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Abstract

Many-objective optimization (MOO) simultaneously optimizes many conflicting1

objectives to identify the Pareto front - a set of diverse solutions that represent2

different optimal balances between conflicting objectives. For expensive MOO3

problems, due to their costly function evaluations, computationally cheap surrogates4

have been widely used in MOO to save evaluation budget. However, as the number5

of objectives increases, the cost of learning and surrogation, as well as the difficulty6

of maintaining solution diversity, increases rapidly. In this paper, we propose7

LORA-MOO, a surrogate-assisted MOO algorithm that learns surrogates from8

spherical coordinates. This includes an ordinal-regression-based surrogate for9

convergence and M − 1 regression-based surrogates for diversity. M is the number10

of objectives. Such a surrogate modeling method makes it possible to use a11

single ordinal surrogate to do the surrogate-assisted search, and the remaining12

surrogates are used to select solution for expensive evaluations, which enhances the13

optimization efficiency. The ordinal regression surrogate is developed to predict14

ordinal relation values as radial coordinates, estimating how desirable the candidate15

solutions are in terms of convergence. The solution diversity is maintained via16

angles between solutions, which is a parameter-free. Experimental results show17

that LORA-MOO significantly outperforms other surrogate-assisted MOO methods18

on most MOO benchmark problems and real-world applications.19

1 Introduction20

Many-objective optimization problems (MOOPs) are widely exist in many real-world applications,21

such as production scheduling [26], traffic signal control [33], and water resource engineering [21].22

These MOOPs have conflicting objectives to optimize, and thus all objectives cannot reach their23

optimum simultaneously. As a result the optimum of MOOPs is the Pareto front (PF): A set of24

non-dominated solutions that represent different optimal balance between conflicting objectives.25

Multi-/many-objective optimization (MOO) 1 aims to find non-dominated solutions that are close to26

the PF and also well distributed along the PF, indicating that MOO should consider both convergence27

and diversity.28

Various evolutionary optimization algorithms have been proposed to solve MOOPs [10]. These29

optimization algorithms usually require plenty of solution samplings and evaluations to find converged30

and diverse non-dominated solutions. However, in many real-world MOOPs, the evaluation of solution31

performance could be expensive [41]. In these expensive MOOPs, the evaluation budget only allows32

a limited number of solutions to be evaluated on the expensive objective functions. To address33

expensive MOOPs, evolutionary optimization algorithms are combined with computationally cheap34

1Multi-objective optimization has 2 or 3 objectives, many-objective optimization has 4 or more objectives.
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surrogates to enhance sampling efficiency and save evaluations, which are known as surrogate-assisted35

evolutionary algorithms (SAEAs).36

Yet, it is a perennial challenge to use surrogates in a more effective and efficient way for SAEAs,37

especially when optimization problems have many objectives. For example, conventional SAEAs38

usually use regression-based surrogates to approximate each objective function separately [5, 34].39

For MOOPs, many objectives indicate maintaining many surrogates for surrogate-assisted search and40

selection, which results in a low efficiency of SAEAs. In addition, it is difficult to maintain solution41

diversity in high-dimensional objective space. Some SAEAs [24, 43, 5] need to investigate proper42

parametric strategies to generate reference vectors or divide objective space into subspaces. Recently,43

a family of classification-based SAEAs [31, 17] attempted to use a single surrogate to learn pairwise44

dominance relations. However, the training with pairwise relations implies an exponential increase in45

the size of training dataset. Therefore, a natural question is that whether we can reduce the cost of46

maintaining many surrogates without increasing the cost of training a single surrogate. Furthermore,47

whether we can use an non-parametric diversity maintenance strategy to handle the objective space of48

MOOPs, instead of designing complex reference vectors or points?49

In this paper, we propose a different way to implement surrogate-assisted evolutionary optimization50

for expensive MOOPs, named LORA-MOO, where a single surrogate is developed to learn ordinal51

relations for convergence purpose, and several angular surrogates are generated from spherical52

coordinates to maintain diversity. Our major contributions are summarized as follows:53

• We develop a novel ordinal-regression-based model to approximate the ordinal landscape of54

expensive MOOPs. Our ordinal surrogate is able to handle many objectives simultaneously55

and assist MOO algorithms to complete the model-based search. Artificial ordinal relations56

are generated via a clustering method to improve the learning quality of ordinal relations for57

many objectives. Unlike the pairwise relations learned through classification, the ordinal58

relations would not increase the size of training dataset, hence high efficiency.59

• We introduce the idea of spherical coordinates approximation into surrogate-assisted evo-60

lutionary optimization and proposed LORA-MOO to solve expensive MOOPs. Different61

from existing SAEAs which learn approximation models from Cartesian coordinates, we fit62

several regression-based surrogates to approximate angular coordinates, while our ordinal63

surrogate can be treated as a radial coordinate. An non-parametric approach is developed to64

select diverse solutions for expensive evaluations via our angular coordinate surrogates.65

• Extensive experiments on benchmark and real-world optimization problems are conducted66

under a range of scales and numbers of objectives. Empirical results show that our LORA-67

MOO is effective. It is able to obtain a well-distributed solution set that outperforms the68

state-of-the-arts.69

2 Related Work70

2.1 Multi-/Many-Objective Surrogate-Assisted Evolutionary Algorithms71

Regression-based SAEAs. Regression-based SAEAs employ regression-based surrogates such as72

Kriging [36, 39] to approximate either the objective values of solutions or the objective functions73

of expensive problems [22]. To maintain solution diversity, ParEGO [24] employs a Kriging model74

to iteratively approximate an aggregate objective function which aggregates all objectives into one75

via a set of pre-defined scale vectors. In MOEA/D-EGO [43], plenty of scale vectors are generated76

uniformly to decompose the target MOOP into many single-objective subproblems. K-RVEA [5] also77

designs a set of scale vectors as reference vectors to maintain solution diversity. Similarity or density78

estimation is an alternative option for maintaining diversity. For instance, KTA2 [34] estimates the79

distribution status of non-dominated solutions by defining a similarity or density indicator.80

Classification-based SAEAs. In model-based optimization, the optimization is guided by the relation81

between solutions rather than accurate objective values. Therefore, there is a tendency for recently82

proposed SAEAs to use classification-based surrogates to learn the relation between solutions directly.83

CSEA [31] trains a neural network to justify whether candidate solutions can be dominated by given84

reference points or not. θ-DEA-DP [42] uses two neural networks to predict the Pareto dominance85

relation and θ-dominance relation between two solutions, respectively. REMO [17] employs a86

neural network to fit a ternary classifier, which is able to learn the dominance relation between87
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pairs of solutions. Compared with regression-based SAEAs, although classification-based SAEAs88

take advantage of learning solution relations directly, their drawbacks are also clear: The prediction89

of solution relations lacks the information of how solutions are distributed in the objective space,90

making it difficult for classification-based SAEAs to maintain solution diversity. In [31, 17], a radial91

projection selection approach is adapted to select diverse reference points. However, its effect on92

diversity maintenance is limited. In addition, although classification-based SAEAs maintain only one93

surrogate, the cost of learning pairwise relations from large datasets is inevitably increased.94

SAEAs based on Other Surrogates. HSMEA [15] uses an ensemble of multiple surrogates in the95

optimization. In addition, a new category of surrogates, namely ordinal regression surrogate [40] or96

level-based classification surrogate [28], is proposed recently to combine regression-based surrogates97

with classification-based surrogates. However, the shortcoming remains the same as these surrogates98

lack the information of solution distribution, especially when the number of objectives is large.99

2.2 Multi-Objective Bayesian Optimization100

MOBO. Bayesian Optimization (BO) [35, 18] is also a typical model-based optimization method101

for expensive optimization, while multi-objective BO (MOBO) methods are designed for expensive102

MOOPs [7, 8, 27, 1]. Some MOBO generalizes the acquisition functions such as upper confidence103

bound (UCB) [46], expected improvement (EI) [14], Thompson sampling [3], to solve expensive104

MOOPs. In addition, entropy search methods have also been employed in MOBO [2, 37]. To105

maintain solution diversity, the EI of a multi-objective performance indicator, Hypervolume (HV)106

[45], was used as the acquisition function in recent MOBO [6, 27]. Based on the Hypervolume107

improvement (HVI), PSL [27] proposes a learning method to approximate the whole Pareto set for108

MOBO, and PDBO [1] automatically selects the best acquisition function for objective functions109

in each iteration. However, the time complexity of computing HV increases exponentially with the110

number of objectives, which may limit the application of MOBO methods on optimization problems111

with many objectives.112

Connection to SAEAs. Both SAEAs and MOBO are model-based optimization methods. A SAEA113

is also a MOBO if it uses probability models as surrogates, and a MOBO is also a SAEA if it searches114

candidate solutions with evolutionary search algorithms. Therefore, some model-based optimization115

methods belong to both SAEAs and MOBO [24, 14, 43].116

3 LORA-MOO: Optimization via Learning Ordinal Relations and Angles117

This section first introduces the LORA-MOO framework, followed by detailed algorithm descriptions.118

3.1 LORA-MOO Framework119

The pseudocode of LORA-MOO is depicted in Alg. 1, it consists of four phases:120

1. Initialization: An initial dataset of size 11D - 1 (As suggested in the literature [24]) are121

sampled from the decision space using the Latin hypercube sampling (LHS) [30] (line 1),122

where D is the dimensionality of decision variables. The sampled solutions are evaluated on123

objective functions f and then saved in an archive SA (line 2).124

2. Surrogate modeling: For all solutions x ∈ SA, quantify their ordinal values (line 4) and125

calculate their angular coordinates (line 9). The set of ordinal values So is used to train126

the ordinal surrogate ho (line 5). The angular coordinates are used to fit M − 1 angular127

surrogates hai separately (line 10).128

3. Sampling (Search and Selection): Run an optimizer on surrogate ho to generate a population129

of candidate solutions P (line 6). Select optimal candidate solutions x∗1, x∗2 from P based130

on surrogates ho, hai, respectively (lines 7 and 11).131

4. Update: Evaluate new optimal candidate solutions x∗1, x∗2 on expensive objective functions132

f , update archive SA and the number of used function evaluations FE (lines 8 and 12). The133

algorithm will go to phase 2 until the evaluation budget FEmax has run out.134
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Algorithm 1 LORA-MOO framework
Input: M objective functions of the optimization problem f(x) = (f1(x), . . . , fM (x));

Evaluation budget: The number of allowed function evaluations FEmax.
Procedure:

1: Sample a set of solutions {x1, . . . ,x11D−1} and evaluate them on f .
2: Save all evaluated solutions (x, f(x)) in an archive SA. Set the number of used function

evaluations FE = |SA|.
3: while FE < FEmax do
4: Ordinal training set So ← Quantify ordinal values for all xi ∈ SA (Alg. 2).
5: Ordinal surrogate ho ← Train Kriging(SA, So).
6: Population of candidate solutions P ← Run an optimizer on ho (Alg. 3).
7: x∗1 ← Use the ordinal surrogate to select a solution from P by convergence criterion.
8: Evaluate x∗1 and update SA = SA ∪ {(x∗1, f(x∗1))}, FE = FE + 1.
9: Angular training set Sa ← Calculate angular coordinates for all xi ∈ SA.

10: M -1 angular surrogates hai ← Train Kriging (SA, Sa), i = 1, . . . ,M − 1.
11: x∗2 ← Use angular surrogates to select a solution from P by diversity criterion (Alg. 4).
12: Evaluate x∗2 and update SA = SA ∪ {(x∗2, f(x∗2))}, FE = FE + 1.
13: end while
Output: Non-dominated solutions in archive SA.

3.2 Surrogate Modeling135

The ordinal surrogate ho is mainly trained on dominance-based ordinal relations, additional clustering-136

based artificial ordinal relations will be introduced for training if the number of objectives M is137

large. In addition, for an M -objective problem, M -1 angular surrogates hai are trained on angular138

coordinates. These surrogates are used in the selection procedure for solution diversity but are idle in139

the search procedure.140

3.2.1 Learning dominance-based ordinal relations.141

In LORA-MOO, the concept of ordinal regression [40] is adapted to learn dominance-based ordinal142

relations. Clearly, the dominance-based ordinal relation between a set of reference points SRP and a143

given solution x is quantified as a relation value. Such a relation value is a numerical value that used144

for training the ordinal-regression surrogate ho. The quantification of relation values consists of two145

steps: The selection of reference points SRP and the computation of relation values.146

Selection of Reference Points. We propose the definition of λ-dominance relationship to simplify147

the selection of reference points.148

Definition 1. (λ-Dominance Relationship)149

A solution x1 is said to λ-dominate another solution x2 (denoted by x1 ≺λ x2) if and only if:150

gλ(x
1) ≺ gλ(x2), (1)

where λ ≥ 0 is the dominance coefficient and gλ is a smooth objective function defined as:151

fin(x) =
fi(x)− z∗i
|znadi − z∗i |

, (2)
152

gλ,i(x) = fin(x) + λmax(fjn(x)), j ∈ {1, . . . ,M}, (3)
where fin denotes a normalized objective function, z∗ = {z∗1 , . . . , z∗M}, znad = {znad1 , . . . , znadM }153

are ideal point and nadir point for the current non-dominated solutions, respectively.154

More detailed definitions about the background of MOO are available in Appendix A. All non-λ-155

dominated solutions in SA are selected as reference points SRP . There are two reasons to introduce156

the definition of λ-dominance:157

• The λ-dominance can smoothen the original PF by excluding dominance resistant solutions158

(DRSs) [16, 38]. DRSs are solutions that are best or close to best on one or several objectives159

but extremely poor on at least one of the remaining objectives. Such a solution is apparently160

not desirable but may be regarded as one of the best solutions since there may not exist any161

other solutions dominating it in the solution set.162
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• Second, λ-dominance can eliminate some similar non-dominated solutions from the Pareto163

set, which can be used to adjust the size of Pareto set. When the number of objectives M164

is large, it is possible that a majority of past evaluated samples are non-dominated to each165

other. To balance the number of reference points and remaining samples, we introduce the166

dominance coefficient λ to sightly reduce the ratio of reference points in SA. This alleviates167

the situation of extreme imbalance of samples in different ordinal levels (see the division of168

ordinal levels below).169

Computation of Relation Values. To quantify ordinal relation values, we first calculate extension170

coefficients ec(x) for each x ∈ SA. ec(x) is defined as the minimal coefficient ec ≥ 1 to make a171

solution x non-λ-dominated to all solutions x′ in the extended reference:172

ec(x) = arg min
ec≥1

@x′ ∈ SRP : (x′ ∗ ec) ≺λ x. (4)

Although extension coefficient ec(x) quantifies the distance between a solution x and reference SRP ,173

it has not been used to train the ordinal regression-based surrogate directly. To generate a stable174

ordinal regression-based surrogate, solutions in SA are divided into No = max(no, |SA|/|SRP |)175

ordinal levels, where no is a pre-defined parameter denoting the minimal number of ordinal levels.176

The solutions in SRP are classified into the non-dominated ordinal level, thus the relation value v1 =177

1.0 is assigned to them. Remaining solutions in SA are sorted by their extension coefficients ec(x)178

and then divided into No-1 ordinal levels uniformly. The relation value vi = 1 − i−1
No−1 will be179

assigned to the solutions x in the ith ordinal level. Lastly, relation values serve as radial coordinates180

and a Kriging model is employed to approximate them.181

3.2.2 Artificial clustering-based ordinal relations.182

When the number of objectives M is large, most evaluated solutions in archive SA could be non-183

dominated solutions, indicating that these solutions will be divided into the same non-dominated184

ordinal level and thus treated as reference points SRP . This is harmful to the ordinal surrogate185

modeling due to the extreme imbalance between the numbers of training samples in different ordinal186

levels. To reduce the ratio of SRP , we use a clustering method to generate n_clusters clusters187

for SRP , where n_clusters is the half of the size of SRP . All solutions x ∈ SRP are mapped to188

the closest cluster centers. The solutions with the shortest projection on each cluster center will be189

selected as the new SRP , while the remaining solutions will be moved to the next ordinal level. Such190

artificial ordinal relations greatly reduce the ratio of SRP in SA. In LORA-MOO, we set a ratio191

threshold rp_ratio for SRP , once the ratio of SRP is larger than rp_ratio, artificial ordinal relations192

will be generated for surrogate modeling. Details are available in Appendix C, Alg. 2 and Fig. 5.193

3.2.3 Surrogates for Angular Coordinates.194

Given a solution x ∈ SA with Cartesian coordinates (f1(x), . . . , fM (x)), The angular coordinates195

of solution x are transformed with the following rules:196

ϕi = arccos
fi(x)− z∗i√

(fi(x)− z∗i )2 + · · ·+ (fM (x)− z∗M )2
, i = 1, . . . ,M − 1, (5)

where z∗ is the ideal point. The resulting angular coordinates (ϕ1, . . . , ϕM−1) are used to fit M − 1197

regression-based surrogates separately. In LORA-MOO, we use the Kriging model to approximate198

angular coordinates. The introduction and usage of Kriging model is given in Appendix B.199

3.3 Sampling: Search and Selection200

In this subsection, we describe how to use surrogate ho to search for candidate solutions and how to201

use surrogates ho and hai to select optimal ones from candidate solutions for expensive evaluations.202

3.3.1 Search: Generation of Candidate Solutions.203

An advantage of LORA-MOO is that it searches for candidate solutions on ordinal surrogate ho204

only, leaving all angular surrogates hai idle in this search procedure. This saves a lot of time from205

predicting with all surrogates. LORA-MOO employs an optimizer (e.g. PSO [13]) to generate a206
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population of candidate solutions P (Detailed pseudo-code is available in Appendix C, Alg. 3). The207

initial population for optimization search consists of two parts. The first half initial solutions are208

generated randomly from the decision space, while the remaining initial solutions are mutants of209

current reference points SRP . To ensure the diversity of initial candidate solutions, a KNN clustering210

method is applied to divide SRP into several different clusters, from each cluster, an equal number of211

mutants are generated as initial candidate solutions. The global optimal population P produced by212

PSO is the candidate solutions for further environmental selection.213

3.3.2 Selection Criteria.214

To take both convergence and diversity into consideration, in each iteration, LORA-MOO selects two215

optimal candidate solutions x∗1,x
∗
2 from P for objective function evaluations. x∗1,x

∗
2 are sampled on216

the basis of convergence and diversity, respectively.217

Convergence Criterion for environmental selection is the expected improvement (EI) [14] of ordinal218

values, which is similar to many MOBO methods [24, 43]. Since the output of our ordinal surrogate219

ho(x) is an 1-D numerical value, the solution with maximal 1-D EI in P is selected as x∗1.220

Diversity Criterion to sample x∗2 from P is defined as angles dang between candidate solutions221

and reference points SRP . Firstly, the minimal degree between each candidate solution and SRP is222

measured. Among these minimal degrees mdang, the solution with max(mdang) is selected as x∗2223

(Detailed pseudo-code is available in Appendix C, Alg. 4).224

4 Experiments225

To evaluate the optimization performance of LORA-MOO on expensive MOOPs, we conduct226

experiments to compare LORA-MOO with other SAEAs on different MOOPs, including a series227

of scalable multi-/many-objective benchmark optimization problems DTLZ [11], WFG [19], and a228

real-world network architecture search (NAS) problem.229

4.1 Experimental Setups230

Optimization Problem Setup. To ensure a fair comparison, the following optimization problem231

setup is the same as the setup that has been widely used in the literature [5, 31, 34, 17]. In our232

experiments, initial datasets of size FEinit = 11 D - 1 are used to initialize surrogates, while the233

maximum number of allowed evaluations FEmax is 300. The statistical results are obtained from 30234

independent runs. For each run, different comparison algorithms share the same initial dataset.235

Comparison Algorithms. We compare LORA-MOO with 6 state-of-the-art SAEAs, some of them236

also known as MOBO methods. These comparison algorithms can be classified into three categories:237

• Regression-based MOO methods: ParEGO [24], K-RVEA [5], and KTA2 [34]. ParEGO is a238

classic regression-based SAEA and also a MOBO, which serves as a baseline. K-RVEA is a239

typical SAEA which uses reference vector to guide the diversity maintenance. KTA2 is a240

newly proposed algorithm to use an independent archive to keep solution diversity.241

• Classification-based MOO methods: CSEA [31], REMO [17]. CSEA is a classic242

classification-based SAEA which serves as a baseline. REMO is a newly proposed SAEA243

which represents the state-of-the-art performance of classification-based SAEAs.244

• Ordinal-regression-based MOO method: OREA [40] is a new category of SAEA that is245

different from common regression-based and classification-based SAEAs. We compare with246

it since it is directly related to our radial surrogate.247

Note that some classic SAEAs and MOBO methods such as MOEA/D-EGO [43] and CPS-MOEA248

[44] are not compared in our experiments as they failed to outperform other comparison algorithms249

on any DTLZ problem [17]. Some HV-based MOBO methods are not compared as they are failed to250

solve many objectives.251

Parameter Setup. For the surrogate modeling, the Kriging models used in all comparison algorithms252

are implemented using DACE [32], just as [24] suggested. For regression-based Kriging surrogates,253

the range of hyper-parameter θ ∈ [10−5, 100]. And for the neural networks in CSEA and REMO, the254

parameters are the same as suggested in the literature. In the sampling strategy, the mutation operator255

used to initialize candidate solutions is polynomial mutation [9], the mutation probability pm = 1/d256
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(a) 10 variables and 3 objectives. (b) 10 variables and 10 objectives.

