66e-2(1.25e-1)$	$1.35e-1(1.64e-1)$	$1.06e-1(1.32e-1)$	$8.82e-2(1.26e-1)$	$1.04e-1(1.28e-1)$
	6	$1.69e-1(2.20e-2)$	$1.80e-1(3.27e-2)$	$1.79e-1(4.06e-2)$	$1.81e-1(4.77e-2)$	$1.79e-1(2.78e-2)$
	10	$2.29e-1(1.15e-2)$	$2.30e-1(1.06e-2)$	$2.38e-1(1.56e-2)$	$2.37e-1(2.00e-2)$	$2.37e-1(1.88e-2)$
DTLZ5		$9.75e-3(2.19e-3)$	$8.93e-3(1.67e-3)$	$8.98e-3(1.67e-3)$	$9.15e-3(1.58e-3)$	$8.80e-3(1.44e-3)$
	6	$3.12e-2(9.30e-3)$	$2.98e-2(1.02e-2)$	$3.31e-2(7.84e-3)$	$2.72e-2(7.30e-3)$	$3.00e-2(1.05e-2)$
	10	$5.60e-3(1.76e-3)$	$3.92e-3(6.78e-4)$	$4.85e-3(1.78e-3)$	$5.65e-3(2.12e-3)$	$6.02e-3(1.70e-3)$
DTLZ6	3	$4.87e-2(2.65e-2)$	$4.28e-2(2.73e-2)$	$6.38e-2(7.62e-2)$	$9.93e-2(2.14e-1)$	$5.04e-2(3.71e-2)$
	6	$1.09e+0(1.19e+0)$	$1.11e+0(1.07e+0)$	$7.28e-1(1.00e+0)$	$1.01e+0(1.13e+0)$	$8.36e-1(1.16e+0)$
	10	$2.25e-2(7.14e-3)$	$6.20e-2(5.11e-2)$	$3.92e-2(3.62e-2)$	$3.51e-2(3.23e-2)$	$4.42e-2(4.00e-2)$
DTLZ7	3	$6.96e-2(3.03e-2)$	$7.83e-2(5.28e-2)$	$1.36e-1(1.32e-1)$	$1.28e-1(1.31e-1)$	$9.71e-2(5.24e-2)$
	6	$6.96e-1(2.65e-1)$	$1.68e+0(8.29e-1)$	$1.21e+0(7.32e-1)$	$1.16e+0(6.33e-1)$	$1.74e+0(8.02e-1)$
	10	$1.24e+0(1.54e-1)$	$1.20e+0(9.84e-2)$	$1.23e+0(1.33e-1)$	$1.20e+0(8.92e-2)$	$1.25e+0(1.08e-1)$
WFG1	$\overline{\overline{3}}$	$1.67e+0(4.91e-2)$	$1.64e+0(5.90e-2)$	$1.67e+0(4.86e-2)$	$1.62e+0(3.43e-2)$	$1.61e+0(4.98e-2)$
	6	$2.27e+0(5.70e-2)$	$2.24e+0(5.05e-2)$	$2.21e+0(5.69e-2)$	$2.21e+0(7.43e-2)$	$2.20e+0(6.16e-2)$
	10	$2.67e+0(8.46e-2)$	$2.56e+0(1.07e-1)$	$2.55e+0(1.15e-1)$	$2.64e+0(7.62e-2)$	$2.61e+0(8.36e-2)$
WFG ₂	$\overline{\overline{3}}$	$2.63e-1(3.41e-2)$	$2.63e-1(3.89e-2)$	$2.48e-1(5.57e-2)$	$2.47e-1(4.40e-2)$	$2.44e-1(5.40e-2)$
	6	$5.17e-1(1.03e-1)$	$5.43e-1(1.35e-1)$	$5.35e-1(9.94e-2)$	$5.24e-1(1.26e-1)$	$5.09e-1(1.49e-1)$
	10	$1.39e+0(4.37e-1)$	$1.39e+0(3.77e-1)$	$1.36e+0(3.13e-1)$	$1.40e+0(2.71e-1)$	$1.38e+0(3.83e-1)$
WFG3	3	$2.57e-1(3.61e-2)$	$2.64e-1(7.85e-2)$	$2.51e-1(3.82e-2)$	$2.78e-1(5.66e-2)$	$2.48e-1(2.96e-2)$
	6	$6.25e-1(1.13e-1)$	$5.89e-1(6.72e-2)$	$5.83e-1(8.20e-2)$	$5.80e-1(7.49e-2)$	$6.56e-1(1.04e-1)$
	10	$6.67e-1(8.95e-2)$	$6.93e-1(9.45e-2)$	$6.93e-1(1.22e-1)$	$7.03e-1(9.06e-2)$	7.47e-1(8.54e-2)
WFG4		$2.56e-1(3.27e-2)$	$2.49e-1(2.04e-2)$	$2.49e-1(2.61e-2)$	$2.48e-1(1.75e-2)$	$2.41e-1(1.77e-2)$
	6	$1.30e+0(1.91e-1)$	$1.34e+0(2.28e-1)$	$1.35e+0(3.15e-1)$	$1.20e+0(2.23e-1)$	$1.38e+0(2.88e-1)$
	10	$3.68e+0(6.78e-1)$	$3.87e+0(7.96e-1)$	$3.86e+0(6.03e-1)$	$3.83e+0(7.38e-1)$	$3.65e+0(3.90e-1)$
WFG5	$\overline{\overline{3}}$	$3.17e-1(1.22e-1)$	$3.50e-1(1.07e-1)$	$3.06e-1(1.05e-1)$	$3.12e-1(1.25e-1)$	$2.92e-1(1.28e-1)$
	6	$1.78e+0(9.49e-2)$	$1.76e+0(1.11e-1)$	$1.72e+0(1.26e-1)$	$1.73e+0(9.61e-2)$	$1.74e+0(1.33e-1)$
	10	$3.79e+0(2.92e-1)$	$3.59e+0(2.81e-1)$	$3.63e+0(4.80e-1)$	$3.87e+0(3.19e-1)$	$3.79e+0(2.71e-1)$
WFG6	$\overline{\mathbf{3}}$	$4.48e-1(1.00e-1)$	$5.24e-1(1.08e-1)$	$4.87e-1(1.00e-1)$	$4.86e-1(9.23e-2)$	$4.64e-1(9.08e-2)$
	6	$1.65e+0(1.84e-1)$	$1.63e+0(8.15e-2)$	$1.62e+0(1.85e-1)$	$1.61e+0(1.48e-1)$	$1.59e+0(2.47e-1)$
	10	$3.35e+0(4.95e-1)$	$3.51e+0(3.14e-1)$	$3.19e+0(2.14e-1)$	$3.33e+0(3.76e-1)$	$3.14e+0(5.76e-1)$
WFG7	3	$2.90e-1(3.37e-2)$	$3.14e-1(3.26e-2)$	$2.95e-1(2.76e-2)$	$2.95e-1(2.68e-2)$	$2.90e-1(3.27e-2)$
	6	$1.62e+0(2.02e-1)$	$1.72e+0(1.37e-1)$	$1.58e+0(1.47e-1)$	$1.61e+0(1.63e-1)$	$1.64e+0(1.85e-1)$
	10	$4.55e+0(3.72e-1)$	$4.81e+0(3.13e-1)$	$4.76e+0(4.89e-1)$	$4.82e+0(3.93e-1)$	$4.51e+0(2.58e-1)$
WFG8	$\overline{\overline{3}}$	$5.91e-1(6.73e-2)$	$6.06e-1(5.44e-2)$	$5.71e-1(4.02e-2)$	$5.77e-1(3.92e-2)$	$5.61e-1(3.98e-2)$
	6	$2.20e+0(1.50e-1)$	$2.20e+0(1.48e-1)$	$2.21e+0(1.21e-1)$	$2.24e+0(1.57e-1)$	$2.16e+0(1.06e-1)$
	10	$4.99e+0(4.45e-1)$	$5.15e+0(4.48e-1)$	$5.06e+0(5.80e-1)$	$5.00e+0(3.93e-1)$	$4.90e+0(5.04e-1)$
WFG9	$\overline{\overline{3}}$	$3.68e-1(1.03e-1)$	$4.43e-1(1.41e-1)$	$3.81e-1(1.02e-1)$	$3.85e-1(9.50e-2)$	$3.56e-1(6.48e-2)$
	6	$1.54e+0(1.81e-1)$	$1.51e+0(1.73e-1)$	$1.48e+0(2.27e-1)$	$1.45e+0(1.19e-1)$	$1.48e+0(1.75e-1)$
	10	$4.02e+0(2.34e-1)$	$3.97e+0(4.11e-1)$	$4.02e+0(4.62e-1)$	$3.94e+0(3.94e-1)$	$3.96e+0(3.20e-1)$
$^{+/}$ \approx /-	$n_c=1$	$-/-/-$	2/43/3	1/41/6	1/42/5	3/41/4
$+/\approx$ /-	$n_c = 3$	3/43/2	$-/-/-$	0/46/2	2/45/1	1/41/6
$^{+/}$ \approx / $\overline{}$	$n_c = 5$	6/41/1	2/46/0	$-/-/-$	1/45/2	2/45/1
$^{+}$ $\approx/$ $^{\prime}-$	$n_c=7$	5/42/1	1/45/2	2/45/1	$-/-/-$	2/45/1
$+/\approx$ /-	$n_c=10$	4/41/3	$\sqrt{6/41/1}$	1/45/2	1/45/2	$-/-/-$

