
Under review as a conference paper at ICLR 2021

ADVERSARIAL FEATURE DESENSITIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks can now perform many tasks that were once thought to
be only feasible for humans. While reaching this impressive performance under
standard settings, such networks are known to be vulnerable to adversarial attacks
– slight but carefully constructed perturbations of the inputs which drastically de-
crease the network performance. Here we propose a new way to improve the
network robustness against adversarial attacks by focusing on robust representation
learning based on the adversarial learning paradigm, called here Adversarial Fea-
ture Desensitization (AFD). AFD desensitizes the representation via an adversarial
game between the embedding network and an additional adversarial discriminator,
which is trained to distinguish between the clean and perturbed inputs from their
high-level representations. Our method substantially improves the state-of-the-art
in robust classification on MNIST, CIFAR10, and CIFAR100 datasets. More im-
portantly, we demonstrate that AFD has better generalization ability than previous
methods, as the learned features maintain their robustness across a wide range
of perturbations, including perturbations not seen during training. These results
indicate that reducing feature sensitivity is a promising approach for ameliorating
the problem of adversarial attacks in deep neural networks.

1 INTRODUCTION

Despite remarkable recent progress in deep learning that allowed neural networks to achieve a near
human-level performance across a range of complex tasks (He et al., 2016; Mnih et al., 2015; Silver
et al., 2017; Vinyals et al., 2019), a number of important open challenges remain. For example, deep
networks are know to be highly vulnerability to adversarial attacks (Szegedy et al., 2013), i.e. small
but precise perturbations of the inputs that result in high-confidence predictions which are critically
divergent from human judgement.

Many prior works on adversarial robustness have tackled the robust classification problem by forcing
the classifier to output the correct label for the perturbed inputs (Madry et al., 2017; Kannan et al.,
2018; Zhang et al., 2019b). These approaches essentially push the representations of samples
from different categories away from the decision boundary. For example, the Adversarial Training
procedure (Madry et al., 2017), trains a network to minimize the classification loss on the distribution
of perturbed input samples. Another recent approach (Zhang et al., 2019b) augments the regular
classification loss with an auxiliary term that encourages the network to match the assigned labels to
clean and perturbed inputs (Figure 1a). More recently, several other works have tried to improve the
classification robustness by enhancing the smoothness of the classification loss (Wu et al., 2019; Qin
et al., 2020), or the saliency of the Jacobian matrix (Chan et al., 2020b). These methods has been
shown to further improve the robust performance compared to prior approaches that do not consider
the gradient landscape of the network. However, despite all these efforts, most of these defenses
remain vulnerable against other forms of attacks that were not used during training or even slightly
stronger perturbations of the same kind (Schott et al., 2018; Sitawarin et al., 2020).

One reason for the above could be an insufficient focus on the robustness of representations learned
by the model. It has been shown that many adversarial perturbations that are often small in magnitude
lead to large deviations in the high-level features of deep neural networks (Liao et al., 2018; Yoon
et al., 2019). In addition, previous work (Ilyas et al., 2019) demonstrated that adversarial patterns
often rely on specific learned features which generalize even on large datasets such as ImageNet
(Deng et al., 2009). However, these features are highly sensitive to input changes, yielding a potential
vulnerability that can be exploited by adversarial attacks. While humans can also experience altered
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Adversarial Training TRADES AFD

(a) (b)
Figure 1: Overview of the proposed AFD approach: (a) visual comparison of several adversarial
robustness methods (Adversarial training (Madry et al., 2017), TRADES (Zhang et al., 2019b), and
AFD). The dotted black line corresponds to the decision boundary of the adversarial discriminator;
(b) schematic of the proposed AFD paradigm.

perception in response to particular visual patterns (e.g., visual illusions1), they are seemingly
insensitive to this particular class of perturbations, and often unaware of the subtle image changes
resulting from adversarial attacks. This in turn suggests that current deep neural networks may rely
on features that are still considerably different from those giving rise to perception in primates (and,
particularly, in humans) – even despite many recent studies highlighting their remarkable similarities
(Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Bashivan et al., 2019). It is therefore
reasonable to hypothesize that a deep network may become more robust to such adversarial attacks if
the corresponding higher-level representations are more robust to input perturbations, similar to those
used by our brains. One way to approach the issue of robust classification is to consider the classifier
as a relatively simple mapping (e.g. a linear transformation) that produces predictions based on a
learned representation. In this case, if the learned representation is robust then the predictions from
the simple classifier would consequently be robust too (Garg et al., 2018; Zhu et al., 2020).

Here, instead of focusing on robust classification, we turned our attention to robustness of learned
features from which the categories are inferred (e.g. using a simple linear classifier). Our goal is to
learn representations that remain stable in the presence of adversarial attacks. We propose to learn
robust representations via an adversarial game between two agents: i) an attacker that searches for
performance-degrading perturbations given the embedding function and ii) a discriminator function
that distinguishes between the clean and perturbed inputs from their high-level representations.
The parameters of the embedding and the adversarial discriminator functions are then tuned via
an adversarial game between the two (Figure 1b). This setup is similar to the adversarial learning
paradigm widely used in image generation and transformation (Goodfellow et al., 2014a; Karras et al.,
2019; Zhu et al., 2017), unsupervised and semi-supervised learning (Miyato et al., 2018b), video
prediction (Mathieu et al., 2015; Lee et al., 2018), domain adaptation (Ganin & Lempitsky, 2015;
Tzeng et al., 2017), active learning (Sinha et al., 2019), and continual learning (Ebrahimi et al., 2020).
While some prior work have also considered adversarial learning to tackle the problem of adversarial
examples, they have often been used to learn the distribution of the adversarial images(Wang & Yu,
2019; Matyasko & Chau, 2018), or the input gradients(Chan et al., 2020b;a).