Figure 1: IGD curves averaged over 15 runs on the WFG5 problem instances for LORA-MOO with
different parameter setups (shaded area is ± std of the mean).

and mutation index ηm = 20, as recommended in [34, 17]. The size of offspring population is 100.257

The settings of the PSO optimizer are the range of hyper-parameter in the ordinal-regression-based258

surrogate are the same as suggested in [40].259

For the specific parameters exist in LORA-MOO, such as the dominance coefficient λ and the260

threshold ratio of reference points to introduce clustering-based ordinal relations rp_ratio. As there261

is no relevant study in the literature for their setups, we conducted ablation studies to investigate262

the effect of these parameters on the performance of LORA-MOO. The results are summarized in263

Section 4.2 and reported in Appendix F. The source code of LORA-MOO 2 will be available online.264

Performance Indicator. To have a comprehensive estimation of optimization performance, we use265

three different performance indicators in our experiments: The inverted generational distance (IGD)266

[4], the inverted generational distance plus (IGD+) [20], and the Hypervolume (HV) [45]. IGD and267

IGD+ use a set of truth Pareto front to measure the quality of a set of non-dominated solutions in268

terms of convergence and diversity. A smaller IGD or IGD+ value indicates better MOO performance.269

HV use a reference point to calculate the area covered by a set of non-dominated solutions, a large270

HV value is preferable to MOO. See Appendix D for details and setups about performance indicators.271

4.2 Ablation Studies272

We conduct ablation studies on DTLZ and WFG benchmark problems with D = 10 variables and273

M={3, 6, 10} objectives. LHS [30] is used to sample initial dataset. The effects of four parameters274

are investigated: They are the minimal number of ordinal levels no, the dominance coefficient λ, the275

ratio threshold of reference points rp_ratio, and the clustering number for reproduction nc. Three276

representative results obtained on the WFG5 problem with 3 and 10 objectives are depicted in Fig. 1.277

Complete results and statistical analysis of ablation studies are reported in Appendix F.278

As shown in Fig. 1 (left), when M = 10, a large no results in poor optimization performance. This is279

because the ratio of non-dominated solutions in the archive tends to be large when M is large, hence,280

setting a large no will lead to a lack of training samples in each dominated ordinal levels, which is281

detrimental to the performance of surrogate modeling. As such, no in LORA-MOO is set to 4.282

The result in Fig. 1 (middle) shows that using λ-dominance to sightly modify the original dominance283

relations is beneficial to the effectiveness of LORA-MOO. When λ = 0, no λ-dominance would be284

used and the corresponding LORA-MOO variant has the worst performance among all the variants. In285

addition, setting a large λ could cause severe damage to the original dominance relations. Therefore,286

we set λ to 0.2.287

The effect of introducing artificial ordinal relations via clustering is demonstrated in Fig. 1 (right).288

When the ratio threshold of reference points rp_ratio is 1 and M = 10, no artificial ordinal relations289

are introduced to further divide ordinal levels for plenty of non-dominated solutions in the archive.290

Consequently, the imbalance of sample numbers in different ordinal levels leads to poor optimization291

performance. However, dominance relations are preferable to artificial ordinal relations when M = 3292

and the size of ordinal levels are well balanced. Hence, we set rp_ratio = 0.5.293

4.3 Optimization on Benchmark Problems294

The optimization performance of LORA-MOO is evaluated on DTLZ and WFG benchmark problems295

with D = 10 variables and M={3, 4, 6, 8, 10} objectives. The IGD values obtained on DTLZ296

2The link of code and data will be released here once the paper is accepted.

7



Table 1: Statistical results of the IGD value obtained by the comparison algorithms on the 35 DTLZ
optimization problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is statistically
significantly superior to, equivalent to, and inferior to the compared algorithms in the Wilcoxon rank
sum test (significance level is 0.05), respectively. The last three rows are the total win/tie/loss results
on DTLZ, WFG, and both of them, respectively.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO (ours)
DTLZ1 3 5.98e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)≈ 6.30e+1(1.69e+1)+ 5.06e+1(1.49e+1)+ 4.44e+1(1.38e+1)≈ 4.35e+1(1.80e+1)

4 4.68e+1(3.71e+0)+ 6.45e+1(1.47e+1)+ 4.08e+1(1.60e+1)≈ 3.69e+1(1.08e+1)≈ 3.92e+1(1.11e+1)≈ 3.80e+1(1.23e+1)≈ 4.06e+1(1.34e+1)
6 3.04e+1(2.74e+0)+ 3.22e+1(7.66e+0)+ 2.03e+1(8.12e+0)+ 1.56e+1(4.96e+0)≈ 1.22e+1(4.65e+0)− 1.74e+1(3.98e+0)≈ 1.58e+1(6.17e+0)
8 1.23e+1(2.99e+0)+ 8.52e+0(2.97e+0)+ 4.54e+0(2.66e+0)≈ 5.08e+0(2.47e+0)≈ 3.33e+0(1.93e+0)≈ 5.87e+0(2.91e+0)+ 3.83e+0(2.35e+0)

10 4.37e-1(1.63e-1)+ 3.32e-1(9.91e-2)+ 3.00e-1(8.76e-2)+ 2.90e-1(7.13e-2)+ 2.42e-1(6.97e-2)≈ 2.58e-1(6.33e-2)≈ 2.31e-1(3.89e-2)
DTLZ2 3 3.38e-1(2.84e-2)+ 1.32e-1(2.77e-2)+ 6.17e-2(3.13e-3)≈ 2.26e-1(2.61e-2)+ 1.65e-1(2.18e-2)+ 8.59e-2(8.51e-3)+ 6.19e-2(3.48e-3)

4 4.23e-1(2.79e-2)+ 2.06e-1(2.95e-2)+ 1.41e-1(5.45e-3)≈ 2.92e-1(1.89e-2)+ 2.43e-1(2.33e-2)+ 1.83e-1(1.37e-2)+ 1.38e-1(9.86e-3)
6 5.53e-1(2.17e-2)+ 3.40e-1(1.20e-2)+ 3.24e-1(2.63e-2)+ 4.42e-1(3.37e-2)+ 3.77e-1(3.16e-2)+ 3.96e-1(2.57e-2)+ 2.67e-1(8.78e-3)
8 6.53e-1(1.86e-2)+ 4.19e-1(2.65e-2)+ 4.44e-1(1.86e-2)+ 5.95e-1(2.77e-2)+ 5.10e-1(3.90e-2)+ 5.56e-1(2.19e-2)+ 3.80e-1(1.46e-2)

10 6.95e-1(2.23e-2)+ 5.92e-1(4.25e-2)+ 4.50e-1(1.00e-2)≈ 6.76e-1(2.52e-2)+ 5.85e-1(3.72e-2)+ 6.55e-1(2.66e-2)+ 4.54e-1(1.41e-2)
DTLZ3 3 1.66e+2(1.31e+1)+ 2.43e+2(4.61e+1)+ 1.52e+2(4.73e+1)≈ 1.62e+2(4.84e+1)≈ 1.49e+2(3.88e+1)≈ 1.26e+2(3.18e+1)− 1.57e+2(3.83e+1)

4 1.42e+2(1.57e+1)+ 1.83e+2(4.00e+1)+ 1.18e+2(3.49e+1)≈ 1.29e+2(3.58e+1)≈ 1.16e+2(3.00e+1)≈ 1.22e+2(4.13e+1)≈ 1.25e+2(4.20e+1)
6 9.17e+1(1.59e+1)+ 1.06e+2(2.96e+1)+ 6.65e+1(2.63e+1)≈ 5.27e+1(1.56e+1)≈ 5.23e+1(1.71e+1)≈ 5.24e+1(1.68e+1)≈ 5.96e+1(2.05e+1)
8 4.13e+1(9.84e+0)+ 2.96e+1(1.15e+1)+ 1.74e+1(1.10e+1)≈ 1.60e+1(9.76e+0)≈ 1.60e+1(7.70e+0)≈ 1.50e+1(6.27e+0)≈ 1.27e+1(8.33e+0)

10 1.36e+0(3.15e-1)+ 1.23e+0(4.27e-1)+ 9.95e-1(2.25e-1)+ 1.01e+0(2.45e-1)+ 9.53e-1(2.74e-1)+ 8.77e-1(1.08e-1)+ 8.14e-1(1.33e-1)
DTLZ4 3 6.70e-1(7.61e-2)+ 3.32e-1(1.11e-1)+ 3.49e-1(1.09e-1)+ 4.62e-1(1.36e-1)+ 2.31e-1(1.15e-1)+ 2.39e-1(1.65e-1)+ 1.89e-1(2.34e-1)

4 7.18e-1(6.40e-2)+ 4.07e-1(8.73e-2)+ 4.77e-1(9.70e-2)+ 4.31e-1(6.36e-2)+ 3.36e-1(7.02e-2)≈ 3.45e-1(1.52e-1)≈ 3.48e-1(1.60e-1)
6 7.06e-1(3.07e-2)+ 5.04e-1(5.42e-2)+ 6.05e-1(8.43e-2)+ 4.94e-1(4.55e-2)+ 4.97e-1(4.95e-2)+ 4.47e-1(4.89e-2)≈ 4.55e-1(6.53e-2)
8 6.81e-1(1.48e-2)+ 5.49e-1(3.42e-2)+ 6.24e-1(5.48e-2)+ 5.85e-1(4.20e-2)+ 6.16e-1(4.03e-2)+ 5.29e-1(3.79e-2)≈ 5.32e-1(2.38e-2)

10 6.77e-1(1.26e-2)+ 6.07e-1(2.42e-2)+ 6.36e-1(3.58e-2)+ 6.38e-1(2.38e-2)+ 6.71e-1(2.69e-2)+ 5.90e-1(1.94e-2)≈ 5.90e-1(2.51e-2)
DTLZ5 3 2.16e-1(4.45e-2)+ 1.19e-1(3.38e-2)+ 1.34e-2(2.83e-3)≈ 1.18e-1(2.56e-2)+ 7.36e-2(2.03e-2)+ 2.02e-2(4.77e-3)+ 1.26e-2(2.55e-3)

4 1.89e-1(3.70e-2)+ 7.05e-2(2.25e-2)+ 4.24e-2(8.84e-3)+ 1.16e-1(2.23e-2)+ 9.02e-2(2.48e-2)+ 3.48e-2(7.82e-3)+ 2.85e-2(9.37e-3)
6 1.41e-1(2.32e-2)+ 3.53e-2(1.02e-2)− 8.87e-2(1.91e-2)+ 7.72e-2(2.57e-2)+ 5.53e-2(1.90e-2)+ 4.62e-2(1.50e-2)≈ 4.26e-2(1.11e-2)
8 7.72e-2(1.22e-2)+ 1.99e-2(4.92e-3)− 6.43e-2(8.60e-3)+ 3.81e-2(1.03e-2)+ 3.10e-2(7.33e-3)≈ 2.59e-2(6.96e-3)− 2.84e-2(4.88e-3)

10 2.25e-2(1.87e-3)+ 1.25e-2(1.90e-3)+ 2.04e-2(2.55e-3)+ 1.27e-2(1.46e-3)+ 9.35e-3(2.00e-3)− 1.03e-2(1.62e-3)≈ 1.06e-2(2.36e-3)
DTLZ6 3 3.15e-1(1.62e-1)+ 3.06e+0(5.21e-1)+ 1.83e+0(4.37e-1)+ 4.86e+0(6.30e-1)+ 4.27e+0(5.49e-1)+ 3.09e-1(3.99e-1)+ 1.18e-1(1.57e-1)

4 3.56e-1(2.12e-1)≈ 2.46e+0(3.84e-1)+ 1.85e+0(5.06e-1)+ 5.13e+0(4.23e-1)+ 4.08e+0(6.16e-1)+ 1.43e+0(8.89e-1)+ 3.29e-1(2.22e-1)
6 2.66e-1(1.37e-1)− 1.36e+0(2.73e-1)+ 1.51e+0(5.85e-1)+ 3.15e+0(4.35e-1)+ 2.33e+0(5.70e-1)+ 2.05e+0(6.16e-1)+ 9.89e-1(1.02e+0)
8 1.61e-1(6.17e-2)≈ 5.28e-1(1.50e-1)+ 8.64e-1(3.88e-1)+ 1.56e+0(4.28e-1)+ 9.64e-1(4.38e-1)+ 1.06e+0(3.95e-1)+ 3.56e-1(4.31e-1)

10 1.72e-1(1.45e-1)+ 7.73e-2(3.13e-2)≈ 1.01e-1(4.97e-2)+ 2.09e-1(2.28e-1)+ 7.91e-2(1.11e-1)≈ 1.50e-1(7.37e-2)+ 7.05e-2(3.25e-2)
DTLZ7 3 2.45e-1(4.80e-2)+ 1.35e-1(2.37e-2)≈ 2.19e-1(2.40e-1)− 1.75e+0(6.32e-1)+ 1.27e+0(5.65e-1)+ 2.73e-1(1.58e-1)+ 2.01e-1(1.93e-1)

4 6.59e-1(1.02e-1)+ 3.38e-1(7.61e-2)≈ 3.73e-1(1.68e-1)≈ 2.94e+0(6.59e-1)+ 2.06e+0(7.31e-1)+ 8.92e-1(4.27e-1)+ 4.20e-1(2.21e-1)
6 1.21e+0(1.58e-1)− 6.04e-1(4.57e-2)− 6.46e-1(1.68e-1)− 4.92e+0(9.92e-1)+ 3.09e+0(6.71e-1)+ 4.03e+0(1.84e+0)+ 1.71e+0(6.54e-1)
8 1.45e+0(1.24e-1)− 8.71e-1(7.01e-2)− 1.02e+0(1.65e-1)− 6.12e+0(1.85e+0)+ 3.82e+0(5.39e-1)+ 4.55e+0(2.63e+0)+ 2.44e+0(6.78e-1)

10 1.67e+0(1.24e-1)+ 1.12e+0(4.25e-2)− 1.30e+0(2.04e-1)≈ 1.99e+0(3.05e-1)+ 1.99e+0(3.36e-1)+ 1.63e+0(2.42e-1)+ 1.34e+0(9.19e-2)
+/ ≈ /− on DTLZ 30/2/3 27/3/5 19/13/3 28/7/0 23/10/2 20/13/2
+/ ≈ /− on WFG 39/4/2 21/10/14 23/6/16 41/1/3 38/3/4 43/1/1
+/ ≈ /− on both 69/6/5 48/13/19 42/19/19 69/8/3 61/13/6 63/14/3

problems with different M are reported in Table 1. It shows that LORA-MOO achieves the best297

optimization results among all the comparison algorithms in terms of IGD values, followed by KTA2298

and KRVEA. The IGD values obtained on the WFG problems, the IGD+ and HV results, and the299

results obtained under different scales (D= 5 or 20) are reported in Appendix H. A consistent result300

can be concluded from the IGD+ and HV values. The results on the 3- and 10-objective problems are301

plotted in Fig. 2.

Figure 2: IGD(log) curves averaged over 30 runs on the DTLZ problems for the comparison
algorithms (shaded area is ± std of the mean). Top: 10 variables and 3 objectives. Bottom: 10
variables and 10 objectives. More figures are displayed in Appendices G and H.

302
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4.4 Real-World Network Architecture Search Problem303

Further comparison is conducted on a real-world network architecture search (NAS) problem, the
best three algorithms listed in Table 1 are compared: LORA-MOO, KTA2, and KRVEA. The NAS
problem tested is the NASbench201 implemented in EvoXBench [29], it has 6 variables and 5
objectives. Details of this NAS problem is provided in Appendix E. Considering NASbench201
is a real-world application and we do not know its exact PF, we use HV to evaluate optimization
performance since HV can be calculated without the exact PF. In practice, log(HVdiff) is employed
to amplify the visual difference of the obtained HV values:

log(HVdiff) = log(HVmax −HV )

where HVmax is the maximal HV value on this problem that is provided in EvoXBench.304

Fig. 3 plots the result. As can be seen in
the figure, LORA-MOO outperforms KTA2
and KRVEA on this NAS problem. Although
KTA2 and KRVEA have quicker convergence
rate than LORA-MOO at the beginning of the
optimization, both of them slow down their
convergence speed as the number of evalua-
tions increases. Particularly, KTA2 is trapped
on local optima and thus fails to reach better
results. In comparison, LORA-MOO reaches
better NAS results when the evaluation num-
ber is larger than 250. Figure 3: Log(HVdiff) curves averaged over 30 runs

on the NAS problem for the comparison algorithms.

305

4.5 Runtime Comparison306

We compare the runtime on benchmark problems for all the comparison algorithms to in-307

vestigate the relation between their optimization efficiency and the number of objectives M .308

Fig. 4 illustrates how the runtime of each
comparison algorithm varies as the M in-
creases. It can be observed that the runtime
of KTA2 increases exactly in the same rate as
M increases. In comparison, the runtime of
LORA-MOO increases slightly when M in-
creases. This demonstrates that using angular
surrogates only at the end of environmental
selection process is beneficial to the optimiza-
tion efficiency of LORA-MOO. In addition,
the runtimes of ParEGO, CSEA, REMO, and
OREA do not increase significantly with M
since they do not maintain specific surrogates
to manage the diversity of non-dominated so-
lutions. Consequently, their overall perfor-
mance reported in Table 1 is not desirable.
Overall, LORA-MOO finds a good trade-off
between optimization efficiency and optimiza-
tion results.

Figure 4: Comparison of runtime averaged over
30 runs on benchmark problems D = 10 variables
and M = 3, 4, 6, 8, and 10 objectives for the com-
parison algorithms. For each algorithm, its run-
times are normalized by the runtime it costed on
3-objective problems.

309

5 Conclusion310

In this paper, we propose an efficient MOO method, LORA-MOO, to solve expensive MOOPs.311

Different from existing surrogate modeling approaches, our LORA-MOO learns surrogate models312

from ordinal relations and spherical coordinates. Only one ordinal surrogate is used in the model-313

based search, which hugely improve the efficiency of optimization. Our empirical studies have314

demonstrated that our LORA-MOO significantly outperforms other state-of-the-art efficient MOO315

methods, including SAEAs and MOBO methods.316
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A Background of Many-Objective Optimization448

We consider minimization problems and many-objective optimization problems (MOOPs) can be449

formulated as follows:450

Definition 2. (Expensive Many-Objective Optimization Problem)
Given M expensive objective functions f1, . . . , fM and an evaluation budget FEmax, obtain the
Pareto set for the following many-objective optimization problem:

argmin
x∈X

f(x) = (f1(x), . . . , fM (x))

where X ⊆ RD is the decision space of the problem.451

The Pareto set is defined through the following definitions: Pareto set and Pareto front are defined as452

follows:453

Definition 3. Pareto dominance:
A solution x1 is said to dominate another solution x2 (denoted by x1 ≺ x2) if and only if:

∀k ∈ {1, 2, . . . ,M} : fk(x1) ≤ fk(x2)∧
∃k ∈ {1, 2, . . . ,M} : fk(x1) < fk(x

2)

Definition 4. Non-dominated solution:
A non-dominated solution x? in the decision space X is a solution that cannot be dominated by any
other solutions in X:

@x ∈ X : x ≺ x?

Definition 5. Pareto set:
Pareto set Sps is the set of all non-dominated solutions in the decision space X:

Sps = {x? ∈ X|@x ∈ X : x ≺ x?}
Definition 6. Pareto front:
Pareto front Spf is the corresponding unique set of the Pareto set in the objective space:

Spf = {f(x)|x ∈ Sps}

B Kriging Model454

Kriging model, also known as Gaussian process model [23] or design and analysis of computer455

experiments (DACE) model [32], is a stochastic process model used to approximate an unknown456

objective function. LORA-MOO uses Kriging models to implement angular surrogates and the radial457

surrogate, to avoid potential confusion and help the understanding of our algorithm, the working458

mechanism of the Kriging model is described below.459

A common way to approximate an unknown objective function with n observations is linear regression:460

461

y(xi) =

N∑
k=1

βkfk(x
i) + εi, (6)

where xi is the ith sample point observed from the objective function. fk(xi), βk are a linear or462

nonlinear function of xi and its coefficient, respectively. N is the number of functions f(x). εi is an463

independent error term, which is normally distributed with mean zero and variance σ2.464

However, a stochastic process model such as Kriging does not assume that the error terms ε are465

independent. Hence, an error term εi is rewritten as ε(xi). Moreover, these error terms are assumed466

to be related or correlated to each other. The correlation between two error terms ε(xi) and ε(xj) is467

inversely proportional to the distance between the corresponding points [23]. The correlation function468

in the Kriging model is defined as:469

Corr(ε(xi), ε(xj)) = exp[−dis(xi,xj)], (7)

where the distance between two points xi and xj are measured using the special weighted distance470

formula shown below:471

dis(xi,xj) =

D∑
k=1

θi|xik − x
j
k|
pk , (8)
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where D is the number of decision variables, θθθ ∈ RD≥0 and p ∈ [1, 2]D are parameters of the Kriging472

model. It can be seen from Eq.(7) that the correlation is ranged within (0, 1] and is increasing as the473

distance between two points decreases. Particularly, in Eq.(8), the parameter θk can be explained as474

the importance of the decision variable xk, and the parameter pk can be interpreted as the smoothness475

of the correlation function in the kth coordinate direction.476

Due to the effectiveness of correlation modelling, the regression model in Eq.(6) can be simplified477

without degrading modelling performance [23]. Clearly, all regression terms are replaced with a478

constant term, thus the Kriging regression model can be rewritten as follows:479

y(xi) = µ+ ε(xi), (9)
where µ is the mean of this stochastic process, ε(xi) ∼ N (0, σ2).480

B.1 Training the Kriging model481

To train the Kriging model and estimate the parameters θθθ,p in Eq.(8), the following likelihood482

function is maximised:483

1

(2π)n/2(σ2)n/2|R|1/2
exp[− (y− 1µ)TR−1(y− 1µ)

2σ2
], (10)

where |R| is the determinant of the correlation matrix, each element in the matrix is obtained using484

Eq.(7). y is the n-dimensional vector of dependent variables that observed from the objective function.485

The mean value µ and variance σ2 in Eq.(9) and Eq.(10) can be estimated by:486

µ̂ =
1TR−1y
1TR−11

, (11)
487

σ̂ =
1

n
(y− 1µ̂)TR−1(y− 1µ̂). (12)

B.2 Prediction with the Kriging model488

For a new solution x∗, the Kriging model predicts the approximation of ŷ(x∗) and the uncertainty489

ŝ2(x∗) as follows:490

ŷ(x∗) = µ̂+ r′R−1(y− 1µ̂), (13)
491

ŝ2(x∗) = σ̂2(1− r′R−1r), (14)
where r is a n-dimensional vector of correlations between ε(x∗) and the error terms at the training492

data, which can be calculated via Eq.(7).493

Further details and a comprehensive description of the Kriging model and Gaussian Process can be494

found in [39]. In this paper, all regression-based Kriging models have θθθ ∈ [10−5, 100]D, p = 2D.495

C Additional Description of LORA-MOO496

This section describes LORA-MOO with more details.497

C.1 Quantification of Ordinal Relations498

In order to learn the ordinal landscape of MOOPs, we need to quantify the ordinal relations between499

solutions into numerical values. Alg. 2 illustrates the pseudocode of quantifying ordinal relations3,500

it describes line 4 in Alg. 1 of the main file. It can be seen that Alg. 2 is mainly working on the501

quantification of dominance-based ordinal relations. Artificial ordinal relations will not be added502

unless the ratio of reference points is larger than ratio threshold rpratio (line 5).503

An illustration of artificial clustering-based ordinal relations is given in Fig. 5. By using clustering504

methods, artificial ordinal relations are generated for training ordinal regression surrogates. Picking505

one solution from each cluster ensures the diversity of non-dominated solutions in the first ordinal506

level L1. Meanwhile, the selection within each cluster is based on the projection length on cluster507

center, which is beneficial to the convergence of non-dominated solutions.508

3Symbol ‘←’ indicates the result of a function, Symbol ‘=’ indicates an assignment operation.
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Algorithm 2 Quantify Ordinal Relations for LORA-MOO
Input:
SA: Archive of evaluated solutions;
rp_ratio: Ratio threshold of reference points in SA;
no: Minimal number of ordinal levels.