637 also significantly inferior to two other variants. The variant of $n_c = 1$ reaches the worst optimization 638 results as it is significantly inferior to all other variants. In addition, considering that the variant of n_c 639 = 7 wins/ties/losses 2/45/1 statistical tests when compared with the variant of $n_c = 5$, we set $n_c = 7$ ⁶⁴⁰ for LORA-MOO.

 The result of this ablation study demonstrates the influence of population initialization on the optimization results. By clustering the evaluated solutions into several clusters and sampling the same amount of initial solutions from each cluster, the solutions in the initial population are distributed in a more diverse way than the solutions sampled from the set of reference points S_{RP} directly.

Figure 7: Distribution of obtained non-dominated solutions on DTLZ2 with 10 variables and 3 objectives.

Figure 8: Distribution of obtained non-dominated solutions on DTLZ4 with 10 variables and 3 objectives.

645 Consequently, all variants of $n_c > 1$ have achieved better optimization results than the variant of n_c $646 = 1.$

647 G Solution Distribution

⁶⁴⁸ The solution distribution we obtained on some 3-objective DTLZ problems are plotted.

649 H Complete Results of Benchmark Optimization

 In Section [4.3](#page-6-3) of the main file, we display the optimization results of comparison algorithms on DTLZ problems in terms of IGD values. In this section, we provide detailed IGD results on WFG problems and more results on IGD+ and HV values. In addition, the optimization results on DTLZ 653 problems with different scales, such as $D = 5$ and 20, are reported.

⁶⁵⁴ H.1 IGD Results on WFG Optimization Problems

⁶⁵⁵ Table [7](#page-23-0) shows the optimization results on WFG problems in terms of IGD values. The last row ⁶⁵⁶ summarizes the results of statistical tests, which has reported at the end of Table [1](#page-7-0) in the main file. ⁶⁵⁷ It can be seen that LORA-MOO outperforms all comparison algorithms, followed by KTA2 and

Figure 9: Distribution of obtained non-dominated solutions on DTLZ6 with 10 variables and 3 objectives.

Table 7: Statistical results of the IGD value obtained by comparison algorithms on 45 WFG optimization problems over 30 runs. Symbols '+', '≈', '−' denote LORA-MOO is statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

⁶⁵⁸ KRVEA. This is consistent with the results we observed from Table [1.](#page-7-0) The results on six 3- and ⁶⁵⁹ 10-objective WFG problems are plotted in Fig. [10.](#page-24-0)

Figure 10: Log (IGD) curves averaged over 30 runs on six WFG problems for comparison algorithms (shaded area is \pm std of the mean). **Top**: 10 variables and 3 objectives. **Bottom**: 10 variables and 10 objectives.