The main contributions of this work are:

• We propose a novel method to learn adversarially robust representations through an adversar-
ial game between the embedding function and an adversarial discriminator that distinguishes
between the natural and perturbed representations.

• We theoretically show that our proposed adversarial approach leads to a flat loss function in
the vicinity of the training samples, thereby making the overall representation more stable
against adversarial attacks.

• We perform extensive empirical evaluations against many prior art methods, on three datasets,
eight types of attacks, with a wide range of attack strength, and show that our proposed
approach performs similar or better (often, significantly better) than most previous defense
methods under most tested circumstances.

1https://michaelbach.de/ot/
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2 METHODS

Let Eθ(x) : X → H, where X ⊆ RNi ,H ⊆ RNe , be an embedding function (e.g. a neural network
with parameters θ) of the input x ∈ X into representation h ∈ H, and let Dcφ : H → Y , where Y ⊆
RNc , be a linear decoding function, with parameters φ (e.g., the last linear layer of a neural network
before applying softmax). The likelihood of each class i from a set of Nc classes, C = {1, ..., Nc},
given the input x, is computed as follows: li(x) = softmax

(
Dcφ(Eθ(x))

)
i
, i ∈ C. Let π(x, ε)

denote a perturbation function (an adversarial attack) which computes the perturbed input x′ within
the ε-neighborhood of input x:

∀x ∈ X : π(x, ε) = x′ ∈ B(x, ε); B(x, ε) = {x′ ∈ X : ‖x′ − x‖ < ε}, (1)

such that argmax
i∈C

li(x) 6= argmax
i∈C

li(x
′), i.e. the attack changes the class label of a sample x.

It has been shown that adversarial examples are attributed to the presence of non-robust features
which are predictive of the categories but are not shared with the human perception (Ilyas et al., 2019).
Naturally, reducing the sensitivity of the learned features could potentially enhance the network
classification robustness against adversarial attacks. Given the perturbation vector δ ∈ RNi , ‖δ‖ ≤ ε,
we could simply define the sensitivity of a representation as an empirical average (over n input
samples) of the maximum norm change in the representation due to input perturbation (attack):
Se =

1
n

∑
x

1
ε maxδ‖E(x)− E(x+ δ)‖, and formulate the robust representation learning problem

as an optimization problem which aims at minimizing the representation sensitivity Se. However,
such an approach may negatively affect the empirical risk objective, i.e. the classification accuracy
(as we will later see in the empirical section). Thus, we desire a more precise formulation which
would be less disruptive to the classification objective of the network.

2.1 ADVERSARIAL FEATURE DESENSITIZATION

Instead of minimizing the empirical average of representation sensitivity across all samples in the
dataset (as formulated in the previous section), we focus on minimizing the representation sensitivity
at the level of distributions which we expect to be less disruptive to the classification objective. For
this, we propose an adversarial learning procedure similar to Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014a), in which the generator network is replaced by an embedding network Eθ
that learns to map the clean and perturbed inputs into representations that are indistinguishable from
each other. Similar to the original GAN setup, a discriminator network Daψ is trained to distinguish
between representations of clean and perturbed inputs. The training procedure involves three loss
functions that are optimized sequentially. First, parameters of the embedding function Eθ and
decoder Dcφ are tuned to minimize the classification softmax entropy loss (on clean inputs). Second,
parameters ψ of the adversarial discriminator Daψ are tuned to minimize the cross-entropy loss
associated with discriminating natural and perturbed inputs conditioned on the natural labels. Lastly,
parameters of the embedding function Eθ are adversarially tuned to maximize the cross-entropy
from the second step. Algorithm 1 summarizes the proposed approach (also, see Figure 1b). The
adversarial training framework involves a two-player minimax game (Chrysos et al., 2019) between
Eθ and Daψ , with value function V (Eθ, Daψ):

V (Eθ, Daψ) = Ep(y)
[
Ep(x|y)[S(−Daψ(Eθ(x), y))]

]
+ Eq(y)

[
Eq(x|y)[S(Daψ(Eθ(x), y))]

]
, (2)

where p and q correspond to natural and perturbed distributions, and S denotes the softplus function.
Chrysos et al. (2019) proves that the global minimum of the adversarial training criterion V (Eθ, Daψ)
is achieved if and only if p = q; in our setting, p = P (Eθ(x), y) and q = P (Eθ(x

′), y), i.e.
achieving the global minimum in eq. 2 would imply that the representations of natural and perturbed
images conditioned on the class label would belong to the same probability distribution. In that case,
a Bayes optimal classifier would achieve the same error rate on the perturbed inputs as it would on
the natural inputs. We use this fact below to prove that, when V (Eθ, Daψ) is at its global minimum,
the gradient of the likelihood function becomes equal to zero; i.e. the adversarial attack will fail to
change the class likelihoods.

