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Abstract
Molecular structure generation is a fundamental
problem that involves determining the 3D posi-
tions of molecules’ constituents. It has crucial
biological applications, such as molecular dock-
ing, protein folding, and molecular design. Re-
cent advances in generative modeling, such as
diffusion models and flow matching, have made
great progress on these tasks by modeling molec-
ular conformations as a distribution. In this work,
we focus on flow matching and adopt an energy-
based perspective to improve training and infer-
ence of structure generation models. Our view
results in a mapping function, represented by a
deep network, that is directly learned to itera-
tively map random configurations, i.e. samples
from the source distribution, to target structures,
i.e. points in the data manifold. This yields a con-
ceptually simple and empirically effective flow
matching setup that is theoretically justified and
has interesting connections to fundamental prop-
erties such as idempotency and stability, as well
as the empirically useful techniques such as struc-
ture refinement in AlphaFold. Experiments on
protein docking as well as protein backbone gen-
eration consistently demonstrate the method’s ef-
fectiveness, where it outperforms recent baselines
of task-associated flow matching and diffusion
models, using a similar computational budget.

1. Introduction
Structure prediction, the task to determine a molecule’s 3D
structure, is a fundamental problem in structural biology
for understanding diverse biological mechanisms (Kessel
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& Ben-Tal, 2018). It finds various applications, such as
protein docking, which generates the bound structure of
protein-ligand complex, and de novo protein design, which
creates novel proteins fulfilling certain desirable biologi-
cal functions. Regression-based structure prediction mod-
els (Jumper et al., 2021; Baek et al., 2021; Lin et al., 2023)
have demonstrated remarkable performance by using a deep
neural network to make a point estimate of the structure.
However, these methods do not capture aleatoric uncertainty
due to the possibility of multiple molecular conformations.

In contrast to regression-based models, generative meth-
ods, such as diffusion (Song & Ermon, 2019; Ho et al.,
2020; Song et al., 2021) and flow matching models (Lip-
man et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu
et al., 2022), can generate several possible configurations
modeling the positional distribution of molecules. Owing
to this advantage, sampling-based approach has recently
attracted huge interest in molecular structure generation, in-
cluding molecular conformer generation (Hoogeboom et al.,
2022), molecular docking (Corso et al., 2023), and protein
design (Watson et al., 2023; Campbell et al., 2024).

Here, importantly, we first observe that these families
of generative modeling are generally reminiscent of the
computational models for molecular structure determina-
tion. Particularly, in computational models, a stable equi-
librium structure is sought as the local minimum of an
energy function governed by the Boltzmann distribution
p(x) ∝ exp (−E(x)), which resembles modeling (and gen-
erating from) the data distribution by estimating the score –
or a corresponding energy – of its density. In this work, we
make this connection explicit and propose a simple modifica-
tion of the objective in flow matching that directly minimizes
an energy function.

Specifically, we take the reconstruction error ∥x− x̂∥ as the
energy function and locally construct the energy landscape
using contrastive predictions sampled from the flow model.
Leveraging a data parameterization (Stärk et al., 2023; Yim
et al., 2023a) of flow matching, minimizing our devised
energy, quite intriguingly, translates into training a neural
network that iteratively predicts and refines the generated
sample as shown in Fig. 1, rendering the neural network, an
approximated idempotent function.
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(a) Flow matching data parameterization. (b) Flow Matching: idempotent flow map

Figure 1. Training paradigm of standard flow matching and IDFlow. x0 and x1 are samples from the source and target distribution
p0(x) and p1(x), xt is the linear interpolant between the source and target sample, x̂1 is the prediction of the network, fθ(x̂1) is the
refined prediction, LCFM is the conditional flow matching loss and LR is the refinement loss. (a) Flow matching: directly predict the data
x̂1 given the interpolant xt. (b) IDFlow: a mapping function represented by a deep neural network fθ , iteratively predicts and refines the
prediction. The energy is estimated to be the input output structure difference after refinement.

Notably, our trained idempotent function (IDFlow) simulta-
neously serves as both a neural sampler and a refiner, leading
to the characterization of a predictor-refiner sampler, analo-
gous to the predictor-corrector sampler in diffusion models
(Song et al., 2021). This approach iteratively refines the
sampling trajectory toward points where the energy function
approximates zero, effectively enhancing flow matching as
an energy-based model but crucially without significant in-
crease in training cost. The key contributions are as follows.

• We adopt an energy-based model perspective for flow
matching on sampling-based molecular structure gen-
eration tasks which respects the energy minimization.

• We provide a simple instance of such framework with
negligible computational burden, IDFlow, which itera-
tively predicts and refines the sample and, importantly,
draws interesting connections to related approaches,
such as structure refinement.

• We conduct extensive experiments based on two recent
flow matching models tackling three structure predic-
tion tasks of (single and multi-ligand) docking and pro-
tein design using four public datasets. Our results show
that IDFlow improves the structure generation perfor-
mance over the recent task-associated flow matching
and diffusion models.

2. Background
2.1. Energy-Based Models

Energy-Based Models (EBMs) consider a positive energy
function Eθ(x) ∈ R+ assigning a scalar value to each data

point x. Learning within this paradigm requires devising
an energy function and a loss function to shape the energy
landscape. For instance, the L2 regression loss could be
seen as directly using the energy function for the loss and
the exact format of the energy function (referred to as the
energy architecture hereafter) is the L2 norm between the
network output fθ(x) and the label y:

Energy : Eθ(x) = ||fθ(x)− y||2 (1)
Loss : Lθ(x) = Eθ(x), (2)

where (x, y) is a training pair of input and annotation. Train-
ing with this strategy primarily reduces the energy of the
training examples. In general, there are two ways of train-
ing the EBMs: 1) contrastive approaches which maximize
the energy margin between positive and negative training
examples, and 2) regularized methods that minimize the vol-
ume of low-energy space while avoiding the collapse of the
overall energy landscape, e.g., regularizing the latent space
to be close to the standard Gaussian as low energy space in
variational autoencoders (Kingma & Welling, 2013). Par-
ticularly, the collapse occurs when the network produces
identical outputs regardless of the input. One contrastive
method of training EBMs is learning a function that maps
the points off the data manifold to the points on the data
manifold (LeCun, 2022). It is this latter approach that we
adopt in this work to improve Flow Matching for structure
prediction. For a detailed review of EBMs, see (LeCun et al.,
2006).
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2.2. Flow Matching

Flow matching (Lipman et al., 2023; 2024; Albergo &
Vanden-Eijnden, 2023; Liu et al., 2022) is a simulation-free
training method for continuous normalizing flows (Chen
et al., 2018) that connects two arbitrary distributions with
flexible design choices. This allows for building straight
paths between any source and target sample, which has
great potential for accelerated sampling. Specifically, flow
matching aims to learn a time-dependent vector field vt(x)
evolving the sample from the prior p0(x) to the target distri-
bution p1(x) via an ordinary differential equation (ODE):

dx

dt
= vθ,t(x), (3)

where x could either be defined over Euclidean space Rd
or a Riemannian ManifoldM (Chen & Lipman, 2024). To
achieve this, the flow matching objective (Lipman et al.,
2023) regresses the predicted vector field to the true vector
field ut(x):

LFM(θ) := Et∼U(0,1)
x∼pt(x)

∥vθ,t(x)− ut(x)∥22. (4)

However, this objective function cannot be leveraged for
training as the true vector field is intractable in practice. Pre-
vious work (Lipman et al., 2023; Tong et al., 2024) shows
that with the construction of the conditional probability
paths, the conditional flow matching (CFM) objective shares
the same parameter gradient as the flow matching objective
∇θLFM = ∇θLCFM, such that learning the conditional vec-
tor field would also optimize for the marginal vector field:

LCFM(θ) := E t∼U(0,1)
x∼pt(x|x0,x1)
x0∼p(x0)
x1∼q(x1)