Table 8: Statistical results of the IGD+ value obtained by comparison algorithms on 35 DTLZ optimization problems over 30 runs. Symbols '+', '≈', '−' denote LORA-MOO is statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

⁶⁶⁰ H.2 IGD+ Results on DTLZ and WFG Optimization Problems

 Tables [8](#page-24-1) and [9](#page-25-0) display the IGD+ optimization results of comparison algorithms on DTLZ and WFG optimization problems, respectively. Different from IGD results, although LORA-MOO achieves the smallest IGD+ values on most DTLZ problems, its perform is competitive to KRVEA and KTA2 on WFG problems. However, from the perspective of overall performance, we can still conclude that our LORA-MOO outperforms all comparison algorithms on benchmark optimization problems in terms of IGD+ values. Such a observation is consistent with the results we observed from IGD values.

Table 9: Statistical results of the IGD+ value obtained by comparison algorithms on 45 WFG optimization problems over 30 runs. Symbols '+', '≈', '−' denote LORA-MOO is statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

Problems	M	ParEGO	KRVEA	KTA ₂	CSEA	REMO	OREA	LORA-MOO
WFG1		$1.62e+0(3.90e-2)$ \approx	$1.68e+0(9.09e-2)+$	$1.78e+0(1.38e-1)+$	$1.68e+0(7.59e-2)+$	$1.69e+0(1.08e-1)+$	$1.92e+0(1.27e-1)+$	$1.63e+0(3.69e-2)$
	$\overline{4}$	$1.90e+0(6.54e-2)+$	$1.99e+0(1.02e-1)+$	$2.07e+0(1.47e-1)+$	$1.98e+0(1.06e-1)+$	$1.90e+0(8.14e-2)+$	$2.12e+0(8.95e-2)+$	$1.85e+0(7.27e-2)$
	6	$2.30e+0(4.35e-2)+$	$2.36e+0(7.09e-2)+$	$2.41e+0(1.08e-1)+$	$2.37e+0(9.06e-2)+$	$2.29e+0(7.24e-2)+$	$2.39e+0(8.81e-2)+$	$2.22e+0(6.71e-2)$
	8	$2.64e+0(4.48e-2)+$	$2.66e+0(7.65e-2)+$	$2.60e+0(1.15e-1)+$	$2.62e+0(6.34e-2)+$	$2.55e+0(6.82e-2)+$	$2.59e+0(4.96e-2)+$	$2.49e+0(7.00e-2)$
	10	$2.88e+0(6.44e-2)+$	$2.78e+0(9.91e-2)+$	$2.65e+0(1.26e-1)$ \approx	$2.71e+0(1.27e-1)+$	$2.71e+0(1.22e-1)+$	$2.78e+0(1.04e-1)+$	$2.62e+0(7.81e-2)$
WFG ₂	3	$6.99e-1(9.48e-2)+$	$2.58e-1(4.09e-2)$ \approx	$2.39e-1(7.01e-2)$ \approx	$4.68e-1(5.12e-2)+$	$4.30e-1(9.29e-2)+$	$3.95e-1(7.73e-2)+$	$2.47e-1(4.89e-2)$
	$\overline{4}$	$9.74e-1(1.65e-1)+$	$3.21e-1(4.70e-2)$ -	$3.52e-1(5.16e-2)$ \approx	$6.27e-1(1.42e-1)+$	$6.22e-1(1.45e-1)+$	$6.23e-1(1.69e-1)+$	$3.52e-1(5.74e-2)$
	6	$1.77e+0(4.19e-1)+$	$3.84e-1(7.38e-2)$ -	5.75e-1(1.00e-1) \approx	$1.02e+0(4.94e-1)+$	$1.01e+0(4.70e-1)+$	$1.33e+0(4.17e-1)+$	$5.29e-1(1.26e-1)$
	8	$2.55e+0(7.48e-1)+$	$4.09e-1(1.34e-1)$	$6.82e-1(1.43e-1)$	$1.77e+0(8.24e-1)+$	$1.52e+0(6.54e-1)+$	$1.84e+0(4.86e-1)+$	$8.28e-1(1.52e-1)$
	10	$3.49e+0(1.01e+0)+$	$4.18e-1(1.81e-1)$	$8.19e-1(1.39e-1)$	$2.49e+0(9.71e-1)+$	$2.19e+0(1.13e+0)+$	$2.67e+0(8.17e-1)+$	$1.40e+0(2.64e-1)$