Let π(x, ε) be a policy which computes the perturbed input x′ within the ε neighborhood of input
x: π(x, ε) = x − ∂lt

∂x = x′ ∈ B(x, ε) where t denotes the target (ground truth) class index; and
S(Daψ) be a discriminator functionH → {0, 1} that distinguishes between natural and perturbed
representations; where S is the softplus function. The following theorem clarifies this property of our
approach, which was not previously taken care of, at least not explicitly, by alternative methods.
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Algorithm 1: AFD training procedure
Input: Attack policy π, mini-batch B of size m, encoding network Eθ, adversarial discriminator

network Daψ , decoder network Dcφ, softplus function S , and learning rates α, β, and γ.
Read mini-batch B = {(x1, y1), ..., (xm, ym)}
repeat

x′ ← π(x, ε)

LEDc = − 1
m

∑m
i=1 log

(
softmax(−Dcφ(Eθ(xi))) yi

)
LDa = 1

m

∑m
i=1

[
S(−Daψ(Eθ(xi), yi)) + S(Daψ(Eθ(x′i), yi))

]
LE = 1

m

∑m
i=1 S(−Daψ(Eθ(x′i), yi))

(θ, φ)← (θ, φ)− α∇θ, φLEDc
ψ ← ψ − β∇ψLDa
θ ← θ − γ∇θLE

until training converged;

Theorem 1. If the adversarial optimization of embedding and discriminator functions, Eθ and Daψ,
converges to the global minimum (θ∗, ψ∗) of the training objective in equation 2, then the gradient of
the true class (t) likelihood with respect to the input x is zero at any x ∈ X , i.e. ∂lt∂x = 0.

See appendix (6.2) for proof.

While the assumption of convergence to global optimum is a strong assumption, in practice, it is
possible to derive a bound on the classifier’s robust error in terms of its error on clean inputs and a
divergence measure between the clean and perturbed representations (see 6.4 in the appendix).

3 EXPERIMENTS

3.1 ADVERSARIAL ATTACKS

We used a range of adversarial attacks in our experiments, using existing implementations in the
Foolbox (Rauber et al., 2017) and Advertorch (Ding et al., 2019) packages. We validated the
models against different variations of the Projected Gradient Descent (PGD) (Madry et al., 2017)
(L∞, L2, L1), Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014b), Momentum Iterative
Method (MIM) (Dong et al., 2018), Decoupled Direction and Norm (DDN) (Rony et al., 2019),
Deepfool (Moosavi-Dezfooli et al., 2016), and C&W (Carlini & Wagner, 2017) attacks. For each
attack, we swept the ε value across a wide range and validated different models on each. Specific
settings used for each perturbation are listed in Table-A2.

3.2 ADVERSARIAL ROBUSTNESS

We validated our proposed approach on learning robust representations on the MNIST (LeCun et al.,
1998), CIFAR10, and CIFAR100 (Krizhevsky et al., 2009) datasets. We used the PGD-L∞ attack
to perturb the inputs during training. ε was set to 0.3 and 0.031 for MNIST and CIFAR datasets
respectively. We used the activations before the last linear layer as the high-level representations (H)
of the network. In all experiments, the adversarial discriminator network (Daψ) consisted of three
fully connected layers with Leaky ReLU nonlinearity followed by a projection discriminator layer
that incorporated the labels into the adversarial discriminator through a dot product operation (Miyato
& Koyama, 2018). We compared several variations of the adversarial discriminator architecture
and evaluated its effect on robust classification on MNIST dataset (Table A6). Increasing the depth
of the adversarial discriminator and adding the projection discriminator layer drastically improved
the robust classification accuracy. We verified that the adversarial discriminator could successfully
discriminate between the clean and perturbed embeddings initially and that this performance was
reduced during training (Figure A5). The number of hidden units in all layers of Daψ were equal
(64 for MNIST and 512 for CIFAR). We used spectral normalization (Miyato et al., 2018a) on all
layers of Daψ . Further details of training for each experiment are listed in Table-A1. We used three
separate learning rates for tuning the embedding Eθ, adversarial discriminator Daψ, and decoder
Dcφ parameters. To find the best learning rates, we randomly split the CIFAR10 train set into a train
and validation sets (45000 and 5000 images in train and validation sets respecively). We then carried
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Table 1: Comparison of robust accuracy against various attacks on different datasets. For all
attacks we used ε = 0.3 and 8

255 for MNIST and CIFAR10/CIFAR100 datasets respectively. †
indicates replicated results. NT: natural training; AT: adversarial training; AFD: adversarial feature
desensitization; WB: white-box attack; BB: black-box attack where the adversarial examples were
produced by running the attack on the NT ResNet18 model. Numbers reported with µ± σ denote
mean and std values over three independent runs with different random initialization. * RST(Carmon
et al., 2019) additionally uses 500K unlabeled images during training.

Method Dataset Network Clean PGDL∞ (WB) FGSM (WB) PGDL∞ (BB) FGSM (BB)

AT(Madry et al., 2017)

MNIST

LeNet 98.8 93.2 95.6 96.0 96.8
TRADES(Zhang et al., 2019b) LeNet 99.48 96.07 - - -
ATES(Sitawarin et al., 2020) LeNet 99.11 94.04 - - -

ABS(Schott et al., 2018) LeNet 99.0 13 34 - -
Defense-GAN(Samangouei et al., 2018) ConvNet 99.20 - - - 93.23

NT† RN18 98.80±0.11 0.0±0.0 2.90±0.07 11.25±3.60 20.48±2.91
AT(Madry et al., 2017)† RN18 99.13±0.11 95.16±0.12 97.33±0.18 98.41±0.09 98.17±0.18

