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ABSTRACT

Attention-based regression models are often trained by jointly optimizing Mean
Squared Error (MSE) loss and Pearson correlation coefficient (PCC) loss, empha-
sizing the magnitude of errors and the order or shape of targets, respectively. A
common but poorly understood phenomenon during training is the PCC plateau:
PCC stops improving early in training, even as MSE continues to decrease. We
provide the first rigorous theoretical analysis of this behavior, revealing funda-
mental limitations in both optimization dynamics and model capacity. First, in
regard to the flattened PCC curve, we uncover a critical conflict where lowering
MSE (magnitude matching) can paradoxically suppress the PCC gradient (shape
matching). This issue is exacerbated by the softmax attention mechanism, particu-
larly when the data to be aggregated is highly homogeneous. Second, we identify
a limitation in the model capacity: we derived a PCC improvement limit for any
convex aggregator (including the softmax attention), showing that the convex hull
of the inputs strictly bounds the achievable PCC gain. We demonstrate that data
homogeneity intensifies both limitations. Motivated by these insights, we pro-
pose the Extrapolative Correlation Attention (ECA), which incorporates novel,
theoretically-motivated mechanisms to improve the PCC optimization and extrap-
olate beyond the convex hull. Across diverse benchmarks, including challenging
homogeneous data setting, ECA consistently breaks the PCC plateau, achieving
significant improvements in correlation without compromising MSE performance.

1 INTRODUCTION

The attention mechanism is a powerful tool for regression tasks where each input sample comprises
multiple elements, such as tokens or image patches, and the elements’ embeddings are aggregated
using attention mechanism to predict a continuous target (Lee et al., 2019; Martins et al., 2020; Born
& Manica, 2023). This paradigm is widely used in areas like digital pathology, time-series prediction
and emotional analysis (Jiang et al., 2023; Ni et al., 2023; Zhang et al., 2023). For example, in video-
based sentiment analysis, the attention mechanism is used to aggregate frame embeddings within a
video clip to predict emotion variables, such as sentiment intensity, arousal, and valence (Truong &
Lauw, 2019; Xie et al., 2024).

Two characteristics are common in such applications. First, the in-sample data frequently exhibits
higher homogeneity than cross-sample data. For example, in pathology images, nearby regions tend
to share more similar tissue or cell types than distant regions. Likewise, in video-based sentiment
analysis, frames from the same clip are more similar than frames from different clips. Second, the
regression performance is not simply evaluated by magnitude (e.g., Mean Squared Error (MSE)) but
also by shape—the relative ordering of predictions, measured by the Pearson Correlation Coefficient
(PCC). In many settings, capturing the correct correlations matters more than predicting the exact
values (Pandit & Schuller, 2019). For instance, in spatial transcriptomics, capturing the relative trend
of gene expression (e.g., co-expression) is more informative than predicting exact magnitudes (Xiao
et al., 2024). To emphasize shape while retaining magnitude performance, models are commonly
trained with a joint loss function, such as Ltotal = LMSE +λPCC(1− ρ) where ρ is the PCC and λPCC
is a hyperparameter weight (Liu et al., 2022; Zhang et al., 2023; Zhu et al., 2025).
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Figure 1: (a) Illustration of a video-based sentiment analysis example. A sample is considered
homogeneous when its within-sample dispersion σ̃ is below σ0. (b) A convex attention yields an
aggregated embedding inside the convex hull of the sample’s embeddings. (C) Our ECA extrapolates
beyond the hull to amplify within-sample contrasts.
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However, such joint training strategy applied to attention-based regression model frequently exhibits
a puzzling PCC plateau, even with large PCC weight λPCC. As shown in Figure 2, the PCC curve’s
slope flattens early in training, failing to improve further even while the MSE continues to decrease.
This empirical phenomenon is particularly severe with high in-sample homogeneity data. The un-
derlying mechanisms driving this plateau remain unclear and it raises a critical question: why does
the regression model fail to optimize the correlation effectively?

In this work, we provide the first theoretical investigation into this question, analyzing the limitations
of standard attention from two distinct perspectives: optimization dynamics and model capacity.
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Figure 2: PCC plateau example: PCC flat-
tens at early epoch while MSE continues to de-
crease. The plateau becomes more noticeable as
within-sample homogeneity increases, specifi-
cally, dataset A is more homogeneous than B.

Limitation 1: Conflict in Optimization Dynam-
ics. Our analysis reveals a direct relation between
the decrease of MSE and the flattening of the PCC
curve in the attention-based regression model. Us-
ing a decomposition of MSE (Proposition 2.1), we
show the following. Although training continues
to reduce MSE by matching the predictions’ mean
and standard deviation, the gradient of the correla-
tion term is paradoxically attenuated, flattening the
PCC curve. This effect is amplified by in-sample
homogeneity: when embeddings within a sample
are similar, the within-sample dispersion term in
the PCC gradient shrinks and further suppresses
the magnitude of the gradient.

Limitation 2: Model Capacity of Convex Aggregation. Notice that softmax attention is a convex
combination of element embeddings; we compare convex attention aggregation to mean-pooling
aggregation and derive an upper bound on the achievable PCC gain (Theorem 2.2) depending on the
radius of convex hull formed by the in-sample embeddings. Greater in-sample homogeneity will
shrink the convex hull and tightens this bound, yielding a fundamental capacity limit for PCC gain.

Extrapolative Correlation Attention. Motivated by these theoretical insights, we propose Extrap-
olative Correlation Attention (ECA), a novel framework designed to overcome these limitations.
To mitigate the optimization conflict in Limitation 1, ECA introduces a Dispersion-Normalized
PCC loss to counteracts the attenuation effect, restoring the magnitude of correlation gradient. We
also employ Dispersion-Aware Temperature Softmax to prevent the gradient collapse and near-
uniform attention distribution under in-sample homogeneity. To address Limitation 2, ECA in-
troduces Scaled Residual Aggregation, which allows the model to extrapolate beyond the convex
hull, mitigating the PCC gain limitation induced by convex aggregation mechanism.

Contributions. We theoretically investigate the PCC plateau when training attention-based regres-
sion model with a joint MSE+PCC loss. We identify two limitations in optimization dynamics and
in model capacity.

• Optimization Dynamics. We identify a conflict in optimization dynamics: as MSE opti-
mization increases σŷ to match σy , the magnitude of the PCC loss gradient scales with 1/σŷ

leading to a flattened PCC curve during training. In addition, We show that within-sample

2
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homogeneity further shrinks the PCC gradient through the Jacobian of softmax attention.
Both parts contribute to the PCC plateau phenomenon.

• Model Capacity. We prove that for any convex aggregator (e.g., softmax attention), the
achievable PCC improvement over mean-pooling can be bounded by the within-sample
data homogeneity.

To address these limitations, we introduce ECA, a novel attention-based regression framework with
three components:

• Motivated by the optimization limitation, we re-scale the PCC objective to counteract the
1/σŷ factor, restoring correlation gradients magnitude while minimizing MSE.

• Motivated by the convex aggregator limitation, we incorporate a Scaled Residual Aggrega-
tion that enables controlled extrapolation beyond the convex hull.

• To handle within-sample homogeneity, we propose a Dispersion-Aware Temperature Soft-
max to prevent attention collapse and amplify the informative contrasts within homoge-
neous samples.

Across diverse regression benchmarks, ECA consistently overcomes the PCC plateau and achieves
higher correlation gains while maintaining competitive MSE. Ablation studies confirm the contribu-
tion of each component.

2 THEORETICAL ANALYSIS OF CORRELATION LEARNING IN
ATTENTION-BASED AGGREGATION

We theoretically analyze why the PCC plateau occurs when training attention-based regression with
a joint MSE+PCC loss. First, we relate MSE and PCC through a decomposition that motivates joint
training. Then we prove that softmax attention, as a convex aggregator, limits both the optimization
dynamics and the model’s expressive capacity. These limits hinder correlation learning and explain
the observed PCC plateau.

2.1 PROBLEM SETUP

Data Notation. We consider a regression dataset with a batch of S samples (xs, ys). Each sample
xs is a set of ns element with embeddings hs = {hsi}ns

i=1, where hsi ∈ Rd. Let ys, ŷs ∈ R be the
ground-truth target and model prediction for sth sample. The batch-level empirical means are µy, µŷ

and standard deviations are σy, σŷ . Define centered targets and predictions as as := ys − µy and
bs := ŷs − µŷ .

Attention-based Aggregation. The attention-based model processes each input sample to produce
a scalar prediction. An attention scoring function fattn(·) (e.g., KQV dot-product similarity or gating
mechanism) scores each embedding in hs and produces attention logits zs = fattn({hsi}ns

i=1) ∈
Rns with entries zsi = [zs]i ∈ R. Softmax converts these logits to positive attention weights
αs = Softmax(zs) on the probability simplex with entries αsi = [αs]i ∈ R and

∑ns

i=1 αsi = 1.
The sample-level embedding is the convex combination vs =

∑ns

i=1 αsi hsi ∈ Rd. Finally, a linear
regression head with weights w ∈ Rd and bias c ∈ R produces the scalar prediction: ŷs = w⊤vs+c.
Note that this formulation is backbone-agnostic: {hsi} represents the features at the final layer of
any deep architecture (e.g., a multi-layer Transformer). Since these models typically derive the
final prediction with a convex attention pooling (e.g., [CLS] token aggregation) followed by a linear
projection, our analysis of the attention-based aggregation and its interaction with joint MSE and
PCC optimization applies regardless of the depth or complexity of the preceding backbone. We
provide a detailed discussion on the applicability to deep architectures in Appendix E.

Learning Objective. We measure Pearson correlation between targets and predictions over the
batch by ρ := Cov(y,ŷ)

σyσŷ
. To optimize both magnitude and correlation of the prediction, we use the

popular joint loss Ltotal := MSE(y, ŷ) + λPCC(1− ρ) where λPCC ≥ 0 balances the two terms.

Homogeneity Measures. For each sample, let the in-sample mean be µs = 1
ns

∑ns

j=1 hsj . We

quantify within-sample homogeneity by (i) the in-sample dispersion σs =
√

1
ns

∑ns

j=1∥hsj − µs∥22,

3
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and (ii) the convex-hull radius Rs := maxi∥hsi − µs∥2. These quantities are related by inequality
σs ≤ Rs ≤ √

ns σs with proof in Lemma D.3. Cross-sample homogeneity is summarized by the

root-mean-square (RMS) values σ̃ :=
(
1
S

∑S
s=1 σ

2
s

)1/2
and R̃ :=

(
1
S

∑S
s=1 R

2
s

)1/2
.