WFG3	3	$5.65e-1(4.14e-2)+$	$5.26e-1(5.99e-2)+$	$3.05e-1(6.02e-2)+$	$4.87e-1(6.70e-2)+$	$4.42e-1(6.58e-2)+$	$3.67e-1(4.79e-2)+$	$2.65e-1(5.63e-2)$
	$\overline{4}$	$7.12e-1(6.70e-2)+$	$6.35e-1(6.90e-2)+$	$5.33e-1(6.42e-2)+$	$5.75e-1(7.97e-2)+$	$5.24e-1(7.33e-2)+$	$5.47e-1(6.00e-2)+$	$3.88e-1(6.09e-2)$
	6	$7.42e-1(9.98e-2)+$	$6.24e-1(1.35e-1)$ \approx	$7.25e-1(7.13e-2)+$	$6.91e-1(8.44e-2)+$	$5.60e-1(9.53e-2)$ \approx	$7.62e-1(6.68e-2)+$	$6.04e-1(8.95e-2)$
	8	7.74e-1(1.66e-1) \approx	7.26e-1(1.06e-1) \approx	$8.46e-1(7.67e-2)+$	$6.83e-1(1.06e-1)$	$5.18e-1(1.13e-1)$	$8.26e-1(1.01e-1)+$	$7.58e-1(9.00e-2)$
	10	$5.78e-1(9.80e-2)$ -	$5.54e-1(8.05e-2)$ -	$7.80e-1(8.72e-2)+$	$4.91e-1(8.69e-2)$	$4.07e-1(9.40e-2)$	$6.44e-1(1.04e-1)$ \approx	$6.92e-1(1.07e-1)$
WFG4		$4.74e-1(4.21e-2)+$	$3.78e-1(2.17e-2)+$	$3.42e-1(2.35e-2)+$	$3.49e-1(3.80e-2)+$	$3.04e-1(2.99e-2)+$	$3.66e-1(6.70e-2)+$	$2.55e-1(3.20e-2)$
	$\overline{4}$	$8.04e-1(5.34e-2)+$	$5.86e-1(3.17e-2)+$	$6.00e-1(6.42e-2)+$	$7.81e-1(1.78e-1)+$	$6.15e-1(1.13e-1)+$	$9.50e-1(1.50e-1)+$	$4.85e-1(6.14e-2)$
	6	$1.83e+0(3.74e-1)+$	$1.20e+0(1.52e-1)$ \approx	$1.12e+0(1.55e-1)$ \approx	$2.78e+0(4.35e-1)+$	$2.26e+0(4.42e-1)+$	$2.56e+0(4.05e-1)+$	$1.21e+0(2.18e-1)$
	8	3.39e+0(1.48e+0) \approx	$2.33e+0(5.25e-1)$ \approx	$2.15e+0(3.46e-1)$ -	$5.15e+0(5.66e-1)+$	$4.22e+0(5.32e-1)+$	$5.19e+0(4.73e-1)+$	$2.55e+0(5.66e-1)$
	10	$3.27e+0(2.29e+0)$ -	$4.00e+0(9.92e-1)$ \approx	$3.45e+0(3.75e-1)$ -	$7.46e+0(8.64e-1)+$	$6.61e+0(8.48e-1)+$	$7.03e+0(6.17e-1)+$	$3.92e+0(7.04e-1)$
WFG5		$2.07e-1(1.28e-2)$	3.01e-1(3.82e-2) \approx	$2.38e-1(7.04e-2)$	$3.98e-1(3.16e-2)+$	$3.93e-1(5.70e-2)+$	$3.60e-1(7.41e-2)+$	$3.49e-1(1.55e-1)$
	$\overline{4}$	$7.09e-1(1.49e-1)$	$5.32e-1(4.45e-2)$ -	$4.97e-1(4.53e-2)$ -	$6.09e-1(6.70e-2)$ -	$6.13e-1(5.55e-2)$	9.11e-1(6.00e-2) \approx	$8.68e-1(7.81e-2)$
	6	$2.38e+0(2.47e-1)+$	$1.07e+0(1.36e-1)$	$1.38e+0(1.64e-1)$	$1.89e+0(2.56e-1)+$	$1.52e+0(2.17e-1)$	$2.13e+0(1.77e-1)+$	$1.71e+0(1.09e-1)$
	8	$4.63e+0(2.89e-1)+$	$2.11e+0(5.15e-1)$	$2.74e+0(4.81e-1)$ \approx	$4.13e+0(4.55e-1)+$	$3.26e+0(4.42e-1)+$	$4.08e+0(2.55e-1)+$	$2.88e+0(2.00e-1)$
	10	$6.67e+0(3.78e-1)+$	$2.48e+0(9.46e-1)$	$3.13e+0(5.04e-1)$	$5.90e+0(5.30e-1)+$	$5.16e+0(5.38e-1)+$	$5.84e+0(5.37e-1)+$	$3.87e+0(3.50e-1)$
WFG6	3	$5.52e-1(4.95e-2)+$	$6.19e-1(6.81e-2)+$	$5.70e-1(8.76e-2)+$	$5.71e-1(5.32e-2)+$	$5.65e-1(5.43e-2)+$	$5.09e-1(5.01e-2)$ \approx	$5.21e-1(1.15e-1)$
	$\overline{4}$	8.09e-1(7.65e-2) \approx	7.62e-1(9.60e-2) \approx	8.14e-1(6.51e-2) \approx	8.33e-1(7.44e-2) \approx	7.87e-1(7.30e-2) \approx	$1.07e+0(7.09e-2)+$	$8.09e-1(1.12e-1)$