TRADES(Zhang et al., 2019b)† RN18 98.84±0.18 80.69±9.44 91.75±2.7 97.11±0.63 86.4±8.22
AFD RN18 99.15±0.12 96.13±0.35 97.70±0.34 98.31±0.18 97.92±0.31

AT(Madry et al., 2017)

CIFAR10

RN18 87.3 45.8 56.1 86.0 85.6
TRADES(Zhang et al., 2019b) RN18 84.92 56.61 - - -
ATES(Sitawarin et al., 2020) WRN-34-10 86.84 55.06 - - -

RLFAT(Song et al., 2020) WRN-32-10 82.72 58.75 - - -
RST+(Wu et al., 2019; Carmon et al., 2019)∗ WRN-34-10 89.82 64.86 69.60 88.77 87.61

LLR(Qin et al., 2020) WRN-28-8 86.83 52.99 - - -
YOPO(Zhang et al., 2019a) RN18 83.99 44.72 - - -
JARN(Chan et al., 2020b) WRN-34-10 84.8 46.7 65.7 59.3 70.3

NT† RN18 95.40 0.12 47.79 12.00 54.65
AT(Madry et al., 2017)† RN18 83.58 41.05 50.12 83.20 82.88

TRADES(Zhang et al., 2019b)† RN18 82.22 52.30 58.16 80.36 79.69
Feature-scattering(Zhang & Wang, 2019) WRN-28-10 90.00 70.5 78.4 - -

AFD RN18 89.38±2.71 77.72±10.78 85.34±0.03 86.33±2.21 84.70±1.40

NT†

CIFAR100

RN18 76.12 0.01 9.67 1.55 15.43
AT(Madry et al., 2017)† RN18 55.78 20.39 25.09 53.83 53.25

TRADES(Zhang et al., 2019b)† RN18 55.48 27.36 30.46 54.13 53.16
RLFAT(Song et al., 2020) WRN-32-10 56.70 31.99 - -

Feature-scattering(Zhang & Wang, 2019) WRN-28-10 73.9 47.2 61.0 - -
AFD RN18 62.35±5.70 44.88±8.30 49.52±6.73 63.63±4.12 54.90±0.42

out a grid-search using the train-validation sets and picked the learning rates with highest validation
performance. As baseline, we used a re-implementation of adversarial training (AT) method (Madry
et al., 2017) and the official code for TRADES2 (Zhang et al., 2019b) and denoted these results with
† in the tables.

MNIST CIFAR10 CIFAR100

Figure 2: Robust accuracy for different strengths of PGD-L∞ attack on different datasets.

Adversarial robustness against the observed attack We first evaluated our approach against the
same class and strength of attack that was used during training (PGD-Linf with ε = 0.3 and 0.031 for
MNIST and CIFAR datasets respectively). Table 1 compares the robust classification performance
of our proposed approach against PGD-L∞ (with similar setting as was used during training) and
FGSM attacks. Training LeNet with AFD was unstable leading to frequent crashing of adversarial
discriminator accuracy despite our extensive hyperparameter search. For this reason, we conducted
our MNIST experiments also using the ResNet18 architecture (He et al., 2016). On all datasets,
AFD-trained network performed much better than alternative methods against both white-box and
black-box attacks. The relative improvement was largest on CIFAR10 and CIFAR100 datasets. We
also observed a relatively high variance in robust accuracy of AFD-trained networks on CIFAR
datasets when trained from different random initializations (standard deviation of 10.78 and 8.30 for
CIFAR10 and CIFAR100). We suspect this large variance to be due to the additional randomness in
AFD training due to the adversarial game between the embedding and the adversarial discriminator
networks. Across the three runs, the best trained models performed 83.72% and 54.95% against

2https://github.com/yaodongyu/TRADES.git
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Table 2: AUC measures for different perturbations and methods on MNIST, CIFAR10, and CIFAR100
datasets. AUC values are normalized to have a maximum allowable value of 1. Evaluations on AT
and TRADES were made on networks trained using reimplemented or official code.

Dataset Model PGDL∞ PGDL2 PGDL1 FGSM MIM DDN DeepFool C&W

MNIST

NT 0.16 0.12 0.14 0.29 0.16 0.18 0.23 0.75
AT 0.67 0.50 0.44 0.76 0.84 0.72 0.74 0.96

TRADES 0.62 0.47 0.41 0.72 0.80 0.77 0.73 0.96
AFD 0.83 0.84 0.70 0.84 0.84 0.85 0.83 0.96

CIFAR10

NT 0.04 0.02 0.06 0.35 0.04 0.06 0.08 0.13
AT 0.27 0.05 0.14 0.39 0.28 0.06 0.33 0.41

TRADES 0.34 0.06 0.16 0.46 0.36 0.06 0.41 0.47
AFD 0.73 0.43 0.82 0.85 0.84 0.38 0.33 0.37

CIFAR100

NT 0.03 0.02 0.03 0.09 0.02 0.05 0.03 0.10
AT 0.15 0.03 0.08 0.19 0.15 0.04 0.16 0.23

TRADES 0.19 0.04 0.09 0.23 0.20 0.04 0.19 0.26
AFD 0.43 0.19 0.47 0.50 0.49 0.15 0.13 0.19

the white-box PGD-Linf attack (ε = 0.03) on CIFAR10 and CIFAR100 respectively. Furthermore,
AFD retained most of its robustness against a large set of attacks while improving robustness against
C&W and DeepFool attacks when using particular weaker attacks (e.g. PGD-L∞ with ε = 4

255 and 5
iterations) during training (Figure-A6). In addition, we also evaluated the AFD model on transfer
black-box attacks from AT and TRADES models which further showed higher robustness to those
attacks too (Table-A4).