Procedure:
1: SRP ← Non-dominated solutions in SA that are non-λ-dominated to any other solution in SA.
2: Non-dominated level (The first ordinal level) L1 ← SRP .
3: The number of non-dominated ordinal levels nndl = 1.
4: Ratio of reference points ratio = |SRP |

|SA| .
5: if ratio > rpratio then
6: nndl = nndl + 1.

/* Add Artificial Ordinal Relations. */
7: Divide SRP into |SRP |

2 clusters via KNN clustering.
8: For x in each cluster, calculate the projection length of x on the corresponding cluster center.
9: L1 ← Solutions x with the shortest projection on each cluster.

10: L2 ← Remaining |SRP |
2 solutions in SRP .

11: end if
12: Calculate extension coefficient ec(x) for all x ∈ SA.
13: The number of ordinal levels No = max(no,

|SA|
|SRP | ).

14: Li ← According to the order of ec(x), uniformly divide solutions x ∈ (SA − SRP ) into No -
nndl levels.

15: Ordinal relation value vi = 1− i−1
No−1 for x ∈ Li.

Output: An ordinal training set So consisting of ordinal relation values vi.

Figure 5: Illustration of artificial clustering-based ordinal relations. Left: Non-dominated solutions
without artificial ordinal relations. Right: Non-dominated solutions with artificial ordinal relations.
Red solutions are new non-dominated solutions in L1, remaining blue solutions are moved to next
ordinal level L2. Dash circles are clusters, green vectors are cluster centers.

C.2 Generation of candidate solutions509

Algo. 3 gives the pseudocode of generating candidate solutions, it is the implementation of line 6 in510

Alg. 1 of the main file. In lines 1-9, a population P0 is generated. Since reference points SRP are the511

optimal solutions in SA in terms of convergence, a half initial solutions are generated from SRP (lines512

2-8). To obtain a diverse subset of SRP , LORA-MOO divides SRP into nc clusters before sampling513

solutions (line 2). Once population initialization is completed (line 9), a normal PSO is conducted to514

produce candidate solutions (lines 11-16). Please be noted that, although we are solving expensive515

MOOPs, only a single ordinal surrogate ho is used in the reproduction process (line 14). This is a516

great advantage of LORA-MOO since existing regression-based SAEAs involve all M surrogates in517

the reproduction process. Hence, LORA-MOO is more efficient than these regression-based SAEAs.518

C.3 Angle-Based Diversity Selection519

Alg. 4 gives the pseudocode of selecting the second optimal solution x∗2 from P via our angle-based520

diversity criterion, it is the implementation of line 11 in Alg. 1 of the main file. This angle-based521
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Algorithm 3 Generation of candidate solutions in LORA-MOO
Input:
SRP : Reference points used in the ordinal regression;
ho: Ordinal regression surrogate;
nc: The number of clusters to initialize population P ;
|P |: The size of population P ;
Gmax: The number of generations for reproduction.

Procedure:
1: Pr ← Randomly sample |P |2 solutions from the decision space.
2: Divide SRP into nc clusters via KNN clustering.
3: Pc = ∅.
4: for i = 1 to nc do
5: Pci ← Randomly sample |P |2nc

solutions from ith cluster.
6: Pci ←Mutation ( Pci).
7: Pc = Pc ∪ Pci.
8: end for
9: Initial population P0 = Pr ∪ Pc.

10: ho(P0)← Evaluate P0 on ordinal surrogate ho.
11: Global Optimal Population Pglobal = P0.
12: for i = 1 to Gmax do
13: Pi ← PSO operation on Pi−1 and Pglobal.
14: ho(Pi)← Evaluate Pi on ordinal surrogate ho.
15: Update Pglobal using ho(Pi) and ho(Pi−1).
16: end for
Output: A generation of candidate solutions P = Pglobal.

Algorithm 4 Angle-Based Diversity Selection in LORA-MOO
Input:
SRP : Reference points used in the ordinal regression;
P : Population of candidate solutions;
ha1, . . . , ha(M−1): M -1 angular surrogates;

Procedure:
1: h(ai)(P )← Evaluate P on angular surrogates hai, i = 1, . . . , M − 1.
2: for j = 2 to |P | do
3: xj ← The jth solution in P . /* Assume the first solution in P is selected as x∗1 already. */
4: dang ← Calculate the angles between xj and all reference points in SRP .
5: mdang ← The angle between xj and its nearest reference point.
6: end for
7: x∗2 ← The candidate solution in P with maximal mdang .

Output: The second candidate solution x∗2.

diversity selection does not require extra parameters for generating guidance vectors, it selects the522

candidate solution that is mostly deviate from solutions in SRP . Note that all angular surrogates are523

only used to evaluate one population P during the whole reproduction and environmental selection524

procedures. Therefore, although LORA-MOO fits M surrogates in total (one ordinal surrogate and525

M -1 angular surrogates), its runtime cost is less than other SAEAs which fit M surrogates from526

Cartesian coordinates.527

D Details of Performance Indicators Used in Our Experiments528

In our experiments, we use IGD [4], IGD+ [20], and HV [45] to measure the performance of many529

objective optimization. Both IGD and IGD+ require a subset of Pareto front as reference points. In530

our experiments, the number of IGD/IGD+ reference points is set to 5000 for 3-, 4-, and 6-objective531

optimization problems, as widely used in the literature [40]. Considering the large objective space,532
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Table 2: The HV reference points for all problems in this work.
Problem Reference Points
DTLZ (1,0, . . . , 1.0) ∈ RM
WFG (1,0, . . . , 1.0) ∈ RM

NASBench201 (1.0, 1.0, 1.0, 1.0, 1.0)

we set the number of IGD/IGD+ reference points to 10000 for 8- and 10-objective optimization533

problems to achieve a more accurate estimation of optimization performance. The method proposed534

in [25] is employed to generate well-distributed IGD/IGD+ reference points.535

In comparison, the calculation of HV values does not require a subset of Pareto front as reference536

points. For a set of non-dominated solutions, its HV is the volume in the objective space it dominates537

from the set to a single reference point. Table 2 lists the reference point used for calculating HV538

values. All HV values are calculated using the reference point and the normalized solutions. A539

solution x is normalize by the upper bound and lower bound of Pareto front:540

x− lbpf
ubpf − lbpf

, (15)

where ubpf , lbpf are the upper bound and lower bound of Pareto front, respectively.541

E Details of the NASbench201 Problem542

NASbench201 [12] are discrete optimization problems that aim to identify the optimal architecture543

for neural networks. The search space is defined by a cell with 4 nodes inside, forming a directed544

acyclic graph as illustrated in Fig. 6. The decision variables are 6 edges, each edge is associated

Figure 6: Diagram of a network architecture in NASbench201.
545

with an operation selected from a predefined operation set {zeroize, skip-connect, 1x1 convolution,546

3x3 convolution, 3x3 average pool}. Therefore, a network architecture can be encoded into a 6-547

dimensional decision vector with 5 discrete numbers. In total, there are 56=15,625 different candidates548

for neural architecture search.549

The optimization objectives in NASbench201 varies in different optimization problems. In this550

paper, our NASbench201 problem consider 5 objectives, including the accuracy in CI-FAR10 dataset,551

groundtruth floating point operations (FLOPs), the number of parameters, latency, and energy cost.552

All these objectives are normalized to [0, 1] in the optimization. The optimization problem can be553

formulated as554

F (x) = {facc(x), fFLOPs(x), fparam(x), flatency(x), fenergy(x)}, (16)

where decision vector x ∈ {0, 1, 2, 3, 4}6.555

F Complete Results of Ablation Studies556

In this section, we report complete results of our ablation studies that are not displayed in the main557

paper. We conduct four ablation studies to investigate the effect of the following four parameters on558

the optimization performance of LORA-MOO.559

1. no: The minimal number of ordinal levels. A parameter in the modeling of our ordinal-560

regression-based surrogate ho.561
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2. λ: The dominance coefficient. A parameter in the modeling of our ordinal-regression-based562

surrogate ho.563

3. rpratio: The ratio threshold of reference points SRP . A parameter to determine whether to564

introduce artificial ordinal relations via clustering.565

4. nc: The number of clusters generated from reference points SRP to initialize PSO population.566

A parameter in the generation of candidate solutions.567

Setup of Ablation Studies. Our ablation studies are conducted on 7 DTLZ and 9 WFG benchmark568

optimization problems. These benchmark problems have different features, such as unimodal, multi-569

modal, scaled, degenerated, and discontinuous. Therefore, the effect of four parameters can be570

investigated comprehensively. Considering our paper focuses on many-objective optimization instead571

of scalable optimization, we are interested in the optimization performance under different numbers572

of objectives M rather than the performance under different numbers of decision variables D. Hence,573

we set D = 10 for all benchmark optimization problems, as suggested in literature [5, 31, 34, 17]. In574

comparison, we set M = {3, 6, 10} to observe the optimization performance with different objectives.575

Other setups are the same as described in Section 4.1 of the main file.576

F.1 Influence of Minimal Number of Ordinal Levels no.577

This subsection investigates the influence of minimal number of ordinal levels no on the optimization578

performance. We set no = {10, 8, 6, 4, 3} to generate five LORA-MOO variants. For all variants, in579

this ablation study, we tentatively set λ = 0.2, rpratio = 2/3, nc = 5 for a fair comparison. The IGD+580

values obtained by five LORA-MOO variants with different no are reported in Table 3.581

In the last five rows of Table 3, the summary of statistical test results shows that no = 4 is the optimal582

parameter setup for LORA-MOO, because it is the only variant that is significantly superior to or583

equivalent to all other variants. In comparison, the LORA-MOO variant with no = 10, 8, 6, 3 are584

significantly inferior to other 4, 1, 1, 2 LORA-MOO variants, respectively.585

F.2 Influence of Dominance Coefficient λ.586

In this subsection, we analyze the influence of λ-dominance coefficient λ on the optimization587

performance. We set λ = {0, 0.1, 0.2, 0.3} to generate four LORA-MOO variants. As determined in588

the previous ablation study, we set no = 4 for all variants. The remaining two parameters rpratio and589

nc are set to 2/3 and 5, respectively. The IGD+ values obtained by four LORA-MOO variants with590

different λ are reported in Table 4.591

The last four rows of Table 4 shows that λ = 0.2 is the optimal parameter setup for LORA-MOO.592

The variant of λ = 0.2 is significantly superior to both the variants of λ = 0 and λ = 0.1, and it is593

equivalent to the variant of λ = 0.3. We note that the variant of λ = 0.3 is also significantly superior594

to both the variants of λ = 0 and λ = 0.1. However, this variant wins/ties/losses 30/105/9 statistical595

tests in total, while the variant of λ = 0.2 wins/ties/losses 32/109/3 statistical tests in total. Therefore,596

setting λ = 0.2 is preferable to setting λ = 0.3.597

Note that all other LORA-MOO variants outperform the variant of λ = 0, this implies that excluding598

some samples from the set of non-dominated solutions is beneficial to the performance of ordinal599

regression. The effectiveness of using our λ-dominance approach in LORA-MOO is demonstrated.600

F.3 Influence of Ratio Threshold rpratio.601

In this subsection, we investigate the influence of ratio threshold rpratio on the optimization perfor-602

mance. rpratio is the threshold to determine when to add artificial ordinal relations for the training603

of ordinal surrogate ho. We set rpratio = {1, 2/3, 1/2, 1/3} to generate four LORA-MOO variants.604

For all variants, we set no, λ to 4, 0.2, respectively, which are consistent with our conclusions in605

previous ablation studies. Parameter nc is tentatively set to 5. The IGD+ values obtained by four606

LORA-MOO variants with different rpratio are reported in Table 5. It should be noted that, when the607

number of objectives M = 3, the results of rpratio = 1 are the same as the results of rpratio = 2/3,608

because the ratio of reference points in archive SA is always lower than 2/3. Consequently, when M609

= 3, setting ratio threshold rpratio to either 1 or 2/3 makes no difference to the optimization process610

of LORA-MOO. Similarly, the results of rpratio = 1/3 on some problems are the same as the results611
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Table 3: Statistical results of the IGD+ value obtained by LORA-MOO with different no on 48
benchmark optimization problems over 15 runs. The last five rows count the total results of Wilcoxon
rank sum tests (significance level is 0.05). ‘+’, ‘≈’, and ‘−’ denote the corresponding LORA-MOO
variant is statistically significantly superior to, almost equivalent to, and inferior to the compared
variants in Wilcoxon tests, respectively.

Problems M no=10 no=8 no=6 no=4 no=3
DTLZ1 3 4.63e+1(1.60e+1) 4.64e+1(1.23e+1) 5.61e+1(2.04e+1) 4.84e+1(1.34e+1) 4.58e+1(1.85e+1)

6 1.35e+1(7.10e+0) 1.77e+1(5.08e+0) 1.87e+1(6.85e+0) 1.64e+1(3.24e+0) 1.50e+1(7.84e+0)
10 1.56e-1(3.58e-2) 1.60e-1(3.60e-2) 1.63e-1(6.95e-2) 1.60e-1(2.67e-2) 1.63e-1(3.51e-2)

DTLZ2 3 4.50e-2(3.90e-3) 4.54e-2(4.16e-3) 4.38e-2(2.61e-3) 4.45e-2(4.72e-3) 4.39e-2(3.88e-3)
6 2.67e-1(1.47e-2) 2.73e-1(1.93e-2) 2.64e-1(1.67e-2) 2.57e-1(1.91e-2) 2.51e-1(2.20e-2)

10 3.04e-1(1.55e-2) 2.97e-1(1.63e-2) 2.94e-1(1.24e-2) 3.00e-1(1.31e-2) 3.11e-1(1.78e-2)
DTLZ3 3 1.50e+2(4.72e+1) 1.60e+2(4.92e+1) 1.55e+2(5.03e+1) 1.48e+2(4.92e+1) 1.45e+2(4.10e+1)

6 5.43e+1(1.85e+1) 5.65e+1(1.99e+1) 6.92e+1(2.39e+1) 6.68e+1(1.64e+1) 6.24e+1(2.34e+1)
10 4.51e-1(4.40e-2) 4.68e-1(6.10e-2) 4.35e-1(3.71e-2) 4.72e-1(5.45e-2) 4.85e-1(7.87e-2)

DTLZ4 3 1.03e-1(1.28e-1) 8.77e-2(1.30e-1) 9.16e-2(1.25e-1) 1.05e-1(1.27e-1) 1.15e-1(1.33e-1)
6 1.74e-1(3.63e-2) 1.60e-1(3.35e-2) 1.84e-1(3.79e-2) 1.75e-1(3.57e-2) 1.68e-1(2.11e-2)

10 2.29e-1(1.05e-2) 2.29e-1(9.43e-3) 2.36e-1(1.27e-2) 2.38e-1(1.35e-2) 2.42e-1(1.71e-2)
DTLZ5 3 8.65e-3(1.39e-3) 8.76e-3(1.53e-3) 9.03e-3(1.67e-3) 9.26e-3(1.22e-3) 9.26e-3(2.23e-3)

6 3.43e-2(7.07e-3) 3.28e-2(7.74e-3) 3.24e-2(7.73e-3) 3.25e-2(8.25e-3) 3.33e-2(9.38e-3)
10 4.06e-3(6.52e-4) 3.99e-3(4.47e-4) 3.94e-3(4.04e-4) 3.97e-3(9.34e-4) 4.02e-3(1.10e-3)

DTLZ6 3 5.09e-2(5.72e-2) 1.05e-1(2.57e-1) 2.45e-2(8.80e-3) 4.67e-2(4.92e-2) 3.12e-2(1.58e-2)
6 9.45e-1(1.13e+0) 5.16e-1(6.72e-1) 5.42e-1(8.28e-1) 7.52e-1(9.50e-1) 1.34e+0(1.04e+0)

10 4.48e-2(3.90e-2) 2.50e-2(7.37e-3) 5.14e-2(4.26e-2) 4.18e-2(4.66e-2) 4.72e-2(4.57e-2)
DTLZ7 3 1.19e-1(1.00e-1) 9.47e-2(1.15e-1) 1.16e-1(7.80e-2) 1.61e-1(2.77e-1) 1.46e-1(1.27e-1)

6 1.90e+0(9.89e-1) 1.72e+0(6.52e-1) 1.77e+0(7.63e-1) 1.25e+0(4.72e-1) 1.54e+0(8.80e-1)
10 1.19e+0(9.00e-2) 1.18e+0(9.13e-2) 1.17e+0(8.41e-2) 1.17e+0(8.97e-2) 1.22e+0(1.13e-1)

WFG1 3 1.65e+0(5.78e-2) 1.65e+0(3.73e-2) 1.64e+0(3.86e-2) 1.67e+0(4.67e-2) 1.65e+0(5.96e-2)
6 2.24e+0(5.47e-2) 2.20e+0(6.93e-2) 2.23e+0(4.37e-2) 2.22e+0(6.80e-2) 2.21e+0(5.52e-2)

10 2.62e+0(8.72e-2) 2.58e+0(7.39e-2) 2.59e+0(7.81e-2) 2.62e+0(8.93e-2) 2.58e+0(1.16e-1)
WFG2 3 2.39e-1(3.16e-2) 2.49e-1(4.94e-2) 2.68e-1(4.81e-2) 2.52e-1(4.94e-2) 2.66e-1(4.58e-2)

6 5.91e-1(1.79e-1) 5.85e-1(9.10e-2) 5.61e-1(1.29e-1) 5.43e-1(1.51e-1) 5.67e-1(1.07e-1)
10 1.50e+0(3.53e-1) 1.41e+0(2.62e-1) 1.42e+0(3.21e-1) 1.47e+0(4.49e-1) 1.39e+0(2.82e-1)

WFG3 3 2.42e-1(4.10e-2) 2.66e-1(3.75e-2) 2.57e-1(3.28e-2) 2.41e-1(3.21e-2) 2.56e-1(5.04e-2)
6 6.19e-1(8.08e-2) 6.28e-1(6.58e-2) 6.15e-1(9.32e-2) 5.92e-1(7.43e-2) 6.19e-1(1.22e-1)

10 6.24e-1(9.78e-2) 6.07e-1(8.67e-2) 6.18e-1(8.74e-2) 6.60e-1(8.00e-2) 6.61e-1(8.80e-2)
WFG4 3 2.62e-1(5.18e-2) 2.52e-1(1.99e-2) 2.51e-1(1.27e-2) 2.48e-1(1.04e-2) 2.38e-1(8.69e-3)

6 1.41e+0(2.17e-1) 1.34e+0(1.96e-1) 1.27e+0(2.31e-1) 1.30e+0(2.41e-1) 1.58e+0(4.08e-1)
10 4.12e+0(5.64e-1) 3.63e+0(6.43e-1) 3.55e+0(5.77e-1) 3.99e+0(7.21e-1) 4.08e+0(7.57e-1)

WFG5 3 2.93e-1(4.46e-2) 2.89e-1(5.58e-2) 3.01e-1(9.11e-2) 3.10e-1(5.46e-2) 3.19e-1(9.97e-2)
6 1.69e+0(8.33e-2) 1.72e+0(8.16e-2) 1.66e+0(9.57e-2) 1.69e+0(1.53e-1) 1.83e+0(1.34e-1)

10 4.76e+0(2.87e-1) 4.57e+0(3.19e-1) 4.10e+0(3.07e-1) 3.71e+0(3.87e-1) 3.71e+0(4.39e-1)
WFG6 3 4.66e-1(4.13e-2) 4.91e-1(4.44e-2) 4.51e-1(4.36e-2) 4.76e-1(6.61e-2) 4.58e-1(8.29e-2)

6 1.70e+0(1.48e-1) 1.65e+0(9.89e-2) 1.61e+0(1.10e-1) 1.67e+0(1.35e-1) 1.81e+0(2.71e-1)
10 3.88e+0(6.68e-1) 3.60e+0(3.51e-1) 3.64e+0(2.96e-1) 3.45e+0(4.44e-1) 3.72e+0(5.21e-1)

WFG7 3 3.12e-1(2.16e-2) 3.02e-1(2.17e-2) 3.00e-1(2.68e-2) 3.02e-1(2.75e-2) 2.99e-1(2.96e-2)
6 1.78e+0(1.05e-1) 1.69e+0(1.27e-1) 1.73e+0(1.38e-1) 1.67e+0(1.85e-1) 1.74e+0(2.32e-1)

10 5.15e+0(3.94e-1) 5.11e+0(2.97e-1) 4.89e+0(2.62e-1) 4.97e+0(3.07e-1) 4.94e+0(4.00e-1)
WFG8 3 5.84e-1(5.34e-2) 6.09e-1(5.54e-2) 6.07e-1(4.89e-2) 5.68e-1(4.78e-2) 5.70e-1(4.15e-2)

6 2.19e+0(1.08e-1) 2.11e+0(9.97e-2) 2.15e+0(1.22e-1) 2.25e+0(1.12e-1) 2.37e+0(1.76e-1)
10 5.22e+0(4.43e-1) 5.31e+0(3.08e-1) 4.99e+0(3.75e-1) 5.16e+0(5.37e-1) 5.37e+0(4.82e-1)

WFG9 3 3.79e-1(7.28e-2) 3.85e-1(1.20e-1) 3.73e-1(8.90e-2) 4.12e-1(1.17e-1) 4.17e-1(1.11e-1)
6 1.87e+0(1.95e-1) 1.73e+0(2.02e-1) 1.78e+0(2.45e-1) 1.77e+0(2.57e-1) 1.76e+0(1.35e-1)

10 5.03e+0(2.28e-1) 4.63e+0(4.11e-1) 4.44e+0(4.68e-1) 3.96e+0(3.83e-1) 3.73e+0(2.50e-1)
+/ ≈ /− no=10 -/-/- 1/41/6 2/40/6 0/44/4 3/41/4
+/ ≈ /− no=8 6/41/1 -/-/- 2/43/3 3/42/3 4/40/4
+/ ≈ /− no=6 6/40/2 3/43/2 -/-/- 3/41/4 7/38/3
+/ ≈ /− no=4 4/44/0 3/42/3 4/41/3 -/-/- 2/45/1
+/ ≈ /− no=3 4/41/3 4/40/4 3/38/7 1/45/2 -/-/-

obtained by setting rpratio to 1/2, because on these problems, the ratio of reference points in SA is612

always higher than 1/2.613

As shown in Table 5, the variant of rpratio = 1/2 outperforms other variants and achieves the optimal614

behavior. Therefore, we set rpratio = 1/2 for LORA-MOO. In comparison, the variants of rpratio615

= 2/3 and rpratio = 1/3 have competitive performance, both of them are inferior to the variant of616

rpratio = 1/2 but significantly superior to the variant of rpratio = 1.617

Setting rpratio = 1 indicates this LORA-MOO variant will never introduce artificial ordinal relations618

for the learning of the ordinal surrogate. The ordinal surrogate in this variant is trained completely on619
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Table 4: Statistical results of the IGD+ value obtained by LORA-MOO with different λ on 48
benchmark optimization problems over 15 runs. The last four rows count the total results of Wilcoxon
rank sum tests (significance level is 0.05). ‘+’, ‘≈’, and ‘−’ denote the corresponding LORA-MOO
variant is statistically significantly superior to, almost equivalent to, and inferior to the compared
variants in Wilcoxon tests, respectively.