2.2 PRELIMINARIES: THE INTERPLAY BETWEEN MSE AND PCC

Proposition 2.1 (MSE Mean–std–correlation Decomposition). The MSE between y and ŷ can be
decomposed as:

MSE(y, ŷ) = (µŷ − µy)
2︸ ︷︷ ︸

mean matching

+(σŷ − σy)
2︸ ︷︷ ︸

std matching

+2σy σŷ

(
1− ρ

)︸ ︷︷ ︸
weighted correlation

. (1)

Lemma 2.1 (Scaling-invariance of PCC). Let m ≥ 0 and n ∈ R. PCC(y,mŷ + n) = PCC(y, ŷ).

We defer the proof for Proposition 2.1 and Lemma 2.1 to Appendix A.

Remark 2.1. Proposition 2.1 and lemma 2.1 are model-independent and hold for any regressor.

Remark 2.2 (The PCC Plateau). By Proposition 2.1, minimizing MSE jointly targets (i) mean match-
ing, (ii) standard deviation matching, and (iii) weighted correlation. Because MSE is sensitive to
affine transformations while PCC is invariant (Lemma 2.1), optimization can reduce MSE by mainly
adjusting mean and scale, with little improvement on correlation. This explains why MSE may keep
decreasing while PCC plateaus, and motivates adding the explicit correlation term λPCC(1 − ρ) to
the objective.

The discussion above provides intuitions for the PCC plateau phenomenon. We further empiri-
cally validate this phenomenon on 8 UCI regression datasets using multi-layer Transformers (Ap-
pendix F). Figure 7 shows a consistent pattern across all tasks: PCC curve flattens before MSE
convergence. This consistent pattern confirms that “PCC plateau” is a general correlation learning
failure mode under attention-based joint optimization setting. We now provide a formal analysis by
characterizing the PCC gradient in attention-based regression models.

2.3 OPTIMIZATION DYNAMICS: THE CORRELATION GRADIENT BOTTLENECK

We study how the gradients propagate through the attention aggregator when optimizing the joint
loss Ltotal = LMSE + λPCC(1 − ρ). We derive the gradients of both MSE and PCC with respect to
the attention logits zsi to understand the optimization dynamics.

Lemma 2.2 (Softmax Aggregator Jacobian). The derivative of the aggregated embedding vs with
respect to a pre-softmax logit zsi is ∂vs/∂zsi = αsi(hsi − vs) and consequently, ∂ŷs/∂zsi =
αsiw

⊤(hsi − vs).

Theorem 2.1 (Gradient of PCC w.r.t. Attention Logits). The derivative of Pearson correlation ρ
with respect to a pre-softmax logit zsi is

∂ρ

∂zsi
=

1

Sσŷ

(
as
σy

− ρ
bs
σŷ

)
αsiw

⊤(hsi − vs). (2)

To understand the interplay during joint optimization, we also examine the gradient of the MSE loss.

Lemma 2.3 (Gradient of MSE w.r.t. Attention Logits). The derivative of MSE with respect to a
pre-softmax logit zsi is

∂LMSE

∂zsi
=

2

S
(ŷs − ys)αsiw

⊤(hsi − vs). (3)

Gradient Decomposition and the Optimization Conflict. Comparing the PCC gradient (Equa-
tion (2)) and the MSE gradient (Equation (3)), we observe they share the same local structure factor
Lsi := αsi w

⊤(hsi − vs), which governs attention adjustment within sample s. The difference lies
entirely in the global scaling factors which depend on overall batch statistics:

4
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∂LMSE

∂zsi
=

1

S
gMSE
s Lsi, where gMSE

s := 2(ŷs − ys), (4)

∂ρ

∂zsi
=

1

S
gPCC
s Lsi, where gPCC

s :=
1

σŷ

(
as
σy

− ρ
bs
σŷ

)
. (5)

The relative impact of MSE versus PCC optimization is determined by the ratio of these global
factors. We analyze this ratio using their Root Mean Square (RMS) values across the batch.
Corollary 2.1 (PCC/MSE Gradient Ratio Decay). Assuming ρ ∈ [0, 1], the RMS ratio of the global
scaling factors across the batch is bounded by:

rglobal :=
RMSs(g

PCC
s )

RMSs(gMSE
s )

≤ 1

2
√
σy

· 1

σ
3/2
ŷ

. (6)
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Figure 3: Validation of gradient ra-
tio (PCC/MSE) decay. The RMS
ratio of PCC vs. MSE gradients
(blue) is strictly constrained by the
theoretical upper bound (red). The
increase in prediction dispersion
σŷ (green) during training drives
the attenuation of the PCC gradient
signal relative to the MSE gradient.
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Figure 4: The standard deviation
of predictions σŷ increases during
training to match the standard de-
viation of labels σy under MSE
loss.

Corollary 2.1 identifies a gradient bottleneck where the PCC
signal attenuates relative to MSE at a rate of O(1/σ

3/2
ŷ ). This

bound is empirically validated in Figure 3 on synthetic dataset
, illustrating how magnitude matching dominates the optimiza-
tion dynamics. We further analyze the magnitude of the PCC
gradient alone, which reveals dependence on in-sample homo-
geneity.
Corollary 2.2 (PCC Gradient Magnitude Bound). The magni-
tude of the PCC gradient in Theorem 2.1 can be bounded by∣∣∣∣ ∂ρ∂zsi

∣∣∣∣ ≤ 1

σŷ︸︷︷︸
prediction
deviation

·
4
√
ns(S − 1)

S︸ ︷︷ ︸
batch scale

·∥w∥2︸ ︷︷ ︸
regression

weights

· σs︸︷︷︸
in-sample
dispersion

. (7)

Detailed derivations for Lemma 2.2, Theorem 2.1 are provided
in Appendix B.1. Proofs for Lemma 2.3, Corollary 2.1, and
Corollary 2.2 are provided in Appendix C.
Remark 2.3 (The Two Bottlenecks of Softmax Attention for
Correlation). The gradient analysis reveals two key bottlenecks
in optimization dynamics that drive PCC plateaus:

1. Dominance of the MSE Gradient. Corollary 2.1 reveals a
critical conflict in the joint optimization: the ratio of the PCC
gradient magnitude relative to the MSE gradient magnitude de-
cays rapidly at a rate of O(1/σ

3/2
ŷ ). Training with the joint loss

minimizes the MSE std-matching term in Equation (1), which
drives σŷ toward the target standard deviation σy . As σŷ typ-
ically increases during early training (see Figure 4), the rela-
tive contribution of the PCC gradient diminishes significantly.
Consequently, the optimization becomes dominated by the MSE
objective (magnitude matching), effectively downplaying PCC
optimization (shape matching) and causing the plateau, even
when the PCC loss weight λPCC is large. This motivates opti-
mization strategies that counteract this rapid attenuation.

2. Dependence on Within-sample Homogeneity. The gradient
bound in Corollary 2.2 is proportional to the in-sample dispersion σs. When a sample’s elements
are homogeneous, σs is small and the PCC gradient magnitude reduces, effectively hindering im-
provements to PCC via attention adjustment. Furthermore, since attention scoring functions are
generally continuous, homogeneous inputs lead to low-variance logits zsi. Under fixed-temperature
softmax, this results in near-uniform weights αsi≈1/ns, suppressing per-sample selectivity. These
effects motivate mechanisms that adapt attention sensitivity to the in-sample dispersion.

5
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2.4 MODEL CAPACITY: THE PCC CEILING OF CONVEX AGGREGATION

Beyond optimization dynamics, we study the limits of the aggregator’s expressivity. Softmax atten-
tion performs convex combinations, restricting aggregated embedding vs to the convex hull of the
in-sample embeddings {hsi}. We study how much PCC improvement can be achieved by any con-
vex aggregator over mean-pooling and show a capacity limit governed by in-sample homogeneity.

Prediction Decompositon. We decompose the sample embedding vs relative to the mean-pooling
embedding µs. The prediction can be decomposed as: ŷs = (w⊤µs + c)︸ ︷︷ ︸

ȳs

+w⊤(vs − µs)︸ ︷︷ ︸
∆ŷs

, where

ȳs is the prediction using mean-pooling aggregation, and ∆ŷs is the attention-induced perturbation.
Theorem 2.2 (PCC Gain Bound for Convex Attention). Let σ0 := stds(ȳs) be the standard de-
viation of the mean-pooling predictions; define baseline ρ0 := PCC(y, ȳ) and ρ is the PCC after
applying any convex attention mechanism. Provided ∥w∥2 > 0 and R̃ < σ0/∥w∥2,

|ρ− ρ0| ≤ 2 R̃

σ0/∥w∥2 − R̃
. (8)

Detailed proof is provided in Appendix D.
Remark 2.4. Theorem 2.2 shows that the PCC improvement bound of any convex attention de-
pends only on the ratio between convex hull radius R̃ (reflecting in-sample homogeneity) and the
normalized standard deviation of mean-pooling baseline (σ0/∥w∥2). The bound is scale-invariant
and independent of the regression head magnitude since σ0/∥w∥2 = stds(w

⊤µs)/∥w∥2 =

stds
(
(w⊤/∥w∥2)µs

)
. When in-sample homogeneity is high (R̃ is small), no convex attention can

substantially increase correlation. The limitation arises because vs is confined to the convex hull; a
small hull restricts the magnitude of adjustments to the aggregated embedding, thereby limiting the
potential PCC improvement and motivating mechanisms that can extrapolate beyond it.

2.5 SUMMARY OF THEORETICAL INSIGHTS

Our analysis reveals that the difficulty of optimizing PCC using softmax attention stems from two
aspects: optimization dynamics and model capacity. Remark 2.3 highlights the vanishing PCC gra-
dients due to cross-sample dispersion attenuation 1/σŷ and weak in-sample dispersion. Remark 2.4
further shows that any convex aggregator is restricted to the convex hull, which limits the possible
PCC gain by ratio R̃/(σ0/∥w∥2). Together, these effects explain the plateau and motivate a novel
attention mechanism proposed in the next section that addresses the identified bottlenecks accord-
ingly.

3 EXTRAPOLATIVE CORRELATION ATTENTION (ECA)

Our analysis has identified fundamental limitations in softmax attention for optimizing joint
MSE+PCC objective. To address these issues, we propose Extrapolative Correlation Attention
(ECA), a novel drop-in attention module for regression that enhances both optimization and ex-
pressivity. ECA incorporates three components: (i) Scaled Residual Aggregation to break the con-
vex hull constraint; (ii) Dispersion-Aware Temperature Softmax, to avoid gradient collapse; and (iii)
Dispersion-Normalized PCC Loss, which compensates the 1/σŷ attenuation in correlation gradients.