	6	$2.25e+0(5.29e-1)+$	$1.28e+0(1.52e-1)$	$1.52e+0(9.93e-2)$ \approx	$2.17e+0(3.22e-1)+$	$1.74e+0(2.70e-1)+$	$2.52e+0(2.20e-1)+$	$1.60e+0(1.59e-1)$
	8	$3.63e+0(9.69e-1)+$	$1.50e+0(2.46e-1)$	$2.66e+0(3.17e-1)$ \approx	$3.96e+0(7.85e-1)+$	$3.41e+0(4.65e-1)+$	$4.60e+0(3.93e-1)+$	$2.72e+0(2.95e-1)$
	10	$6.42e+0(8.39e-1)+$	$1.27e+0(1.06e-1)$ -	$3.67e+0(3.06e-1)+$	$5.61e+0(7.46e-1)+$	$4.68e+0(6.46e-1)+$	$6.05e+0(7.21e-1)+$	$3.38e+0(4.60e-1)$
WFG7	3	$5.47e-1(3.21e-2)+$	$5.38e-1(3.52e-2)+$	$4.97e-1(3.13e-2)+$	$4.36e-1(3.98e-2)+$	$3.94e-1(4.46e-2)+$	$3.65e-1(5.17e-2)+$	$2.92e-1(2.42e-2)$
	$\overline{4}$	$9.25e-1(9.05e-2)+$	$7.42e-1(3.50e-2)+$	$7.47e-1(3.15e-2)+$	$7.74e-1(1.39e-1)+$	$6.29e-1(5.40e-2)+$	$8.46e-1(1.05e-1)+$	$5.38e-1(5.32e-2)$
	6	$2.85e+0(3.54e-1)+$	$1.41e+0(1.08e-1)$	$1.41e+0(1.36e-1)$	$2.29e+0(4.59e-1)+$	$1.74e+0(2.09e-1)+$	$2.45e+0(2.22e-1)+$	$1.61e+0(1.56e-1)$
	8 10	$5.37e+0(4.28e-1)+$ $7.77e+0(5.41e-1)+$	$2.59e+0(2.47e-1)$ $3.50e+0(4.76e-1)$ -	$2.40e+0(3.16e-1)$ - $3.47e+0(3.98e-1)$ -	$4.51e+0(6.31e-1)+$ $6.92e+0(5.90e-1)+$	$3.62e+0(5.07e-1)+$ $5.72e+0(6.38e-1)+$	$4.68e+0(3.37e-1)+$ $6.70e+0(4.31e-1)+$	$3.28e+0(2.02e-1)$ $4.85e+0(3.42e-1)$
WFG8								
	$\overline{4}$	$7.23e-1(3.76e-2)+$ $1.19e+0(6.76e-2)+$	$5.89e-1(2.95e-2)$ \approx $1.01e+0(5.20e-2)$	$4.72e-1(4.57e-2)$ $9.25e-1(5.15e-2)$	$6.59e-1(5.09e-2)+$ $1.14e+0(8.61e-2)+$	$6.21e-1(4.47e-2)+$ $1.07e+0(7.07e-2)$ \approx	$6.77e-1(4.74e-2)+$ $1.30e+0(7.86e-2)+$	$5.79e-1(4.03e-2)$ $1.07e+0(7.91e-2)$
	6	$2.80e+0(3.88e-1)+$	$1.82e+0(1.29e-1)$	$1.96e+0(1.02e-1)$	$2.77e+0(1.80e-1)+$	$2.58e+0(2.23e-1)+$	$2.90e+0(2.21e-1)+$	$2.22e+0(1.47e-1)$
	8	$5.23e+0(4.86e-1)+$	$2.93e+0(4.96e-1)$	$3.31e+0(2.44e-1)$	$5.13e+0(3.86e-1)+$	$4.69e+0(4.63e-1)+$	$4.98e+0(3.05e-1)+$	$3.78e+0(3.27e-1)$
	10	$7.43e+0(5.62e-1)+$	$2.74e+0(1.25e+0)$ -	$4.75e+0(5.99e-1)$ -	$7.03e+0(5.46e-1)+$	$6.52e+0(3.98e-1)+$	$6.74e+0(5.72e-1)+$	$5.03e+0(3.92e-1)$
WFG9		$5.82e-1(7.28e-2)+$	$5.83e-1(7.77e-2)+$	$5.56e-1(9.06e-2)+$	$6.10e-1(1.00e-1)+$	$5.32e-1(1.12e-1)+$	$4.51e-1(8.67e-2)+$	$3.82e-1(8.04e-2)$
	$\overline{4}$	$1.00e+0(1.88e-1)+$	$8.56e-1(1.30e-1)+$	$8.76e-1(1.43e-1)+$	$1.00e+0(1.56e-1)+$	$8.59e-1(2.01e-1)+$	$8.50e-1(1.15e-1)+$	$6.77e-1(9.61e-2)$
	6	$2.72e+0(3.83e-1)+$	$1.72e+0(2.90e-1)+$	$1.66e+0(2.48e-1)+$	$2.44e+0(3.25e-1)+$	$1.87e+0(2.59e-1)+$	$2.17e+0(1.80e-1)+$	$1.45e+0(1.42e-1)$
	8	$5.14e+0(5.22e-1)+$	$3.05e+0(4.65e-1)+$	$2.82e+0(2.91e-1)\approx$	$4.80e+0(4.05e-1)+$	$3.95e+0(4.95e-1)+$	$4.17e+0(3.83e-1)+$	$2.76e+0(3.72e-1)$
	10	$7.30e+0(5.37e-1)+$	$4.30e+0(8.61e-1)$ \approx	$3.81e+0(4.78e-1)$ \approx	$6.66e+0(5.44e-1)+$	$5.47e+0(6.11e-1)+$	$5.75e+0(4.84e-1)+$	$3.98e+0(4.51e-1)$
$+/\approx$ /-		37/4/4	16/10/19	18/11/16	41/1/3	38/3/4	42/3/0	