Problems M λ = 0 λ = 0.1 λ = 0.2 λ = 0.3
DTLZ1 3 7.51e+1(1.74e+1) 6.88e+1(1.28e+1) 4.84e+1(1.34e+1) 4.96e+1(1.56e+1)

6 2.74e+1(5.30e+0) 1.73e+1(3.80e+0) 1.64e+1(3.24e+0) 1.41e+1(7.02e+0)
10 1.62e-1(5.15e-2) 1.43e-1(2.33e-2) 1.60e-1(2.67e-2) 1.53e-1(2.28e-2)

DTLZ2 3 4.95e-2(3.32e-3) 4.89e-2(5.80e-3) 4.45e-2(4.72e-3) 4.81e-2(4.10e-3)
6 2.51e-1(2.91e-2) 2.56e-1(2.48e-2) 2.57e-1(1.91e-2) 2.67e-1(1.34e-2)

10 2.97e-1(1.72e-2) 2.94e-1(1.54e-2) 3.00e-1(1.31e-2) 2.92e-1(1.35e-2)
DTLZ3 3 1.91e+2(6.02e+1) 1.80e+2(2.31e+1) 1.48e+2(4.92e+1) 1.57e+2(4.54e+1)

6 9.01e+1(3.13e+1) 8.06e+1(2.18e+1) 6.68e+1(1.64e+1) 6.05e+1(2.03e+1)
10 5.74e-1(2.57e-1) 4.60e-1(5.69e-2) 4.72e-1(5.45e-2) 4.48e-1(4.14e-2)

DTLZ4 3 9.37e-2(1.30e-1) 1.16e-1(1.35e-1) 1.05e-1(1.27e-1) 1.02e-1(1.28e-1)
6 1.72e-1(2.91e-2) 1.63e-1(3.51e-2) 1.75e-1(3.57e-2) 1.61e-1(1.96e-2)

10 2.36e-1(1.29e-2) 2.37e-1(1.77e-2) 2.38e-1(1.35e-2) 2.28e-1(1.05e-2)
DTLZ5 3 1.40e-2(2.50e-3) 1.13e-2(3.34e-3) 9.26e-3(1.22e-3) 7.96e-3(1.58e-3)

6 5.00e-2(9.20e-3) 4.52e-2(1.60e-2) 3.25e-2(8.25e-3) 3.48e-2(5.12e-3)
10 5.16e-3(9.20e-4) 4.44e-3(1.43e-3) 3.97e-3(9.34e-4) 4.10e-3(3.97e-4)

DTLZ6 3 1.54e-1(1.65e-1) 4.14e-2(1.61e-2) 4.67e-2(4.92e-2) 4.13e-2(2.30e-2)
6 1.72e+0(7.66e-1) 1.52e+0(1.08e+0) 7.52e-1(9.50e-1) 2.45e-1(4.79e-1)

10 9.60e-2(7.76e-2) 6.08e-2(5.26e-2) 4.18e-2(4.66e-2) 2.99e-2(9.13e-3)
DTLZ7 3 6.57e-2(1.85e-2) 1.25e-1(1.06e-1) 1.61e-1(2.77e-1) 1.05e-1(1.80e-1)

6 2.74e+0(1.22e+0) 1.53e+0(8.21e-1) 1.25e+0(4.72e-1) 1.66e+0(1.06e+0)
10 1.19e+0(9.70e-2) 1.18e+0(8.58e-2) 1.17e+0(8.97e-2) 1.27e+0(1.61e-1)

WFG1 3 1.74e+0(4.92e-2) 1.67e+0(4.82e-2) 1.67e+0(4.67e-2) 1.64e+0(3.52e-2)
6 2.30e+0(3.54e-2) 2.22e+0(8.09e-2) 2.22e+0(6.80e-2) 2.23e+0(7.54e-2)

10 2.71e+0(6.98e-2) 2.63e+0(7.80e-2) 2.62e+0(8.93e-2) 2.63e+0(7.71e-2)
WFG2 3 2.94e-1(5.47e-2) 2.69e-1(5.46e-2) 2.52e-1(4.94e-2) 2.55e-1(3.46e-2)

6 6.84e-1(1.47e-1) 5.38e-1(1.05e-1) 5.43e-1(1.51e-1) 6.65e-1(2.55e-1)
10 1.67e+0(5.02e-1) 1.27e+0(2.80e-1) 1.47e+0(4.49e-1) 1.37e+0(3.46e-1)

WFG3 3 4.08e-1(4.84e-2) 3.25e-1(3.53e-2) 2.41e-1(3.21e-2) 2.70e-1(5.19e-2)
6 8.23e-1(6.96e-2) 7.51e-1(9.15e-2) 5.92e-1(7.43e-2) 4.94e-1(6.55e-2)

10 7.58e-1(7.71e-2) 7.71e-1(1.08e-1) 6.60e-1(8.00e-2) 6.35e-1(1.04e-1)
WFG4 3 2.55e-1(1.63e-2) 2.56e-1(1.48e-2) 2.48e-1(1.04e-2) 2.57e-1(1.44e-2)

6 1.28e+0(2.24e-1) 1.31e+0(2.39e-1) 1.30e+0(2.41e-1) 1.37e+0(2.50e-1)
10 3.85e+0(5.45e-1) 3.84e+0(5.48e-1) 3.99e+0(7.21e-1) 3.79e+0(4.91e-1)

WFG5 3 3.84e-1(1.18e-1) 2.89e-1(6.47e-2) 3.10e-1(5.46e-2) 3.11e-1(6.94e-2)
6 1.77e+0(1.36e-1) 1.72e+0(1.43e-1) 1.69e+0(1.53e-1) 1.72e+0(1.20e-1)

10 3.70e+0(4.80e-1) 3.58e+0(2.79e-1) 3.71e+0(3.87e-1) 4.38e+0(2.67e-1)
WFG6 3 4.78e-1(7.23e-2) 4.63e-1(5.50e-2) 4.76e-1(6.61e-2) 4.74e-1(4.87e-2)

6 1.62e+0(1.67e-1) 1.59e+0(1.21e-1) 1.67e+0(1.35e-1) 1.60e+0(1.52e-1)
10 3.48e+0(2.80e-1) 3.43e+0(3.18e-1) 3.45e+0(4.44e-1) 3.70e+0(3.85e-1)

WFG7 3 3.16e-1(2.20e-2) 3.13e-1(3.79e-2) 3.02e-1(2.75e-2) 3.17e-1(4.42e-2)
6 1.62e+0(1.57e-1) 1.68e+0(1.80e-1) 1.67e+0(1.85e-1) 1.69e+0(1.88e-1)

10 4.88e+0(4.14e-1) 4.99e+0(3.94e-1) 4.97e+0(3.07e-1) 4.98e+0(2.87e-1)
WFG8 3 5.96e-1(4.58e-2) 6.09e-1(3.63e-2) 5.68e-1(4.78e-2) 5.96e-1(3.58e-2)

6 2.21e+0(1.49e-1) 2.20e+0(1.18e-1) 2.25e+0(1.12e-1) 2.20e+0(7.76e-2)
10 5.07e+0(4.48e-1) 4.96e+0(4.84e-1) 5.16e+0(5.37e-1) 5.09e+0(3.92e-1)

WFG9 3 3.72e-1(3.91e-2) 3.82e-1(9.02e-2) 4.12e-1(1.17e-1) 3.80e-1(1.00e-1)
6 1.76e+0(2.07e-1) 1.67e+0(1.86e-1) 1.77e+0(2.57e-1) 1.81e+0(1.69e-1)

10 3.87e+0(3.66e-1) 4.13e+0(3.55e-1) 3.96e+0(3.83e-1) 4.76e+0(2.31e-1)
+/ ≈ /− λ=0 -/-/- 0/35/13 0/29/19 3/27/18
+/ ≈ /− λ=0.1 13/35/0 -/-/- 0/38/10 3/36/9
+/ ≈ /− λ=0.2 19/29/0 10/38/0 -/-/- 3/42/3
+/ ≈ /− λ=0.3 18/27/3 9/36/3 3/42/3 -/-/-

the basis of dominance ordinal relations. When the number of objectives M is large, a majority of620

evaluated solutions in archive SA are non-dominated, leading to a large ratio of reference points SRP621

in SA. As a result, there would be a significant imbalance between the number of evaluated solutions622

in each ordinal level, which causes a poor performance on ordinal surrogate and LORA-MOO. In623

particular, on most 10-objective WFG problems, the variant of rpratio = 1 performs worse than all624

other variants. This observation shows the detrimental effect of imbalance solutions in ordinal levels625

on the optimization performance, which also demonstrates the effectiveness of using artificial ordinal626

relations in LORA-MOO to address many-objective optimization problems.627
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Table 5: Statistical results of the IGD+ value obtained by LORA-MOO with different rpratio on 48
benchmark optimization problems over 15 runs. The last four rows count the total results of Wilcoxon
rank sum tests (significance level is 0.05). ‘+’, ‘≈’, and ‘−’ denote the corresponding LORA-MOO
variant is statistically significantly superior to, almost equivalent to, and inferior to the compared
variants in Wilcoxon tests, respectively.

Problems M rpratio=1 rpratio=2/3 rpratio=1/2 rpratio=1/3
DTLZ1 3 4.84e+1(1.34e+1) 4.84e+1(1.34e+1) 4.75e+1(1.54e+1) 4.75e+1(1.54e+1)

6 1.83e+1(1.06e+1) 1.64e+1(3.24e+0) 1.35e+1(6.23e+0) 1.35e+1(6.23e+0)
10 1.63e-1(2.74e-2) 1.60e-1(2.67e-2) 1.58e-1(2.81e-2) 1.58e-1(2.81e-2)

DTLZ2 3 4.45e-2(4.72e-3) 4.45e-2(4.72e-3) 4.37e-2(3.41e-3) 3.60e-2(3.69e-3)
6 2.57e-1(1.93e-2) 2.57e-1(1.91e-2) 1.80e-1(1.17e-2) 1.80e-1(7.34e-3)

10 3.74e-1(8.09e-3) 3.00e-1(1.31e-2) 2.87e-1(1.71e-2) 2.87e-1(1.71e-2)
DTLZ3 3 1.48e+2(4.92e+1) 1.48e+2(4.92e+1) 1.54e+2(4.89e+1) 1.54e+2(4.89e+1)

6 6.52e+1(2.87e+1) 6.68e+1(1.64e+1) 6.01e+1(2.61e+1) 6.01e+1(2.61e+1)
10 4.23e-1(5.63e-2) 4.72e-1(5.45e-2) 4.84e-1(5.71e-2) 4.84e-1(5.71e-2)

DTLZ4 3 1.05e-1(1.27e-1) 1.05e-1(1.27e-1) 1.06e-1(1.32e-1) 1.06e-1(1.32e-1)
6 1.70e-1(3.56e-2) 1.75e-1(3.57e-2) 1.79e-1(4.06e-2) 1.79e-1(4.06e-2)

10 2.33e-1(1.26e-2) 2.38e-1(1.35e-2) 2.38e-1(1.56e-2) 2.49e-1(1.46e-2)
DTLZ5 3 9.26e-3(1.22e-3) 9.26e-3(1.22e-3) 8.98e-3(1.67e-3) 8.71e-3(1.89e-3)

6 3.40e-2(9.35e-3) 3.25e-2(8.25e-3) 3.31e-2(7.84e-3) 2.81e-2(1.15e-2)
10 3.83e-3(6.08e-4) 3.97e-3(9.34e-4) 4.85e-3(1.78e-3) 4.92e-3(1.54e-3)

DTLZ6 3 4.67e-2(4.92e-2) 4.67e-2(4.92e-2) 6.38e-2(7.62e-2) 2.56e-2(6.58e-3)
6 4.70e-1(7.64e-1) 7.52e-1(9.50e-1) 7.28e-1(1.00e+0) 1.25e+0(1.13e+0)

10 3.38e-2(1.18e-2) 4.18e-2(4.66e-2) 3.92e-2(3.62e-2) 3.27e-2(2.08e-2)
DTLZ7 3 1.61e-1(2.77e-1) 1.61e-1(2.77e-1) 1.36e-1(1.32e-1) 7.58e-2(2.50e-2)

6 1.41e+0(9.24e-1) 1.25e+0(4.72e-1) 1.21e+0(7.32e-1) 1.28e+0(6.69e-1)
10 1.17e+0(8.28e-2) 1.17e+0(8.97e-2) 1.23e+0(1.33e-1) 1.23e+0(1.33e-1)

WFG1 3 1.67e+0(4.67e-2) 1.67e+0(4.67e-2) 1.67e+0(4.86e-2) 1.67e+0(4.86e-2)
6 2.20e+0(6.03e-2) 2.22e+0(6.80e-2) 2.21e+0(5.69e-2) 2.21e+0(5.69e-2)

10 2.61e+0(1.15e-1) 2.62e+0(8.93e-2) 2.55e+0(1.15e-1) 2.55e+0(1.15e-1)
WFG2 3 2.52e-1(4.94e-2) 2.52e-1(4.94e-2) 2.48e-1(5.57e-2) 2.48e-1(5.57e-2)

6 5.73e-1(1.75e-1) 5.43e-1(1.51e-1) 5.35e-1(9.94e-2) 5.35e-1(9.94e-2)
10 1.37e+0(3.08e-1) 1.47e+0(4.49e-1) 1.36e+0(3.13e-1) 1.25e+0(3.81e-1)

WFG3 3 2.41e-1(3.21e-2) 2.41e-1(3.21e-2) 2.51e-1(3.82e-2) 2.51e-1(3.26e-2)
6 5.82e-1(4.97e-2) 5.92e-1(7.43e-2) 5.83e-1(8.20e-2) 6.05e-1(9.65e-2)

10 6.09e-1(4.65e-2) 6.60e-1(8.00e-2) 6.93e-1(1.22e-1) 6.63e-1(1.05e-1)
WFG4 3 2.48e-1(1.04e-2) 2.48e-1(1.04e-2) 2.49e-1(2.61e-2) 2.96e-1(9.20e-2)

6 2.06e+0(4.21e-1) 1.30e+0(2.41e-1) 1.35e+0(3.15e-1) 1.35e+0(3.15e-1)
10 5.51e+0(6.14e-1) 3.99e+0(7.21e-1) 3.86e+0(6.03e-1) 3.86e+0(6.03e-1)

WFG5 3 3.10e-1(5.46e-2) 3.10e-1(5.46e-2) 3.06e-1(1.05e-1) 4.28e-1(1.46e-1)
6 1.93e+0(1.20e-1) 1.69e+0(1.53e-1) 1.72e+0(1.26e-1) 1.72e+0(1.26e-1)

10 5.50e+0(3.80e-1) 3.71e+0(3.87e-1) 3.63e+0(4.80e-1) 3.63e+0(4.80e-1)
WFG6 3 4.76e-1(6.61e-2) 4.76e-1(6.61e-2) 4.87e-1(1.00e-1) 6.26e-1(1.19e-1)

6 2.21e+0(2.26e-1) 1.67e+0(1.35e-1) 1.62e+0(1.85e-1) 1.62e+0(1.85e-1)
10 5.43e+0(4.78e-1) 3.45e+0(4.44e-1) 3.19e+0(2.14e-1) 3.19e+0(2.14e-1)

WFG7 3 3.02e-1(2.75e-2) 3.02e-1(2.75e-2) 2.95e-1(2.76e-2) 2.98e-1(3.12e-2)
6 2.10e+0(2.12e-1) 1.67e+0(1.85e-1) 1.58e+0(1.47e-1) 1.58e+0(1.47e-1)

10 5.85e+0(5.16e-1) 4.97e+0(3.07e-1) 4.76e+0(4.89e-1) 4.76e+0(4.89e-1)
WFG8 3 5.68e-1(4.78e-2) 5.68e-1(4.78e-2) 5.71e-1(4.02e-2) 5.83e-1(4.65e-2)

6 2.61e+0(2.09e-1) 2.25e+0(1.12e-1) 2.21e+0(1.21e-1) 2.21e+0(1.21e-1)
10 6.41e+0(4.20e-1) 5.16e+0(5.37e-1) 5.06e+0(5.80e-1) 5.06e+0(5.80e-1)

WFG9 3 4.12e-1(1.17e-1) 4.12e-1(1.17e-1) 3.81e-1(1.02e-1) 3.66e-1(8.95e-2)
6 1.86e+0(2.00e-1) 1.77e+0(2.57e-1) 1.48e+0(2.27e-1) 1.45e+0(1.77e-1)

10 5.57e+0(2.73e-1) 3.96e+0(3.83e-1) 4.02e+0(4.62e-1) 4.02e+0(4.62e-1)
+/ ≈ /− rpratio=1 -/-/- 2/34/12 2/32/14 5/28/15
+/ ≈ /− rpratio=2/3 12/34/2 -/-/- 0/46/2 3/42/3
+/ ≈ /− rpratio=1/2 14/32/2 2/46/0 -/-/- 2/45/1
+/ ≈ /− rpratio=1/3 15/28/5 3/42/3 1/45/2 -/-/-

F.4 Influence of Clustering Number for Reproduction nc.628

This subsection analyzes the influence of clustering number nc on the optimization performance. nc629

is used in the reproduction process to initialize the PSO population. We set nc = {1, 3, 5, 7, 10} to630

generate five LORA-MOO variants. According to the conclusions of previous ablation studies, in this631

ablation study, we set no = 4, λ = 0.2, rpratio = 1/2 for all variants. The IGD+ values obtained by632

five LORA-MOO variants with different nc are reported in Table 6.633

It can be observed that both the variants of nc = 5 and nc = 7 outperform three other variants and are634

inferior to one variant, showing the optimal performance over other variants in this ablation study.635

In comparison, the variants of nc = 3 and nc = 10 are significantly superior to two variants but are636
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Table 6: Statistical results of the IGD+ value obtained by LORA-MOO with different nc on 48
benchmark optimization problems over 15 runs. The last five rows count the total results of Wilcoxon
rank sum tests (significance level is 0.05). ‘+’, ‘≈’, and ‘−’ denote the corresponding LORA-MOO
variant is statistically significantly superior to, almost equivalent to, and inferior to the compared
variants in Wilcoxon tests, respectively.