Figure 3: Comparison of robust accuracy of different methods against white-box attacks on CIFAR10
dataset with ResNet18 architecture.

Robust classification against stronger and unseen attacks We also validated the robustness clas-
sification against higher degrees of the same attack used during training as well as to a suite of
other attacks that were not observed during training. We found that, compared to alternative defense
methods, the AFD-trained networks continued to perform well against white-box attacks even for
very large perturbations – while performance of other methods went down to zero relatively quickly
(Figures 2,3,A1,A2). The AFD-trained network also performed remarkably well against most other
attacks that were not observed during training (8/8 on MNIST and 6/8 on CIFAR datasets). To
compare different models considering both attack types and perturbation strength, we computed
the area-under-the-curve (AUC) for a range of epsilons for each attack and each approach. Table-2
summarizes these values for our approach and two alternative approaches (adversarial training and
TRADES). Our results showed that compared to other baseline methods, AFD-trained networks are
robust to a wide range of attacks and strengths. As discussed in the Methods section, unlike most
previous defense methods that focus on minimizing the robust classification error, AFD minimizes
the representation sensitivity and consequently, the learned representation remains stable for a large
range of attack strengths compared to other methods (Figure 4-left).

Despite the large gain in robustness against most of the attacks, AFD-trained networks slightly under-
performed against two of the attacks (Deepfool and C&W) when tested on CIFAR10 and CIFAR100
datasets. Our posthoc analyses showed that the direction of perturbations in the representational space
in response to Deepfool and C&W attacks were more misaligned with the PGD-Linf attack compared
to other attacks such as DDN which was comparatively less successful (Table A7). Moreover, it has
been shown that most adversarial defenses are not guaranteed to transfer to unseen attacks (Maini
et al., 2020; Pinot et al., 2020) and that different adversarial training methods might even overfit to
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Figure 4: (left) Comparison of normalized representation sensitivity on test-set of MNIST (top),
CIFAR10 (middle), CIFAR100 (bottom) datasets under PGD-L∞ attack. Plots show the median
(±std) sensitivity over test-set for each dataset. * denotes statistically significant difference between
sensitivity distributions for AFD and TRADES. (right) Logarithm of the average gradient magnitudes
of class likelihoods with respect to input, evaluated at samples within the test-set of each dataset
(log

(
Ex∼X

(
∂lt
∂x

))
). For each matrix, rows correspond to ground truth (target) labels and columns

correspond to non-target labels.

the training set (Rice et al., 2020). While we did not observe any sign of overfitting for the PGD-Linf

during training, the robustness against Deepfool and C&W attacks decreased during the later stages of
training and in a way, the network might have overfit to the PGD-Linf attack during training (Figure
A4).
Representation sensitivity We compared the robustness of the learned representation derived from
training the same architecture using different methods. For that we measured the normalized
sensitivity of the representations in each network as ‖E(x)−E(x′)‖2

‖E(x)‖2 . For all three datasets we found
that the AFD-trained networks learn high-level representations that were more robust against input
perturbations as measured by the normalized L2 distance between clean and perturbed representations
(Figures 4-left,A8,A9,A10).
Gradient landscape To empirically validate the prediction from Theorem-1, we computed the
average gradient of class likelihoods with respect to the input across samples within the test set of
each dataset (‖∇xli‖, i ∈ 1, ..., Nc). We found that, on all datasets, the magnitude of gradients in
the direction of most non-target classes were much smaller for AFD-trained network compared to
other tested methods (Figure-4). This empirically confirms that AFD stabilizes the representation in a
way that significantly reduces the gradients towards most non-target classes. Moreover, the output
gradients of the AFD-trained network were highly salient and interpretable (Figure A7).
Learning a sparse representation As we discussed in the Methods section, we expected the AFD
method to find and remove the non-robust features from the learned representation. Thus, we expected
the learned representational space to potentially be of lower dimensionality. To test this, we compared
the dimensionality of the learned representation using two measures. i) number of non-zero features
over the test set within each dataset and ii) number of PCA dimensions that explains more than 99%
of the variance in the representation computed over the test-set of each dataset. We found that the
same network architecture when trained with AFD method gave rise to a much sparser and lower
dimensional representational space (Table A5). The representational spaces learned with AFD on
MNIST, CIFAR10, and CIFAR100 datasets had only 6, 9, and 76 principal components respectively.
Adversarial vs. L2 optimization We also ran an additional experiment on the MNIST dataset in
which we added a regularization term to the classification loss to directly minimize the representation
sensitivity Se = 1