⁶⁶⁷ H.3 HV Results on DTLZ and WFG Optimization Problems

 Tables [10](#page-26-0) and [11](#page-26-1) report the HV optimization results of comparison algorithms on DTLZ and WFG optimization problems, respectively. Since the calculation of HV values on 8- and 10-obj optimization problems is very time-consuming, only the results obtained on 3-, 4-, and 6-objective optimization problems are displayed. Consistent with the IGD an IGD+ results obtained on 3-, 4-, and 6-objectives, our LORA-MOO achieves the best overall performance over all comparison algorithms, showing the effectiveness of LORA-MOO on addressing expensive many-objective optimization problems.

⁶⁷⁴ H.4 Problems with Different Scales

 In this subsection, we investigate the optimization performance of LORA-MOO when the number of decision variables D is different. The experimental setups for all comparison algorithms are the same as the setups used in previous benchmark optimization problems, but the setup for optimization problems is different:

- \bullet The optimization problems have $D = \{5, 10, 20\}$ decision variables and $M = 3$ objectives.
- 680 When $D = 5$ or 10, a dataset of size 11 D 1 is used for surrogate initialization. When D 681 = 20, since 11 D - 1 would be greater than our evaluation budget (300), the size of initial ⁶⁸² dataset is set to 100.

⁶⁸³ Tables [12,](#page-27-0) [13,](#page-27-1) and [14](#page-28-0) report the obtained IGD, IGD+, and HV values on benchmark optimization ⁶⁸⁴ problems with different numbers of decision variables D, respectively. It can be seen from Table [12](#page-27-0)

Table 10: Statistical results of the HV value obtained by comparison algorithms on 21 DTLZ optimization problems over 30 runs. Symbols '+', '≈', '−' denote LORA-MOO is statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

Problems	M	ParEGO	KRVEA	KTA ₂	CSEA	REMO	OREA	LORA-MOO
DTLZ1	3	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
	4	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
	6.	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
DTLZ2	$\overline{\mathbf{3}}$	$4.53e-2(2.22e-2)+$	$2.61e-1(4.46e-2)+$	$3.87e-1(6.59e-3)$	$1.55e-1(3.85e-2)+$	$2.49e-1(3.32e-2)+$	$3.49e-1(1.33e-2)+$	$3.77e-1(6.75e-3)$
	4	$6.06e-2(2.65e-2)+$	$3.71e-1(6.43e-2)+$	4.80e-1(1.34e-2) \approx	$1.95e-1(3.26e-2)+$	$3.09e-1(4.54e-2)+$	$3.87e-1(3.31e-2)+$	$4.75e-1(2.34e-2)$
	6.	$1.26e-1(1.87e-2)+$	$4.85e-1(4.22e-2)+$	$4.48e-1(7.23e-2)+$	$2.86e-1(4.80e-2)+$	$4.00e-1(4.15e-2)+$	$3.66e-1(3.09e-2)+$	$6.09e-1(2.27e-2)$
DTLZ3	3.	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
	4	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
	6.	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
DTLZ4	3	$4.20e-4(2.03e-3)+$	$6.42e-2(5.54e-2)+$	$8.85e-2(7.53e-2)+$	$6.53e-2(3.42e-2)+$	$1.99e-1(6.05e-2)+$	$2.52e-1(6.75e-2)+$	$3.24e-1(9.98e-2)$
	4	$3.27e-3(6.73e-3)+$	$8.79e-2(6.62e-2)+$	$8.14e-2(5.85e-2)+$	$1.46e-1(5.25e-2)+$	$2.52e-1(6.25e-2)+$	3.66e-1(8.97e-2) \approx	$3.93e-1(9.18e-2)$
	6.	$2.14e-2(2.69e-2)+$	$2.05e-1(9.66e-2)+$	$1.44e-1(8.78e-2)+$	$3.16e-1(6.50e-2)+$	$3.53e-1(7.16e-2)+$	$5.12e-1(5.37e-2)$ \approx	$5.17e-1(4.93e-2)$
DTLZ5	3.	$7.49e-3(1.04e-2)+$	$2.60e-2(1.04e-2)+$	8.60e-2(1.99e-3) \approx	$2.54e-2(9.46e-3)+$	$4.66e-2(1.02e-2)+$	$8.48e-2(1.78e-3)$ \approx	$8.53e-2(2.03e-3)$
	4	$4.12e-3(5.91e-3)+$	$2.35e-2(7.10e-3)+$	$3.31e-2(4.30e-3)+$	$1.10e-2(4.90e-3)+$	$1.65e-2(7.08e-3)+$	$3.55e-2(4.96e-3)$ \approx	$3.73e-2(3.97e-3)$
	6.	$1.75e-3(1.88e-3)+$	$1.28e-2(2.87e-3)$	8.26e-3(2.88e-3) \approx	$5.75e-3(3.24e-3)+$	8.48e-3(3.87e-3) \approx	9.99e-3(3.78e-3) \approx	$9.23e-3(3.37e-3)$
DTLZ6	3	$3.91e-3(7.22e-3)+$	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$3.52e-2(2.51e-2)+$	$4.91e-2(2.38e-2)$
	4	$1.78e-3(2.86e-3)+$	$0.00e+0(0.00e+0)+$	$2.07e-5(1.11e-4)+$	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$2.60e-4(9.64e-4)+$	7.45e-3(9.93e-3)
	6.	$1.28e-3(2.18e-3)$ \approx	$0.00e+0(0.00e+0)+$	$1.10e-5(5.88e-5)+$	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$1.21e-0(6.50e-0)+$	$7.42e-4(2.53e-3)$
DTLZ7	3	$1.81e-1(4.40e-2)+$	$2.53e-1(9.02e-3)$	$2.81e-1(3.28e-2)$	$1.44e-2(2.31e-2)+$	$2.11e-2(2.95e-2)+$	$2.23e-1(3.95e-2)+$	$2.47e-1(3.63e-2)$
	4	$9.45e-2(3.19e-2)+$	$1.95e-1(1.73e-2)$ \approx	$2.36e-1(8.48e-3)$	$4.80e-4(2.04e-3)+$	$1.20e-2(2.15e-2)+$	$1.04e-1(4.79e-2)+$	$1.88e-1(3.33e-2)$
	6.	$3.12e-2(1.83e-2)+$	$1.02e-1(1.04e-2)$ \approx	$1.57e-1(1.62e-2)$	$5.56e-4(2.99e-3)+$	$1.55e-2(1.81e-2)+$	$8.81e-4(1.91e-3)+$	$1.05e-1(2.61e-2)$
$+/\approx$ /-		14/7/0	11/9/1	8/9/4	15/6/0	14/7/0	10/11/0	

Table 11: Statistical results of the HV value obtained by comparison algorithms on 27 WFG optimization problems over 30 runs. Symbols '+', '≈', '−' denote LORA-MOO is statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

 685 that LORA-MOO outperforms all comparison algorithms on DTLZ optimization problems when D $686 = 5$, 10, and 20. In addition, KTA2 reaches competitive optimization results on many optimization

⁶⁸⁷ problems. The observations from Tables [13](#page-27-1) and [14](#page-28-0) have demonstrated consistent conclusions.