∥vθ,t(x)− ut(x | x0, x1)∥22

(5)
where ut(x|x0, x1) is the conditional vector field that gen-
erates the conditional probability path pt(x|x0, x1), and
x0 and x1 are sampled from the prior (or source) distribu-
tion and the training (or target) set respectively. Notably,
flow matching does not depend on any prior distribution
(standard Gaussian in diffusion models) and allows flexible
construction of probability paths. To reduce the transport
cost, conditional optimal transport builds the probability
path that linearly transfers the source sample to the target:

pt(x|x1, x0) = N (x|µt(x), σ2
t ) µt(x) = tx1+(1− t)x0

(6)
where σt is a predefined standard deviation which could
be either constant or a time-dependent noise scheduler (e.g.
σt =

√
t(1− t)Id), and µt(x) is the mean of the condi-

tional distribution.

x1 parameterization. Similar to diffusion models (Wat-
son et al., 2023), one can opt to parameterize the network

output as either the vector field ut(x|x0, x1) or the data
x1 (Stärk et al., 2023; Jing et al., 2024). From the EBMs’
perspective, the latter results in an objective function that
directly pushes down the energy of the trajectory samples,
which is desirable:

LCFM(θ) := E∥fθ,t(x)− x1∥22. (7)

The x1 parameterization yields an Euler-like step sampling
algorithm:

dx

dt
=
fθ,t(x)− xt

1− t
(8)

where fθ is the mapping between a point from the sampling
trajectory to the corresponding target data point, and is, here-
after, referred to as the flow map. The general format of the
vector field can be found in the App. B.3. A more intuitive
understanding of fθ is the “denoiser” that approximates the
expectation of p1|t(x1|x):

E[X1|Xt = x] ≈ fθ,t(x). (9)

In this work, we focus on the x1 parameterization for its
connections to the EBMs loss and generative adversarial
nets (Goodfellow et al., 2014).

Riemannian flow matching. Flow matching is extended
to the Riemannian manifold by constructing a premetric
that measures the proximity of a point x to the target x1
for defining the vector field (Chen & Lipman, 2024). The
core idea is to define the premetric as the geodesic distance,
such that the geodesic interpolant xt can be efficiently com-
puted with the exponential and logarithmic map on simple
manifolds (e.g. the N-D sphere) in closed-form:

Euclidian: xt = tx1 + (1− t)x0, (10)
Riemannian: xt = expx0

(tlogx0
(x1)). (11)

Specifically, the exponential and logarithmic map of the
manifold SO(3) can be calculated using the well-known
Rodrigues’ formula. This has been applied to generating
protein backbones (Yim et al., 2023a; Bose et al., 2024;
Huguet et al., 2024; Wagner et al., 2024) and robot motion
learning (Braun et al., 2024).

3. Method
3.1. Task Formulation and Notation

We consider two widely adopted tasks, molecular docking
and protein backbone generation for the investigation of the
method on generating 3D molecular structure.

Protein docking. For the molecular docking task, we rep-
resent the protein structure using Cartesian coordinates as
y ∈ R3×np and the ligand structure as x ∈ R3×nl , where np
and nl are the number of protein residues and ligand atoms,
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respectively. The aim is to learn the conditional distribution
p(x|y), i.e. the docking distribution of the ligand x given
the protein structure y.

Single ligand docking assumes a unique protein-ligand
pair (x, y), such that the generative model learns the bind-
ing modes of the protein y with a single sample from the
conditional distribution p(x|y).

Multi-ligand docking assumes multiple pairs of protein
y and ligands xi: (x1, y), (x2, y), ..., (xn, y), where n is
the number of ligands for protein y. The training signal of
multi-ligand docking can be enriched with several docking
conformations xi provided for learning the conditional dis-
tribution p(x|y), but also increases the learning difficulty.
This task finds application in multi-ligand binding pocket
design, such as the enzyme design for multiple reactants.

Protein backbone generation represents each protein
residue by a frame representation (r, s) ∈ SE(3), a rotation
r ∈ SO(3) and a translation s ∈ T(3). Hence, a protein y
is modeled by the N compositions of SE(3) group, where
N is the number of protein residues. As such, the genera-
tive model is defined over the manifold y ∈M ≡ SE(3)

N

for learning the protein distribution p(y). The translation
s places each protein residue, particularly the Cα carbon,
relative to the reference frame, and the rotation r captures
the local orientation of the residue. The detailed definition
of the reference frame can be found in App. C.2.

3.2. Energy-Based Flow Matching

Energy relaxation, confidence model and the EBMs.
Data-driven generated structures often tend to be subop-
timal when evaluated against physiochemical energy func-
tions. A common solution, known as energy relaxation, is
to post-optimize the molecular poses with the energy func-
tion, so that the structure after postprocessing corresponds
to the local energy minimum (Buttenschoen et al., 2024).
In sampling-based molecular docking, a confidence model
ranks the samples by outputing their corresponding confi-
dence scores. In both cases, a scalar is produced for the
molecular structure and can be collectively understood as
the energy. To draw a connection, we can write down the
energy of the generated sample x̂1 as:

Eθ(x̂1) = Dθ(x̂1), x̂1 = fθ,t(x), (12)

where Dθ is the energy architecture and x̂1 is the sample
produced by the flow map fθ. For structure relaxation, the
energy architecture Dθ is a specific biophysics-informed en-
ergy function, for example, the Amber energy (Duan et al.,
2003), which involves the bond, angular, Lennard Jones, and
Coulomb energy. Under the scenario of molecular docking,
Dθ could be a separate neural network trained by generating
samples for every training example and using the training
annotations to produce binary labels to distinguish the posi-

tive (high-accuracy) and negative (low-accuracy) examples
(Corso et al., 2023). Then the logits of such a network can
be used as the confidence score (energy function) for an
unseen example. In contrast to these two approaches, in this
work, we propose to directly construct and learn an energy
function within the Flow Matching model. However, from
objective Eq. 7, it is evident that only the energy associated
with the trajectory sample xt is pushed down, while the
contrastive samples x̂1 generated by the flow model, unlike
x1, remain unaffected by this process. Therefore, the idea of
the energy-based flow matching is precisely to better shape
the energy landscape to improve training with contrastive
samples x̂1 and to encourage reaching the minimum of the
energy function as shown in Fig. 1.

Shaping the loss landscape with x̂1. We first need to
define an energy function E(x̂1) : Rn → R+, such that
high-probability data lies around its minima. Following
(Zhao et al., 2017), a simple energy architecture could be
the reconstruction error involving a certain function G:

Eθ(x̂1) = ||G(x̂1)− x̂1||22. (13)

Since the conversion from energy to probability could be
achieved through the Boltzmann distribution, this energy
function also aligns with the likelihood function in the con-
text of conditional flow matching with the Gaussian assump-
tion over the training example x1, where the exponent is
a quadratic function with a constant variance (App. B.4).
Since the energy function shares a similar L2 form as the
CFM loss, the loss landscape in the conformation space,
which was originally only influenced by the observed x1(xt,
as t → 1), now is further shaped by the estimated x̂1. As-
suming G is a function that perfectly maps any x̂1 to x1 on
the data manifold, Eq. 13 will assign high energy (larger
reconstruction error) to ‘bad’ x̂1 and low energy (smaller
reconstruction error) to ‘good’ x̂1. However, in principle, G
could be any neural network that keeps the dimensionality
of the input data. Crucially, following this, during training,
the flow map fθ,t(x) receives the gradient not only from the
CFM loss but also from the energy loss of Eq. 13 for the
contrastive samples.