Problems M nc=1 nc=3 nc=5 nc=7 nc=10
DTLZ1 3 6.45e+1(1.31e+1) 5.77e+1(2.13e+1) 4.75e+1(1.54e+1) 4.02e+1(1.46e+1) 3.91e+1(1.53e+1)

6 2.22e+1(5.99e+0) 1.67e+1(4.35e+0) 1.35e+1(6.23e+0) 1.55e+1(5.29e+0) 1.56e+1(7.51e+0)
10 1.52e-1(3.01e-2) 1.67e-1(4.03e-2) 1.58e-1(2.81e-2) 1.58e-1(3.11e-2) 1.64e-1(3.19e-2)

DTLZ2 3 4.40e-2(3.06e-3) 4.38e-2(4.17e-3) 4.37e-2(3.41e-3) 4.48e-2(3.51e-3) 4.29e-2(4.38e-3)
6 1.84e-1(1.50e-2) 1.79e-1(1.02e-2) 1.80e-1(1.17e-2) 1.79e-1(9.20e-3) 1.80e-1(1.49e-2)

10 2.89e-1(1.00e-2) 2.97e-1(1.40e-2) 2.87e-1(1.71e-2) 2.90e-1(1.22e-2) 2.85e-1(1.09e-2)
DTLZ3 3 1.89e+2(4.68e+1) 1.61e+2(3.71e+1) 1.54e+2(4.89e+1) 1.58e+2(3.45e+1) 1.57e+2(3.17e+1)

6 7.44e+1(2.34e+1) 6.06e+1(1.32e+1) 6.01e+1(2.61e+1) 6.65e+1(2.14e+1) 6.44e+1(2.63e+1)
10 4.65e-1(1.12e-1) 4.70e-1(8.67e-2) 4.84e-1(5.71e-2) 4.92e-1(1.38e-1) 4.61e-1(4.94e-2)

DTLZ4 3 8.66e-2(1.25e-1) 1.35e-1(1.64e-1) 1.06e-1(1.32e-1) 8.82e-2(1.26e-1) 1.04e-1(1.28e-1)
6 1.69e-1(2.20e-2) 1.80e-1(3.27e-2) 1.79e-1(4.06e-2) 1.81e-1(4.77e-2) 1.79e-1(2.78e-2)

10 2.29e-1(1.15e-2) 2.30e-1(1.06e-2) 2.38e-1(1.56e-2) 2.37e-1(2.00e-2) 2.37e-1(1.88e-2)
DTLZ5 3 9.75e-3(2.19e-3) 8.93e-3(1.67e-3) 8.98e-3(1.67e-3) 9.15e-3(1.58e-3) 8.80e-3(1.44e-3)

6 3.12e-2(9.30e-3) 2.98e-2(1.02e-2) 3.31e-2(7.84e-3) 2.72e-2(7.30e-3) 3.00e-2(1.05e-2)
10 5.60e-3(1.76e-3) 3.92e-3(6.78e-4) 4.85e-3(1.78e-3) 5.65e-3(2.12e-3) 6.02e-3(1.70e-3)

DTLZ6 3 4.87e-2(2.65e-2) 4.28e-2(2.73e-2) 6.38e-2(7.62e-2) 9.93e-2(2.14e-1) 5.04e-2(3.71e-2)
6 1.09e+0(1.19e+0) 1.11e+0(1.07e+0) 7.28e-1(1.00e+0) 1.01e+0(1.13e+0) 8.36e-1(1.16e+0)

10 2.25e-2(7.14e-3) 6.20e-2(5.11e-2) 3.92e-2(3.62e-2) 3.51e-2(3.23e-2) 4.42e-2(4.00e-2)
DTLZ7 3 6.96e-2(3.03e-2) 7.83e-2(5.28e-2) 1.36e-1(1.32e-1) 1.28e-1(1.31e-1) 9.71e-2(5.24e-2)

6 6.96e-1(2.65e-1) 1.68e+0(8.29e-1) 1.21e+0(7.32e-1) 1.16e+0(6.33e-1) 1.74e+0(8.02e-1)
10 1.24e+0(1.54e-1) 1.20e+0(9.84e-2) 1.23e+0(1.33e-1) 1.20e+0(8.92e-2) 1.25e+0(1.08e-1)

WFG1 3 1.67e+0(4.91e-2) 1.64e+0(5.90e-2) 1.67e+0(4.86e-2) 1.62e+0(3.43e-2) 1.61e+0(4.98e-2)
6 2.27e+0(5.70e-2) 2.24e+0(5.05e-2) 2.21e+0(5.69e-2) 2.21e+0(7.43e-2) 2.20e+0(6.16e-2)

10 2.67e+0(8.46e-2) 2.56e+0(1.07e-1) 2.55e+0(1.15e-1) 2.64e+0(7.62e-2) 2.61e+0(8.36e-2)
WFG2 3 2.63e-1(3.41e-2) 2.63e-1(3.89e-2) 2.48e-1(5.57e-2) 2.47e-1(4.40e-2) 2.44e-1(5.40e-2)

6 5.17e-1(1.03e-1) 5.43e-1(1.35e-1) 5.35e-1(9.94e-2) 5.24e-1(1.26e-1) 5.09e-1(1.49e-1)
10 1.39e+0(4.37e-1) 1.39e+0(3.77e-1) 1.36e+0(3.13e-1) 1.40e+0(2.71e-1) 1.38e+0(3.83e-1)

WFG3 3 2.57e-1(3.61e-2) 2.64e-1(7.85e-2) 2.51e-1(3.82e-2) 2.78e-1(5.66e-2) 2.48e-1(2.96e-2)
6 6.25e-1(1.13e-1) 5.89e-1(6.72e-2) 5.83e-1(8.20e-2) 5.80e-1(7.49e-2) 6.56e-1(1.04e-1)

10 6.67e-1(8.95e-2) 6.93e-1(9.45e-2) 6.93e-1(1.22e-1) 7.03e-1(9.06e-2) 7.47e-1(8.54e-2)
WFG4 3 2.56e-1(3.27e-2) 2.49e-1(2.04e-2) 2.49e-1(2.61e-2) 2.48e-1(1.75e-2) 2.41e-1(1.77e-2)

6 1.30e+0(1.91e-1) 1.34e+0(2.28e-1) 1.35e+0(3.15e-1) 1.20e+0(2.23e-1) 1.38e+0(2.88e-1)
10 3.68e+0(6.78e-1) 3.87e+0(7.96e-1) 3.86e+0(6.03e-1) 3.83e+0(7.38e-1) 3.65e+0(3.90e-1)

WFG5 3 3.17e-1(1.22e-1) 3.50e-1(1.07e-1) 3.06e-1(1.05e-1) 3.12e-1(1.25e-1) 2.92e-1(1.28e-1)
6 1.78e+0(9.49e-2) 1.76e+0(1.11e-1) 1.72e+0(1.26e-1) 1.73e+0(9.61e-2) 1.74e+0(1.33e-1)

10 3.79e+0(2.92e-1) 3.59e+0(2.81e-1) 3.63e+0(4.80e-1) 3.87e+0(3.19e-1) 3.79e+0(2.71e-1)
WFG6 3 4.48e-1(1.00e-1) 5.24e-1(1.08e-1) 4.87e-1(1.00e-1) 4.86e-1(9.23e-2) 4.64e-1(9.08e-2)

6 1.65e+0(1.84e-1) 1.63e+0(8.15e-2) 1.62e+0(1.85e-1) 1.61e+0(1.48e-1) 1.59e+0(2.47e-1)
10 3.35e+0(4.95e-1) 3.51e+0(3.14e-1) 3.19e+0(2.14e-1) 3.33e+0(3.76e-1) 3.14e+0(5.76e-1)

WFG7 3 2.90e-1(3.37e-2) 3.14e-1(3.26e-2) 2.95e-1(2.76e-2) 2.95e-1(2.68e-2) 2.90e-1(3.27e-2)
6 1.62e+0(2.02e-1) 1.72e+0(1.37e-1) 1.58e+0(1.47e-1) 1.61e+0(1.63e-1) 1.64e+0(1.85e-1)

10 4.55e+0(3.72e-1) 4.81e+0(3.13e-1) 4.76e+0(4.89e-1) 4.82e+0(3.93e-1) 4.51e+0(2.58e-1)
WFG8 3 5.91e-1(6.73e-2) 6.06e-1(5.44e-2) 5.71e-1(4.02e-2) 5.77e-1(3.92e-2) 5.61e-1(3.98e-2)

6 2.20e+0(1.50e-1) 2.20e+0(1.48e-1) 2.21e+0(1.21e-1) 2.24e+0(1.57e-1) 2.16e+0(1.06e-1)
10 4.99e+0(4.45e-1) 5.15e+0(4.48e-1) 5.06e+0(5.80e-1) 5.00e+0(3.93e-1) 4.90e+0(5.04e-1)

WFG9 3 3.68e-1(1.03e-1) 4.43e-1(1.41e-1) 3.81e-1(1.02e-1) 3.85e-1(9.50e-2) 3.56e-1(6.48e-2)
6 1.54e+0(1.81e-1) 1.51e+0(1.73e-1) 1.48e+0(2.27e-1) 1.45e+0(1.19e-1) 1.48e+0(1.75e-1)

10 4.02e+0(2.34e-1) 3.97e+0(4.11e-1) 4.02e+0(4.62e-1) 3.94e+0(3.94e-1) 3.96e+0(3.20e-1)
+/ ≈ /− nc=1 -/-/- 2/43/3 1/41/6 1/42/5 3/41/4
+/ ≈ /− nc=3 3/43/2 -/-/- 0/46/2 2/45/1 1/41/6
+/ ≈ /− nc=5 6/41/1 2/46/0 -/-/- 1/45/2 2/45/1
+/ ≈ /− nc=7 5/42/1 1/45/2 2/45/1 -/-/- 2/45/1
+/ ≈ /− nc=10 4/41/3 6/41/1 1/45/2 1/45/2 -/-/-

also significantly inferior to two other variants. The variant of nc = 1 reaches the worst optimization637

results as it is significantly inferior to all other variants. In addition, considering that the variant of nc638

= 7 wins/ties/losses 2/45/1 statistical tests when compared with the variant of nc = 5, we set nc = 7639

for LORA-MOO.640

The result of this ablation study demonstrates the influence of population initialization on the641

optimization results. By clustering the evaluated solutions into several clusters and sampling the same642

amount of initial solutions from each cluster, the solutions in the initial population are distributed643

in a more diverse way than the solutions sampled from the set of reference points SRP directly.644
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Figure 7: Distribution of obtained non-dominated solutions on DTLZ2 with 10 variables and 3
objectives.

Figure 8: Distribution of obtained non-dominated solutions on DTLZ4 with 10 variables and 3
objectives.

Consequently, all variants of nc > 1 have achieved better optimization results than the variant of nc645

= 1.646

G Solution Distribution647

The solution distribution we obtained on some 3-objective DTLZ problems are plotted.648

H Complete Results of Benchmark Optimization649

In Section 4.3 of the main file, we display the optimization results of comparison algorithms on650

DTLZ problems in terms of IGD values. In this section, we provide detailed IGD results on WFG651

problems and more results on IGD+ and HV values. In addition, the optimization results on DTLZ652

problems with different scales, such as D = 5 and 20, are reported.653

H.1 IGD Results on WFG Optimization Problems654

Table 7 shows the optimization results on WFG problems in terms of IGD values. The last row655

summarizes the results of statistical tests, which has reported at the end of Table 1 in the main file.656

It can be seen that LORA-MOO outperforms all comparison algorithms, followed by KTA2 and657
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Figure 9: Distribution of obtained non-dominated solutions on DTLZ6 with 10 variables and 3
objectives.

Table 7: Statistical results of the IGD value obtained by comparison algorithms on 45 WFG optimiza-
tion problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is statistically significantly
superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum
test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO
WFG1 3 1.65e+0(8.08e-2)− 1.74e+0(9.91e-2)≈ 1.87e+0(1.27e-1)+ 1.74e+0(8.60e-2)≈ 1.73e+0(1.12e-1)≈ 2.03e+0(1.16e-1)+ 1.71e+0(9.26e-2)

4 1.94e+0(7.04e-2)≈ 2.07e+0(9.03e-2)+ 2.18e+0(1.43e-1)+ 2.05e+0(1.05e-1)+ 1.96e+0(8.19e-2)≈ 2.22e+0(9.54e-2)+ 1.95e+0(7.52e-2)
6 2.38e+0(5.53e-2)≈ 2.49e+0(6.57e-2)+ 2.56e+0(9.95e-2)+ 2.52e+0(9.89e-2)+ 2.42e+0(5.34e-2)+ 2.53e+0(1.04e-1)+ 2.36e+0(5.07e-2)
8 2.75e+0(5.21e-2)+ 2.86e+0(7.05e-2)+ 2.85e+0(1.06e-1)+ 2.89e+0(5.19e-2)+ 2.80e+0(7.44e-2)+ 2.82e+0(7.56e-2)+ 2.72e+0(6.21e-2)

10 3.08e+0(5.70e-2)+ 3.11e+0(9.16e-2)+ 2.99e+0(9.77e-2)+ 3.09e+0(1.03e-1)+ 3.04e+0(1.12e-1)+ 3.10e+0(9.11e-2)+ 2.93e+0(6.20e-2)
WFG2 3 7.66e-1(7.11e-2)+ 3.61e-1(3.87e-2)≈ 4.24e-1(6.65e-2)+ 5.48e-1(3.75e-2)+ 5.22e-1(7.67e-2)+ 4.88e-1(6.53e-2)+ 3.72e-1(4.87e-2)

4 1.05e+0(1.40e-1)+ 5.00e-1(3.97e-2)− 5.66e-1(3.80e-2)+ 7.61e-1(1.21e-1)+ 7.48e-1(1.23e-1)+ 7.45e-1(1.45e-1)+ 5.46e-1(3.53e-2)
6 1.90e+0(3.51e-1)+ 7.77e-1(5.25e-2)− 9.00e-1(5.39e-2)+ 1.28e+0(4.02e-1)+ 1.28e+0(3.75e-1)+ 1.49e+0(3.76e-1)+ 8.55e-1(7.00e-2)
8 2.74e+0(6.68e-1)+ 1.06e+0(5.98e-2)− 1.18e+0(1.14e-1)− 2.10e+0(6.97e-1)+ 1.90e+0(5.25e-1)+ 2.06e+0(4.58e-1)+ 1.24e+0(1.23e-1)

10 3.73e+0(9.41e-1)+ 1.18e+0(9.32e-2)− 1.37e+0(1.03e-1)− 2.84e+0(8.61e-1)+ 2.59e+0(9.91e-1)+ 2.95e+0(7.55e-1)+ 1.83e+0(2.27e-1)
WFG3 3 5.82e-1(3.86e-2)+ 5.39e-1(5.81e-2)+ 3.29e-1(5.99e-2)+ 5.04e-1(6.26e-2)+ 4.60e-1(5.94e-2)+ 3.85e-1(4.76e-2)+ 2.83e-1(5.99e-2)

4 7.30e-1(6.25e-2)+ 6.66e-1(7.02e-2)+ 5.63e-1(6.47e-2)+ 6.05e-1(7.26e-2)+ 5.64e-1(6.43e-2)+ 5.68e-1(5.92e-2)+ 4.13e-1(5.98e-2)
6 7.75e-1(9.36e-2)+ 6.76e-1(1.32e-1)≈ 7.94e-1(6.73e-2)+ 7.41e-1(8.33e-2)+ 6.37e-1(9.55e-2)≈ 7.96e-1(6.68e-2)+ 6.51e-1(9.20e-2)
8 8.38e-1(1.63e-1)≈ 8.27e-1(9.79e-2)≈ 9.45e-1(7.42e-2)+ 7.63e-1(1.06e-1)− 6.25e-1(1.18e-1)− 8.92e-1(9.90e-2)≈ 8.54e-1(9.98e-2)

10 6.85e-1(1.02e-1)− 6.87e-1(8.79e-2)− 9.16e-1(8.20e-2)+ 5.91e-1(9.34e-2)− 5.19e-1(1.04e-1)− 7.28e-1(1.10e-1)− 8.23e-1(1.14e-1)
WFG4 3 6.21e-1(3.68e-2)+ 4.67e-1(2.33e-2)+ 4.21e-1(2.21e-2)+ 4.57e-1(2.88e-2)+ 4.23e-1(2.53e-2)+ 4.34e-1(5.63e-2)+ 3.36e-1(2.95e-2)

4 1.11e+0(3.45e-2)+ 7.86e-1(2.45e-2)+ 7.78e-1(4.50e-2)+ 9.83e-1(1.22e-1)+ 8.46e-1(8.32e-2)+ 1.07e+0(1.18e-1)+ 6.82e-1(4.97e-2)
6 2.75e+0(2.36e-1)+ 1.87e+0(8.92e-2)≈ 1.78e+0(7.66e-2)− 3.13e+0(3.86e-1)+ 2.69e+0(3.61e-1)+ 2.92e+0(3.04e-1)+ 1.86e+0(1.30e-1)
8 5.09e+0(9.78e-1)+ 3.47e+0(2.96e-1)− 3.26e+0(1.67e-1)− 5.81e+0(5.38e-1)+ 4.99e+0(4.67e-1)+ 5.76e+0(4.34e-1)+ 3.62e+0(3.31e-1)

10 7.18e+0(1.21e+0)+ 5.60e+0(6.92e-1)≈ 4.97e+0(1.72e-1)− 8.58e+0(8.39e-1)+ 7.78e+0(8.13e-1)+ 8.03e+0(5.03e-1)+ 5.47e+0(4.14e-1)
WFG5 3 4.21e-1(3.05e-2)+ 3.91e-1(4.22e-2)≈ 3.30e-1(9.56e-2)− 5.50e-1(3.05e-2)+ 5.30e-1(4.46e-2)+ 4.51e-1(6.51e-2)+ 4.21e-1(1.35e-1)

4 9.98e-1(8.09e-2)≈ 7.65e-1(2.86e-2)− 7.20e-1(6.23e-2)− 8.87e-1(3.98e-2)− 8.61e-1(4.68e-2)− 1.02e+0(4.57e-2)+ 9.81e-1(5.76e-2)
6 2.82e+0(1.65e-1)+ 1.78e+0(6.23e-2)− 1.92e+0(1.03e-1)− 2.35e+0(1.86e-1)+ 2.04e+0(1.29e-1)− 2.44e+0(1.08e-1)+ 2.11e+0(9.10e-2)
8 5.25e+0(2.55e-1)+ 3.30e+0(2.61e-1)− 3.62e+0(2.64e-1)≈ 4.75e+0(3.77e-1)+ 3.95e+0(2.83e-1)+ 4.57e+0(1.82e-1)+ 3.66e+0(9.43e-2)

10 7.64e+0(3.23e-1)+ 4.67e+0(4.78e-1)− 4.76e+0(1.99e-1)− 6.88e+0(4.23e-1)+ 6.11e+0(4.62e-1)+ 6.68e+0(3.49e-1)+ 4.98e+0(1.57e-1)
WFG6 3 7.96e-1(5.50e-2)+ 7.05e-1(5.10e-2)+ 6.22e-1(8.49e-2)+ 7.19e-1(4.80e-2)+ 7.09e-1(4.61e-2)+ 5.79e-1(4.68e-2)+ 5.67e-1(1.09e-1)

4 1.14e+0(3.47e-2)+ 1.02e+0(4.90e-2)+ 9.62e-1(4.46e-2)≈ 1.08e+0(4.82e-2)+ 1.04e+0(4.53e-2)+ 1.17e+0(4.94e-2)+ 9.51e-1(9.85e-2)
6 2.81e+0(2.60e-1)+ 2.18e+0(7.41e-2)+ 1.96e+0(4.17e-2)− 2.56e+0(2.16e-1)+ 2.20e+0(1.61e-1)+ 2.77e+0(1.81e-1)+ 2.04e+0(9.86e-2)
8 4.70e+0(5.78e-1)+ 3.60e+0(1.17e-1)+ 3.54e+0(1.85e-1)≈ 4.70e+0(5.18e-1)+ 4.13e+0(3.06e-1)+ 5.06e+0(3.20e-1)+ 3.52e+0(1.52e-1)

10 7.66e+0(5.36e-1)+ 5.00e+0(1.33e-1)+ 5.09e+0(1.58e-1)+ 6.73e+0(5.98e-1)+ 5.83e+0(4.69e-1)+ 7.00e+0(4.90e-1)+ 4.76e+0(1.94e-1)
WFG7 3 6.69e-1(2.70e-2)+ 6.28e-1(2.45e-2)+ 5.73e-1(2.76e-2)+ 5.78e-1(3.23e-2)+ 5.38e-1(3.58e-2)+ 4.43e-1(4.15e-2)+ 3.52e-1(2.22e-2)

4 1.13e+0(4.94e-2)+ 9.48e-1(2.66e-2)+ 9.04e-1(2.51e-2)+ 9.92e-1(8.75e-2)+ 8.81e-1(3.49e-2)+ 9.72e-1(7.29e-2)+ 7.07e-1(4.29e-2)
6 3.17e+0(2.89e-1)+ 2.00e+0(5.61e-2)≈ 1.96e+0(5.97e-2)≈ 2.71e+0(3.18e-1)+ 2.18e+0(1.49e-1)+ 2.71e+0(1.91e-1)+ 1.96e+0(1.06e-1)
8 5.93e+0(3.95e-1)+ 3.64e+0(1.23e-1)− 3.37e+0(1.16e-1)− 5.19e+0(5.20e-1)+ 4.28e+0(4.59e-1)+ 5.19e+0(3.07e-1)+ 3.82e+0(1.63e-1)

10 8.78e+0(4.70e-1)+ 5.31e+0(3.01e-1)− 4.88e+0(1.76e-1)− 8.07e+0(5.07e-1)+ 6.77e+0(5.93e-1)+ 7.57e+0(4.12e-1)+ 5.73e+0(3.07e-1)
WFG8 3 8.45e-1(2.87e-2)+ 6.42e-1(2.49e-2)+ 5.09e-1(4.39e-2)− 7.49e-1(4.33e-2)+ 7.13e-1(3.87e-2)+ 7.01e-1(4.35e-2)+ 6.02e-1(3.64e-2)

4 1.33e+0(4.61e-2)+ 1.14e+0(3.89e-2)≈ 1.02e+0(3.96e-2)− 1.26e+0(6.23e-2)+ 1.20e+0(5.28e-2)+ 1.36e+0(6.94e-2)+ 1.13e+0(7.12e-2)
6 3.11e+0(2.82e-1)+ 2.43e+0(7.15e-2)≈ 2.28e+0(5.05e-2)− 3.00e+0(1.53e-1)+ 2.80e+0(1.90e-1)+ 3.07e+0(1.74e-1)+ 2.45e+0(9.73e-2)
8 5.74e+0(3.56e-1)+ 4.01e+0(2.28e-1)− 3.92e+0(1.28e-1)− 5.56e+0(3.24e-1)+ 5.11e+0(4.10e-1)+ 5.34e+0(2.72e-1)+ 4.22e+0(2.75e-1)

10 8.30e+0(4.83e-1)+ 5.56e+0(5.40e-1)− 5.71e+0(3.80e-1)≈ 7.81e+0(4.74e-1)+ 7.32e+0(3.46e-1)+ 7.54e+0(4.88e-1)+ 5.82e+0(2.95e-1)
WFG9 3 7.14e-1(5.09e-2)+ 6.75e-1(6.73e-2)+ 6.37e-1(8.35e-2)+ 6.74e-1(8.53e-2)+ 6.11e-1(9.76e-2)+ 5.12e-1(7.74e-2)+ 4.34e-1(8.18e-2)

4 1.24e+0(1.41e-1)+ 1.06e+0(8.72e-2)+ 1.07e+0(9.28e-2)+ 1.16e+0(1.18e-1)+ 1.05e+0(1.61e-1)+ 1.02e+0(7.89e-2)+ 8.43e-1(9.25e-2)
6 3.14e+0(2.96e-1)+ 2.22e+0(1.94e-1)+ 2.19e+0(1.52e-1)+ 2.83e+0(2.36e-1)+ 2.30e+0(1.82e-1)+ 2.55e+0(1.21e-1)+ 1.97e+0(9.18e-2)
8 5.78e+0(4.51e-1)+ 3.93e+0(3.00e-1)+ 3.77e+0(2.23e-1)+ 5.43e+0(3.68e-1)+ 4.60e+0(3.92e-1)+ 4.73e+0(3.07e-1)+ 3.61e+0(2.05e-1)

10 8.41e+0(4.80e-1)+ 5.69e+0(6.42e-1)+ 5.26e+0(3.13e-1)≈ 7.77e+0(5.05e-1)+ 6.48e+0(5.60e-1)+ 6.74e+0(4.17e-1)+ 5.16e+0(2.60e-1)
+/ ≈ /− 39/4/2 21/10/14 23/6/16 41/1/3 38/3/4 43/1/1

KRVEA. This is consistent with the results we observed from Table 1. The results on six 3- and658

10-objective WFG problems are plotted in Fig. 10.659
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Figure 10: Log (IGD) curves averaged over 30 runs on six WFG problems for comparison algorithms
(shaded area is ± std of the mean). Top: 10 variables and 3 objectives. Bottom: 10 variables and 10
objectives.