Table 12: Statistical results of the IGD value obtained by comparison algorithms on 5D, 10D, and 20D DTLZ optimization problems over 30 runs. Symbols '+', '≈', '-' denote LORA-MOO is statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

Problems	D	ParEGO	KRVEA	KTA ₂	CSEA	REMO	OREA	LORA-MOO
DTLZ1	5	$1.24e+1(4.40e+0)+$	$7.19e+0(3.77e+0)+$	$4.00e+0(2.28e+0) \approx$	$5.71e+0(2.66e+0)$	$5.97e+0(2.98e+0)$ \approx	$2.27e+0(1.45e+0)$	$4.78e+0(2.80e+0)$
	10	$5.98e+1(3.81e+0)+$	$8.88e+1(2.16e+1)+$	$4.75e+1(1.55e+1)$ \approx	$6.30e+1(1.69e+1)+$	$5.06e+1(1.49e+1)+$	$4.44e+1(1.38e+1)$	$4.35e+1(1.80e+1)$
	20	$1.59e+2(1.56e+1)$	$3.12e+2(3.79e+1)$ \approx	$2.48e+2(3.66e+1)$	$2.35e+2(3.47e+1)$	$2.01e+2(3.95e+1)$ -	$2.94e+2(3.78e+1)$ \approx	$2.91e+2(3.98e+1)$
DTLZ2	5	$1.81e-1(1.26e-2)+$	$6.06e-2(2.40e-3)+$	$4.39e-2(1.11e-3) \approx$	$1.03e-1(7.78e-3)+$	$7.94e-2(7.71e-3)+$	$6.55e-2(6.87e-3)+$	$4.36e-2(2.15e-3)$
	10	$3.38e-1(2.84e-2)+$	$1.32e-1(2.77e-2)+$	$6.17e-2(3.13e-3)$ \approx	$2.26e-1(2.61e-2)+$	$1.65e-1(2.18e-2)+$	$8.59e-2(8.51e-3)+$	$6.19e-2(3.48e-3)$
	20	$7.15e-1(1.21e-1)+$	$6.66e-1(7.34e-2)+$	$2.85e-1(5.83e-2)+$	$5.17e-1(6.66e-2)+$	$4.00e-1(7.02e-2)+$	$1.62e-1(3.35e-2)+$	$1.02e-1(1.36e-2)$
DTLZ3	5.	$3.17e+1(1.17e+1)+$	1.91e+1(9.12e+0)≈	$1.17e+1(6.12e+0)$ \approx	1.58e+1(7.60e+0)≈	$1.61e+1(9.16e+0)$ \approx	$6.78e+0(4.79e+0)$	$1.51e+1(9.40e+0)$
	10	$1.66e+2(1.31e+1)+$	$2.43e+2(4.61e+1)+$	$1.52e+2(4.73e+1)$ \approx	$1.62e+2(4.84e+1)$ \approx	$1.49e+2(3.88e+1)$ \approx	$1.26e+2(3.18e+1)$	$1.57e+2(3.83e+1)$
	20	$4.32e+2(1.78e+1)$	$9.11e+2(8.72e+1)$	$7.23e+2(1.38e+2)$	$7.12e+2(1.10e+2)$	$5.86e+2(1.18e+2)$	$7.81e+2(1.20e+2)$	$8.58e+2(1.31e+2)$
DTLZ4	5	4.33e-1(5.55e-2) \approx	$1.35e-1(6.05e-2)$ \approx	$1.68e-1(1.22e-1)$ \approx	$4.33e-1(1.54e-1)+$	$1.60e-1(6.12e-2)$ \approx	$2.91e-1(2.44e-1)$ \approx	$3.96e-1(3.71e-1)$
	10	$6.70e-1(7.61e-2)+$	$3.32e-1(1.11e-1)+$	$3.49e-1(1.09e-1)+$	$4.62e-1(1.36e-1)+$	$2.31e-1(1.15e-1)+$	$2.39e-1(1.65e-1)+$	$1.89e-1(2.34e-1)$
	20	$1.02e+0(1.04e-1)+$	$8.32e-1(1.36e-1)+$	$7.76e-1(1.29e-1)+$	$7.11e-1(1.74e-1)+$	$5.51e-1(1.18e-1)+$	$5.27e-1(2.75e-1)+$	$4.01e-1(3.28e-1)$
DTLZ5	5.	$4.16e-2(9.61e-3)+$	$2.31e-2(3.02e-3)+$	$3.57e-3(2.35e-4)$	$2.18e-2(3.22e-3)+$	$1.49e-2(3.28e-3)+$	$1.12e-2(5.73e-3)+$	$4.20e-3(6.92e-4)$
	10	$2.16e-1(4.45e-2)+$	$1.19e-1(3.38e-2)+$	$1.34e-2(2.83e-3)$ \approx	$1.18e-1(2.56e-2)+$	$7.36e-2(2.03e-2)+$	$2.02e-2(4.77e-3)+$	$1.26e-2(2.55e-3)$
	20	$6.05e-1(1.43e-1)+$	$6.16e-1(7.41e-2)+$	$2.13e-1(5.07e-2)+$	$4.84e-1(8.14e-2)+$	$3.60e-1(8.07e-2)+$	$8.11e-2(3.39e-2)+$	$4.32e-2(1.45e-2)$
DTLZ6	5	$4.57e-2(1.11e-2)+$	$4.69e-1(1.54e-1)+$	$2.68e-1(1.01e-1)+$	$7.65e-1(4.09e-1)+$	$4.08e-1(2.59e-1)+$	$2.57e-2(2.92e-2)$ \approx	$2.98e-2(3.53e-2)$
	10	$3.15e-1(1.62e-1)+$	$3.06e+0(5.21e-1)+$	$1.83e+0(4.37e-1)+$	$4.86e+0(6.30e-1)+$	$4.27e+0(5.49e-1)+$	$3.09e-1(3.99e-1)+$	$1.18e-1(1.57e-1)$
	20	$3.54e+0(1.04e+0)$ \approx	$1.10e+1(7.15e-1)+$	$8.72e+0(1.01e+0)$ \approx	$1.33e+1(8.48e-1)+$	$1.23e+1(7.84e-1)+$	7.06e+0(3.05e+0) \approx	$6.81e+0(5.11e+0)$
DTLZ7	5	$1.87e-1(2.40e-2)+$	$1.07e-1(1.50e-2)+$	$6.66e-2(4.28e-2)$	$5.67e-1(2.78e-1)+$	$2.30e-1(1.07e-1)+$	$3.05e-1(2.01e-1)+$	$1.41e-1(1.50e-1)$
	10	$2.45e-1(4.80e-2)+$	1.35e-1(2.37e-2) \approx	$2.19e-1(2.40e-1)$	$1.75e+0(6.32e-1)+$	$1.27e+0(5.65e-1)+$	$2.73e-1(1.58e-1)+$	$2.01e-1(1.93e-1)$
	20	$2.67e-1(4.98e-2)$ \approx	$4.17e-1(2.04e-1)+$	$4.69e-1(2.56e-1)+$	$3.69e+0(9.09e-1)+$	$2.62e+0(7.33e-1)+$	$4.77e-1(2.53e-1)+$	$2.99e-1(2.51e-1)$
$+/\approx$ /-		16/3/2	16/5/0	7/9/5	16/3/2	15/4/2	12/5/4	