Sample from the energy function. With the energy func-
tion devised, we can define an energy-based density with
the Boltzmann distribution:

p(x) =
exp(−E(x))

Z
, (14)

where Z is some unknown normalizing constant. Taking
the derivative of the log likelihood with respect to x yields:

∇x log(p(x)) = −∇xE(x). (15)

Now, assume that we define a gradient flow vector field:

v(x) = −∇xE(x). (16)
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Algorithm 1 Idempotent Flow Map Training

Require: prior distribution p0(x), data distribution p1(x)
while Training do
x0 ∼ p0(x0), x1 ∼ p1(x1).
t ∼ U(0, 1),m ∼ U(0, 1)
µt ← t · x1 + (1− t) · x0
x ∼ N (µt, σ

2
t I)

if m ≤ 0.5 then
k ∼ randint(1,Kmax)
With torch.no grad():
x̂1 = fθ,t(x)

x1 list = [ ]
for i = 0, . . . , k do
x̂1 ← fθ,t(x̂1.detach())
x1 list.append(x̂1)

end for
LR ← 1

|x1 list|
∑
x̂1∈x1 list

∥x̂1 − x1∥2

θ ← Update(θ,∇θLR)
else
LCFM ← ∥fθ,t(x)− x1∥2
θ ← Update(θ,∇θLCFM)

end if
end while

Interestingly, as the energy in Eq. 13 is lower bounded by 0,
the convergence of the flow map is further guaranteed as:

f∞(x) ∈ {x ∈ Rn | ∇xE(x) = 0} =M, (17)

whereM is a subset of the equilibrium configurations. This
implies that, starting from any x ∈ Rd, the gradient flow
will converge to some local minima of the energy function
E, where the likelihood of the data is locally maximized.

3.3. Idempotent Flow Map

In general, the energy function defined in Eq. 13 renders G
to be a “neural refiner”. To learn the refiner we can simply
define the loss for G as:

LG = ||G(x̂1)− x1||22. (18)

Intuitively, the refiner G is easier to learn than the flow map
f , and thus the flow map could have the capacity to also
refine the mapped sample. This, interestingly, results in
learning an idempotent flow map to its prediction:

fθ,t(x) = fθ,t(fθ,t(x)). (19)

Hence, the energy landscape is shaped by mapping the off-
the-manifold points x̂1 to on-manifold points x1 (LeCun,
2022). The idempotence of the flow map is clear from the
Eq. 17:

f∞(f∞(x)) = f∞(x), (20)

Algorithm 2 Predictor Refiner Sampler

Require: prior distribution p0, number of integration steps
T , and trained function fθ
steps← 1
∆t← 1

T
t← 0
x0 ∼ p0(x0)
xt ← x0
while steps ≤ T − 1 do
x̂1 ← fθ,t(xt)
x̂1 ← fθ,t(x̂1)
xt ← xt +∆t · x̂1−xt

1−t
t← t+∆t
steps← steps + 1

end while
x1 ← xt

i.e., iterating the flow map infinitely many times yields the
same result. Under the assumption that our dataset of equi-
librium configurations is contained inM, we would always
want to query ft(x) at t = ∞. Ideally, after training a
model to learn the idempotent flow map, we would have
f∞(x) = x1 for any x. However, imperfections may re-
main, in which case f∞(x) = x̂ would land somewhere
close to x1, but not exactly there. In this case, an iterative
refinement procedure (Stärk et al., 2023; Jing et al., 2024),
can also be applied during inference. The vector from x to
x̂ = f(x) can be used as a step direction in an integration
scheme, such as Euler’s method. Heuristically, if the mag-
nitude of the vector is large, the integrator will take a large
step in that direction, and vice versa, eventually leading to
stabilization around the final prediction.

Furthermore, enforcing the flow map fθ to be idempotent
draws an informative connection to the structure refinement
regression model (Jumper et al., 2021) which recycles the
output for iterative refinement. Hence, in tandem with the
CFM loss, we propose our idempotent objective as:

LR(θ) := E t∼U(0,1)
x∼pt(x|x0,x1)

x̂1∼N (x̂1|fθ(x,t),σ2Id)

∥fθ(x̂1.detach())− x1∥22

(21)
where x̂1 is dynamically sampled from the flow model dur-
ing training.

3.4. Training and Inference

The idempotent objective function enables the network to re-
fine samples iteratively. Theoretically, the sample x̂1 could
be refined for an infinite number of times. However, exces-
sive refinements increase inference time, a key limitation of
sampling-based methods. To mitigate this, we perform only
one refinement per step. Specifically, the predictor-refiner
sampler makes a prediction x̂1 and refines it, resulting in two
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Table 1. SINGLE LIGAND DOCKING. Structure generation (ten samples average for each test example) comparison of methods on the
PDBBind for pocket-level docking.

SEQUENCE SIMILARITY SPLIT TIME SPLIT
METHOD DISTANCE-POCKET RADIUS-POCKET DISTANCE-POCKET RADIUS-POCKET

%<2 MED. %<2 MED. %<2 MED. %<2 MED.
PRODUCT SPACE DIFFUSION 27.2 3.2 16.1 4.0 20.8 3.8 15.2 4.3
HARMONICFLOW 30.1 3.1 20.5 3.4 42.8 2.5 28.3 3.2
IDFLOW 35.6 2.9 21.0 3.7 44.3 2.4 34.7 3.1

Table 2. MULTI-LIGAND DOCKING. Structure generation (ten
samples average for each test example) comparison of methods on
the Binding MOAD.

METHOD % < 2 % < 5 MED.
EIGENFOLD DIFFUSION 39.7 73.5 2.4

HARMONICFLOW 44.4 75.0 2.2
IDFLOW 43.8 83.1 2.1

Number of Function Evaluations (NFEs) per step. To better
align training with sampling, we adopt a strategy similar
to self-conditioning (Chen et al., 2023), where the training
of the sampler and refiner is separated. For 50% of the
training time, the network undergoes flow matching training.
In the remaining 50%, the network first predicts x̂1 with
the gradient detached, and then trains for the idempotent
objective Eq. 21. Empirically, tuning the maximum number
of iterations Kmax helps achieve gradual refinement. In-
creasing Kmax beyond 2 provides diminishing returns, with
smaller variations observed at Kmax = 2. For the training
of ’refiner’, ideally, the timestep t should be set to 1 as x̂1
represents data, but in practice we find it doesn’t impact the
method’s performance. This approach also reduces memory
overhead, as only K − 1 outputs need to be stored when
looping the network K times. The entire approach only in-
troduces one extra hyperparameter Kmax and remains to be
highly orthogonal to the existing methods. Further details
are provided in Algorithms 1 and 2.

3.5. Architecture

For the docking task, the network is parameterized as the
refinement tensor field network (Stärk et al., 2023; Thomas
et al., 2018), predicting the ligand atom 3D positions R3×nl .
The building block for equivariance is the tensor product
convolution layer, which constructs the message as the ten-
sor product between the node and edge embedding. Besides,
each layer is designed to predict the update of the previ-
ous layer through the auxiliary loss. For protein backbone
generation, we leverage the invariant point attention (IPA)-
based structure transformer (Jumper et al., 2021) to predict
the protein frames. The IPA differs from the standard self-

attention layer with the attention weights to be invariant to
the structure input. The architecture is kept the same as the
baseline to maintain a fair comparison.

4. Experiments
In this section, we investigate several research questions
about the proposed framework. Q1: How does IDFlow
perform compared with the standard flow matching setup?
Q2: Does the training setup also apply to Riemannian
flow matching? Q3: Is IDFlow transferable for generating
molecules of various sizes (both ligand and protein)? Q4:
How does IDFlow perform for sampling the modes of dis-
tribution? Q5: How do different setups affect the IDFlow?
To answer these questions, we design experiments for two
widely applicable tasks, molecular docking (Q1, Q4, Q5)
and protein backbone generation (Q2, Q3, Q5), which tar-
get predicting the binding pose of the ligand in a protein-
ligand complex and generating physically plausible protein
structures. Specifically, we build the proposed IDFlow from
two recent flow matching-based structure generation models
(Stärk et al., 2023; Yim et al., 2023a).