3.1 BREAKING THE CONVEX HULL WITH SCALED RESIDUAL AGGREGATION (SRA)

Theorem 2.2 shows that any convex attention mechanism is capacity-limited in correlation improve-
ment because the aggregated embedding vs lies inside the convex hull of the in-sample embeddings
{hsi}. This PCC gain bound is especially tighter when in-sample dispersion is low. To relax this
limit, we introduce Scaled Residual Aggregation (SRA): instead of a strict convex aggregation, the
model extrapolates along the residual (hsi − µs), allowing vs to move beyond the convex hull.

Given the mean embedding µs = 1/ns

∑
i hsi, we define the residual ∆vs as the attention-

weighted deviation from the mean: ∆vs :=
∑

i αsi(hsi − µs). SRA scales this residual by a

6
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learnable factor γs ≥ 1:

vECA
s = µs + γs ·∆vs = µs + γs

∑
i

αsi

(
hsi − µs

)
. (9)

We parameterize γs using a small, sample-specific MLP conditioned on the mean embedding µs

and use a shifted Softplus activation to ensure γs ≥ 1, that is γs = 1 + Softplus(MLPθγ (µs)).

The factor γs allows the model to amplify weak in-sample contrasts. When γs = 1, SRA reduces
to standard convex attention aggregation. For γs > 1, the model extrapolates beyond the convex
hull, and more importantly, it breaks the convexity constraint. In standard attention, the deviation
∥∆vs∥is bounded by the radius of the convex hull Rs. SRA expands the reachable space by increas-
ing the effective radius and fundamentally bypasses the capacity limit derived for convex aggregators
in Theorem 2.2. In practice we optionally clip γs at a maximum (e.g., γmax = 2) or add a regularizer
Lγ =

λγ

S

∑
s(γs − 1)2 to discourage excessive scaling.

3.2 DISPERSION-AWARE TEMPERATURE SOFTMAX (DATS)

While SRA enables extrapolation beyond the convex hull, the model still needs a informative direc-
tion to extrapolate. In homogeneous samples, standard softmax produces flat attention αsi ≈ 1/ns

(Remark 2.3), which pulls the aggregated embedding toward µs and makes the residual in Equa-
tion (9) small (∆vs ≈ 0). With small residual, SRA provides little benefit. To address this, we
introduce Dispersion-Aware Temperature Softmax (DATS), which adapts the attention temperature
to the in-sample dispersion, sharpening attention when homogeneity is high:

We modify the softmax attention for Equation (9) with a sample-specific temperature τs reflecting
within-sample dispersion:

αsi = softmax

(
zsi
τs

)
, τs = Tmin + β

√
1

ns

∑
1≤i≤ns

∥hsi − µs∥2. (10)

Here Tmin > 0 lower-bounds the temperature for stability, and β ≥ 0 is a hyperparameter that
controls sensitivity. When embeddings within a sample are homogeneous, τs has lower value so
small differences between logits zsi become sharper after attention, yielding a meaningful deviation
∆vs that SRA can effectively amplify.

3.3 STABILIZING OPTIMIZATION: DISPERSION-NORMALIZED PCC LOSS (DNPL)

Theorem 2.1 shows that the correlation gradient is attenuated by 1/σŷ . As MSE optimization im-
proves standard deviation matching, σŷ increases, which shrinks the PCC gradient and contributes
to a PCC plateau. We counteract this attenuation effect with a Dispersion-Normalized PCC Loss
(DNPL), which rescales the PCC term by the current prediction standard deviation while blocking
its gradient:

L̃PCC = StopGrad(σŷ) · (1− ρ). (11)
The StopGrad(·) operation ensures we only adjust the gradient magnitude to counteract the attenu-
ation, while leaving the learning objective’s stationary points unchanged.

3.4 OVERALL OBJECTIVE

The complete ECA framework, including SRA and DATS, is fully differentiable and can be trained
end-to-end. The overall learning objective combines the primary regression loss (MSE), the normal-
ized PCC loss (DNPL), and the extrapolation regularizer:

LTotal = LMSE + λPCC · L̃PCC + Lγ . (12)

4 RELATED WORKS

Correlation Learning and Optimization. Correlation is a core metric in biological and medical
areas (Langfelder & Horvath, 2008; Lawrence & Lin, 1989). In these domains, PCC is a standard
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criterion for evaluating regression performance (Kudrat et al., 2025; Long et al., 2023). Because
PCC is differentiable, it is often optimized directly as a loss in regression pipelines (Kudrat et al.,
2025; Avants et al., 2008). From a multi-task perspective, many works combine PCC with MSE to
balance the prediction magnitude and shape (Yang et al., 2023; Liu et al., 2022; Balakrishnan et al.,
2019). However, the interaction dynamics between MSE and PCC under joint optimization remain
underexplored, motivating our analysis of gradient coupling and the observed PCC plateau.

Softmax Attention Aggregation. Softmax attention is a cornerstone component in the backbones of
many representative regression models (Zhou et al., 2021; Gorishniy et al., 2021; Kim et al., 2019).
Despite its empirical success, recent theory has revealed expressivity limits of softmax mappings
in related contexts (Yang et al., 2017; Kanai et al., 2018; Bhojanapalli et al., 2020). However, to
our knowledge, no prior work analyzes the model capacity of softmax attention in terms of upper
bounds on achievable PCC improvements, especially with high in-sample homogeneity data.

5 EXPERIMENTS

We evaluate our ECA on four settings, including the challenging high in-sample homogeneity tasks.
The evaluations consist of: (i) a synthetic regression dataset with controllable in-sample homogene-
ity; (ii) three representative tabular regression benchmarks from the UCI ML Repository (Asuncion
et al., 2007); (iii) a clinical pathology dataset for spatial transcriptomic prediction, where nearby
regions exhibit high homogeneity; and (iv) a multimodal sentiment analysis (MSA) dataset, where
consecutive video frames are highly homogeneous.

As ECA is a drop-in replacement for softmax attention, we integrate it into existing attention-based
regression models for each benchmark to measure the performance improvement. More details are
provided in Appendix G.

5.1 EXPERIMENTAL SETUP

Synthetic Dataset. We construct a synthetic dataset to validate our theory and proposed ECA
method. We synthetic N samples, each with K element embeddings in D dimensions as input
samples. In each sample, one key element carries signal along a fixed unit direction w∗, while the
remaining K−1 background elements cluster around a shared sample mean. The label y is the pro-
jection of the sample mean onto w∗ with a term proportional to the key strength and small additive
noise. We control within-sample homogeneity via η (larger η means the key deviates further from
the mean), yielding four homogeneity levels σ̃ ∈ {0.10, 0.24, 0.42, 0.73} where lower σ̃ indicates
higher homogeneity. We compare regression model with one layer of ECA to one layer of standard
softmax attention and report MSE and PCC.

UCI ML Repository Datasets. We evaluate on three representative tabular regression benchmarks:
Appliance Energy Prediction (28 features, 1 target) (Candanedo, 2017), Online News Popularity
(58 features, 1 target) (Fernandes & Sernadela, 2015), and Superconductivity (81 features, 1 target)
(Hamidieh, 2018). We integrate ECA into the attention layer of the FT-Transformer (Gorishniy
et al., 2021) and report mean absolute error (MAE), MSE, and PCC.

Spatial Transcriptomic Dataset. We test spatial transcriptomics prediction from pathology images
on the 10xProteomic dataset (10x Genomics, 2025; Yang et al., 2023), which contains 32, 032 slide-
image patches paired with gene-expression measurements of breast-cancer slides. We follow the
data processing and experimental settings of the EGN baseline (Yang et al., 2023), which jointly
optimize MSE+PCC loss. We adopt ECA methods onto the EGN baseline and report MSE, PCC@F,
PCC@S, and PCC@M as evaluation metrics. The training set exhibits high in-sample embedding
homogeneity with σ̃ = 0.068 versus cross-sample σ0 = 0.164.

Multimodal Sentiment Analysis (MSA) Dataset. We use MOSI (Zadeh et al., 2016), a standard
MSA benchmark consists of 2, 199 monologue video clips with audio and visual inputs. As il-
lustrated in Figure 1, consecutive frames within a clip are more similar than frames across clips.
Quantitatively, the video frames shows strong within-sample homogeneity with σ̃ = 0.098 versus
cross-sample σ0 = 0.170. We follow the commonly used MOSI processing protocol from THUIAR
releases (Yu et al., 2020; 2021). Video frame embeddings are extracted with OpenFace (Amos et al.,
2016). Consistent with prior work, we report F1, PCC, and MAE as evaluation metrics. We include
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10 representative baselines. ALMT (Zhang et al., 2023), the leading baseline optimizing with MSE
loss, is selected to incorporate the ECA method.

Table 1: Results on three UCI tabular regression tasks. “ +ECA ” denotes adding ECA onto the
FT-Transformer baseline. Rows marked “w/o SRA/DATS/DNPL” are ablation studies that remove
the corresponding ECA components. “w/o” = “without” and bold indicating best result.

Appliance Online News Superconductivity
Method MAE ↓ MSE×103 ↓ PCC ↑ MAE ↓ MSE×100 ↓ PCC ↑ MAE ↓ MSE×102 ↓ PCC ↑
FT-Transformer 39.333 6.108 0.556 0.641 0.724 0.408 8.793 1.772 0.920
+ ECA (full) 38.665 5.790 0.598 0.631 0.712 0.420 7.976 1.582 0.930
+ ECA (w/o SRA) 39.208 5.994 0.575 0.637 0.725 0.410 8.377 1.695 0.920
+ ECA (w/o DATS) 38.906 6.037 0.561 0.645 0.740 0.418 8.630 1.709 0.927
+ ECA (w/o DNPL) 39.742 5.910 0.583 0.640 0.719 0.418 8.466 1.671 0.922
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Figure 5: PCC and MSE curves on synthetic datasets with in-sample homogeneity σ̃ ∈
[0.10, 0.24, 0.42, 0.73].

5.2 RESULTS AND ANALYSIS

Synthetic Dataset. Figure 5 shows case studies on the training and validation curves under dif-
ferent in-sample dispersion (with σ̃ = 0.10, 0.24, 0.42, and 0.73). The horizontal line indicates
the PCC achieved by mean-pooling over input embeddings. This result confirms our theoretical
study in three ways: 1) as the homogeneity intensifies, both the PCC of our ECA and baseline
model decrease and the MSE get higher (task harder), and the achievable PCC improvement of
convex (e.g., softmax) attention over mean-pooling decreases (Theorem 2.2). 2) ECA consistently
outperforms standard attention in both PCC and MSE across all four σ̃s, achieving PCC gains of
4.80%, 5.76%, 4.68%, 3.05% and MSE reductions of 20.3%, 40.8%, 54.0%, 66.7% (in order of in-
creasing σ̃), showing its ability to explore beyond the convex hull and improving the PCC without
compromising the MSE. 3) The PCC curve of ECA keeps improving and converges later and at a
higher value than the standard attention baseline, indicating the effectiveness of our proposed DNPL
in mitigating the PCC attenuation effect identified in Remark 2.3.