Table 8: Statistical results of the IGD+ value obtained by comparison algorithms on 35 DTLZ
optimization problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is statistically
significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss
results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO
DTLZ1 3 5.98e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)≈ 6.30e+1(1.69e+1)+ 5.06e+1(1.49e+1)+ 4.44e+1(1.38e+1)≈ 4.35e+1(1.80e+1)

4 4.68e+1(3.71e+0)+ 6.45e+1(1.47e+1)+ 4.08e+1(1.60e+1)≈ 3.69e+1(1.08e+1)≈ 3.92e+1(1.11e+1)≈ 3.80e+1(1.23e+1)≈ 4.06e+1(1.34e+1)
6 3.04e+1(2.74e+0)+ 3.22e+1(7.66e+0)+ 2.03e+1(8.12e+0)+ 1.56e+1(4.96e+0)≈ 1.22e+1(4.65e+0)− 1.74e+1(3.98e+0)≈ 1.58e+1(6.17e+0)
8 1.23e+1(2.99e+0)+ 8.52e+0(2.98e+0)+ 4.54e+0(2.66e+0)≈ 5.08e+0(2.47e+0)≈ 3.33e+0(1.93e+0)≈ 5.87e+0(2.91e+0)+ 3.82e+0(2.35e+0)

10 3.82e-1(1.79e-1)+ 2.76e-1(1.14e-1)+ 2.33e-1(9.65e-2)+ 2.22e-1(8.29e-2)+ 1.75e-1(7.84e-2)≈ 1.83e-1(6.73e-2)≈ 1.56e-1(3.41e-2)
DTLZ2 3 2.61e-1(3.63e-2)+ 9.22e-2(2.57e-2)+ 3.82e-2(3.29e-3)− 1.60e-1(2.76e-2)+ 1.01e-1(1.75e-2)+ 5.86e-2(8.28e-3)+ 4.47e-2(3.35e-3)

4 3.55e-1(4.11e-2)+ 1.30e-1(3.08e-2)+ 9.05e-2(6.95e-3)− 2.05e-1(2.43e-2)+ 1.60e-1(3.01e-2)+ 1.37e-1(1.61e-2)+ 9.74e-2(1.14e-2)
6 4.47e-1(2.32e-2)+ 1.82e-1(1.49e-2)≈ 2.36e-1(3.71e-2)+ 3.15e-1(4.24e-2)+ 2.64e-1(3.18e-2)+ 3.21e-1(2.78e-2)+ 1.82e-1(1.15e-2)
8 4.68e-1(1.49e-2)+ 2.34e-1(1.90e-2)− 3.43e-1(2.37e-2)+ 3.95e-1(2.66e-2)+ 3.42e-1(2.91e-2)+ 4.19e-1(1.86e-2)+ 2.58e-1(1.88e-2)

10 4.33e-1(2.26e-2)+ 2.92e-1(3.09e-2)≈ 3.15e-1(1.47e-2)+ 4.17e-1(2.03e-2)+ 3.61e-1(2.70e-2)+ 4.28e-1(1.61e-2)+ 2.88e-1(1.27e-2)
DTLZ3 3 1.66e+2(1.31e+1)+ 2.43e+2(4.61e+1)+ 1.52e+2(4.73e+1)≈ 1.62e+2(4.84e+1)≈ 1.49e+2(3.88e+1)≈ 1.26e+2(3.18e+1)− 1.57e+2(3.83e+1)

4 1.42e+2(1.57e+1)+ 1.83e+2(4.00e+1)+ 1.18e+2(3.49e+1)≈ 1.29e+2(3.58e+1)≈ 1.16e+2(3.00e+1)≈ 1.22e+2(4.13e+1)≈ 1.25e+2(4.20e+1)
6 9.17e+1(1.59e+1)+ 1.06e+2(2.96e+1)+ 6.65e+1(2.63e+1)≈ 5.27e+1(1.56e+1)≈ 5.23e+1(1.71e+1)≈ 5.24e+1(1.68e+1)≈ 5.96e+1(2.05e+1)
8 4.13e+1(9.84e+0)+ 2.96e+1(1.15e+1)+ 1.73e+1(1.10e+1)≈ 1.59e+1(9.77e+0)≈ 1.60e+1(7.71e+0)≈ 1.49e+1(6.28e+0)≈ 1.26e+1(8.35e+0)

10 1.08e+0(3.73e-1)+ 9.96e-1(4.96e-1)+ 7.29e-1(2.75e-1)+ 6.94e-1(2.89e-1)+ 6.89e-1(3.18e-1)+ 5.27e-1(6.34e-2)+ 4.75e-1(1.13e-1)
DTLZ4 3 4.57e-1(7.52e-2)+ 2.66e-1(1.02e-1)+ 2.33e-1(8.36e-2)+ 2.34e-1(7.76e-2)+ 1.32e-1(6.41e-2)+ 1.07e-1(9.68e-2)+ 8.96e-2(1.25e-1)

4 4.86e-1(5.76e-2)+ 2.84e-1(7.44e-2)+ 2.95e-1(6.34e-2)+ 2.03e-1(3.78e-2)+ 1.66e-1(3.40e-2)+ 1.35e-1(9.87e-2)≈ 1.37e-1(9.79e-2)
6 4.24e-1(4.26e-2)+ 2.94e-1(5.11e-2)+ 3.61e-1(7.84e-2)+ 2.41e-1(3.82e-2)+ 2.27e-1(3.26e-2)+ 1.67e-1(2.62e-2)≈ 1.78e-1(4.02e-2)
8 3.53e-1(2.66e-2)+ 2.67e-1(3.51e-2)+ 3.33e-1(4.56e-2)+ 2.78e-1(3.65e-2)+ 2.93e-1(3.63e-2)+ 2.09e-1(2.55e-2)≈ 2.08e-1(1.89e-2)

10 2.86e-1(1.61e-2)+ 2.58e-1(2.11e-2)+ 2.88e-1(3.27e-2)+ 2.92e-1(2.16e-2)+ 3.06e-1(2.71e-2)+ 2.29e-1(1.41e-2)≈ 2.30e-1(1.70e-2)
DTLZ5 3 1.60e-1(4.40e-2)+ 9.18e-2(2.76e-2)+ 8.66e-3(1.96e-3)≈ 9.58e-2(2.60e-2)+ 5.78e-2(1.81e-2)+ 1.59e-2(5.12e-3)+ 9.40e-3(1.93e-3)

4 1.47e-1(3.58e-2)+ 4.96e-2(1.98e-2)+ 3.25e-2(9.50e-3)+ 9.78e-2(2.16e-2)+ 7.51e-2(2.55e-2)+ 2.88e-2(7.46e-3)+ 2.21e-2(7.30e-3)
6 1.08e-1(2.44e-2)+ 2.24e-2(7.50e-3)− 8.02e-2(2.16e-2)+ 6.16e-2(2.49e-2)+ 4.14e-2(1.76e-2)+ 3.89e-2(1.47e-2)≈ 3.20e-2(1.14e-2)
8 5.11e-2(7.70e-3)+ 1.44e-2(5.17e-3)− 5.35e-2(1.14e-2)+ 2.49e-2(6.87e-3)+ 2.01e-2(5.56e-3)≈ 1.89e-2(5.87e-3)≈ 1.87e-2(3.21e-3)

10 1.19e-2(1.01e-3)+ 6.26e-3(9.09e-4)+ 1.19e-2(1.80e-3)+ 7.45e-3(9.85e-4)+ 4.80e-3(1.09e-3)− 5.48e-3(9.49e-4)≈ 5.62e-3(1.75e-3)
DTLZ6 3 2.42e-1(1.07e-1)+ 3.05e+0(5.23e-1)+ 1.82e+0(4.48e-1)+ 4.85e+0(6.38e-1)+ 4.27e+0(5.48e-1)+ 2.35e-1(4.14e-1)+ 6.74e-2(1.55e-1)

4 2.64e-1(1.83e-1)+ 2.44e+0(3.90e-1)+ 1.84e+0(5.17e-1)+ 5.12e+0(4.31e-1)+ 4.07e+0(6.25e-1)+ 1.35e+0(9.45e-1)+ 2.07e-1(2.06e-1)
6 1.78e-1(1.07e-1)− 1.33e+0(2.80e-1)+ 1.49e+0(5.98e-1)+ 3.14e+0(4.44e-1)+ 2.32e+0(5.72e-1)+ 2.04e+0(6.34e-1)+ 9.00e-1(1.07e+0)
8 8.31e-2(2.90e-2)≈ 4.48e-1(1.88e-1)+ 8.28e-1(4.14e-1)+ 1.53e+0(4.64e-1)+ 9.18e-1(4.68e-1)+ 1.03e+0(4.26e-1)+ 2.96e-1(4.46e-1)

10 8.21e-2(9.39e-2)+ 3.08e-2(1.03e-2)≈ 6.59e-2(5.61e-2)+ 1.63e-1(2.40e-1)+ 5.12e-2(1.09e-1)≈ 1.15e-1(7.35e-2)+ 3.30e-2(2.86e-2)
DTLZ7 3 1.10e-1(3.57e-2)+ 7.39e-2(1.52e-2)≈ 1.54e-1(1.97e-1)− 1.65e+0(6.43e-1)+ 1.20e+0(5.73e-1)+ 1.79e-1(1.20e-1)+ 1.38e-1(1.53e-1)

4 4.98e-1(1.02e-1)+ 2.20e-1(5.76e-2)≈ 2.31e-1(1.27e-1)≈ 2.82e+0(6.75e-1)+ 1.96e+0(7.49e-1)+ 7.18e-1(4.34e-1)+ 2.80e-1(1.73e-1)
6 1.07e+0(1.62e-1)≈ 4.31e-1(3.82e-2)− 4.39e-1(1.48e-1)− 4.80e+0(1.01e+0)+ 2.93e+0(7.01e-1)+ 3.96e+0(1.88e+0)+ 1.46e+0(6.89e-1)
8 1.28e+0(1.27e-1)− 6.29e-1(7.74e-2)− 7.72e-1(1.53e-1)− 6.03e+0(1.87e+0)+ 3.63e+0(5.55e-1)+ 4.40e+0(2.74e+0)+ 2.25e+0(6.88e-1)

10 1.51e+0(1.37e-1)+ 9.42e-1(4.54e-2)− 1.11e+0(1.99e-1)− 1.80e+0(3.39e-1)+ 1.79e+0(3.78e-1)+ 1.46e+0(2.55e-1)+ 1.19e+0(8.31e-2)
+/ ≈ /− 31/2/2 24/5/6 20/9/6 28/7/0 24/9/2 20/14/1

H.2 IGD+ Results on DTLZ and WFG Optimization Problems660

Tables 8 and 9 display the IGD+ optimization results of comparison algorithms on DTLZ and WFG661

optimization problems, respectively. Different from IGD results, although LORA-MOO achieves the662

smallest IGD+ values on most DTLZ problems, its perform is competitive to KRVEA and KTA2 on663

WFG problems. However, from the perspective of overall performance, we can still conclude that our664

LORA-MOO outperforms all comparison algorithms on benchmark optimization problems in terms665

of IGD+ values. Such a observation is consistent with the results we observed from IGD values.666
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Table 9: Statistical results of the IGD+ value obtained by comparison algorithms on 45 WFG
optimization problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is statistically
significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss
results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO
WFG1 3 1.62e+0(3.90e-2)≈ 1.68e+0(9.09e-2)+ 1.78e+0(1.38e-1)+ 1.68e+0(7.59e-2)+ 1.69e+0(1.08e-1)+ 1.92e+0(1.27e-1)+ 1.63e+0(3.69e-2)

4 1.90e+0(6.54e-2)+ 1.99e+0(1.02e-1)+ 2.07e+0(1.47e-1)+ 1.98e+0(1.06e-1)+ 1.90e+0(8.14e-2)+ 2.12e+0(8.95e-2)+ 1.85e+0(7.27e-2)
6 2.30e+0(4.35e-2)+ 2.36e+0(7.09e-2)+ 2.41e+0(1.08e-1)+ 2.37e+0(9.06e-2)+ 2.29e+0(7.24e-2)+ 2.39e+0(8.81e-2)+ 2.22e+0(6.71e-2)
8 2.64e+0(4.48e-2)+ 2.66e+0(7.65e-2)+ 2.60e+0(1.15e-1)+ 2.62e+0(6.34e-2)+ 2.55e+0(6.82e-2)+ 2.59e+0(4.96e-2)+ 2.49e+0(7.00e-2)

10 2.88e+0(6.44e-2)+ 2.78e+0(9.91e-2)+ 2.65e+0(1.26e-1)≈ 2.71e+0(1.27e-1)+ 2.71e+0(1.22e-1)+ 2.78e+0(1.04e-1)+ 2.62e+0(7.81e-2)
WFG2 3 6.99e-1(9.48e-2)+ 2.58e-1(4.09e-2)≈ 2.39e-1(7.01e-2)≈ 4.68e-1(5.12e-2)+ 4.30e-1(9.29e-2)+ 3.95e-1(7.73e-2)+ 2.47e-1(4.89e-2)

4 9.74e-1(1.65e-1)+ 3.21e-1(4.70e-2)− 3.52e-1(5.16e-2)≈ 6.27e-1(1.42e-1)+ 6.22e-1(1.45e-1)+ 6.23e-1(1.69e-1)+ 3.52e-1(5.74e-2)
6 1.77e+0(4.19e-1)+ 3.84e-1(7.38e-2)− 5.75e-1(1.00e-1)≈ 1.02e+0(4.94e-1)+ 1.01e+0(4.70e-1)+ 1.33e+0(4.17e-1)+ 5.29e-1(1.26e-1)
8 2.55e+0(7.48e-1)+ 4.09e-1(1.34e-1)− 6.82e-1(1.43e-1)− 1.77e+0(8.24e-1)+ 1.52e+0(6.54e-1)+ 1.84e+0(4.86e-1)+ 8.28e-1(1.52e-1)

10 3.49e+0(1.01e+0)+ 4.18e-1(1.81e-1)− 8.19e-1(1.39e-1)− 2.49e+0(9.71e-1)+ 2.19e+0(1.13e+0)+ 2.67e+0(8.17e-1)+ 1.40e+0(2.64e-1)
WFG3 3 5.65e-1(4.14e-2)+ 5.26e-1(5.99e-2)+ 3.05e-1(6.02e-2)+ 4.87e-1(6.70e-2)+ 4.42e-1(6.58e-2)+ 3.67e-1(4.79e-2)+ 2.65e-1(5.63e-2)

4 7.12e-1(6.70e-2)+ 6.35e-1(6.90e-2)+ 5.33e-1(6.42e-2)+ 5.75e-1(7.97e-2)+ 5.24e-1(7.33e-2)+ 5.47e-1(6.00e-2)+ 3.88e-1(6.09e-2)
6 7.42e-1(9.98e-2)+ 6.24e-1(1.35e-1)≈ 7.25e-1(7.13e-2)+ 6.91e-1(8.44e-2)+ 5.60e-1(9.53e-2)≈ 7.62e-1(6.68e-2)+ 6.04e-1(8.95e-2)
8 7.74e-1(1.66e-1)≈ 7.26e-1(1.06e-1)≈ 8.46e-1(7.67e-2)+ 6.83e-1(1.06e-1)− 5.18e-1(1.13e-1)− 8.26e-1(1.01e-1)+ 7.58e-1(9.00e-2)

10 5.78e-1(9.80e-2)− 5.54e-1(8.05e-2)− 7.80e-1(8.72e-2)+ 4.91e-1(8.69e-2)− 4.07e-1(9.40e-2)− 6.44e-1(1.04e-1)≈ 6.92e-1(1.07e-1)
WFG4 3 4.74e-1(4.21e-2)+ 3.78e-1(2.17e-2)+ 3.42e-1(2.35e-2)+ 3.49e-1(3.80e-2)+ 3.04e-1(2.99e-2)+ 3.66e-1(6.70e-2)+ 2.55e-1(3.20e-2)

4 8.04e-1(5.34e-2)+ 5.86e-1(3.17e-2)+ 6.00e-1(6.42e-2)+ 7.81e-1(1.78e-1)+ 6.15e-1(1.13e-1)+ 9.50e-1(1.50e-1)+ 4.85e-1(6.14e-2)
6 1.83e+0(3.74e-1)+ 1.20e+0(1.52e-1)≈ 1.12e+0(1.55e-1)≈ 2.78e+0(4.35e-1)+ 2.26e+0(4.42e-1)+ 2.56e+0(4.05e-1)+ 1.21e+0(2.18e-1)
8 3.39e+0(1.48e+0)≈ 2.33e+0(5.25e-1)≈ 2.15e+0(3.46e-1)− 5.15e+0(5.66e-1)+ 4.22e+0(5.32e-1)+ 5.19e+0(4.73e-1)+ 2.55e+0(5.66e-1)

10 3.27e+0(2.29e+0)− 4.00e+0(9.92e-1)≈ 3.45e+0(3.75e-1)− 7.46e+0(8.64e-1)+ 6.61e+0(8.48e-1)+ 7.03e+0(6.17e-1)+ 3.92e+0(7.04e-1)
WFG5 3 2.07e-1(1.28e-2)− 3.01e-1(3.82e-2)≈ 2.38e-1(7.04e-2)− 3.98e-1(3.16e-2)+ 3.93e-1(5.70e-2)+ 3.60e-1(7.41e-2)+ 3.49e-1(1.55e-1)

4 7.09e-1(1.49e-1)− 5.32e-1(4.45e-2)− 4.97e-1(4.53e-2)− 6.09e-1(6.70e-2)− 6.13e-1(5.55e-2)− 9.11e-1(6.00e-2)≈ 8.68e-1(7.81e-2)
6 2.38e+0(2.47e-1)+ 1.07e+0(1.36e-1)− 1.38e+0(1.64e-1)− 1.89e+0(2.56e-1)+ 1.52e+0(2.17e-1)− 2.13e+0(1.77e-1)+ 1.71e+0(1.09e-1)
8 4.63e+0(2.89e-1)+ 2.11e+0(5.15e-1)− 2.74e+0(4.81e-1)≈ 4.13e+0(4.55e-1)+ 3.26e+0(4.42e-1)+ 4.08e+0(2.55e-1)+ 2.88e+0(2.00e-1)

10 6.67e+0(3.78e-1)+ 2.48e+0(9.46e-1)− 3.13e+0(5.04e-1)− 5.90e+0(5.30e-1)+ 5.16e+0(5.38e-1)+ 5.84e+0(5.37e-1)+ 3.87e+0(3.50e-1)
WFG6 3 5.52e-1(4.95e-2)+ 6.19e-1(6.81e-2)+ 5.70e-1(8.76e-2)+ 5.71e-1(5.32e-2)+ 5.65e-1(5.43e-2)+ 5.09e-1(5.01e-2)≈ 5.21e-1(1.15e-1)

4 8.09e-1(7.65e-2)≈ 7.62e-1(9.60e-2)≈ 8.14e-1(6.51e-2)≈ 8.33e-1(7.44e-2)≈ 7.87e-1(7.30e-2)≈ 1.07e+0(7.09e-2)+ 8.09e-1(1.12e-1)
6 2.25e+0(5.29e-1)+ 1.28e+0(1.52e-1)− 1.52e+0(9.93e-2)≈ 2.17e+0(3.22e-1)+ 1.74e+0(2.70e-1)+ 2.52e+0(2.20e-1)+ 1.60e+0(1.59e-1)
8 3.63e+0(9.69e-1)+ 1.50e+0(2.46e-1)− 2.66e+0(3.17e-1)≈ 3.96e+0(7.85e-1)+ 3.41e+0(4.65e-1)+ 4.60e+0(3.93e-1)+ 2.72e+0(2.95e-1)

10 6.42e+0(8.39e-1)+ 1.27e+0(1.06e-1)− 3.67e+0(3.06e-1)+ 5.61e+0(7.46e-1)+ 4.68e+0(6.46e-1)+ 6.05e+0(7.21e-1)+ 3.38e+0(4.60e-1)
WFG7 3 5.47e-1(3.21e-2)+ 5.38e-1(3.52e-2)+ 4.97e-1(3.13e-2)+ 4.36e-1(3.98e-2)+ 3.94e-1(4.46e-2)+ 3.65e-1(5.17e-2)+ 2.92e-1(2.42e-2)

4 9.25e-1(9.05e-2)+ 7.42e-1(3.50e-2)+ 7.47e-1(3.15e-2)+ 7.74e-1(1.39e-1)+ 6.29e-1(5.40e-2)+ 8.46e-1(1.05e-1)+ 5.38e-1(5.32e-2)
6 2.85e+0(3.54e-1)+ 1.41e+0(1.08e-1)− 1.41e+0(1.36e-1)− 2.29e+0(4.59e-1)+ 1.74e+0(2.09e-1)+ 2.45e+0(2.22e-1)+ 1.61e+0(1.56e-1)
8 5.37e+0(4.28e-1)+ 2.59e+0(2.47e-1)− 2.40e+0(3.16e-1)− 4.51e+0(6.31e-1)+ 3.62e+0(5.07e-1)+ 4.68e+0(3.37e-1)+ 3.28e+0(2.02e-1)