4.1. Molecular Docking

Dataset and baselines. To evaluate the structure genera-
tion capability of IDFlow for pocket-level docking, we train
the model and its ablations on the PDBBind v2020 dataset
(Liu et al., 2017) for both the time and the 30% sequence
similarity split and the Binding MOAD (Hu et al., 2005)
with 30% sequence similarity split, as proposed in (Stärk
et al., 2023). We follow the dataset preprocessing steps of
the HarmonicFlow for both PDBBind and BindingMOAD
(details in E.1.1). For both single and multi-ligand docking,
we consider HarmonicFlow (Stärk et al., 2023) and the prod-
uct space diffusion model over ligand geometry (rotation,
translation and torsion angles) (Corso et al., 2023) as the
baselines. HarmonicFlow is the standard flow matching
setup which samples the harmonic prior for ligand atoms
and learns the flow map for predicting the bound structure
of ligand. The reported results are averaged over three runs.

Sampling time. While the number of sampling steps sig-
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Table 3. PROTEIN BACKBONE GENERATION RESULTS ON PDB. Comparison of methods for 200 generated proteins each at length [100,
150, 200, 250, 300]. The mean and standard deviation are reported over three runs for GAFL and FrameFlow. The results of FoldFlow2
are from the public weight, and other results are extracted from (Wagner et al., 2024). The number in the parentheses of FrameFlow and
IDFlow is the NFEs for generating one sample. The time required to generate a backbone of length 100 is also reported. ∗ Pretrained
weights from folding model trained on a dataset larger than PDB.

METHOD DESIGNABILITY (↑) DIVERSITY (↓) NOVELTY (↓) HELIX CONTENT STRAND CONTENT TIME [S]
PDB DATASET (300) - - - 0.39 0.23 -
FRAMEDIFF 0.54 0.45 0.71 0.53 0.20 24.3
FOLDFLOW-SFM 0.69 0.44 0.77 0.91 0.01 24.3
FOLDFLOW-OT 0.82 0.44 0.79 0.88 0.00 24.3
FOLDFLOW2 0.94 0.37 0.69 0.87 0.01 2.8
RFDIFFUSION∗ 0.89 0.37 0.74 0.58 0.24 21.0
GAFL 0.866 ± 0.021 0.35 ± 0.01 0.71 ± 0.01 0.53 ± 0.01 0.24 ± 0.01 8.8
FRAMEFLOW (200) 0.824 ± 0.037 0.35 ± 0.01 0.70 ± 0.00 0.57 ± 0.01 0.19 ± 0.00 6.6
IDFLOW (100) 0.871 ± 0.013 0.35 ± 0.00 0.70 ± 0.02 0.60 ± 0.07 0.16 ± 0.06 3.3
IDFLOW (200) 0.927 ± 0.020 0.35 ± 0.01 0.72 ± 0.01 0.61 ± 0.08 0.16 ± 0.07 6.6

nificantly impacts performance, we maintain a consistent
computational budget with HarmonicFlow, using 10 steps
(20 NFEs), compared to HarmonicFlow’s 20 steps.

Evaluation metrics. Following (Stärk et al., 2023; Corso
et al., 2023), we use the fraction of the test samples that have
root mean squared deviation (RMSD) below 2 or 5Å (% < 2
and % < 5) and the RMSD median (Med.) for evaluating
the docking performance.

Results. We first investigate the method’s performance
on the single ligand docking and report metrics in Table
1. IDFlow consistently outperforms or is on par with both
HarmonicFlow and product space diffusion models at the
same inference time. Notably, IDFlow achieves 5.5% per-
formance increase on RMSD < 2Å for sequence similarity
split distance pocket docking and 6.4% on RMSD < 2Å
for the time split radius pocket docking, demonstrating the
improvement over different problem definition and datasets.
Table 6 (App. F) shows great improvements in top-40, top-
10, and top-5 accuracy for both RMSD < 1Å and RMSD
< 2Å, highlighting the effectiveness of the approach for
enhanced mode coverage. Table 2 shows the results on
multi-ligand docking. Also in this setting, IDFlow main-
tains the same level of performance with HarmonicFlow on
RMSD < 2Å, and demonstrates 8.1% performance increase
for RMSD < 5Å.

4.2. Protein Backbone Generation

Datasets and baselines. In this section we evaluate ID-
Flow on the task of unconditional protein structure genera-
tion. The experiments are first conducted on a small curated
dataset SCOPe (Fox et al., 2014; Chandonia et al., 2022)
comprised of 3928 protein structures filtered by lengths
between 60 and 128 residues. Next, we evaluate the ID-
Flow on the subset of PDB, with maximum protein length
512 and maximum coil content of 50 % filtering process

following (Yim et al., 2023b). This results in total 19327
proteins of various lengths for training. The main base-
line is FrameFlow (Yim et al., 2023a) which we extend to
build IDFlow. FrameFlow is the standard Riemnanian flow
matching setup which samples from the source distribution
to be the composition of uniform distribution on SO(3) and
standard Gaussian and learns the flow map to predict the
protein structure. The results on SCOPe can be found in
Table 7 (App. F). Again, to keep the sampling time the
same as the baseline, we run inference with IDFlow using
50 steps (100 NFEs) on SCOPe and 100 steps (200 NFEs)
on PDB.

Evaluation metrics. We adopt the commonly used metrics
designability, diversity and novelty as in (Wu et al., 2024;
Yim et al., 2023b; Bose et al., 2024; Huguet et al., 2024;
Wagner et al., 2024). Designablility can be seen as a proxy
for biophysical consistency and reports whether an amino
acid sequence can be found that folds into the generated
protein structure. Diversity and novelty report how struc-
turally different the generated structures are to each other,
and to the existing protein structures, respectively. For more
detailed definition of metrics we refer to App. E.2.1.

Results on PDB. Table 3 summarizes the experiments’ re-
sults with models trained on the PDB dataset. With 100
NFEs (50 steps), IDFlow achieves 5.5% performance in-
crease in designability over FrameFlow while being com-
petitive at diversity and novelty. With 200 NFEs (100 steps),
IDFlow obtains designability with 10.3% increase and even
approximates the performance of FoldFlow2, which relies
on a more advanced architecture, data curation, and is condi-
tioned on sequence information, on most metrics. Remark-
ably, in contrast to FoldFlow2, IDFlow does not tend to
collapse to generating only helical protein structures. Fig.
2 visualizes a set of randomly selected designable protein
structures generated by IDFlow. Proteins are arranged in
non-redundant topologies and are comprised by both α-
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(a) N=300 (b) N=250 (c) N=200 (d) N=150 (e) N=100

Figure 2. Designable protein backbones generated by IDFlow at various length N = {100, 150, 200, 250, 300}.

Table 4. Ablation on timesplit radius pocket docking.

% < 2 MED.
Kmax = 0 (HARMONICFLOW) 28.3 3.2
Kmax = 1 34.2 ± 2.42 3.0 ± 0.05
Kmax = 2 34.7 ± 0.17 3.1 ± 0.09

helices and β-strands.

4.3. Ablations

Number of iterations. We first ablate the number of itera-
tions Kmax training for idempotency on the timesplit radius
pocket docking in Table 4 for IDFlow. A single iteration
improves over a baseline, with more iterations resulting in
marginal performance gains but less variation. Fig. 3 shows
the ablation of number of refinements of sampling at test
time. Since more refinements increase the total number of
NFEs, we keep the overall NFEs around 20. The perfor-
mance peaks at one refinement. We attribute the perfor-
mance drop with more refinement steps to the discretization
errors of the ODE.