Table 2: Results on MOSI. † from THUIAR’s GitHub (Yu et al.,
2020; 2021); ∗ from (Hazarika et al., 2020); ∗∗ reproduced from
public code with provided hyper-parameters.

Method F1 ↑ MAE ↓ PCC ↑

TFN† (Zadeh et al., 2017) 0.791 0.947 0.673
LMF∗ (Liu et al., 2018) 0.824 0.917 0.695
EF-LSTM† (Williams et al., 2018b) 0.785 0.949 0.669
LF-DNN† (Williams et al., 2018a) 0.786 0.955 0.658
Graph-MFN† (Zadeh et al., 2018) 0.784 0.956 0.649
MulT∗ (Tsai et al., 2019) 0.828 0.871 0.698
MISA† (Hazarika et al., 2020) 0.836 0.777 0.778
ICCN∗ (Sun et al., 2020) 0.830 0.860 0.710
DLF∗∗ (Wang et al., 2025) 0.850 0.731 0.781
ALMT∗∗ (Zhang et al., 2023) 0.851 0.721 0.783

ALMT+LPCC 0.834 0.731 0.791
ALMT+L̃PCC + ECA 0.859 0.695 0.806

UCI ML Repository Datasets.
Across three UCI tabular regres-
sion tasks, adapting our ECA
module into the FT-Transformer
yields consistent improvements
in both magnitude (MSE and
MAE) and shape (PCC) met-
rics. On Appliance, PCC in-
creases by 0.042 and MSE de-
creases by 0.318 × 103; on On-
line News, PCC increases 0.012
from 0.408 while MSE decreases
0.012 from 0.724; on Supercon-
ductivity, PCC 0.920→0.930 and
MSE 1.772 × 102 → 1.582 ×
102. MAE also decreases across
all datasets. These improvements
provide strong evidence that ad-

dressing our identified PCC gradient limitation and the convex attention capacity limit substantially
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Table 3: Three-fold regression PCC and MSE on 10xProteomic dataset.

Method PCC@F ↑ PCC@S ↑ PCC@M ↑ MSE↓
EGN 0.602 ± 0.160 0.647 ± 0.164 0.629 ± 0.135 0.056 ± 0.047
EGN+ECA 0.690 ± 0.202 0.724 ± 0.191 0.716 ± 0.168 0.051 ± 0.048
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Figure 6: PCC@M and MSE curves for EGN baseline and EGN+ECA on 10xProteomic dataset
under each fold. Curves for PCC@S and PCC@F please refer to Figure 8 and Figure 9.

mitigates the PCC plateau without compromising MSE. The ablations further support the contribu-
tion of each components: removing DATS lowers Appliance PCC to 0.561, while removing SRA
reduces Online News PCC to 0.418 and removing DNPL decreases Superconductivity PCC to 0.922.

Spatial Transcriptomic Dataset. We follow the EGN (Yang et al., 2023) setting and report three-
fold results. Figure 6 plots PCC and MSE curves for training and validation. Across all folds,
integrating ECA consistently improves both metrics. In fold 2, the EGN baseline’s PCC flattens
near epoch 4, but the MSE keeps decreasing, indicating a clear PCC plateau. In contrast, PCC of
EGN+ECA continues to increase, effectively breaking the PCC plateau and improving final valida-
tion PCC by ∼ 16.51%. The same pattern holds in folds 0 and 1. Throughout training, EGN+ECA
also achieves comparable or lower MSE than EGN alone, indicating that ECA successfully preserves
magnitude information while achieving better PCC. Table 3 summarizes the overall performance,
where EGN+ECA achieves +14.64% for PCC@F, +11.89% for PCC@S, +13.81% for PCC@M,
and a 9.83% reduction in MSE, showing that ECA effectively and robustly alleviates the PCC plateau
without compromising the MSE.

Multimodal Sentiment Analysis (MSA) Dataset. Since ALMT optimizes MSE loss only, we test
two settings: (i) ALMT with an additional PCC loss; and (ii) ALMT with ECA adapted into the
video attention encoder and trained with the dispersion-normalized PCC loss. Table 2 reports results
of 10 baselines. Adding a PCC term yields a small PCC gain but degrades F1 and MAE, reflecting
the MSE-PCC conflict under strong in-sample homogeneity. In contrast, adding ECA improves all
metrics, achieving a +2.3% PCC increase without sacrificing F1 or MAE.

6 CONCLUSION

This work presents the first theoretical investigation into the PCC plateau phenomenon observed
when training attention-based regression models with a joint MSE+PCC loss, particularly under
high data homogeneity. Our analysis identified two fundamental limitations in standard softmax at-
tention: conflict in optimization dynamics that attenuate the correlation gradient, and an achievable
PCC bound imposed by convex aggregation. To address these bottlenecks, we introduced ECA, a
novel plug-in framework incorporating mechanisms to stabilize optimization, adapt to homogene-
ity, and extrapolate beyond the convex hull. Comprehensive experiments validate our theoretical
insights and demonstrate that ECA successfully breaks the PCC plateau, achieving significant cor-
relation gains while maintaining competitive magnitude performance.
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7 REPRODUCIBILITY STATEMENT

We support reproducibility as follows.

Theoretical Study The appendix has complete proofs for all theorems, lemmas, and corollaries in
the paper. See Appendix A for results from Section 2.2, Appendix B for Section 2.3, and Appendix D
for Section 3.

Dataset Processing Processing details for all datasets (synthetic and real-world) are listed in Ap-
pendix G.

Code Reproducibility We include an anonymous zip file with implementations for the synthetic
and spatial transcriptomics datasets along with the hyperparameters we use for review. For the spa-
tial transcriptomic dataset, we follow the EGN baseline preprocessing protocol. Due to the limited
space, we did not include the dataset. The README.md explains how to get the data and run the
code. We will release the full code publicly upon acceptance.

REFERENCES

10x Genomics. 10x genomics datasets. https://www.10xgenomics.com/resources/
datasets, 2025. Dataset portal; accessed 2025-09-21.

Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan. Openface: A general-purpose
face recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU
School of Computer Science, 2016.

Reza Arefidamghani, Roger Behling, Alfredo N Iusem, and Luiz-Rafael Santos. A circumcentered-
reflection method for finding common fixed points of firmly nonexpansive operators. arXiv
preprint arXiv:2203.02410, 2022.

Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

Brian B Avants, Charles L Epstein, Murray Grossman, and James C Gee. Symmetric diffeomorphic
image registration with cross-correlation: evaluating automated labeling of elderly and neurode-
generative brain. Medical image analysis, 12(1):26–41, 2008.

Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag, and Adrian V Dalca. Voxelmorph:
a learning framework for deformable medical image registration. IEEE transactions on medical
imaging, 38(8):1788–1800, 2019.

Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Low-
rank bottleneck in multi-head attention models. In International conference on machine learning,
pp. 864–873. PMLR, 2020.

Jannis Born and Matteo Manica. Regression transformer enables concurrent sequence regression
and generation for molecular language modelling. Nature Machine Intelligence, 5(4):432–444,
2023.

Luis Candanedo. Appliances Energy Prediction. UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C5VC8G.

Vinagre Pedro Cortez Paulo Fernandes, Kelwin and Pedro Sernadela. Online News Popularity. UCI
Machine Learning Repository, 2015. DOI: https://doi.org/10.24432/C5NS3V.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in neural information processing systems, 34:18932–18943,
2021.

Kam Hamidieh. Superconductivty Data. UCI Machine Learning Repository, 2018. DOI:
https://doi.org/10.24432/C53P47.

11

https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Devamanyu Hazarika, Roger Zimmermann, and Soujanya Poria. Misa: Modality-invariant and-
specific representations for multimodal sentiment analysis. In Proceedings of the 28th ACM in-
ternational conference on multimedia, pp. 1122–1131, 2020.

Shuai Jiang, Arief A Suriawinata, and Saeed Hassanpour. Mhattnsurv: Multi-head attention for
survival prediction using whole-slide pathology images. Computers in biology and medicine,
158:106883, 2023.

Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, and Shuichi Adachi. Sigsoftmax: Reanalysis
of the softmax bottleneck. Advances in Neural Information Processing Systems, 31, 2018.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on Learning
Representations, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, and Qinghua Hu. Patch-wise structural loss for
time series forecasting. In Forty-second International Conference on Machine Learning, 2025.

Peter Langfelder and Steve Horvath. Wgcna: an r package for weighted correlation network analysis.
BMC bioinformatics, 9(1):559, 2008.

I Lawrence and Kuei Lin. A concordance correlation coefficient to evaluate reproducibility. Bio-
metrics, pp. 255–268, 1989.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Miao Liu, Jing Wang, Liang Xu, Jianqian Zhang, Shicong Li, and Fei Xiang. Bit-mi deep learning-
based model to non-intrusive speech quality assessment challenge in online conferencing appli-
cations. In INTERSPEECH, pp. 3288–3292, 2022.

Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang, Amir Zadeh, and
Louis-Philippe Morency. Efficient low-rank multimodal fusion with modality-specific factors.
arXiv preprint arXiv:1806.00064, 2018.

Yahui Long, Kok Siong Ang, Mengwei Li, Kian Long Kelvin Chong, Raman Sethi, Chengwei
Zhong, Hang Xu, Zhiwei Ong, Karishma Sachaphibulkij, Ao Chen, et al. Spatially informed
clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Com-
munications, 14(1):1155, 2023.
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Appendix

A PRELIMINARIES

A.1 PROOF FOR PROPOSITION 2.1

Proposition A.1 (MSE Mean–std–correlation Decomposition). Let y, ŷ ∈ R be the ground truth
and predictions across S samples. Let µy, µŷ be the empirical means, and σy, σŷ be the empirical
standard deviations. The Mean Squared Error can be decomposed as:

MSE(y, ŷ) = (µŷ − µy)
2 + (σŷ − σy)

2 + 2σy σŷ

(
1− ρ

)
. (13)

Proof. Write the error for sample i as

yi − ŷi =
[
(yi − µy)− (ŷi − µŷ)

]
+ (µy − µŷ). (14)

Squaring and averaging over i = 1, . . . , S give us

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2 (15)

=
1

N

N∑
i=1

(
(yi − µy)− (ŷi − µŷ)

)2
+ (µy − µŷ)

2 (16)

+
2(µy − µŷ)

N

N∑
i=1

(
(yi − µy)− (ŷi − µŷ)

)
. (17)

The last sum vanishes since
∑

i(yi − µy) =
∑

i(ŷi − µŷ) = 0. Expanding the remaining square
and using the definitions of variances, Cov(y, ŷ) = σyσŷρ, we obtain

MSE(y, ŷ) = (µŷ − µy)
2 + σ2

y + σ2
ŷ −

2

N

N∑
i=1

(yi − µy)(ŷi − µŷ) (18)

= (µŷ − µy)
2 + σ2

y + σ2
ŷ − 2σyσŷρ. (19)

Finally, rearranging σ2
y + σ2

ŷ − 2σy σŷ ρ = (σŷ − σy)
2 +2σy σŷ (1− ρ) yields the claimed decom-

position.