10 7.77e+0(5.41e-1)+ 3.50e+0(4.76e-1)− 3.47e+0(3.98e-1)− 6.92e+0(5.90e-1)+ 5.72e+0(6.38e-1)+ 6.70e+0(4.31e-1)+ 4.85e+0(3.42e-1)
WFG8 3 7.23e-1(3.76e-2)+ 5.89e-1(2.95e-2)≈ 4.72e-1(4.57e-2)− 6.59e-1(5.09e-2)+ 6.21e-1(4.47e-2)+ 6.77e-1(4.74e-2)+ 5.79e-1(4.03e-2)

4 1.19e+0(6.76e-2)+ 1.01e+0(5.20e-2)− 9.25e-1(5.15e-2)− 1.14e+0(8.61e-2)+ 1.07e+0(7.07e-2)≈ 1.30e+0(7.86e-2)+ 1.07e+0(7.91e-2)
6 2.80e+0(3.88e-1)+ 1.82e+0(1.29e-1)− 1.96e+0(1.02e-1)− 2.77e+0(1.80e-1)+ 2.58e+0(2.23e-1)+ 2.90e+0(2.21e-1)+ 2.22e+0(1.47e-1)
8 5.23e+0(4.86e-1)+ 2.93e+0(4.96e-1)− 3.31e+0(2.44e-1)− 5.13e+0(3.86e-1)+ 4.69e+0(4.63e-1)+ 4.98e+0(3.05e-1)+ 3.78e+0(3.27e-1)

10 7.43e+0(5.62e-1)+ 2.74e+0(1.25e+0)− 4.75e+0(5.99e-1)− 7.03e+0(5.46e-1)+ 6.52e+0(3.98e-1)+ 6.74e+0(5.72e-1)+ 5.03e+0(3.92e-1)
WFG9 3 5.82e-1(7.28e-2)+ 5.83e-1(7.77e-2)+ 5.56e-1(9.06e-2)+ 6.10e-1(1.00e-1)+ 5.32e-1(1.12e-1)+ 4.51e-1(8.67e-2)+ 3.82e-1(8.04e-2)

4 1.00e+0(1.88e-1)+ 8.56e-1(1.30e-1)+ 8.76e-1(1.43e-1)+ 1.00e+0(1.56e-1)+ 8.59e-1(2.01e-1)+ 8.50e-1(1.15e-1)+ 6.77e-1(9.61e-2)
6 2.72e+0(3.83e-1)+ 1.72e+0(2.90e-1)+ 1.66e+0(2.48e-1)+ 2.44e+0(3.25e-1)+ 1.87e+0(2.59e-1)+ 2.17e+0(1.80e-1)+ 1.45e+0(1.42e-1)
8 5.14e+0(5.22e-1)+ 3.05e+0(4.65e-1)+ 2.82e+0(2.91e-1)≈ 4.80e+0(4.05e-1)+ 3.95e+0(4.95e-1)+ 4.17e+0(3.83e-1)+ 2.76e+0(3.72e-1)

10 7.30e+0(5.37e-1)+ 4.30e+0(8.61e-1)≈ 3.81e+0(4.78e-1)≈ 6.66e+0(5.44e-1)+ 5.47e+0(6.11e-1)+ 5.75e+0(4.84e-1)+ 3.98e+0(4.51e-1)
+/ ≈ /− 37/4/4 16/10/19 18/11/16 41/1/3 38/3/4 42/3/0

H.3 HV Results on DTLZ and WFG Optimization Problems667

Tables 10 and 11 report the HV optimization results of comparison algorithms on DTLZ and WFG668

optimization problems, respectively. Since the calculation of HV values on 8- and 10-obj optimization669

problems is very time-consuming, only the results obtained on 3-, 4-, and 6-objective optimization670

problems are displayed. Consistent with the IGD an IGD+ results obtained on 3-, 4-, and 6-objectives,671

our LORA-MOO achieves the best overall performance over all comparison algorithms, showing the672

effectiveness of LORA-MOO on addressing expensive many-objective optimization problems.673

H.4 Problems with Different Scales674

In this subsection, we investigate the optimization performance of LORA-MOO when the number675

of decision variables D is different. The experimental setups for all comparison algorithms are the676

same as the setups used in previous benchmark optimization problems, but the setup for optimization677

problems is different:678

• The optimization problems have D = {5, 10, 20} decision variables and M = 3 objectives.679

• When D = 5 or 10, a dataset of size 11 D - 1 is used for surrogate initialization. When D680

= 20, since 11 D - 1 would be greater than our evaluation budget (300), the size of initial681

dataset is set to 100.682

Tables 12, 13, and 14 report the obtained IGD, IGD+, and HV values on benchmark optimization683

problems with different numbers of decision variables D, respectively. It can be seen from Table 12684
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Table 10: Statistical results of the HV value obtained by comparison algorithms on 21 DTLZ
optimization problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is statistically
significantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss
results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO
DTLZ1 3 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

4 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
6 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

DTLZ2 3 4.53e-2(2.22e-2)+ 2.61e-1(4.46e-2)+ 3.87e-1(6.59e-3)− 1.55e-1(3.85e-2)+ 2.49e-1(3.32e-2)+ 3.49e-1(1.33e-2)+ 3.77e-1(6.75e-3)
4 6.06e-2(2.65e-2)+ 3.71e-1(6.43e-2)+ 4.80e-1(1.34e-2)≈ 1.95e-1(3.26e-2)+ 3.09e-1(4.54e-2)+ 3.87e-1(3.31e-2)+ 4.75e-1(2.34e-2)
6 1.26e-1(1.87e-2)+ 4.85e-1(4.22e-2)+ 4.48e-1(7.23e-2)+ 2.86e-1(4.80e-2)+ 4.00e-1(4.15e-2)+ 3.66e-1(3.09e-2)+ 6.09e-1(2.27e-2)

DTLZ3 3 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
4 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
6 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

DTLZ4 3 4.20e-4(2.03e-3)+ 6.42e-2(5.54e-2)+ 8.85e-2(7.53e-2)+ 6.53e-2(3.42e-2)+ 1.99e-1(6.05e-2)+ 2.52e-1(6.75e-2)+ 3.24e-1(9.98e-2)
4 3.27e-3(6.73e-3)+ 8.79e-2(6.62e-2)+ 8.14e-2(5.85e-2)+ 1.46e-1(5.25e-2)+ 2.52e-1(6.25e-2)+ 3.66e-1(8.97e-2)≈ 3.93e-1(9.18e-2)
6 2.14e-2(2.69e-2)+ 2.05e-1(9.66e-2)+ 1.44e-1(8.78e-2)+ 3.16e-1(6.50e-2)+ 3.53e-1(7.16e-2)+ 5.12e-1(5.37e-2)≈ 5.17e-1(4.93e-2)

DTLZ5 3 7.49e-3(1.04e-2)+ 2.60e-2(1.04e-2)+ 8.60e-2(1.99e-3)≈ 2.54e-2(9.46e-3)+ 4.66e-2(1.02e-2)+ 8.48e-2(1.78e-3)≈ 8.53e-2(2.03e-3)
4 4.12e-3(5.91e-3)+ 2.35e-2(7.10e-3)+ 3.31e-2(4.30e-3)+ 1.10e-2(4.90e-3)+ 1.65e-2(7.08e-3)+ 3.55e-2(4.96e-3)≈ 3.73e-2(3.97e-3)
6 1.75e-3(1.88e-3)+ 1.28e-2(2.87e-3)− 8.26e-3(2.88e-3)≈ 5.75e-3(3.24e-3)+ 8.48e-3(3.87e-3)≈ 9.99e-3(3.78e-3)≈ 9.23e-3(3.37e-3)

DTLZ6 3 3.91e-3(7.22e-3)+ 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 3.52e-2(2.51e-2)+ 4.91e-2(2.38e-2)
4 1.78e-3(2.86e-3)+ 0.00e+0(0.00e+0)+ 2.07e-5(1.11e-4)+ 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 2.60e-4(9.64e-4)+ 7.45e-3(9.93e-3)
6 1.28e-3(2.18e-3)≈ 0.00e+0(0.00e+0)+ 1.10e-5(5.88e-5)+ 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 1.21e-0(6.50e-0)+ 7.42e-4(2.53e-3)

DTLZ7 3 1.81e-1(4.40e-2)+ 2.53e-1(9.02e-3)≈ 2.81e-1(3.28e-2)− 1.44e-2(2.31e-2)+ 2.11e-2(2.95e-2)+ 2.23e-1(3.95e-2)+ 2.47e-1(3.63e-2)
4 9.45e-2(3.19e-2)+ 1.95e-1(1.73e-2)≈ 2.36e-1(8.48e-3)− 4.80e-4(2.04e-3)+ 1.20e-2(2.15e-2)+ 1.04e-1(4.79e-2)+ 1.88e-1(3.33e-2)
6 3.12e-2(1.83e-2)+ 1.02e-1(1.04e-2)≈ 1.57e-1(1.62e-2)− 5.56e-4(2.99e-3)+ 1.55e-2(1.81e-2)+ 8.81e-4(1.91e-3)+ 1.05e-1(2.61e-2)

+/ ≈ /− 14/7/0 11/9/1 8/9/4 15/6/0 14/7/0 10/11/0

Table 11: Statistical results of the HV value obtained by comparison algorithms on 27 WFG optimiza-
tion problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is statistically significantly
superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon rank sum
test (significance level is 0.05), respectively. The last row counts the total win/tie/loss results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO
WFG1 3 1.92e-1(2.65e-2)− 1.09e-1(3.15e-2)≈ 6.25e-2(3.98e-2)+ 8.61e-2(4.91e-2)≈ 1.02e-1(4.70e-2)≈ 1.57e-2(2.69e-2)+ 1.07e-1(3.15e-2)

4 2.07e-1(2.96e-2)− 1.14e-1(5.44e-2)+ 7.27e-2(5.18e-2)+ 1.17e-1(5.34e-2)+ 1.66e-1(3.54e-2)≈ 2.84e-2(3.66e-2)+ 1.70e-1(4.15e-2)
6 2.16e-1(8.50e-3)≈ 1.46e-1(2.93e-2)+ 1.11e-1(4.99e-2)+ 1.23e-1(5.25e-2)+ 1.76e-1(2.54e-2)+ 1.12e-1(5.80e-2)+ 2.11e-1(2.75e-2)

WFG2 3 5.76e-1(3.88e-2)+ 7.46e-1(2.87e-2)≈ 7.11e-1(3.38e-2)+ 6.57e-1(2.85e-2)+ 6.65e-1(4.44e-2)+ 6.92e-1(2.96e-2)+ 7.42e-1(3.11e-2)
4 6.14e-1(3.28e-2)+ 8.20e-1(3.33e-2)− 7.36e-1(3.33e-2)+ 7.23e-1(4.35e-2)+ 7.06e-1(4.68e-2)+ 7.21e-1(3.81e-2)+ 7.79e-1(3.30e-2)
6 6.46e-1(5.10e-2)+ 8.51e-1(3.38e-2)≈ 8.26e-1(3.84e-2)≈ 7.80e-1(5.00e-2)+ 7.73e-1(5.46e-2)+ 7.29e-1(4.17e-2)+ 8.39e-1(3.76e-2)

WFG3 3 1.04e-1(1.96e-2)+ 1.13e-1(1.80e-2)+ 1.90e-1(2.71e-2)≈ 1.20e-1(1.90e-2)+ 1.27e-1(2.01e-2)+ 1.62e-1(2.11e-2)+ 1.91e-1(2.20e-2)
4 3.10e-2(2.15e-2)+ 3.48e-2(1.41e-2)+ 2.73e-2(1.70e-2)+ 3.65e-2(2.01e-2)+ 4.07e-2(1.92e-2)+ 3.10e-2(2.15e-2)+ 5.57e-2(1.56e-2)
6 1.10e-2(1.26e-2)− 1.39e-3(2.87e-3)− 0.00e+0(0.00e+0)≈ 6.59e-5(2.13e-4)≈ 2.96e-3(8.32e-3)− 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

WFG4 3 1.74e-1(1.18e-2)+ 2.18e-1(1.10e-2)+ 2.44e-1(1.30e-2)+ 2.37e-1(1.46e-2)+ 2.55e-1(1.52e-2)+ 2.66e-1(2.01e-2)+ 2.98e-1(1.58e-2)
4 2.12e-1(9.87e-3)+ 2.97e-1(1.52e-2)+ 3.18e-1(2.01e-2)+ 2.96e-1(2.19e-2)+ 3.33e-1(2.24e-2)+ 2.97e-1(1.89e-2)+ 3.91e-1(1.96e-2)
6 2.50e-1(1.18e-2)+ 4.09e-1(3.09e-2)+ 4.38e-1(2.23e-2)+ 3.16e-1(2.50e-2)+ 3.78e-1(2.82e-2)+ 3.19e-1(2.08e-2)+ 4.78e-1(2.39e-2)

WFG5 3 2.98e-1(1.33e-2)− 2.55e-1(2.28e-2)≈ 2.98e-1(4.75e-2)− 2.03e-1(1.32e-2)+ 2.08e-1(2.74e-2)+ 2.45e-1(3.49e-2)+ 2.51e-1(6.54e-2)
4 3.19e-1(2.64e-2)− 3.21e-1(2.50e-2)− 3.63e-1(3.37e-2)− 2.92e-1(2.21e-2)− 2.83e-1(2.44e-2)− 2.16e-1(1.31e-2)− 2.05e-1(3.01e-2)
6 3.39e-1(2.37e-2)− 4.17e-1(3.07e-2)− 3.72e-1(3.17e-2)− 3.46e-1(2.51e-2)− 3.53e-1(2.43e-2)− 2.78e-1(1.48e-2)− 2.66e-1(2.60e-2)

WFG6 3 1.15e-1(2.24e-2)+ 1.20e-1(2.10e-2)+ 1.59e-1(3.72e-2)+ 1.29e-1(2.01e-2)+ 1.31e-1(1.90e-2)+ 1.87e-1(1.98e-2)≈ 1.85e-1(4.25e-2)
4 1.83e-1(1.87e-2)+ 2.18e-1(3.46e-2)≈ 2.17e-1(2.49e-2)≈ 1.87e-1(2.16e-2)+ 2.05e-1(2.17e-2)≈ 1.96e-1(1.60e-2)+ 2.33e-1(5.01e-2)
6 2.30e-1(2.14e-2)+ 2.75e-1(4.76e-2)+ 3.15e-1(2.12e-2)≈ 2.49e-1(1.89e-2)+ 2.93e-1(3.03e-2)+ 2.42e-1(1.28e-2)+ 3.11e-1(2.91e-2)

WFG7 3 1.43e-1(8.60e-3)+ 1.44e-1(1.11e-2)+ 1.75e-1(1.26e-2)+ 1.91e-1(1.74e-2)+ 2.13e-1(2.05e-2)+ 2.53e-1(1.32e-2)+ 2.87e-1(1.30e-2)
4 1.91e-1(1.45e-2)+ 2.22e-1(1.23e-2)+ 2.36e-1(1.09e-2)+ 2.42e-1(1.97e-2)+ 2.90e-1(2.08e-2)+ 2.83e-1(1.74e-2)+ 3.66e-1(2.21e-2)
6 2.25e-1(1.42e-2)+ 3.24e-1(2.49e-2)+ 3.38e-1(2.89e-2)+ 3.16e-1(3.37e-2)+ 3.77e-1(2.50e-2)+ 3.07e-1(1.80e-2)+ 4.06e-1(2.28e-2)

WFG8 3 9.39e-2(1.01e-2)+ 1.48e-1(9.46e-3)+ 2.14e-1(1.61e-2)− 1.24e-1(1.35e-2)+ 1.32e-1(1.24e-2)+ 1.60e-1(1.44e-2)+ 1.84e-1(9.51e-3)
4 1.32e-1(1.22e-2)+ 2.03e-1(1.81e-2)≈ 2.17e-1(1.76e-2)− 1.57e-1(1.81e-2)+ 1.79e-1(1.75e-2)+ 1.80e-1(1.38e-2)+ 1.95e-1(2.50e-2)
6 1.81e-1(1.26e-2)+ 2.59e-1(2.37e-2)− 2.58e-1(1.13e-2)− 2.18e-1(2.14e-2)+ 2.62e-1(2.31e-2)− 2.17e-1(1.19e-2)+ 2.40e-1(2.32e-2)

WFG9 3 1.22e-1(1.94e-2)+ 1.28e-1(2.33e-2)+ 1.50e-1(3.21e-2)+ 1.39e-1(2.58e-2)+ 1.67e-1(3.64e-2)+ 2.23e-1(2.82e-2)+ 2.46e-1(3.68e-2)
4 1.74e-1(3.27e-2)+ 2.08e-1(3.51e-2)+ 2.04e-1(2.90e-2)+ 1.87e-1(3.11e-2)+ 2.35e-1(4.04e-2)+ 2.63e-1(2.48e-2)+ 3.06e-1(4.82e-2)
6 2.14e-1(2.85e-2)+ 3.31e-1(5.50e-2)+ 3.65e-1(5.25e-2)≈ 2.76e-1(3.85e-2)+ 3.62e-1(3.76e-2)+ 2.90e-1(2.96e-2)+ 3.89e-1(3.60e-2)

+/ ≈ /− 20/1/6 16/6/5 15/6/6 23/2/2 20/3/4 23/2/2

that LORA-MOO outperforms all comparison algorithms on DTLZ optimization problems when D685

= 5, 10, and 20. In addition, KTA2 reaches competitive optimization results on many optimization686

problems. The observations from Tables 13 and 14 have demonstrated consistent conclusions.687
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Table 12: Statistical results of the IGD value obtained by comparison algorithms on 5D, 10D, and
20D DTLZ optimization problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is
statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in
the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total
win/tie/loss results.

Problems D ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO
DTLZ1 5 1.24e+1(4.40e+0)+ 7.19e+0(3.77e+0)+ 4.00e+0(2.28e+0)≈ 5.71e+0(2.66e+0)≈ 5.97e+0(2.98e+0)≈ 2.27e+0(1.45e+0)− 4.78e+0(2.80e+0)

10 5.98e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)≈ 6.30e+1(1.69e+1)+ 5.06e+1(1.49e+1)+ 4.44e+1(1.38e+1)≈ 4.35e+1(1.80e+1)
20 1.59e+2(1.56e+1)− 3.12e+2(3.79e+1)≈ 2.48e+2(3.66e+1)− 2.35e+2(3.47e+1)− 2.01e+2(3.95e+1)− 2.94e+2(3.78e+1)≈ 2.91e+2(3.98e+1)

DTLZ2 5 1.81e-1(1.26e-2)+ 6.06e-2(2.40e-3)+ 4.39e-2(1.11e-3)≈ 1.03e-1(7.78e-3)+ 7.94e-2(7.71e-3)+ 6.55e-2(6.87e-3)+ 4.36e-2(2.15e-3)
10 3.38e-1(2.84e-2)+ 1.32e-1(2.77e-2)+ 6.17e-2(3.13e-3)≈ 2.26e-1(2.61e-2)+ 1.65e-1(2.18e-2)+ 8.59e-2(8.51e-3)+ 6.19e-2(3.48e-3)
20 7.15e-1(1.21e-1)+ 6.66e-1(7.34e-2)+ 2.85e-1(5.83e-2)+ 5.17e-1(6.66e-2)+ 4.00e-1(7.02e-2)+ 1.62e-1(3.35e-2)+ 1.02e-1(1.36e-2)

DTLZ3 5 3.17e+1(1.17e+1)+ 1.91e+1(9.12e+0)≈ 1.17e+1(6.12e+0)≈ 1.58e+1(7.60e+0)≈ 1.61e+1(9.16e+0)≈ 6.78e+0(4.79e+0)− 1.51e+1(9.40e+0)
10 1.66e+2(1.31e+1)+ 2.43e+2(4.61e+1)+ 1.52e+2(4.73e+1)≈ 1.62e+2(4.84e+1)≈ 1.49e+2(3.88e+1)≈ 1.26e+2(3.18e+1)− 1.57e+2(3.83e+1)
20 4.32e+2(1.78e+1)− 9.11e+2(8.72e+1)≈ 7.23e+2(1.38e+2)− 7.12e+2(1.10e+2)− 5.86e+2(1.18e+2)− 7.81e+2(1.20e+2)− 8.58e+2(1.31e+2)

DTLZ4 5 4.33e-1(5.55e-2)≈ 1.35e-1(6.05e-2)≈ 1.68e-1(1.22e-1)≈ 4.33e-1(1.54e-1)+ 1.60e-1(6.12e-2)≈ 2.91e-1(2.44e-1)≈ 3.96e-1(3.71e-1)
10 6.70e-1(7.61e-2)+ 3.32e-1(1.11e-1)+ 3.49e-1(1.09e-1)+ 4.62e-1(1.36e-1)+ 2.31e-1(1.15e-1)+ 2.39e-1(1.65e-1)+ 1.89e-1(2.34e-1)
20 1.02e+0(1.04e-1)+ 8.32e-1(1.36e-1)+ 7.76e-1(1.29e-1)+ 7.11e-1(1.74e-1)+ 5.51e-1(1.18e-1)+ 5.27e-1(2.75e-1)+ 4.01e-1(3.28e-1)

DTLZ5 5 4.16e-2(9.61e-3)+ 2.31e-2(3.02e-3)+ 3.57e-3(2.35e-4)− 2.18e-2(3.22e-3)+ 1.49e-2(3.28e-3)+ 1.12e-2(5.73e-3)+ 4.20e-3(6.92e-4)
10 2.16e-1(4.45e-2)+ 1.19e-1(3.38e-2)+ 1.34e-2(2.83e-3)≈ 1.18e-1(2.56e-2)+ 7.36e-2(2.03e-2)+ 2.02e-2(4.77e-3)+ 1.26e-2(2.55e-3)
20 6.05e-1(1.43e-1)+ 6.16e-1(7.41e-2)+ 2.13e-1(5.07e-2)+ 4.84e-1(8.14e-2)+ 3.60e-1(8.07e-2)+ 8.11e-2(3.39e-2)+ 4.32e-2(1.45e-2)

DTLZ6 5 4.57e-2(1.11e-2)+ 4.69e-1(1.54e-1)+ 2.68e-1(1.01e-1)+ 7.65e-1(4.09e-1)+ 4.08e-1(2.59e-1)+ 2.57e-2(2.92e-2)≈ 2.98e-2(3.53e-2)
10 3.15e-1(1.62e-1)+ 3.06e+0(5.21e-1)+ 1.83e+0(4.37e-1)+ 4.86e+0(6.30e-1)+ 4.27e+0(5.49e-1)+ 3.09e-1(3.99e-1)+ 1.18e-1(1.57e-1)
20 3.54e+0(1.04e+0)≈ 1.10e+1(7.15e-1)+ 8.72e+0(1.01e+0)≈ 1.33e+1(8.48e-1)+ 1.23e+1(7.84e-1)+ 7.06e+0(3.05e+0)≈ 6.81e+0(5.11e+0)

DTLZ7 5 1.87e-1(2.40e-2)+ 1.07e-1(1.50e-2)+ 6.66e-2(4.28e-2)− 5.67e-1(2.78e-1)+ 2.30e-1(1.07e-1)+ 3.05e-1(2.01e-1)+ 1.41e-1(1.50e-1)
10 2.45e-1(4.80e-2)+ 1.35e-1(2.37e-2)≈ 2.19e-1(2.40e-1)− 1.75e+0(6.32e-1)+ 1.27e+0(5.65e-1)+ 2.73e-1(1.58e-1)+ 2.01e-1(1.93e-1)
20 2.67e-1(4.98e-2)≈ 4.17e-1(2.04e-1)+ 4.69e-1(2.56e-1)+ 3.69e+0(9.09e-1)+ 2.62e+0(7.33e-1)+ 4.77e-1(2.53e-1)+ 2.99e-1(2.51e-1)

+/ ≈ /− 16/3/2 16/5/0 7/9/5 16/3/2 15/4/2 12/5/4

Table 13: Statistical results of the IGD+ value obtained by comparison algorithms on 5D, 10D, and
20D DTLZ optimization problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is
statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in
the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total
win/tie/loss results.