5. Related Work
Generative modeling for molecular structure generation.
Generative modeling, mostly diffusion and flow matching
models have been applied to generate molecular structures
of ligands (Stärk et al., 2023) and proteins (Yim et al.,
2023b;a). Molecular conformer generation (Xu et al., 2022a;
Jing et al., 2022; Wang et al., 2024; Hassan et al., 2024)
maps the molecular graph to the 3D position of atoms by
learning the posing distribution. Sampling-based docking
method (Corso et al., 2023; 2024; Qiao et al., 2024; Lu et al.,
2024) models the bound structure of ligand given the recep-
tor structure. Several generative models for protein structure
(Watson et al., 2023; Wu et al., 2024; Campbell et al., 2024;
Bose et al., 2024; Huguet et al., 2024; Yim et al., 2023b;a;
Wagner et al., 2024) have been shown to sample physically
plausible and functional protein structures de novo.

Figure 3. Ablation on the number of refinements k at test time
inference.

6. Conclusion
We present an energy-based formulation for flow matching,
an enhanced training framework for flow matching com-
bined with the EBMs for 3D molecular structure generation.
We provide a specific instance of the proposed framework,
IDFlow, which considers the reconstruction error as the en-
ergy function, shaping the loss landscape with contrastive
samples produced by the flow model. It builds the flow
map to predict and refine the sampling trajectory iteratively
toward the target structure. We validate the improvements
of IDFlow over existing flow matching methods in both
Riemannian and Euclidean spaces as an alternative to the
standard flow matching training and sampling paradigm,
demonstrating its effectiveness over task-associated flow
matching and diffusion model baselines in molecular dock-
ing and protein backbone generation.

One limitation of the work is the increased training cost, as
multiple forward passes are required. Besides, extra refine-
ment incurs a larger discretization error for the ODE sam-
pling. Future work can combine the EBMs with biophysics-
informed energy to generate chemically plausible structures
and use EBMs as scoring functions for realistic docking.
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Appendix Overview
In the Appendix, we provide the details:

• In section A, we further discuss the related work, encompassing the flow matching, sampling-based molecular docking
and protein backbone generation.

• In section B, More discussions including the idempotency and stability, additional energy function, the general format
of vector field with data parameterization flow matching and the associated energy of reconstruction error are provided.

• In section C, we provide a short overview of Riemannian flow matching on modeling the protein backbone.

• In section D, we summarize the architecture of IDFlow for docking and protein backbone generation.

• In section F, we provide the additional results and analysis.

• In section G, we visualize the generated samples.

A. More Related Work
Flow matching. Flow matching (Lipman et al., 2023; 2024; Albergo & Vanden-Eijnden, 2023; Liu et al., 2022) is a
simulation-free training paradigm of continuous normalizing flows (Chen et al., 2018) generalizing the diffusion models into
arbitrary priors and flexible construction of probability paths. It builds the transformation from source to target distribution
via an ODE and supports the source target sample coupling through optimal transport within batch samples (Tong et al.,
2024; Pooladian et al., 2023). This approach can also be extended to manifold where the trajectory simulation is avoided on
simple geometry (Chen & Lipman, 2024).

Sampling-based molecular docking. The seminal work DIFFDOCK (Corso et al., 2023) defines the diffusion model on
the ligand geometry, specifically, the product space of global rotation, translation and torsion angles of ligand for efficiently
modeling the docking conformation of ligand given the protein. (Corso et al., 2024) further investigates the method’s
scalability and uses confidence bootstrapping for enhanced training. DYNAMICBIND (Lu et al., 2024) extends the existing
approach to the flexibility of protein backbone and side chains, modeling the distribution shift from apo to holo structure.
NEURALPLEXER (Qiao et al., 2024) is a co-folding approach combining the diffusion models and structure prediction
model for sampling the protein-ligand complex. Recently, to align with the realistic docking scenario, the diffusion-based
docking is constrained to be within the pocket with the side chain angles flexibility (Plainer et al., 2023; Huang et al., 2024).
HARMONICFLOW (Stärk et al., 2023) is the first flow matching method applied to the pocket-level docking for generating
3D structure by directly modeling the Cartesian coordinates of ligand. FLEXDOCK (Corso et al., 2025) proposes an
unbalanced flow matching framework to ease the learning of large conformational changes of protein and chain the flow for
generating the energetically valid poses.

Protein backbone generation. Generating protein backbone has risen to be promising with recent diffusion (Wu et al.,
2024; Yim et al., 2023b; Watson et al., 2023) and flow matching-based methods (Yim et al., 2023a; Bose et al., 2024; Huguet
et al., 2024; Wagner et al., 2024). RFDIFFUSION (Watson et al., 2023) achieved significant success for biologically validated
structures and functions in experiments. FOLDFLOW (Bose et al., 2024) and FRAMEFLOW (Yim et al., 2023a) adopted the
protein frame represention for generation with SE(3) flow matching. FOLDFLOW2 (Huguet et al., 2024) extends the method
with sequence input, architecture improvement and the Reinforced Finetuning on secondary structure. GAFL (Wagner et al.,
2024) improves upon the FRAMEFLOW with Clifford frame attention rather than the IPA.

B. More Discussions
B.1. Idempotency and Stability

Idempotency and stability are two fundamental notions over many disciplines, for example, formation control, dynamical
systems and molecular dynamics. It has been recently explored for sampling from stable distribution (Sprague et al., 2024)
or being used as the building block for generative models (Shocher et al., 2024). It potentially has a broader impact in
many scientific disciplines, not limited to generating molecules, but also structure elucidation (Cheng et al., 2024), etc.
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Idempotency helps learn a robust function where additional function evaluations do not drastically alter the output. This
relates to stability in terms of the loss used during training such that the iteratively generated output stays on the data
manifold, a desirable property for any generative model. Moreover, the concept of stability could be further expanded into
any energy function. Combined with flow models, existing work (Xu et al., 2022b; 2023) proposed to learn a stable vector
field to be a Poisson field implicitly governed by the potential energy induced by the training sample over the augmented
space of the data. Consistency models (Song et al., 2023) achieves fast sampling with just one or two steps of denoising by
learning a consistent function across multiple noise levels. The idempotency is only guaranteed at t = 0 by design as the
boundary conditions.

B.2. Other Energy Function

IDFlow proposes to use the same energy function as the CFM loss in the context of flow matching which resulting in a
relatively smooth minimum in the loss landscape. In general, any type of energy function can be considered.

Distance potential. The relative distances among atoms deliver important information for structure prediction (Senior et al.,
2020). Assuming a certain distribution on the distance can help derive a statistical approximation of the energy function
(Méndez-Lucio et al., 2021). Specifically, the intramolecular potential enforces constraints on the ligand atoms pairs to
be within certain ranges of distances, depending on the bond type connecting the atoms. For the protein-ligand complex,
the intermolecular potential sets up the constraint of the distance between the ligand atoms and protein residues within the
binding pocket. Hence, we can enforce the preservation of the protein-ligand distance and the bond distance of the ligand as
an energy function:

E(x̂1) =
∑

(i,j)∈bond

||di,j − d̂i,j ||+
∑

(i,j)∈pocket protein ligand atom pairs

||di,j − d̂i,j || (22)

Machine learning force fields. MLFF (e.g, openmm or fair-chem) can be applied to sample relaxation so that the optimized
samples is energetically favorable. However, sample relaxation may lead to larger RMSD error as the projected gradient
∇x1

E(x1) (x1 refers to the data) may leave the data manifold (Ben-Hamu et al., 2024). Within the proposed framework, we
can apply the MLFF at each denoising step:

x̂1 = fθ,t(xt)

x̂1 = FF(x̂1) or x̂1 = x̂1 −
ϵ2

2
∇x̂1

E(x̂1) + ϵz

xt+∆t = xt +
x̂1 − xt
1− t

Throughout the iterative procedure of sample prediction and relaxation at each step, intuitively, a low energy valid sample
can be generated. However, this is prohibitive in practice due to the huge increase in sampling time of running the MLFF,
and thus one may only use the MLFF when the sample path is close to the data or use a neural refiner to approximate
the low energy sample, such as the structure relaxation flow trained with the flat bottom potential (Corso et al., 2025).
Another option is to sample from the EBM through the Langevin MCMC, which intends to sample from the true distribution
governed by the energy function 1

Zθ
(exp(−Eθ(x̂1))). The ϵ is the step size and z is the standard Gaussian sample.