A.2 PROOF FOR LEMMA 2.1

Lemma A.1 (Scaling Invariance of PCC). Let m ∈ R \ {0} and n ∈ R. For any sample
{(yi, ŷi)}Si=1,

PCC
(
y,mŷ + n

)
= sign(m) PCC(y, ŷ). (20)

Proof. Using ρ(u, v) = Cov(u,v)
σuσv

and σmŷ+n = |m|σŷ ,

PCC
(
y,mŷ + n

)
=

Cov(y,mŷ + n)

σy σmŷ+n
=

m Cov(y, ŷ)

σy |m|σŷ
(21)

=
m

|m|
PCC(y, ŷ) = sign(m) PCC(y, ŷ) (22)
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B GRADIENT ANALYSIS OF CORRELATION

B.1 GRADIENT OF PEARSON CORRELATION W.R.T. ATTENTION LOGITS

Lemma B.1 (Softmax Aggregator Jacobian). The derivative of the aggregated embedding vs with
respect to a pre-softmax logit zsi is ∂vs/∂zsi = αsi(hsi − vs) and consequently, ∂ŷs/∂zsi =
αsiw

⊤(hsi − vs).

Proof. Within a fixed sample s, the aggregated embedding is vs =
∑ns

j=1 αsjhsj . We first recall
the derivative of the softmax function. The partial derivative of the j-th attention weight αsj with
respect to the i-th input logit zsi is given by:

∂αsj

∂zsi
= αsj(δij − αsi), (23)

where δij is the Kronecker delta (δij = 1 if i = j, and 0 otherwise).

We can now compute the derivative of vs with respect to zsi using the chain rule:

∂vs

∂zsi
=

ns∑
j=1

∂αsj

∂zsi
hsj (24)

=

ns∑
j=1

αsj(δij − αsi)hsj (25)

=

ns∑
j=1

αsjδijhsj −
ns∑
j=1

αsjαsihsj . (26)

The first term simplifies because δij is non-zero only when j = i:
ns∑
j=1

αsjδijhsj = αsihsi. (27)

In the second term, αsi is independent of the summation index j and can be factored out:
ns∑
j=1

αsjαsihsj = αsi

ns∑
j=1

αsjhsj = αsivs. (28)

Combining these results, we obtain:

∂vs

∂zsi
= αsihsi − αsivs = αsi(hsi − vs). (29)

Consequently, since the prediction is ŷs = w⊤vs + c, its derivative is:

∂ŷs
∂zsi

= w⊤ ∂vs

∂zsi
= αsi w

⊤(hsi − vs). (30)

Theorem B.1 (Gradient of PCC w.r.t. Attention Logits). For any s, the derivative of Pearson cor-
relation ρ with respect to a pre-softmax logit zsi is

∂ρ

∂zsi
=

1

Sσŷ

(
as
σy

− ρ
bs
σŷ

)
αsiw

⊤(hsi − vs). (31)

Proof. We express the Pearson correlation ρ as the ratio ρ = N/D, where N is the covariance and
D is the product of standard deviations.

N := Cov(y, ŷ) =
1

S

S∑
t=1

atbt, D := σyσŷ. (32)
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Recall that at := yt − µy and bt := ŷt − µŷ are the centered targets and predictions, respectively,
satisfying

∑
t at = 0 and

∑
t bt = 0.

By the quotient rule, the derivative of ρ is:

∂ρ

∂zsi
=

1

D

∂N

∂zsi
− N

D2

∂D

∂zsi
=

1

D

(
∂N

∂zsi
− ρ

∂D

∂zsi

)
. (33)

We compute the derivatives of N and D separately. Note that the logit zsi only directly affects the
prediction of sample s, i.e., ∂ŷt/∂zsi = 0 if t ̸= s.

Step 1: Derivative of the Covariance (N ).

∂N

∂zsi
=

1

S

S∑
t=1

at
∂bt
∂zsi

. (34)

We expand the derivative of the centered prediction bt = ŷt − µŷ:

∂bt
∂zsi

=
∂ŷt
∂zsi

− ∂µŷ

∂zsi
=

∂ŷt
∂zsi

− 1

S

S∑
u=1

∂ŷu
∂zsi

. (35)

Substituting this back into the expression for ∂N/∂zsi:

∂N

∂zsi
=

1

S

∑
t

at

(
∂ŷt
∂zsi

− 1

S

S∑
u=1

∂ŷu
∂zsi

)
(36)

=
1

S

(∑
t

at
∂ŷt
∂zsi

)
− 1

S2

(∑
t

at

)(
S∑

u=1

∂ŷu
∂zsi

)
. (37)

Since the targets are centered (
∑

t at = 0), the second term vanishes:

∂N

∂zsi
=

1

S

∑
t

at
∂ŷt
∂zsi

. (38)

Since ∂ŷt/∂zsi = 0 for t ̸= s, the summation collapses to a single term:

∂N

∂zsi
=

1

S
as

∂ŷs
∂zsi

. (39)

Step 2: Derivative of the Standard Deviation Product (D). Since σy is constant with respect
to zsi, we have ∂D/∂zsi = σy(∂σŷ/∂zsi). To find the derivative of σŷ , we first differentiate the
variance σ2

ŷ = 1
S

∑
t b

2
t .

∂σ2
ŷ

∂zsi
=

∂

∂zsi

(
1

S

∑
t

b2t

)
=

1

S

∑
t

2bt
∂bt
∂zsi

. (40)

Similar to Step 1, we substitute the expression for ∂bt/∂zsi and use the fact that the predictions are
centered (

∑
t bt = 0):

∂σ2
ŷ

∂zsi
=

2

S

∑
t

bt

(
∂ŷt
∂zsi

− 1

S

S∑
u=1

∂ŷu
∂zsi

)
(41)

=
2

S

(∑
t

bt
∂ŷt
∂zsi

)
− 2

S2

(∑
t

bt

)(
S∑

u=1

∂ŷu
∂zsi

)
(42)

=
2

S

∑
t

bt
∂ŷt
∂zsi

. (43)
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Again, since ∂ŷt/∂zsi = 0 for t ̸= s:

∂σ2
ŷ

∂zsi
=

2

S
bs

∂ŷs
∂zsi

. (44)

We now use the chain rule:
∂σ2

ŷ

∂zsi
= 2σŷ

∂σŷ

∂zsi
. Equating the two expressions and solving for ∂σŷ

∂zsi
(assuming σŷ > 0):

2σŷ
∂σŷ

∂zsi
=

2

S
bs

∂ŷs
∂zsi

=⇒ ∂σŷ

∂zsi
=

bs
Sσŷ

∂ŷs
∂zsi

. (45)

Therefore, the derivative of the denominator D is:
∂D

∂zsi
= σy

∂σŷ

∂zsi
=

σybs
Sσŷ

∂ŷs
∂zsi

. (46)

Step 3: Combining the results. We substitute the derivatives of N (Equation (39)) and D (Equa-
tion (46)) back into the quotient rule formula (Equation (33)).

∂ρ

∂zsi
=

1

D

(
∂N

∂zsi
− ρ

∂D

∂zsi

)
(47)

=
1

σyσŷ

(
as
S

∂ŷs
∂zsi

− ρ
σybs
Sσŷ

∂ŷs
∂zsi

)
(48)

=
1

Sσyσŷ

(
as − ρ

σybs
σŷ

)
∂ŷs
∂zsi

(49)

=
1

Sσŷ

(
as
σy

− ρ
bs
σŷ

)
∂ŷs
∂zsi

. (50)

Finally, we substitute the expression for ∂ŷs/∂zsi derived in Lemma B.1 (Equation (30)):

∂ρ

∂zsi
=

1

Sσŷ

(
as
σy

− ρ
bs
σŷ

)
αsiw

⊤(hsi − vs). (51)

This concludes the proof.

C PROOFS FOR OPTIMIZATION DYNAMICS ANALYSIS

C.1 PROOF OF LEMMA 2.3 (GRADIENT OF MSE W.R.T. ATTENTION LOGITS)

Proof. The Mean Squared Error (MSE) loss is defined as:

LMSE =
1

S

S∑
k=1

(yk − ŷk)
2. (52)

We compute the derivative with respect to the attention logit zsi using the chain rule:

∂LMSE

∂zsi
=

S∑
k=1

∂LMSE

∂ŷk

∂ŷk
∂zsi

. (53)

The derivative of the loss w.r.t. the prediction ŷk is:
∂LMSE

∂ŷk
=

1

S
· 2(yk − ŷk) · (−1) =

2

S
(ŷk − yk). (54)

The derivative of the prediction ŷk w.r.t. the logit zsi is non-zero only if k = s. From Lemma 2.2,
we have:

∂ŷs
∂zsi

= αsiw
⊤(hsi − vs). (55)

Combining these results:
∂LMSE

∂zsi
=

2

S
(ŷs − ys)αsiw

⊤(hsi − vs). (56)
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C.2 PROOF OF COROLLARY 2.1 (PCC/MSE GRADIENT RATIO DECAY)

Proof. We analyze the ratio of the global scaling factors gMSE
s and gPCC

s identified in Section 2.3:

gMSE
s = 2(ŷs − ys), (57)

gPCC
s =

1

σŷ

(
as
σy

− ρ
bs
σŷ

)
. (58)

We analyze their typical scale across samples using their Root Mean Square (RMS) values. We
denote the empirical average over the batch as Es[·].