n

∑
x‖E(x)−E(x′)‖, during training. We observed that although this augmented

loss led to learning robustness representations, it only achieved modest levels of robustness (∼ 80%)
and showed only weak generalization to stronger and other unseen attacks (Figure-A3). This result
suggests that enforcing a distributional form of feature desensitization (e.g. AFD) may lead to robust
behavior over a larger range of perturbations compared to the case where feature stability is directly
enforced through an Lp norm measure.
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Non-obfuscated gradients Recent literature have pointed out that many defense methods against
adversarial perturbations could drive the network into a regime called obfuscated gradients in which
the network appears to be robust against common iterative adversarial attacks but could easily be
broken using black-box or alternative attacks that do not rely on exact gradients (Papernot et al.,
2017; Athalye et al., 2018; Carlini et al., 2019). We believe that our results are not due to obfuscated
gradients for several reasons. i) For most perturbations, the model performance continues to decrease
with increased epsilon (Figures-3,A1,A2); ii) The iterative perturbations were consistently more
successful than single-step ones (Table-1); iii) Black-box attacks were significantly less successful
than white-box attacks (Table-1); iv) The AFD-trained model performed similar or better than
alternate methods against the Boundary attack (Brendel et al., 2018) – an attack which does not
rely on the network gradients (Table-A3). In addition to these tests, we also evaluated the AFD
performance on B&B (Brendel et al., 2018) and AutoAttack (Croce & Hein, 2020). On these attacks,
AFD was consistently better than or equal to the baseline models on MNIST and CIFAR10 datasets
but was less robust on the CIFAR100 dataset (Table-A3).

4 RELATED WORK

There is an extensive literature on mitigating susceptibility to adversarial perturbations. Adversarial
training (Madry et al., 2017) is one of the earliest successful attempts to improve robustness of the
learned representations to potential perturbations to the input pattern by solving a ”saddle point”
problem composed of an inner and outer adversarial optimization. A number of other works suggest
additional losses instead of direct training on the perturbed inputs. TRADES (Zhang et al., 2019b)
adds a regularization term to the cross-entropy loss which penalizes the network for assigning different
labels to natural images and their corresponding perturbed images. (Qin et al., 2020) proposed an
additional regularization term (local linearity regularizer) that encourages the classification loss to
behave linearly around the training examples. (Wu et al., 2019) proposed to regularize the flatness of
the loss to improve adversarial robustness.

Our work is closely related to the domain adaptation literature in which adversarial optimization
has recently gained much attention (Ganin & Lempitsky, 2015; Liu et al., 2019; Tzeng et al., 2017).
From this viewpoint one could consider the clean and perturbed inputs as two distinct domains for
which a network aims to learn an invariant feature set. Although in our setting, i) the perturbed
domain continuously evolves while the parameters of the embedding network are tuned; ii) unlike
the usual setting in domain-adaptation problems, here we have access to the labels associated with
samples from the perturbed (target) domain. Despite this, (Song et al., 2019) regularized the network
to have similar logit values in response to clean and perturbed inputs and showed that this additional
term leads to better robust generalization to unseen perturbations. Related to this, Adversarial
Logit Pairing (Kannan et al., 2018) increases robustness by directly matching the logits for clean
and adversarial inputs. Another line of work is on developing certified defenses which consist of
methods with provable bounds over which the network is certified to operate robustly (Zhang et al.,
2019c; Zhai et al., 2020; Cohen et al., 2019). While these approaches provide a sense of guarantee
about the proposed defenses, they are usually prohibitively expensive to train, drastically reduce the
performance of the network on natural images, and the empirical robustness gained against standard
attacks are low.

5 DISCUSSION

We proposed a method to decrease the sensitivity of learned representations in neural networks
using adversarial optimization. Decreasing the input-sensitivity of features has long been desired
in training neural networks (Drucker & Le Cun, 1992) and has been suggested as a way to improve
adversarial robustness (Ros & Doshi-Velez, 2018; Zhu et al., 2020). Our results show that AFD
can be used to effectively reduce the input-sensitivity of network features with minimal interference
with the classification objective and to improve robustness against a family of adversarial attacks.
Successful feature desensitization was dependent on having a strong adversarial discriminator and
maintaining a balance between the embedding and discriminator networks throughout training. With
regards to the computational cost, while AFD requires three SGD updates per batch, the additional
computational cost is not significantly higher than many prior methods when considering that most
of the computational cost is associated with generating the adversarial examples during training.
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Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Huaxia Wang and Chun-Nam Yu. A direct approach to robust deep learning using adversarial
networks. arXiv preprint arXiv:1905.09591, 2019.

Dongxian Wu, Yisen Wang, and Xia Shu-Tao. Revisiting Loss Landscape for Adversarial Robustness.
ICML, 2019.

Daniel L K Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(23):
8619–24, 2014. ISSN 1091-6490. doi: 10.1073/pnas.1403112111.

Jihyeun Yoon, Kyungyul Kim, and Jongseong Jang. Propagated perturbation of adversarial attack
for well-known CNNs: Empirical study and its explanation. Proceedings - 2019 International
Conference on Computer Vision Workshop, ICCVW 2019, pp. 4226–4234, 2019. doi: 10.1109/
ICCVW.2019.00520.

Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh,
and Liwei Wang. Macer: Attack-free and scalable robust training via maximizing certified radius.
arXiv preprint arXiv:2001.02378, 2020.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You Only Propagate
Once: Accelerating Adversarial Training via Maximal Principle. (NeurIPS 2019), 2019a.

Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature scattering-based
adversarial training. In Advances in Neural Information Processing Systems, pp. 1831–1841, 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I
Jordan. Theoretically principled trade-off between robustness and accuracy. arXiv preprint
arXiv:1901.08573, 2019b.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning,
and Cho-Jui Hsieh. Towards Stable and Efficient Training of Verifiably Robust Neural Networks.
pp. 1–25, 2019c.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

Sicheng Zhu, Xiao Zhang, and David Evans. Learning adversarially robust representations via
worst-case mutual information maximization. ICML, 2020.