B.3. Vector Field of the Data Parameterization

With the data parameterization of flow matching, the exact format of the vector field vt(x) could be diverse as long as the
predicted data x̂1 = fθ,t(x) could be reached following this vector field. As the trajectory sample xt is often constructed as
a linear interpolation, the conditional vector field that generates a single sample at time t is linear in the following general
format:

ut(x|x1, x0) = A(t)(x− x1) (23)
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where A(t) is a time-dependent rescaling coefficient. As the marginal vector field ut(x) is the convex combination of the
conditional vector fields (Eq. 8 from (Lipman et al., 2023)), we can directly plug into the computation:

ut(x) =

∫∫
ut(x|x1, x0)

pt(x|x1, x0)q(x1)p(x0)
pt(x)

dx1dx0

=

∫∫
A(t)(x− x1)

pt(x|x1, x0)q(x1)p(x0)
pt(x)

dx1dx0

= A(t)

∫∫
(x− x1)p(x1, x0|x)dx1dx0

= A(t)

∫
(x− x1)p1|t(x1|x)dx1

= A(t)Ex1∼p1|t(x1|x) [x− x1|xt = x]

= A(t)
(
x− Ex1∼p1|t(x1|x)[x1|xt = x]

)
where in the third equality we use the Bayes rule assuming q(x1) and p(x0) are independent. This yields a general format
of the marginal vector field supposing the conditional vector field is linear. In practice, the flow map fθ,t(x) is trained to
predict the data, implicitly learning the expected value of x1 given x. Hence, the form of the marginal vector field with data
parameterization is:

ut(x) = A(t)(x− Ex1∼p1|t(x1|x)[x1|xt = x]

≈ A(t)(x− fθ,t(x))

With A(t) = − 1
1−t , the marginal vector field trained by the conditional optimal transport is recovered as:

ut(x) =
fθ,t(x)− x

1− t
. (24)

Interestingly, with the learned flow map as the expectation over p1|t(x1|x), the flow map’s idempotency is clear as the
expectation is an idempotent operator:

fθ,t(fθ,t(x)) = E[Ex1∼p1|t(x1|x)[x1|xt = x]] = Ex1∼p1|t(x1|x)[x1|xt = x]. (25)

B.4. Conditional Negative likelihood Energy

Conditional flow matching assumes a smooth delta function for the training example x ∼ N (x|x1, σ2
1Id):

p(x|x1) ∼ exp

(
− 1

2σ2
1

(x− x1)⊤(x− x1)
)

(26)

where x1 is a single sample from the training set. However, the true x1 is unknown during sampling, and x̂1 = fθ,t(x) is
estimated to refine the trajectory of the sampling path. We can approximately assume the x̂1 distribution follows a similar
format:

p(x̂1|x1) ∼ exp

(
− 1

2σ2
1

(x̂1 − x1)⊤(x̂1 − x1)
)

(27)

Ideally, each sampling step intends to find an estimate of x̂1 such that it lies in the high-density region and approximates to
be stable around a certain area of the energy function. With the exact energy format as the negative log-likelihood of Eq. 27,
the energy of x̂1 could be computed as:

E(x̂1) = −log p(x̂1|x1) =
1

2σ2
1

(x̂1 − x1)⊤(x̂1 − x1) (28)

Furthermore, considering the energy minimum x′ of Eq. 28 is equivalent to the gradient of the energy function equal to zero,
and we could obtain the x′ by a neural network G(x̂1) which could be seen as a neural refiner that projects the x̂1 to its
associate point on the data manifold. The gradient of the likelihood of x̂1 could be written as:

G(x̂1) = x′ ∇E(x̂1) = ∇
(

1

2σ2
1

(x′ − x1)⊤(x′ − x1)
)

= −∇log p(x̂1|x1) =
1

σ2
1

(∇G(x̂1))(G(x̂1)− x1) = 0

(29)
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Observing Eq. 29, the term could be optimized if the neural refiner G approximates the x1, which aligns with the proposed
idempotent objective 21:

LR = ||G(x̂1)− x1||2. (30)

C. An Overview of Riemannian Flow Matching
C.1. Riemannian Manifold

Considering a smooth manifoldM that is locally Euclidean (i.e., each point has a neighborhood that can be smoothly
mapped to an open subset of Rn) and differentiable, each point of the manifold x ∈M has a neighborhood that resembles
an open subset of Rn. The tangent plane attached to each point x on the manifold is called the tangent space TxM. The
collection of all the tangent spaces TxM for each point x ∈M forms the tangent bundle of the manifold, denoted by TM.

The Riemannian metric g is a smoothly varying inner product on the tangent spaces of the manifold. Formally, at each point
x ∈M, the tangent space TxM is equipped with a positive-definite inner product ⟨·, ·⟩x varying across the manifold. This
is typically denoted as gx for measuring the distance on the manifold. For instance, the metric on SO(3) typically requires a
bilinear function ⟨·, ·⟩ : R3×R3 → R to be symmetric positive definite. Hence, we could define a positive definite quadratic
form for the metric:

⟨r1, r2⟩SO(3) =
1

2
tr(r⊤1 r2) (31)

where r1 and r2 are elements of the Lie algebra of SO(3), which is the tangent space at the identity element of SO(3) and
consists of skew-symmetric matrices.

Geodesic generalizes the concept of a straight line in Euclidean space to a Riemannian manifold, where it locally minimizes
the distance between two points on the manifold. It preserves the Riemannian metric and allows for parallel transport of
vectors along curves.

The exponential map expx(v) : TxM→M takes a tangent vector v on TxM and maps it to another point y on the manifold
along the geodesic. The inverse of the exponential map is called the logarithm map, denoted as logx(y) :M→ TxM. The
logarithm map takes a point y ∈M and returns the tangent vector at x that connects x and y through the geodesic distance.

C.2. Riemannian Flow Matching on Protein Geometry

As stated in 3.1, the Riemannian flow matching on protein geometry is defined on the SE(3)
N group. This backbone

parameterization, proposed by AlphaFold2 (Jumper et al., 2021), denotes a frame representation SE(3) for each protein
residue. With N amino acids, the protein backbone lies on the manifold SE(3)

N . Each frame x = (r, s) ≡ SE(3) consisting
of a rotation r and translation s applies the rigid transformation to the reference frame. The reference frame has four
backbone atoms with idealized coordinates centered at the C∗

α atom:

N⋆ = (−0.525, 1.363, 0.0)
C⋆α = (0.0, 0.0, 0.0)

C⋆ = (1.526, 0.0, 0.0)

O⋆ = (0.627, 1.062, 0.0)

The idealized coordinates are the experimental measurement of bond angles and lengths (Engh & Huber, 2012).

SE(3)
N Riemannian flow matching requires to devise a metric on SE(3). As the SE(3) is a semi-direct group, one suitable

metric can decompose the computation into SO(3) and R3: ⟨r1, r2⟩SE(3) = ⟨r1, r2⟩SO(3) + ⟨r1, r2⟩R3 . This results in the
geodesic of SE(3) becomes the same as those on the product space of SO(3) and R3. Moreover, as the Lie algebra of
SO(3) is a skew-symmetric matrix, its matrix exponential has a closed-form solution, referred to as the Rodrigues formula.
Therefore, its exponential and logarithms map could be computed efficiently without simulating the trajectory over the
manifold. In particular, assuming w is a rotation vector, known as the axis-angle representation, and ŵ is its uniquely
identified element of the Lie algebra, its matrix exponential and logarithms can be expressed as (Bose et al., 2024):

Matrix Exponential: R = exp(ŵ) = cos(w)I + sin(w)ew + (1− cos(w))ewe⊤w (32)

Matrix Logarithms: ŵ = log(R) =
w

2sin(w)
(R−R⊤) (33)
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where w = ||w||, ew = w
||w|| represents the angle and axis of the rotation, andR is the SO(3) group element on the manifold.