Step 1: RMS scale of the PCC global factor. We define normalized variables As := as/σy

and Bs := bs/σŷ . By construction, As and Bs have zero mean and unit variance (Var(As) =
Var(Bs) = 1), and their covariance is the PCC (Cov(As, Bs) = ρ). The term inside the parenthesis
of gPCC

s is As − ρBs. Its variance is:

Var(As − ρBs) = Var(As) + ρ2 Var(Bs)− 2ρ Cov(As, Bs) (59)

= 1 + ρ2 − 2ρ2 = 1− ρ2. (60)

Since the mean of As − ρBs is zero, the RMS magnitude of gPCC
s across samples is:

RMSs(g
PCC
s ) =

√
Es[(gPCC

s )2] =
1

σŷ

√
Var(As − ρBs) =

√
1− ρ2

σŷ
. (61)

Step 2: RMS scale of the MSE global factor. For the MSE global factor, we have:

RMSs(g
MSE
s ) =

√
Es[[2(ŷs − ys)]2] = 2

√
Es[(ŷs − ys)2] (62)

= 2
√
MSE(y, ŷ). (63)

Step 3: Bounding the ratio of RMS global factors. The ratio rglobal is defined as:

rglobal =
RMSs(g

PCC
s )

RMSs(gMSE
s )

=

√
1− ρ2

2σŷ

√
MSE

. (64)

We use the MSE decomposition (Theorem 2.1):

MSE(y, ŷ) = (µŷ − µy)
2 + (σŷ − σy)

2 + 2σyσŷ(1− ρ). (65)

Since all terms are non-negative, we obtain a lower bound for MSE:

MSE(y, ŷ) ≥ 2σy σŷ(1− ρ). (66)

We assume ρ ∈ [0, 1], which is typical during training. We use the inequality:

1− ρ2 = (1− ρ)(1 + ρ) ≤ 2(1− ρ) =⇒
√

1− ρ2 ≤
√
2
√
1− ρ. (67)

Plugging the bounds from equation 66 and equation 67 into the ratio definition equation 64:

rglobal ≤
√
2
√
1− ρ

2σŷ

√
2σyσŷ(1− ρ)

(68)

=

√
2
√
1− ρ

2σŷ ·
√
2
√
σyσŷ

√
1− ρ

(69)

=
1

2σŷ
√
σyσŷ

=
1

2
√
σy

· 1

σ
3/2
ŷ

. (70)

This completes the proof.
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C.3 DERIVATION OF THE GRADIENT MAGNITUDE BOUND

Lemma C.1 (Within-sample Dispersion Bound). Recall the definitions µs =
1
ns

∑ns

j=1 hsj (within-
sample mean) and σ2

s = 1
ns

∑ns

j=1 ∥hsj − µs∥2 (within-sample variance). Also recall vs =∑ns

j=1 αsjhsj where αsj ≥ 0 and
∑

j αsj = 1. Then for every i ∈ {1, . . . , ns},

∥hsi − vs∥ ≤ 2
√
ns σs.

Proof. Fix sample s and index i. We use the triangle inequality by inserting the within-sample mean
µs:

∥hsi − vs∥ = ∥hsi − µs + µs − vs∥ ≤ ∥hsi − µs∥+ ∥vs − µs∥. (71)

We bound each term on the right-hand side separately.

Term 1: ∥hsi − µs∥. We first bound the deviation by the maximum deviation within the sample:

∥hsi − µs∥ ≤ max
j

∥hsj − µs∥. (72)

The maximum of non-negative numbers is bounded by the square root of the sum of their squares
(i.e., x2

k ≤
∑

j x
2
j implies xk ≤

√∑
j x

2
j ):

max
j

∥hsj − µs∥ ≤

√√√√ ns∑
j=1

∥hsj − µs∥2. (73)

By the definition of σ2
s , the sum of squares is nsσ

2
s . Thus,

∥hsi − µs∥ ≤
√

nsσ2
s =

√
ns σs. (74)

Term 2: ∥vs−µs∥. We express the deviation of the aggregated embedding vs from the mean µs.
Since

∑
j αsj = 1, we have µs =

∑
j αsjµs.

vs − µs =

ns∑
j=1

αsjhsj −
ns∑
j=1

αsjµs =

ns∑
j=1

αsj(hsj − µs). (75)

Using the convexity of the norm (Jensen’s inequality):

∥vs − µs∥ =
∥∥∥ ns∑

j=1

αsj(hsj − µs)
∥∥∥ ≤

ns∑
j=1

αsj ∥hsj − µs∥. (76)

This weighted average is bounded by the maximum element:
ns∑
j=1

αsj ∥hsj − µs∥ ≤ max
j

∥hsj − µs∥. (77)

As established for Term 1 (Equation (74)), the maximum deviation is bounded by
√
ns σs. There-

fore,

∥vs − µs∥ ≤
√
ns σs. (78)

Conclusion. Substituting the bounds from Equation (74) and Equation (78) into Equation (71):

∥hsi − vs∥ ≤
√
ns σs +

√
ns σs = 2

√
ns σs.

Lemma C.2 (Magnitude Bound of a Centered, Unit-variance Vector). Let x1, . . . , xS ∈ R satisfy∑S
s=1 xs = 0 and 1

S

∑S
s=1 x

2
s = 1 (equivalently

∑S
s=1 x

2
s = S). Then for every j ∈ {1, . . . , S},

we have |xj | ≤
√
S − 1.
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Proof. Fix an index j. Since the vector is centered (
∑S

s=1 xs = 0), we can express xj in terms of
the other elements: xj = −

∑
s̸=j xs. We analyze the squared magnitude x2

j using the Cauchy–
Schwarz inequality and view the summation as a dot product between a vector of ones 1 ∈ RS−1

and the vector (xs)s̸=j ∈ RS−1.

x2
j =

(∑
s̸=j

1 · xs

)2
≤
(∑
s ̸=j

12
)(∑

s̸=j

x2
s

)
= (S − 1)

∑
s ̸=j

x2
s. (79)

We use the unit-variance condition,
∑S

s=1 x
2
s = S. Therefore,

∑
s̸=j x

2
s = S−x2

j . Substituting this
into the inequality:

x2
j ≤ (S − 1)

(
S − x2

j

)
= S(S − 1)− (S − 1)x2

j . (80)

Rearranging the terms to isolate x2
j :

x2
j + (S − 1)x2

j ≤ S(S − 1) (81)

S x2
j ≤ S(S − 1). (82)

Dividing by S (which is positive) gives x2
j ≤ S−1. Taking the square root yields the desired bound:

|xj | ≤
√
S − 1.

Corollary C.1 (Gradient Magnitude Bound). The magnitude of the PCC gradient in Theorem 2.1
can be bounded by ∣∣∣∣ ∂ρ∂zsi

∣∣∣∣ ≤ 1

σŷ

4
√
ns(S − 1)

S
∥w∥σs. (83)

Proof. We start from the expression for the PCC gradient derived in Theorem B.1:

∂ρ

∂zsi
=

1

Sσŷ

(
as
σy

− ρ
bs
σŷ

)
αsiw

⊤(hsi − vs). (84)

We analyze the magnitude of this expression by applying the triangle inequality and the Cauchy-
Schwarz inequality (|w⊤x| ≤ ∥w∥∥x∥):∣∣∣∣ ∂ρ∂zsi

∣∣∣∣ ≤ |αsi|
Sσŷ

∣∣∣∣ asσy
− ρ

bs
σŷ

∣∣∣∣ ∣∣w⊤(hsi − vs)
∣∣ (85)

≤ |αsi|
Sσŷ

(∣∣∣∣ asσy

∣∣∣∣+ |ρ|
∣∣∣∣ bsσŷ

∣∣∣∣) ∥w∥ ∥hsi − vs∥. (86)

We now bound the individual components.

1. Attention weight: Since αs is a probability from Softmax, 0 ≤ αsi ≤ 1

2. Correlation coefficient: By definition, −1 ≤ ρ ≤ 1, so |ρ| ≤ 1

3. Standardized scores: The terms as

σy
and bs

σŷ
are the standardized scores (z-scores) of the

target and prediction for sample s. They form centered, unit-variance vectors across the S
samples. By applying Lemma C.2, we have:∣∣∣∣ asσy

∣∣∣∣ ≤ √
S − 1 and

∣∣∣∣ bsσŷ

∣∣∣∣ ≤ √
S − 1.

4. Within-sample dispersion: The term ∥hsi−vs∥ represents the deviation of the embedding
hsi from the aggregated embedding vs. By applying Lemma C.1, we have:

∥hsi − vs∥ ≤ 2
√
ns σs.
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Substituting these bounds into the inequality:∣∣∣∣ ∂ρ∂zsi

∣∣∣∣ ≤ 1

Sσŷ

(√
S − 1 + 1

√
S − 1

)
∥w∥ (2

√
nsσs) (87)

=
1

Sσŷ

(
2
√
S − 1

)
∥w∥ (2

√
nsσs) (88)

=
4
√
ns(S − 1)

Sσŷ
∥w∥σs. (89)

Rearranging the terms to highlight the key factors identified in the main text:∣∣∣∣ ∂ρ∂zsi

∣∣∣∣ ≤ 1

σŷ︸︷︷︸
prediction
deviation

·
4
√

ns(S − 1)

S︸ ︷︷ ︸
batch scale

· ∥w∥︸︷︷︸
regression
weights

· σs︸︷︷︸
in-sample
dispersion

. (90)

This concludes the proof.

D ACHIEVABLE PCC BOUND OF CONVEX ATTENTION MODELS

This section provides the detailed analysis and proof of an intrinsic upper bound on the PCC gain
that any convex attention mechanism can achieve compared to a simple mean-pooling baseline. This
analysis formalizes the capacity limitation imposed by the convex hull constraint.

Setup and Decomposition. We consider a dataset of S samples. For sample s, we have element
embeddings hs = {hsi}ns

i=1 where hsi ∈ Rd. Let µs :=
1
ns

∑ns

i=1 hsi be the mean-pooling embed-
ding. A convex attention mechanism computes weights {αsi}ns

i=1 such that αsi ≥ 0 and
∑

i αsi = 1.
The aggregated embedding is vs =

∑
i αsihsi. The prediction is given by a linear regression head

(w, b): ŷs = w⊤vs + c.

We decompose the prediction relative to the mean-pooling baseline:

ŷs = (w⊤µs + c)︸ ︷︷ ︸
ȳs

+w⊤(vs − µs)︸ ︷︷ ︸
∆ŷs

. (91)

Here, ȳs is the baseline prediction, and ∆ŷs is the attention-induced perturbation.