12



Under review as a conference paper at ICLR 2021

6 APPENDIX

6.1 NETWORK ARCHITECTURES

For all experiments, we trained the ResNet18 architecture (He et al., 2016) using SGD optimizer with
0.9 momentum and learning rates as indicated in Table-A1, weight decay of 10−4, batch size of 128.
All learning rates were reduced by a factor of 10 after scheduled epochs.

Table A1: Training hyperparameters for each dataset and network.
Dataset Model LRE LRDa LREDc weight decay batch size Num. Epochs Scheduled Epochs
MNIST

ResNet18 0.5 0.1 0.1 10−4 128
100 [50, 80]

CIFAR-10 900 [400, 800]
CIFAR-100 900 [400, 800]

6.2 PROOF OF THEOREM 1

Theorem 1. If the adversarial optimization of embedding and discriminator functions, Eθ and Daψ,
converges to the global minimum (θ∗, ψ∗) of the training objective in equation 2, then the gradient of
the true class (t) likelihood with respect to the input x is zero at any x ∈ X , i.e. ∂lt∂x = 0.

Proof. Assume Dci, i ∈ C is a set of differentiable functions that implement the Bayes optimal
classifier from the E(x) representation (note that we will drop the subscripts in Eθ and Daφ notation
for simplicity), i.e.

ŷ = argmaxili and li = P (yi|x) = softmax
(
Dc(E(x))

)
i
, yi ∈ C. (3)

Assuming that for the perturbed inputs x′ = π(x ε) the adversarial training of E and Da converges
to its global minimum, from Proposition 2 of (Chrysos et al., 2019) we have:

∀x ∈ X , y ∈ Y : P (E(x), y) = P (E(π(x, ε)), y), (4)

Following from Bayes rule we have:

P (yi = t|E(x))P (E(x)) = P (yi = t|E(x− δ))P (E(x− δ)), δ = ∂lt
∂x

, (5)

From equation 4, the marginal distributions P (E(x)) and P (E(x− δ)) should be equal which leads
to:

P (yi = t|E(x)) = P (yi = t|E(x− δ)), (6)

which can only be true if ∂lt∂x = 0.

6.3 ADVERSARIAL ATTACKS

We used a range of adversarial attacks in our experiments. Hyperparameters associated with each
attack are listed in the table below. Implementation of these attacks were adopted from Foolbox
(Rauber et al., 2017), AdverTorch (Ding et al., 2019) packages.

6.4 BOUND ON CLASSIFIER’S ROBUST ERROR

Considering the representation distributions in response to clean and perturbed inputs (of a particular
class) as two distinct domains of inputs, it is straight forward to use the math from domain adaptation
literature to derive a bound on the classifier’s robust error (i.e. under the perturbed scenario). In this
case, we can directly adapt Theorem 2 in (Ben-David et al., 2010) to derive this bound.

If Dc and Dp are distributions of representations in response to clean and perturbed inputs of a
particular class yi respectively. Let Uc and Up be samples of size m each, drawn from Dc and Dp.
LetH be a hypothesis space of VC dimension d, then for any δ ∈ (0, 1), with probability at least 1-δ
(over the choice of the samples), for every h ∈ H:
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Table A2: Attack hyperparameters for each dataset and attack.
Attack Dataset Steps ε More Toolbox

FGSM MNIST 1 [0, 0.1, 0.3, 0.35, 0.4, 0.45, 0.5] - Foolbox
CIFAR [0, 2

255 , 4
255 , 8

255 , 16
255 , 32

255 , 64
255 ] -

PGD-L1
MNIST 50 [[0, 10, 50, 100, 200]] step=0.025 FoolboxCIFAR

PGD-L2
MNIST 50 [0, 2, 5, 10] step=0.025 FoolboxCIFAR

PGD-L∞
MNIST 40 [0, 0.1, 0.3, 0.35, 0.4, 0.45, 0.5] step=0.033 Foolbox
CIFAR 20 [0, 2

255 , 4
255 , 8

255 , 16
255 , 32

255 ] step= 2
255

MIM MNIST 40 [0, 0.1, 0.3, 0.5, 0.8, 1] - AdverTorch
CIFAR [0, 2

255 , 4
255 , 8

255 , 16
255 , 32

255 ] -

DDN MNIST 100 [0, 1, 2, 5] - FoolboxCIFAR [0, 2, 5, 10, 15] -

Deepfool MNIST 50 [0, 0.1, 0.3, 0.35, 0.4, 0.45, 0.5] - Foolbox
CIFAR [0, 2

255 , 4
255 , 8

255 , 16
255 , 32

255 , 64
255 ] -

C&W MNIST 100 [0, 0.5, 1, 1.5, 2] stepsize=0.05 FoolboxCIFAR

ξp(h) ≤ ξc(h) +
1

2
d̂H∆H(Uc,Up) + 4

√
2dlog(2m) + log( 2

δ )

m
+ λ

where ξc and ξp are the errors on clean and perturbed inputs, d̂H∆H is the empiricalH-divergence
(Ben-David et al., 2010), and λ is the is the combined error of the ideal hypothesis h∗: λ =
ξc(h

∗) + ξp(h
∗).

Table A3: Comparison of robust accuracy against AutoAttack (Croce & Hein, 2020), Boundary attack
(Brendel et al., 2018) with 5000 steps and ε = 2, and B&B attack (Brendel et al., 2019). We tested
the robust performance of each model on 100 random samples from each dataset’s test-set.