From Eq. 33, the angle w could be derived from the trace of the rotation matrix R: cos(w) = tr(R)−1
2 . For the translation

R3, the computation is trivial following the Eucledian formulation.

With the matrix exponential and logarithm on hand, we can construct the linear interpolant on SE(3) as the Riemannian
conditional optimal transport:

Translation: st = ts1 + (1− t)s0 (34)
Rotation: rt = expr0(tlogr0(r1)) (35)

where x = (r, s) is the frame. Then, the flow matching objective extended to the SE(3)
N is:

LSE(3)(θ) := E t∼U(0,1)
x∼pt(x|x0,x1)
x0∼p(x0)
x1∼q(x1)

[
N∑
n=1

(
∥vθ,t(s)− ṡt∥2R3 + ∥vθ,t(r)− ṙt∥2SO(3)

)]
(36)

where x0 samples from the uniform distribution on SO(3) and Gaussian on R3, and x1 samples from the training set.

x1 parameterization. The objective can also be reparametrized as the flow map directly predicting x1 = (s1, r1):

LSE(3)(θ) := E t∼U(0,1)
x∼pt(x|x0,x1)
x0∼p(x0)
x1∼q(x1)

[
N∑
n=1

(
∥fθ,t(s)− s1∥2R3 + ∥fθ,t(r)− r1∥2SO(3)

)]
(37)

D. Architecture Details
The architecture used for the IDflow is kept to be the same as the main baseline HARMONICFLOW and FRAMEFLOW,
including node and edge features initialization. We summarize the architecture details here.

D.1. Refinement Tensor Field Networks

Tensor Field Networks (TFN) (Thomas et al., 2018) incorporates the equivariance by parameterizing the node feature update
as the path weight of the tensor product ⊗w between scalar node features hi and spherical harmonics of the edge vector.
Denoting the invariant feature of the node i as hi and coordinate as xi, the edge vector connecting the node i and j is
r̂ij = xi − xj . The node update is built as:

ψij = Ψ(eij , h
k
i , h

k
j )

mij = Y (r̂ij)⊗ψij
hkj

hk+1
i = hki + BN

 1

|Ni|
∑
j∈Ni

mij


We first compute the path weights ψij as the coefficients of the spherical harmonics, where eij is the edge embedding
between node i and node j, the superscript k in hki represents node feature of the kth layer, and Ψ is the linear layer defined
separately for four different types of edges (receptor to receptor, ligand to ligand, ligand to receptor, receptor to ligand).
Then the message mij is constructed by the tensor product, in which Y (r̂ij) is the evaluation of the spherical harmonics
at r̂ij . All the aggregated messages are averaged over the number of neighbours and then pass to the equivariant batch
normalization.

Each layer first updates the node feature, and then updates the coordinate via the O(3) equivariant linear layer Φ:

xk+1 ← x̂k+1 +Φ(hk+1) (38)

The learning paradigm involves feature and coordinate refinement, where each layer of the network predicts updates for the
previous layer. Additionally, the coordinate output at each layer is ”deeply supervised” by the training annotations through
the auxiliary loss function. The implementation is based on the e3nn library (Geiger & Smidt, 2022).
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D.2. IPA-Based Structure Transformer

The invariant point attention mechanism for equivarance and backbone parameterization are initially proposed by (Jumper
et al., 2021). The entire procedure involves the network prediction and the backbone update. More details can be found in
(Yim et al., 2023b) of Appendix I. We list the algorithms here:

Node update. Each layer consists of an IPA embedding layer, a transformer layer and a linear layer for feature transition.

hipa = IPA(hℓ, zℓ, Tℓ)

hin = LayerNorm(hipa + hℓ)
htrans = Transformer(hin)

hout = Linear(htrans) + hℓ
hℓ+1 = MLP(hout)

Edge update. The edge update is computed by first projecting the updated node feature to half the dimension hdown. The
projected features is then concatenated with the edge embedding feeding into the linear layer:

hdown = Linear(hℓ+1)

zijin = cat(hndown, h
m
down, e

ij
ℓ )

zℓ+1 = LayerNorm(Linear(zin))

where hndown and hmdown are features expanded into two separate dimensions.

Backbone update. The network output is structured to be translation update supdate and the quaternion representation
(1, bi, ci, di) then being converted into a rotation matrix.

bi, ci, di, s
update
i = Linear(hℓ)

ai, bi, ci, di = (1, bi, ci, di)/
√
1 + b2i + c2i + d2i

Rupdate
i =

(ai)2 + (bi)2 − (ci)2 − (di)2 2bici − 2aidi 2bidi + 2aici
2bici + 2aidi (ai)2 − (bi)2 + (ci)2 − (di)2 2cidi − 2aibi
2bidi − 2aici 2bidi − 2aici (ai)2 − (bi)2 − (ci)2 + (di)2


xupdate
i = (Rupdate

i , supdate
i )

xℓ+1 = xℓ · xupdate
i

where i is the index of protein residue.

E. Experimental Details
In this section, we provide additional details about the datasets, experimental setup and evaluation metrics. The source code
is available at https://github.com/CaviarLover/IDFlow.

E.1. Molecular Docking

E.1.1. DATASETS

The PDBBind v2020(Liu et al., 2017) with a total of 19k complexes timesplit is a commonly used benchmark for molecular
docking (Stärk et al., 2022; Lu et al., 2022; Corso et al., 2023; Zhang et al., 2023; Pei et al., 2024; Corso et al., 2024).
The time split proposed by (Stärk et al., 2022) consists of 17k complexes before 2019 for training and validation and 363
complexes after 2019 for testing without the seen ligand in the training set. The 30% sequence similarity split is constructed
from the same dataset but with the constraint of the chain-wise similarity less than 30%, which is considered as a more
difficult split for the timesplit.

BindingMOAD (Hu et al., 2005) is another curated dataset from the PDB, with a different preprocessing pipeline from
the PDBBind, ending up with 41k complexes. The dataset has been recently explored for more challenging benchmark
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construction and multi-ligand docking. Similar to the PDBBind, the maximum 30% sequence similarity split provides
56649, 1136 and 1288 for training, validation and testing. Only one biounit for each complex is used for training. The
complex with only one contact (protein residue ligand atom distance less than 4) is further filtered out, retrieving 36203, 734
and 756 training, validation and test examples.

E.1.2. POCKET DEFINITION

Radius Pocket. The pocket center is the mean position of the protein residues of which the minimum distance to any
ligand atoms is less than 8Å. The radius is computed as the maximum between 5Å and the ligand radius (half of the largest
distance between the ligand atoms) plus the radius pocket buffer (set to 7Å in all experiments). The pocket residues are
selected based on the comparison between the residue pocket center distance and the radius. The residue pocket center
distance is randomly flipped by the σ = 2.

Distance Pocket. The protein residue ligand atoms distances are extracted by the minimum distance between the residue
and any ligand atom positions. Again, these protein-ligand distances are further randomly shifted with the σ = 2. The final
pocket residues are the ones whose distances are below 14 Å.

E.1.3. EXPERIMENTAL SETUP

The number of vector features and scalar features for TFN is set to be 32 and 8, respectively. Hence, there is no higher
order representation (> 1) being used in the experiment and we do not use batch normalization and residual connection for
the aggregated messages, but only layernorm the input features for each layer. The batch is set to be 4 for each GPU. The
model is trained for 150 epochs using the Adam optimizer (Kingma & Ba, 2014) with the initial learning rate 1e-3 and a
polynomial scheduler. The flow matching conditional standard deviation is set to be constant σt = σ = 0.5. The training
takes around 20 hours on 8 RTX A100 GPUs for single ligand docking and one day on multi-ligand docking. The validation
is conducted for every epoch, and the checkpoint with the largest RMSD <2Åis selected for inference. The number of
function evaluations is set to be 20 consistent with the HarmonicFlow. More details can be found in the GitHub repository
of HarmonicFlow (https://github.com/HannesStark/FlowSite).