Quantifying Dispersion and Variation. We introduce measures for within-sample dispersion (re-
lated to in-sample homogeneity) and across-sample variation. Throughout this section, ∥·∥2 denotes
the ℓ2 norm. We assume the empirical definition for standard deviation (normalized by 1/S).
Definition D.1 (Intrinsic Dispersion and Baseline Variation). For each sample s, define the maxi-
mum within-sample deviation (the radius of the convex hull centered at the mean):

Rs := max
1≤i≤ns

∥∥hsi − µs

∥∥
2
. (92)

Define the intrinsic within-sample dispersion R̃ as the root mean square (RMS) of these radii across
the dataset:

R̃ :=

√√√√ 1

S

S∑
s=1

R2
s. (93)

Let σ0 := stds (ȳs) denote the standard deviation of the baseline predictions across samples.

Remark D.1. R̃ measures the intrinsic homogeneity of the embeddings within samples, independent
of the regression head w. σ0 captures the variation of the mean embeddings projected onto the
regression space. By the scaling property of the standard deviation, σ0 = ∥w∥2 stds

(
ŵ⊤µs

)
,

where ŵ := w/∥w∥2.
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Centered Notation. We define the vectors of predictions across the S samples: ŷ, ȳ,∆ŷ ∈ RS .
From Equation (91), we have ŷ = ȳ +∆ŷ.

We denote the centered versions of these vectors (by subtracting their respective means µŷ, µȳ, µ∆ŷ)
as b, b̄,∆b. By linearity, the decomposition holds for centered vectors: b = b̄ + ∆b. We denote
the centered ground-truth targets as a, where as = ys − µy .

The Pearson correlation coefficient (PCC) is the cosine similarity between centered vectors. Let
ρ = PCC(a,b) and ρ0 = PCC(a, b̄).

Bounding the Attention Perturbation. We first establish bounds on the magnitude of the pertur-
bation ∆ŷ and its centered counterpart ∆b.
Lemma D.1 (Bound on Prediction Perturbation). For any convex attention weights {αsi}, the per-
turbation for sample s is bounded by:

|∆ŷs| ≤ ∥w∥2 Rs.

Consequently, the L2 norm of the centered perturbation vector is bounded by:

∥∆b∥2 ≤
√
S ∥w∥2 R̃.

Proof. We analyze the perturbation term. Since
∑

i αsi = 1, we can write µs =
∑

i αsiµs.

∆ŷs = w⊤(vs − µs) = w⊤

(
ns∑
i=1

αsihsi −
ns∑
i=1

αsiµs

)
= w⊤

ns∑
i=1

αsi(hsi − µs).

Taking the absolute value:

|∆ŷs| ≤ ∥w∥2
∥∥∥∑

i

αsi(hsi − µs)
∥∥∥ (Cauchy–Schwarz)

≤ ∥w∥2
∑
i

αsi∥hsi − µs∥ (Convexity of norm / Triangle inequality)

≤ ∥w∥2
∑
i

αsiRs (Definition of Rs)

= ∥w∥2 Rs.

To bound the L2 norm of the uncentered perturbation vector ∆ŷ, we sum the squared bounds across
samples:

∥∆ŷ∥22 =

S∑
s=1

|∆ŷs|2 ≤
S∑

s=1

(∥w∥2Rs)
2 = ∥w∥22

S∑
s=1

R2
s.

Using the definition of the RMS dispersion R̃2 = 1
S

∑
s R

2
s , we get:

∥∆ŷ∥22 ≤ S ∥w∥22 R̃2 =⇒ ∥∆ŷ∥2 ≤
√
S ∥w∥2 R̃.

Finally, ∆b is the centered vector of ∆ŷ. Centering a vector (projecting onto the subspace or-
thogonal to the constant vector (Arefidamghani et al., 2022; Wang et al., 2010)) is a non-expansive
operation on ℓ2 space, hence ∥∆b∥2 ≤ ∥∆ŷ∥2 ≤

√
S ∥w∥2 R̃.

General Correlation Perturbation Lemma. We utilize a general result bounding the change in
the cosine similarity when one vector is perturbed.
Lemma D.2 (Correlation perturbation). For any a,b, δ ∈ RS with ∥δ∥2 < ∥b∥2,∣∣∣∣∣ a · (b+ δ)

∥a∥2 ∥b+ δ∥2
− a · b

∥a∥2 ∥b∥2

∣∣∣∣∣ ≤ 2 ∥δ∥2
∥b∥2 − ∥δ∥2

.

Proof. Let â = a/∥a∥2. Using triangle inequality, we have:∣∣∣∣ â · (b+ δ)

|b+ δ|2
− â · b

|b|2

∣∣∣∣ = ∣∣∣∣ â · b
|b+ δ|2

− â · b
|b|2

+
â · δ

|b+ δ|2

∣∣∣∣ (94)
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≤
∣∣∣∣(â · b)

(
1

|b+ δ|2
− 1

|b|2

)∣∣∣∣︸ ︷︷ ︸
T1

+

∣∣∣∣ â · δ
|b+ δ|2

∣∣∣∣︸ ︷︷ ︸
T2

. (95)

We analyze each term. For T2, by Cauchy–Schwarz (|â · δ| ≤ ∥δ∥2) and the reverse triangle
inequality (∥b+ δ∥2 ≥ ∥b∥2 − ∥δ∥2), we have T2 ≤ ∥δ∥2

∥b∥2−∥δ∥2
.

For T1, we rewrite the expression: T1 = |â · b|
∣∣∣∥b∥2−∥b+δ∥2

∥b∥2 ∥b+δ∥2

∣∣∣.
Using Cauchy–Schwarz (|â · b| ≤ ∥b∥2), and the reverse triangle inequality (

∣∣∥b∥2 − ∥b+ δ∥2
∣∣ ≤

∥δ∥2) again, we get: T1 ≤ ∥b∥2 ∥δ∥2

∥b∥2(∥b∥2−∥δ∥2)
= ∥δ∥2

∥b∥2−∥δ∥2
. Summing T1 and T2 completes the

proof.

D.1 MAIN RESULT: ACHIEVABLE PCC GAIN

We now combine these lemmas to prove the main theorem regarding the capacity ceiling of convex
attention.
Theorem D.1 (Achievable PCC Gain Bound for Convex Attention). Let ρ0 be the PCC achieved
by the mean-pooling baseline ȳ, and ρ the PCC achieved by any convex attention mechanism ŷ.
Assume ∥w∥2 > 0. If the intrinsic dispersion is small relative to the baseline variation such that
R̃ < σ0/∥w∥2, then:

|ρ− ρ0| ≤ 2 ∥w∥2 R̃
σ0 − ∥w∥2 R̃

=
2 R̃

σ0/∥w∥2 − R̃
.

Proof. We apply Lemma D.2 using the centered vectors: m = a (centered targets), n = b̄ (centered
baseline predictions), and δ = ∆b (centered attention perturbation).

First, we relate the L2 norms of the centered vectors to the defined dispersion measures. By the
definition of the empirical standard deviation σ0, we have:

∥b̄∥2 =

√∑
s

(ȳs − µȳ)2 =
√
S σ0.

By Lemma D.1, the perturbation is bounded by:

∥∆b∥2 ≤
√
S ∥w∥2 R̃.

Next, we verify the condition required for Lemma D.2, ∥δ∥2 < ∥n∥2. The assumption R̃ <

σ0/∥w∥2 implies ∥w∥2 R̃ < σ0. Multiplying by
√
S, we get:

√
S ∥w∥2 R̃ <

√
S σ0.

Therefore, ∥∆b∥2 < ∥b̄∥2, satisfying the prerequisite.

Now, applying Lemma D.2:

|ρ− ρ0| ≤ 2 ∥∆b∥2
∥b̄∥2 − ∥∆b∥2

.

Since the function f(x) = 2x/(C − x) is monotonically increasing for x < C (where C = ∥b̄∥2),
we substitute the upper bound for ∥∆b∥2:

|ρ− ρ0| ≤ 2 (
√
S ∥w∥2 R̃)√

S σ0 − (
√
S ∥w∥2 R̃)

=
2 ∥w∥2 R̃

σ0 − ∥w∥2 R̃
.
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Dividing the numerator and denominator by ∥w∥2 (which is positive by assumption) yields the
scale-invariant form:

|ρ− ρ0| ≤ 2 R̃

σ0/∥w∥2 − R̃
.

D.2 CONNECTION BETWEEN IN-SAMPLE DISPERSION AND RADIUS

Lemma D.3 (Dispersion–Radius Connection). For each sample s, Rs/
√
ns ≤ σs ≤ Rs. Conse-

quently, we denote σ̃ :=
(

1
S

∑S
s=1 σ

2
s

)1/2
with nmax = maxs ns, we have R̃/

√
nmax ≤ σ̃ ≤ R̃.

E GENERALITY OF THEORETICAL ANALYSIS REGARDING ARCHITECTURE
DEPTH

A potential concern regarding our theoretical analysis is whether the findings derived for attention
aggregation apply to deep, multi-layer architectures. In this section, we clarify that our analysis fo-
cuses on the aggregation mechanism at the readout stage, which dictates the final prediction behavior
regardless of the depth of the preceding backbone.

Backbone-Agnostic Formulation. Our theoretical model assumes input embeddings hs =
{hsi}ns

i=1. In the context of deep learning, these are not raw inputs but rather the latent repre-
sentations produced by a backbone function fθ(·) (comprising multiple Transformer blocks, FFNs,
residual connections, and LayerNorms). The final prediction is modeled as ŷs = w⊤vs + c, where
vs is a convex combination of these final-layer representations. This formulation exactly matches
the standard architectural paradigm used in modern Transformers:

• [CLS] Token Aggregation: In models like BERT or ViT, the prediction is often derived
from a specific [CLS] token. However, in a standard Transformer layer, the output em-
bedding of the [CLS] token is computed via the attention mechanism, which is a convex
combination (softmax) of the element embeddings from the previous layer. Thus, the read-
out remains a convex aggregation of the backbone’s features, subject to the analysis we
present.

• Global Average Pooling: Many regression heads utilize global average pooling over token
embeddings, which is a special case of convex attention where uniform weights are applied
(αsi = 1/ns).

The Readout Bottleneck. Our analysis (Theorem 2.2) establishes that the achievable PCC gain is
bounded by the convex hull of the input embeddings. Even with a highly expressive deep backbone
fθ, if the final aggregation step is convex, the prediction ŷs is geometrically constrained to the
interior of the simplex formed by the final-layer features {hsi}. Crucially, deep backbones do not
inherently solve the homogeneity issue. In fact, models pre-trained with contrastive objectives often
produce highly homogeneous embeddings for in-sample elements (semantically similar tokens or
patches), which shrinks the convex hull radius Rs and exacerbates the capacity limitation.

Empirical Validation on Deep Architectures. Our experimental evaluation in Section 5.1 and
Table 2 utilizes deep, multi-layer architectures, not shallow regressors.

• FT-Transformer: A deep tabular Transformer with multiple attention layers.