Table 13: Statistical results of the IGD+ value obtained by comparison algorithms on 5D, 10D, and 20D DTLZ optimization problems over 30 runs. Symbols '+', '≈', '−' denote LORA-MOO is statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

Table 14: Statistical results of the HV value obtained by comparison algorithms on $5D$, $10D$, and 20D DTLZ optimization problems over 30 runs. Symbols '+', '≈', '−' denote LORA-MOO is statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

Problems	D	ParEGO	KRVEA	KTA ₂	CSEA	REMO	OREA	LORA-MOO
DTLZ1	5	$0.00e+0(0.00e+0)$ \approx	$6.38e-4(3.44e-3)$ \approx	$1.10e-2(5.92e-2)$				
	10	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
	20	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
DTLZ2	5.	$2.15e-1(1.98e-2)+$	$4.00e-1(2.88e-3)+$	$4.26e-1(1.70e-3)$	$3.39e-1(1.61e-2)+$	$3.78e-1(1.08e-2)+$	$3.83e-1(1.22e-2)+$	$4.21e-1(4.35e-3)$
	10	$4.53e-2(2.22e-2)+$	$2.61e-1(4.46e-2)+$	$3.87e-1(6.59e-3)$	$1.55e-1(3.85e-2)+$	$2.49e-1(3.32e-2)+$	$3.49e-1(1.33e-2)+$	$3.77e-1(6.75e-3)$
	20	$1.02e-3(3.44e-3)+$	$7.41e-5(3.74e-4)+$	$8.31e-2(4.46e-2)+$	$5.91e-3(9.22e-3)+$	$3.81e-2(2.47e-2)+$	$2.38e-1(2.81e-2)+$	$3.01e-1(2.25e-2)$
DTLZ3	5.	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
	10	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
	20	$0.00e+0(0.00e+0)$ \approx	$0.00e+0(0.00e+0)$					
DTLZ4	5	$2.28e-2(2.65e-2)+$	$2.93e-1(7.80e-2)$ \approx	$3.02e-1(8.32e-2)$ \approx	$1.87e-1(5.36e-2)+$	$3.07e-1(5.76e-2)$	$2.65e-1(1.11e-1)$	$2.49e-1(1.66e-1)$
	10	$4.20e-4(2.03e-3)+$	$6.42e-2(5.54e-2)+$	$8.85e-2(7.53e-2)+$	$6.53e-2(3.42e-2)+$	$1.99e-1(6.05e-2)+$	$2.52e-1(6.75e-2)+$	$3.24e-1(9.98e-2)$
	20	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$8.09e-4(2.67e-3)+$	$1.20e-3(5.76e-3)+$	$6.38e-3(8.46e-3)+$	$8.86e-2(6.97e-2)+$	$1.97e-1(1.08e-1)$
DTLZ5	5.	$7.09e - 2(2.85e - 3) +$	$7.93e-2(2.59e-3)+$	$9.36e-2(1.60e-4)$	$8.00e-2(2.29e-3)+$	$8.58e-2(2.49e-3)+$	$9.14e-2(6.46e-4)+$	$9.27e-2(5.11e-4)$
	10	$7.49e-3(1.04e-2)+$	$2.60e-2(1.04e-2)+$	8.60e-2(1.99e-3) \approx	$2.54e-2(9.46e-3)+$	$4.66e - 2(1.02e - 2) +$	8.48e-2(1.78e-3) \approx	$8.53e-2(2.03e-3)$
	20	$4.12e-5(2.22e-4)+$	$0.00e+0(0.00e+0)+$	$1.00e-2(1.02e-2)+$	$0.00e+0(0.00e+0)+$	$9.09e-4(2.11e-3)+$	$5.09e-2(7.32e-3)+$	$6.15e-2(7.35e-3)$
DTLZ6	5	$6.52e-2(7.55e-3)+$	$6.06e-3(1.28e-2)+$	$3.10e-2(1.98e-2)+$	$3.56e-3(1.03e-2)+$	$1.93e-2(2.10e-2)+$	$8.70e-2(8.64e-3)$	$7.68e-2(1.94e-2)$
	10	$3.91e-3(7.22e-3)+$	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$0.00e+0(0.00e+0)+$	$3.52e-2(2.51e-2)+$	$4.91e-2(2.38e-2)$
	20	$0.00e+0(0.00e+0)$ \approx	2.06e-3(7.33e-3)					
DTLZ7	5.	$2.29e-1(2.23e-2)+$	$2.82e-1(5.98e-3)+$	$3.08e-1(7.28e-3)$	$1.90e-1(3.80e-2)+$	$2.24e-1(2.41e-2)+$	$2.49e-1(4.23e-2)+$	$2.84e-1(3.96e-2)$
	10	$1.81e-1(4.40e-2)+$	$2.53e-1(9.02e-3)$ \approx	$2.81e-1(3.28e-2)$	$1.44e-2(2.31e-2)+$	$2.11e-2(2.95e-2)+$	$2.23e-1(3.95e-2)+$	$2.47e-1(3.63e-2)$
	20	$1.59e-1(4.85e-2)+$	$1.56e-1(4.53e-2)+$	$2.21e-1(3.02e-2)$ \approx	$0.00e+0(0.00e+0)+$	$1.56e-6(8.40e-6)+$	$1.15e-1(4.03e-2)+$	$2.03e-1(4.17e-2)$
$+/\approx$ /-		14/7/0	12/9/0	6/10/5	14/7/0	13/8/0	11/9/1	

689 NeurIPS Paper Checklist