Dataset Model Method AutoAttack Boundary Attack B&B

MNIST RN18

NT 0 25 3
AT 88 63 92

TRADES 2 48 17
AFD 92 78 96

CIFAR10 RN18

NT 0.0 0 0
AT 34 51 36

TRADES 49 58 54
AFD 25 68 41

CIFAR100 RN18

NT 0 2 0
AT 24 32 27

TRADES 30 35 30
AFD 15 32 10
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Table A4: Transfer black-box attack from ResNet18 network trained with adversarially training (AT)
and TRADES on different datasets.

Dataset Method AT Transfer TRADES Transfer

MNIST

NT 73.46 62.09
AT 97.11 97.23

TRADES 93.58 -
AFD 97.48 97.63

CIFAR10

NT 94.11 76.09
AT 82.32 62.54

TRADES 80.78 -
AFD 88.56 65.13

CIFAR100

NT 56.84 51.95
AT - 36.6

TRADES 40.1 -
AFD 42.72 40.29

Table A5: Dimensionality of the learned representation space on various datasets using different
methods and measures. Units: number of non-zero feature dimensions over the test-set within each
dataset. Dims: number of PCA dimensions that account for 99% of the variance across all images
within the test-set of each dataset.

Dataset MNIST CIFAR10 CIFAR100

Network RN18 RN18 RN18
Units Dims Units Dims Units Dims

NT 64 24 512 97 512 429
AT 64 43 512 455 512 481

TRADES 64 40 512 349 512 461
AFD 18 6 417 9 500 76

Table A6: Comparison of robust accuracy against PGD-L∞ with ε = 0.3 using different architectures
for the adversarial discriminator, tested on MNIST dataset.

Dataset Model Da Architecture Robust Acc.

MNIST RN18
FC1-PD 85.96

FC3 90.73
FC3-PD 97.03

Table A7: Comparison of representation perturbations in response to different attacks. We computed
the cosine angle between representation perturbations due to each attack to those from PGD-Linf .
Values are reported in radians.

Dataset Model Attack Median Angle (rad)

MNIST RN18
DDN 0.25
C&W 0.40

Deepfool 0.38

CIFAR10 RN18
DDN 1.03
C&W 1.13

Deepfool 1.12

CIFAR100 RN18
DDN 1.15
C&W 1.34

Deepfool 1.35
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Figure A1: Comparison of robust accuracy of different methods against white-box attacks on MNIST
dataset with ResNet18 architecture.
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Figure A2: Comparison of robust accuracy of different methods against white-box attacks on
CIFAR100 dataset with ResNet18 architecture.
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Figure A3: Comparison of robust accuracy of AFD and representation matching against white-box
attacks on MNIST dataset with ResNet18 architecture.
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Figure A4: Robust accuracy against various attacks at different training stages. First and second rows
correspond to models trained on CIFAR10 and CIFAR100 respectively.
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Figure A5: Classification accuracy of the adversarial discriminator Da at different training stages on
different datasets.

Figure A6: Robust accuracy of AFD-trained models on CIFAR10 dataset against various attacks
when using different levels of attack strength during training.
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Figure A7: Feature visualization. Pixel values were changed in the direction of the gradients that
would maximize either the ground truth class (left column) or a randomly selected class (right
column). For each image, the original image (left), transformed image (middle) and gradient map
(right) are shown.
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Figure A8: Scatter plot of 2-dimensional t-SNE projection (Maaten & Hinton, 2008) of the rep-
resentations derived from training the ResNet18 architecture on MNIST dataset. (top row) t-SNE
projection of representations of clean images for networks trained with different methods. Each point
corresponds to the representation of one of the images from the MNIST test-set. (rows 2 to 5) t-SNE
projection of the representation of the clean and perturbed MNIST test-set images. Columns are
sorted from left to right with the strength of the perturbation (left-most column corresponds to clean
images and right-most column with highest tested perturbation). Perturbations are generated using
PGD-L∞ attack. NT: naturally trained; AT: adversarially trained(Madry et al., 2017); TRADES:
(Zhang et al., 2019b); AFD: adversarial feature desensitization.
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Figure A9: Scatter plot of 2-dimensional t-SNE projection (Maaten & Hinton, 2008) of the repre-
sentations derived from training the ResNet5 architecture on CIFAR10 dataset. (top row) t-SNE
projection of representations of clean images for networks trained with different methods. Each
point corresponds to the embedding of one of the images from the CIFAR10 test-set. (rows 2 to 5)
t-SNE projection of the embedding of the clean and perturbed CIFAR10 test-set images. Columns
are sorted from left to right with the strength of the perturbation (left-most column corresponds to
clean images and right-most column with highest tested perturbation). NT: naturally trained; AT:
adversarially trained(Madry et al., 2017); TRADES: (Zhang et al., 2019b);AFD: adversarial feature
desensitization.
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Figure A10: Scatter plot of 2-dimensional t-SNE projection (Maaten & Hinton, 2008) of the rep-
resentation derived from training the ResNet5 architecture on CIFAR100 dataset. (top row) t-SNE
projection of representations of clean images for networks trained with different methods. Each point
corresponds to the representation of one of the images from the CIFAR100 test-set. (rows 2 to 5)
t-SNE projection of the representation of the clean and perturbed CIFAR100 test-set images. Columns
are sorted from left to right with the strength of the perturbation (left-most column corresponds to
clean images and right-most column with highest tested perturbation). NT: naturally trained; AT:
adversarially trained (Madry et al., 2017); TRADES (Zhang et al., 2019b); AFD: adversarial feature
desensitization.
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