Problems D ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO
DTLZ1 5 1.24e+1(4.40e+0)+ 7.19e+0(3.77e+0)+ 4.00e+0(2.28e+0)≈ 5.70e+0(2.67e+0)≈ 5.97e+0(2.98e+0)≈ 2.27e+0(1.45e+0)− 4.78e+0(2.81e+0)

10 5.98e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)≈ 6.30e+1(1.69e+1)+ 5.06e+1(1.49e+1)+ 4.44e+1(1.38e+1)≈ 4.35e+1(1.80e+1)
20 1.59e+2(1.56e+1)− 3.12e+2(3.79e+1)≈ 2.48e+2(3.66e+1)− 2.35e+2(3.47e+1)− 2.01e+2(3.95e+1)− 2.94e+2(3.78e+1)≈ 2.91e+2(3.98e+1)

DTLZ2 5 1.01e-1(7.98e-3)+ 2.86e-2(9.66e-4)+ 1.94e-2(6.20e-4)− 5.24e-2(6.84e-3)+ 3.83e-2(4.18e-3)+ 3.92e-2(5.96e-3)+ 2.30e-2(2.07e-3)
10 2.61e-1(3.63e-2)+ 9.22e-2(2.57e-2)+ 3.82e-2(3.29e-3)− 1.60e-1(2.76e-2)+ 1.01e-1(1.75e-2)+ 5.86e-2(8.28e-3)+ 4.47e-2(3.35e-3)
20 6.51e-1(1.39e-1)+ 6.36e-1(7.19e-2)+ 2.61e-1(5.87e-2)+ 4.69e-1(6.69e-2)+ 3.56e-1(8.04e-2)+ 1.39e-1(3.02e-2)+ 8.36e-2(1.22e-2)

DTLZ3 5 3.17e+1(1.17e+1)+ 1.91e+1(9.13e+0)≈ 1.17e+1(6.15e+0)≈ 1.58e+1(7.61e+0)≈ 1.61e+1(9.16e+0)≈ 6.77e+0(4.80e+0)− 1.51e+1(9.41e+0)
10 1.66e+2(1.31e+1)+ 2.43e+2(4.61e+1)+ 1.52e+2(4.73e+1)≈ 1.62e+2(4.84e+1)≈ 1.49e+2(3.88e+1)≈ 1.26e+2(3.18e+1)− 1.57e+2(3.83e+1)
20 4.32e+2(1.78e+1)− 9.11e+2(8.72e+1)≈ 7.23e+2(1.38e+2)− 7.12e+2(1.10e+2)− 5.86e+2(1.18e+2)− 7.81e+2(1.20e+2)− 8.58e+2(1.31e+2)

DTLZ4 5 1.88e-1(3.03e-2)≈ 7.41e-2(4.55e-2)≈ 7.39e-2(5.63e-2)≈ 1.80e-1(7.75e-2)+ 6.02e-2(2.08e-2)≈ 1.24e-1(1.32e-1)≈ 1.96e-1(2.08e-1)
10 4.57e-1(7.52e-2)+ 2.66e-1(1.02e-1)+ 2.33e-1(8.36e-2)+ 2.34e-1(7.76e-2)+ 1.32e-1(6.41e-2)+ 1.07e-1(9.68e-2)+ 8.96e-2(1.25e-1)
20 6.79e-1(1.38e-1)+ 7.74e-1(1.34e-1)+ 6.65e-1(1.18e-1)+ 5.50e-1(1.44e-1)+ 4.63e-1(8.22e-2)+ 3.16e-1(1.90e-1)+ 2.27e-1(2.02e-1)

DTLZ5 5 2.37e-2(3.64e-3)+ 1.30e-2(1.76e-3)+ 1.65e-3(1.03e-4)− 1.26e-2(2.08e-3)+ 7.74e-3(1.49e-3)+ 6.37e-3(2.67e-3)+ 2.48e-3(5.73e-4)
10 1.60e-1(4.40e-2)+ 9.18e-2(2.76e-2)+ 8.66e-3(1.96e-3)≈ 9.58e-2(2.60e-2)+ 5.78e-2(1.81e-2)+ 1.59e-2(5.12e-3)+ 9.40e-3(1.93e-3)
20 5.52e-1(1.50e-1)+ 5.91e-1(7.98e-2)+ 2.01e-1(5.29e-2)+ 4.67e-1(8.41e-2)+ 3.49e-1(8.31e-2)+ 7.69e-2(3.31e-2)+ 3.93e-2(1.41e-2)

DTLZ6 5 2.47e-2(6.71e-3)+ 3.89e-1(1.88e-1)+ 2.13e-1(1.02e-1)+ 7.13e-1(4.42e-1)+ 3.64e-1(2.75e-1)+ 9.09e-3(9.88e-3)≈ 1.17e-2(1.30e-2)
10 2.42e-1(1.07e-1)+ 3.05e+0(5.23e-1)+ 1.82e+0(4.48e-1)+ 4.85e+0(6.38e-1)+ 4.27e+0(5.48e-1)+ 2.35e-1(4.14e-1)+ 6.74e-2(1.55e-1)
20 3.49e+0(1.06e+0)≈ 1.10e+1(7.14e-1)+ 8.71e+0(1.01e+0)≈ 1.33e+1(8.47e-1)+ 1.23e+1(7.85e-1)+ 7.04e+0(3.06e+0)≈ 6.77e+0(5.15e+0)

DTLZ7 5 7.68e-2(1.31e-2)+ 4.68e-2(4.64e-3)+ 3.52e-2(2.90e-2)≈ 4.46e-1(2.65e-1)+ 1.55e-1(8.32e-2)+ 2.04e-1(1.80e-1)+ 8.42e-2(1.14e-1)
10 1.10e-1(3.57e-2)+ 7.39e-2(1.52e-2)≈ 1.54e-1(1.97e-1)− 1.65e+0(6.43e-1)+ 1.20e+0(5.73e-1)+ 1.79e-1(1.20e-1)+ 1.38e-1(1.53e-1)
20 1.38e-1(4.67e-2)≈ 3.30e-1(1.80e-1)+ 3.60e-1(2.27e-1)+ 3.65e+0(9.08e-1)+ 2.61e+0(7.28e-1)+ 4.15e-1(2.30e-1)+ 2.28e-1(2.10e-1)

+/ ≈ /− 16/3/2 16/5/0 7/8/6 16/3/2 15/4/2 12/5/4
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Table 14: Statistical results of the HV value obtained by comparison algorithms on 5D, 10D, and
20D DTLZ optimization problems over 30 runs. Symbols ‘+’, ‘≈’, ‘−’ denote LORA-MOO is
statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms in
the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total
win/tie/loss results.

Problems D ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MOO
DTLZ1 5 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 6.38e-4(3.44e-3)≈ 1.10e-2(5.92e-2)

10 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
20 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

DTLZ2 5 2.15e-1(1.98e-2)+ 4.00e-1(2.88e-3)+ 4.26e-1(1.70e-3)− 3.39e-1(1.61e-2)+ 3.78e-1(1.08e-2)+ 3.83e-1(1.22e-2)+ 4.21e-1(4.35e-3)
10 4.53e-2(2.22e-2)+ 2.61e-1(4.46e-2)+ 3.87e-1(6.59e-3)− 1.55e-1(3.85e-2)+ 2.49e-1(3.32e-2)+ 3.49e-1(1.33e-2)+ 3.77e-1(6.75e-3)
20 1.02e-3(3.44e-3)+ 7.41e-5(3.74e-4)+ 8.31e-2(4.46e-2)+ 5.91e-3(9.22e-3)+ 3.81e-2(2.47e-2)+ 2.38e-1(2.81e-2)+ 3.01e-1(2.25e-2)

DTLZ3 5 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
10 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)
20 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)

DTLZ4 5 2.28e-2(2.65e-2)+ 2.93e-1(7.80e-2)≈ 3.02e-1(8.32e-2)≈ 1.87e-1(5.36e-2)+ 3.07e-1(5.76e-2)≈ 2.65e-1(1.11e-1)≈ 2.49e-1(1.66e-1)
10 4.20e-4(2.03e-3)+ 6.42e-2(5.54e-2)+ 8.85e-2(7.53e-2)+ 6.53e-2(3.42e-2)+ 1.99e-1(6.05e-2)+ 2.52e-1(6.75e-2)+ 3.24e-1(9.98e-2)
20 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 8.09e-4(2.67e-3)+ 1.20e-3(5.76e-3)+ 6.38e-3(8.46e-3)+ 8.86e-2(6.97e-2)+ 1.97e-1(1.08e-1)

DTLZ5 5 7.09e-2(2.85e-3)+ 7.93e-2(2.59e-3)+ 9.36e-2(1.60e-4)− 8.00e-2(2.29e-3)+ 8.58e-2(2.49e-3)+ 9.14e-2(6.46e-4)+ 9.27e-2(5.11e-4)
10 7.49e-3(1.04e-2)+ 2.60e-2(1.04e-2)+ 8.60e-2(1.99e-3)≈ 2.54e-2(9.46e-3)+ 4.66e-2(1.02e-2)+ 8.48e-2(1.78e-3)≈ 8.53e-2(2.03e-3)
20 4.12e-5(2.22e-4)+ 0.00e+0(0.00e+0)+ 1.00e-2(1.02e-2)+ 0.00e+0(0.00e+0)+ 9.09e-4(2.11e-3)+ 5.09e-2(7.32e-3)+ 6.15e-2(7.35e-3)

DTLZ6 5 6.52e-2(7.55e-3)+ 6.06e-3(1.28e-2)+ 3.10e-2(1.98e-2)+ 3.56e-3(1.03e-2)+ 1.93e-2(2.10e-2)+ 8.70e-2(8.64e-3)− 7.68e-2(1.94e-2)
10 3.91e-3(7.22e-3)+ 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 0.00e+0(0.00e+0)+ 3.52e-2(2.51e-2)+ 4.91e-2(2.38e-2)
20 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 2.06e-3(7.33e-3)

DTLZ7 5 2.29e-1(2.23e-2)+ 2.82e-1(5.98e-3)+ 3.08e-1(7.28e-3)− 1.90e-1(3.80e-2)+ 2.24e-1(2.41e-2)+ 2.49e-1(4.23e-2)+ 2.84e-1(3.96e-2)
10 1.81e-1(4.40e-2)+ 2.53e-1(9.02e-3)≈ 2.81e-1(3.28e-2)− 1.44e-2(2.31e-2)+ 2.11e-2(2.95e-2)+ 2.23e-1(3.95e-2)+ 2.47e-1(3.63e-2)
20 1.59e-1(4.85e-2)+ 1.56e-1(4.53e-2)+ 2.21e-1(3.02e-2)≈ 0.00e+0(0.00e+0)+ 1.56e-6(8.40e-6)+ 1.15e-1(4.03e-2)+ 2.03e-1(4.17e-2)

+/ ≈ /− 14/7/0 12/9/0 6/10/5 14/7/0 13/8/0 11/9/1
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either be a way to access this model for reproducing the results or a way to reproduce784

the model (e.g., with an open-source dataset or instructions for how to construct785

the dataset).786

(d) We recognize that reproducibility may be tricky in some cases, in which case787

authors are welcome to describe the particular way they provide for reproducibility.788

In the case of closed-source models, it may be that access to the model is limited in789

some way (e.g., to registered users), but it should be possible for other researchers790

to have some path to reproducing or verifying the results.791

5. Open access to data and code792

Question: Does the paper provide open access to the data and code, with sufficient instruc-793

tions to faithfully reproduce the main experimental results, as described in supplemental794

material?795

Answer: [No]796

Justification: Will release our code after acceptation, or we can provide the code if any797

reviewers are interested in it during the review process. Anyway, the details about the code798

have already described in the paper.799

Guidelines:800

• The answer NA means that paper does not include experiments requiring code.801

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/802

public/guides/CodeSubmissionPolicy) for more details.803

• While we encourage the release of code and data, we understand that this might not be804

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not805

including code, unless this is central to the contribution (e.g., for a new open-source806

benchmark).807

• The instructions should contain the exact command and environment needed to run to808

reproduce the results. See the NeurIPS code and data submission guidelines (https:809

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.810

• The authors should provide instructions on data access and preparation, including how811

to access the raw data, preprocessed data, intermediate data, and generated data, etc.812

• The authors should provide scripts to reproduce all experimental results for the new813

proposed method and baselines. If only a subset of experiments are reproducible, they814

should state which ones are omitted from the script and why.815

• At submission time, to preserve anonymity, the authors should release anonymized816

versions (if applicable).817

• Providing as much information as possible in supplemental material (appended to the818

paper) is recommended, but including URLs to data and code is permitted.819

6. Experimental Setting/Details820

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-821

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the822

results?823

Answer: [Yes]824

Justification: We have described all the details about of experiments.825

Guidelines:826
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• The answer NA means that the paper does not include experiments.827

• The experimental setting should be presented in the core of the paper to a level of detail828

that is necessary to appreciate the results and make sense of them.829

• The full details can be provided either with the code, in appendix, or as supplemental830

material.831

7. Experiment Statistical Significance832

Question: Does the paper report error bars suitably and correctly defined or other appropriate833

information about the statistical significance of the experiments?834

Answer: [Yes]835

Justification: We have conducted statistical tests in our experiments, error bars are plotted in836

figures.837

Guidelines:838

• The answer NA means that the paper does not include experiments.839

• The authors should answer "Yes" if the results are accompanied by error bars, confi-840

dence intervals, or statistical significance tests, at least for the experiments that support841

the main claims of the paper.842

• The factors of variability that the error bars are capturing should be clearly stated (for843

example, train/test split, initialization, random drawing of some parameter, or overall844

run with given experimental conditions).845

• The method for calculating the error bars should be explained (closed form formula,846

call to a library function, bootstrap, etc.)847

• The assumptions made should be given (e.g., Normally distributed errors).848

• It should be clear whether the error bar is the standard deviation or the standard error849

of the mean.850

• It is OK to report 1-sigma error bars, but one should state it. The authors should851

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis852

of Normality of errors is not verified.853

• For asymmetric distributions, the authors should be careful not to show in tables or854

figures symmetric error bars that would yield results that are out of range (e.g. negative855

error rates).856

• If error bars are reported in tables or plots, The authors should explain in the text how857

they were calculated and reference the corresponding figures or tables in the text.858

8. Experiments Compute Resources859

Question: For each experiment, does the paper provide sufficient information on the com-860

puter resources (type of compute workers, memory, time of execution) needed to reproduce861

the experiments?862

Answer: [Yes]863

Justification: A runtime comparison experiment is reported in the end of our experiment864

section. We did not provide information about compute workers and memory since our865

experiments do not have specific requirements on memory or other computation resource.866

Guidelines:867

• The answer NA means that the paper does not include experiments.868

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,869

or cloud provider, including relevant memory and storage.870

• The paper should provide the amount of compute required for each of the individual871

experimental runs as well as estimate the total compute.872

• The paper should disclose whether the full research project required more compute873

than the experiments reported in the paper (e.g., preliminary or failed experiments that874

didn’t make it into the paper).875

9. Code Of Ethics876

Question: Does the research conducted in the paper conform, in every respect, with the877

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?878
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Answer: [NA]879

Justification: Not applicable.880

Guidelines:881

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.882

• If the authors answer No, they should explain the special circumstances that require a883

deviation from the Code of Ethics.884

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-885

eration due to laws or regulations in their jurisdiction).886

10. Broader Impacts887

Question: Does the paper discuss both potential positive societal impacts and negative888

societal impacts of the work performed?889

Answer: [No]890

Justification: Our algorithm has no potential negative social impacts.891

Guidelines:892

• The answer NA means that there is no societal impact of the work performed.893

• If the authors answer NA or No, they should explain why their work has no societal894

impact or why the paper does not address societal impact.895

• Examples of negative societal impacts include potential malicious or unintended uses896

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations897

(e.g., deployment of technologies that could make decisions that unfairly impact specific898

groups), privacy considerations, and security considerations.899

• The conference expects that many papers will be foundational research and not tied900

to particular applications, let alone deployments. However, if there is a direct path to901

any negative applications, the authors should point it out. For example, it is legitimate902

to point out that an improvement in the quality of generative models could be used to903

generate deepfakes for disinformation. On the other hand, it is not needed to point out904

that a generic algorithm for optimizing neural networks could enable people to train905

models that generate Deepfakes faster.906

• The authors should consider possible harms that could arise when the technology is907

being used as intended and functioning correctly, harms that could arise when the908

technology is being used as intended but gives incorrect results, and harms following909

from (intentional or unintentional) misuse of the technology.910

• If there are negative societal impacts, the authors could also discuss possible mitigation911

strategies (e.g., gated release of models, providing defenses in addition to attacks,912

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from913

feedback over time, improving the efficiency and accessibility of ML).914

11. Safeguards915

Question: Does the paper describe safeguards that have been put in place for responsible916

release of data or models that have a high risk for misuse (e.g., pretrained language models,917

image generators, or scraped datasets)?918

Answer: [No]919

Justification: Code will be released after acceptation, it would be open access, no safeguards920

are required.921

Guidelines:922

• The answer NA means that the paper poses no such risks.923

• Released models that have a high risk for misuse or dual-use should be released with924

necessary safeguards to allow for controlled use of the model, for example by requiring925

that users adhere to usage guidelines or restrictions to access the model or implementing926

safety filters.927

• Datasets that have been scraped from the Internet could pose safety risks. The authors928

should describe how they avoided releasing unsafe images.929
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• We recognize that providing effective safeguards is challenging, and many papers do930

not require this, but we encourage authors to take this into account and make a best931

faith effort.932

12. Licenses for existing assets933

Question: Are the creators or original owners of assets (e.g., code, data, models), used in934

the paper, properly credited and are the license and terms of use explicitly mentioned and935

properly respected?936

Answer: [Yes]937

Justification: We have cited the existing assets we used in our paper.938

Guidelines:939

• The answer NA means that the paper does not use existing assets.940

• The authors should cite the original paper that produced the code package or dataset.941

• The authors should state which version of the asset is used and, if possible, include a942

URL.943

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.944

• For scraped data from a particular source (e.g., website), the copyright and terms of945

service of that source should be provided.946

• If assets are released, the license, copyright information, and terms of use in the947

package should be provided. For popular datasets, paperswithcode.com/datasets948

has curated licenses for some datasets. Their licensing guide can help determine the949

license of a dataset.950

• For existing datasets that are re-packaged, both the original license and the license of951

the derived asset (if it has changed) should be provided.952

• If this information is not available online, the authors are encouraged to reach out to953

the asset’s creators.954

13. New Assets955

Question: Are new assets introduced in the paper well documented and is the documentation956

provided alongside the assets?957

Answer: [NA]958

Justification: We did not introduce any new assets.959

Guidelines:960

• The answer NA means that the paper does not release new assets.961

• Researchers should communicate the details of the dataset/code/model as part of their962

submissions via structured templates. This includes details about training, license,963

limitations, etc.964

• The paper should discuss whether and how consent was obtained from people whose965

asset is used.966

• At submission time, remember to anonymize your assets (if applicable). You can either967

create an anonymized URL or include an anonymized zip file.968

14. Crowdsourcing and Research with Human Subjects969

Question: For crowdsourcing experiments and research with human subjects, does the paper970

include the full text of instructions given to participants and screenshots, if applicable, as971

well as details about compensation (if any)?972

Answer: [NA]973

Justification: We do not have any experiments or research with human subjects.974

Guidelines:975

• The answer NA means that the paper does not involve crowdsourcing nor research with976

human subjects.977

• Including this information in the supplemental material is fine, but if the main contribu-978

tion of the paper involves human subjects, then as much detail as possible should be979

included in the main paper.980
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,981

or other labor should be paid at least the minimum wage in the country of the data982

collector.983

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human984

Subjects985

Question: Does the paper describe potential risks incurred by study participants, whether986

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)987

approvals (or an equivalent approval/review based on the requirements of your country or988

institution) were obtained?989

Answer: [NA]990

Justification: We do not have any experiments or research with human subjects.991

Guidelines:992

• The answer NA means that the paper does not involve crowdsourcing nor research with993

human subjects.994

• Depending on the country in which research is conducted, IRB approval (or equivalent)995

may be required for any human subjects research. If you obtained IRB approval, you996

should clearly state this in the paper.997

• We recognize that the procedures for this may vary significantly between institutions998

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the999

guidelines for their institution.1000

• For initial submissions, do not include any information that would break anonymity (if1001

applicable), such as the institution conducting the review.1002
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