E.2. Protein Backbone Generation

E.2.1. EVALUATION METRICS

Designability. In our experiments we follow an established self-consistency evaluation pipeline introduced before (Trippe
et al., 2022; Watson et al., 2023). For every sampled backbone, we perform inverse folding with ProteinMPNN (Dauparas
et al., 2022) and generate 8 sequences, which are subsequently refolded with ESMfold (Lin et al., 2023). We then compute
the self-consistency RMSD (scRMSD) by aligning each ESMfold-refolded candidate with the originally sampled backbone
on Cα atoms and consider a backbone designable if scRSMD ≤ 2.0 Å.

Diversity. This metric measures the similarity among the designable backbones by computing the pairwise Template
Modeling (TM) score.

Diversity =
1

N

N∑
l=1

1

nl(nl − 1)

∑
i̸=j

TM(xi, xj)

where N is the total number of protein lengths, nl is the number of designable backbones at each length l, i and j are the
index of the protein at each length.

Novelty. The novelty is defined as the TM score between the designable backbone and its closest natural protein found in
the PDB databases with FoldSeek (Van Kempen et al., 2024), averaging over all the designable proteins:

Novelty =
1

n

n∑
i=1

maxjTM(xi, xj)

where n is the number of designable proteins.
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E.2.2. EXPERIMENTAL SETUP

We train the model on 8 RTX A100 GPUs for 150 epochs (∼ 22 hours) on SCOPe and 600 epochs (∼ 3 days) on PDB.
After Ntrain epochs of training, the checkpoints are swept every Nsweep for inference. The checkpoint achieving the highest
designability is selected for the final result. Respectively, Ntrain is set to 100 and 300 for SCOPe and PDB, and Nsweep is set
to 10 and 50. The number of iteration Kmax is set to be 1, as any value beyond 1 fills out of the memory even on ”fat” GPU.
The other hyperparameters are kept to be the same as the FrameFlow (https://github.com/microsoft/protein-frame-flow). We
report the key setting here:

Hyperparameter Setup
learning rate 1e-4

node embedding dimension 256
edge embedding dimension 128

number of head for IPA 8
number of query / key points 8

number of value channel 12
number of head for transformer layer 4

number of layer 6

Table 5. Key hyperparameter setup for IDFlow on protein backbone generation.

F. Additional Results
Validation metrics on docking. Fig. 4 shows the validation metric curve of HarmonicFlow and IDFlow. IDFlow converges
much faster and achieves higher RMSD < 2Å than HarmonicFlow.

Figure 4. The validation metric curve of docking on PDBBind of radius pocket time split. The fraction of validation RMSD < 2Å vs.
epoch time for IDFlow and HarmonicFlow.

Top-k accuracy on docking. The top-k accuracy assumes the known ground truth and picks up the sample with the highest
accuracy of ”RMSD < 2”. k is the number of samples being generated. It reflects the model’s capability of mode sampling.
Table 6 shows the results of single ligand docking on PDBBind. IDFlow consistently outperforms the HarmonicFlow on
different metrics across the dataset, demonstrating the improved mode capturing of IDFlow.
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Table 6. Top-k (40, 10 and 5) accuracy comparison of methods on the PDBBind splits for pocket level docking based on different metrics.
The number k is specified in parenthesis.

Sequence Similarity Split Time Split
Distance-Pocket Radius-Pocket Distance-Pocket Radius-Pocket

%<1 %<2 Med. %<1 %<2 Med. %<1 %<2 Med. %<1 %<2 Med.
HarmonicFlow (40) 30.7 63.2 1.5 16.1 46.8 2.1 35.8 66.9 1.3 21.9 52.4 1.9
IDFlow (40) 34.3 64.0 1.4 18.6 48.0 2.1 37.6 67.1 1.2 27.8 53.4 1.8
HarmonicFlow (10) 22.0 53.9 1.8 9.1 36.7 2.4 25.8 58.8 1.6 15.8 45.4 2.2
IDFlow (10) 25.5 56.2 1.7 14.2 40.9 2.4 29.6 60.9 1.5 22.3 47.4 2.2
HarmonicFlow (5) 15.4 47.5 2.1 7.7 31.2 2.8 19.3 55.0 1.7 11.8 42.0 2.5
IDFlow (5) 20.6 52.0 1.9 10.0 34.3 2.6 24.7 57.9 1.6 17.8 44.9 2.4

Energy reduction. Fig. 5 presents L2-error energy minimization comparison during sampling for IDFlow and Harmon-
icFlow averaged over the test set of radius pocket time split. While the idempotency is also not perfect for IDFlow with the
continuous loss minimization objective can never achieve an absolute idempotency, it’s apparent that the energy converges
much faster and better for IDFlow.

Figure 5. L2 error at each step during sampling averaging over the test set for HarmonicFlow and IDFlow. The energy of IDFlow is
calculated by L2 error after refinement at each step, with total of 10 steps. For HarmonicFlow, we sample 20 steps with refinement for
computing the L2 error, but use the output of the first iteration to simulate the ODE. The red dashed line marks the lowest energy of
HarmonicFlow.

Results on SCOPe. In Table 7, we find that IDFlow can generate more designable proteins compared to the baseline
FrameFlow and appears to be equally diverse and novel. Besides, the results over three runs are also more stable than the
FrameFlow in terms of standard deviation. This demonstrates the method’s effectiveness in generating highly designable
proteins (relatively small, length < 128).

Table 7. Protein Backbone Generation on SCOPe. 10 backbones for the protein length from 60 to 128, in total 690 proteins. ∗ denotes
the retrained FrameFlow. The results of FRAMEFLOW and GAFL are extracted from (Wagner et al., 2024) recomputed for mean and
standard deviation.

METHOD DESIGNABILITY (↑) DIVERSITY (↓) NOVELTY (↓)
FRAMEFLOW 81.2 0.37 -

FRAMEFLOW* 90.1 ± 1.7 0.39 ± 0.01 0.80 ± 0.01
GAFL 90.2 ± 0.6 0.38 ± 0.02 -

IDFLOW 90.9 ± 1.4 0.38 ± 0.02 0.78 ± 0.00

Number of steps. Fig. 6 analyzes the impact of NFEs on IDFlow and FrameFlow for the SCOPe dataset on both designability
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and diversity. Both methods exhibit performance degradation when NFEs are reduced below 50. As shown in Fig. 6a,
under identical sampling budgets, IDFlow achieves higher designability metrics and demonstrates greater robustness when
sampling with fewer steps (30 NFEs). This suggests IDFlow’s better stability in low-step regimes. Fig. 6b presents the
diversity metrics versus the NFEs for IDFlow and FrameFlow. Again, similar to the designability, IDFlow appears to be
more robust to the NFEs and generates relatively more diverse structures.

(a) Designability (↑) comparison between IDFlow and Frame-
Flow on SCOPe dataset.

(b) Diversity (↓) comparison between IDFlow and FrameFlow
on SCOPe dataset.

Figure 6. Designability and diversity comparison vs. NFEs on SCOPe dataset.

G. Visualization
Figure 7 exhibits some randomly selected generated molecules compared with the Ground Truth. The sample is generated
by 20 NFEs.

Figure 8 shows the designable backbones generated by IDFlow of various protein lengths. The sample is generated by 200
NFEs.
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(a) 3pwd (b) 4dgm

(c) 5l98 (d) 5mkx

(e) 6fap (f) 3bl9

Figure 7. Six randomly selected generated complexes on the radius pocket docking on 30% sequence similarity split. The one in blue is
the ground truth, and the one in green is generated from IDFlow.
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Figure 8. Designable Backbones at length [100, 150, 200, 250, 300] trained on PDB. Protein length from top to bottom [300, 250, 200,
150, 100].
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