• ALMT: A complex multimodal Transformer for sentiment analysis.

• EGN: A multi-layer vision Transformer model for spatial transcriptomics.

In all these deep settings, we observed the PCC plateau phenomenon. The consistent improvement
provided by ECA confirms that the convex readout mechanism acts as a bottleneck even in deep
models, and that relaxing this constraint via extrapolative mechanisms is necessary for optimal cor-
relation learning.
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F EXTENDED EMPIRICAL EVIDENCE OF THE PCC PLATEAU

To rigorously address the universality of the PCC plateau phenomenon and demonstrate that it is not
an artifact of specific datasets or architectures, we conducted extensive additional experiments on 8
diverse regression benchmarks from the UCI Machine Learning Repository (Asuncion et al., 2007).
We utilized a multi-layer FT-Transformer (Gorishniy et al., 2021) as the backbone to represent mod-
ern, high-capacity attention-based regression models.

Figure 7 illustrates the training (left) and validation (right) trajectories for both MSE and PCC. The
curves marked with circles represent PCC metric, while the curves without circle represent MSE.

Figure 7: Training and validation curves for multi-layer FT-Transformer on 8 UCI regression
datasets. Left: Training set metrics. Right: Validation set metrics. The curves with circles in-
dicate PCC (maximizing shape matching), while curves without circles indicate MSE (minimizing
magnitude error). In all instances, PCC hits a ceiling (plateau) significantly earlier than MSE, which
continues to descend, highlighting the optimization gap.
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(b) Auto MPG Dataset
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(c) Bike Sharing Dataset
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(e) Real Estate Dataset
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(f) Servo Dataset
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(h) Solar Flare Dataset

Observations and Analysis:

• Decoupling of MSE and PCC: Across all 8 datasets, we observe a distinct decoupling of
the two metrics. In the early stages of training, both MSE and PCC improve. However, a
distinct inflection point: the “PCC Plateau” consistently appears where the correlation gain
flattens.

• Persistent MSE Reduction: Crucially, after the PCC plateaus, the MSE continues to de-
crease significantly. This confirms the optimization conflict identified in our theoretical
analysis (Remark 2.3): the gradient dynamics of MSE minimization (specifically standard
deviation matching) actively suppress the correlation gradient magnitude. The model con-
tinues to learn magnitude information (lowering MSE) but loses the ability to optimize the
shape/ordering of predictions (PCC).

• Universality: Despite varying noise levels and feature dimensions across these diverse
real-world datasets, the optimization pattern in correlation learning remains identical. This
provides robust empirical evidence that the PCC plateau is a fundamental failure mode in
joint MSE-PCC training with attention-based models, which calls for a specific architec-
tural improvement as we proposed in Section 3.

G DETAILED EXPERIMENTAL SETTINGS

G.1 SYNTHETIC EXPERIMENT DETAILS

G.1.1 DETAILED DATA GENERATION PROCESS

We provide a detailed description of the synthetic dataset generation process (DGP). The DGP is
parameterized by the embedding dimension D, the number of elements per sample K, the signal
contrast η, the noise level ν, the ground truth extrapolation factor γ∗ ≥ 1, the cross-sample variation
scale σB , and a noise floor σfloor.

1. Defining Ground Truth Directions. We first establish the direction of the signal and the direc-
tion of the noise.

1. Sample the ground truth regression vector (signal direction) w∗ ∼ N (0, ID). Normalize
∥w∗∥2 = 1.

2. Sample a noise direction vector w⊥. We ensure orthogonality ((w∗)⊤w⊥ = 0) using the
Gram-Schmidt process and normalize ∥w⊥∥2 = 1.

2. Generating Sample Centers. For each sample s ∈ {1, . . . , S}, we sample the sample center
(mean embedding) from an isotropic Gaussian distribution, controlling the cross-sample variation:

µs ∼ N (0, σ2
BID). (96)

3. Generating Elements. We generate K elements for each sample s, distinguishing between
K − 1 background samples and one key sample.
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Background Elements (i = 1, . . . ,K−1): These elements are generated by adding small isotropic
noise (noise floor) to the sample center:

hsi = µs + ϵsi, ϵsi ∼ N (0, σ2
floorID). (97)

Key Element (i = K): The key element is generated by explicitly injecting signal contrast along
w∗ and uninformative noise along w⊥:

hsK = µs + η ·w∗︸ ︷︷ ︸
Signal Contrast

+ ν ·w⊥︸ ︷︷ ︸
Uninformative Noise

+ϵsK . (98)

4. Defining the Target Variable. The target variable is defined based on an optimal representation
v∗
s that extrapolates the signal component by the factor γ∗:

v∗
s = µs + γ∗ · (η ·w∗). (99)

The target label ys is generated by applying the ground truth regression vector w∗ to this optimal
representation, with added label noise ϵ′s ∼ N (0, σ2

label):

ys = (w∗)⊤v∗
s + ϵ′s. (100)

G.1.2 EXPERIMENTAL SETUP AND HYPERPARAMETERS

Model Architecture. We use a simple gating attention architecture. The element embeddings
hsi are generated directly by the DGP (no pre-trained encoder). The attention logits are computed
via a linear layer parameterized by wattn ∈ RD×1: zsi = h⊤

siwattn. The aggregated sample-level
representation vs is computed using vs =

∑ns

i=1 Softmax({zsi}ns
i=1)hsi. The final prediction is

computed via a regression head Wreg ∈ RD×1 and bias b: ŷs = v⊤
s w + b.

Optimization. We train the models using the Adam optimizer (Kingma, 2014) with standard pa-
rameters (β1 = 0.9, β2 = 0.999, ϵ = 10−8). The objective function is the joint loss Ltotal =
LMSE + λPCCLPCC (or L̃PCC in Equation (11) for DNPL).

Hyperparameters. The default hyperparameters used in the synthetic experiments are summa-
rized in Table 4.

Table 4: Hyperparameters for Synthetic Experiments

Parameter Value
DGP Settings
D (Embedding dimension) 16
K (Elements per sample) 10
Ntrain / Nval 2000 / 300
σB 1.0
σfloor / σlabel 0.01 / 0.01

Training Settings
Optimizer Adam
Learning Rate 0.001-0.01
Epochs 1000
λPCC (PCC loss weight) 0.3-0.8

ECA Settings
DATS Tmin / β 0-0.8 / 0.5-3
SRA λγ / γmax 0.001 / 2

G.2 UCI ML REPOSITORY DATASETS

For each dataset, We report PCC, MSE and MAE between predictions ŷi and ground-truth targets
yi over all samples in test set is

PCC (ŷ, y) =
cov(ŷ, y)

σ(ŷ)σ(y)
.
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Mean squared error (MSE) and mean absolute error (MAE) are computed sample-wise and averaged
over all gene–window pairs:

MSE (ŷ, y) =
1

N

N∑
i=1

(ŷi − yi)
2, MAE(ŷ, y) =

1

N

N∑
i=1

|ŷi − yi|.

1. Appliance Dataset The Appliances Energy Prediction dataset from the UCI Machine Learn-
ing Repository contains experimental data collected over 4.5 months in a low-energy building. It
includes 19,735 instances with 28 real-valued features, including indoor temperature, humidity, and
weather conditions. These attributes are recorded at 10-minute intervals. The goal is to predict
appliance energy usage as an integer value in watt-hours (Wh).

We replace the attention layer in the FT-Transformer (Gorishniy et al., 2021) with our ECA module
and keep the remaining components unchanged. We use the following hyperparameters during train-
ing: “batch size=128”, “dropout rate=0.1”, “embedding dim=256” and “num heads=8” for both the
FT-Transformer baseline and the FT-Transformer+ECA model. We use MSE and MAE to evaluate
magnitude matching and PCC to evaluate correlation matching.

2. Online News Dataset The Online News Popularity dataset contains 39,797 news articles from
Mashable, each described by 58 numeric features (with the URL and timedelta features excluded).
Its target is the article’s number of social-media shares (popularity) and we applied the log transfor-
mation on the target to reduce the large range of data.

We replace the attention layer in the FT-Transformer (Gorishniy et al., 2021) with our ECA module
and keep the remaining components unchanged. We use the following hyperparameters during train-
ing: “batch size=128”, “dropout rate=0.1”, “embedding dim=256” and “num heads=8” for both the
FT-Transformer baseline and the FT-Transformer+ECA model. We use MSE and MAE to evaluate
magnitude matching and PCC to evaluate correlation matching.

3. Superconductivity Dataset The UCI Superconductivity dataset contains 21,263 superconduc-
tors with 81 real-valued features, where the target is the critical temperature.

We replace the attention layer in the FT-Transformer (Gorishniy et al., 2021) with our ECA module
and keep the remaining components unchanged. We use the following hyperparameters during train-
ing: “batch size=128”, “dropout rate=0.1”, “embedding dim=256” and “num heads=8” for both the
FT-Transformer baseline and the FT-Transformer+ECA model. We use MSE and MAE to evaluate
magnitude matching and PCC to evaluate correlation matching.

G.3 SPATIAL TRANSCRIPTOMIC DATASET

Data Processing. We follow the data processing as the EGN baseline (Yang et al., 2023). The
10xProteomic dataset contains ∼32,032 image–patch/expression pairs curated from 5 whole-slide
images (10x Genomics, 2025; Yang et al., 2023). Prediction targets are restricted to the 250 genes
with the largest mean expression across the dataset (computed over all patches). For each target gene,
we apply a log transform to expression values and then perform per-gene min–max normalization
to map values into [0, 1]. We use the dataset-provided image patches without modifying tiling or
slide-level grouping.

Evaluation Metric. We report PCC aggregated across genes and sample-wise error metrics. For
each gene g, PCC between predictions ŷg and ground truths yg over all evaluation windows is

PCC(g) =
cov(ŷg, yg)

σ(ŷg)σ(yg)
.

We summarize {PCC(g)} across all target genes using: PCC@F (25th percentile), PCC@S (me-
dian), and PCC@M (mean). Higher is better.

Mean squared error (MSE) and mean absolute error (MAE) are computed sample-wise and averaged
over all gene–window pairs:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2, MAE =

1

N

N∑
i=1

|ŷi − yi|.
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Figure 8: Per-fold PCC@F comparison of EGN and EGN+ECA on 10xProteomic dataset.
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Figure 9: Per-fold PCC@S comparison of EGN and EGN+ECA on 10xProteomic dataset.

Implementation. The EGN and ECA improved version are implemented in PyTorch. The visual
backbone is a ViT with patch size 32, embedding dimension 1024, MLP dimension 4096, 16 atten-
tion heads, and depth 8. We interleave the proposed Exemplar Block (EB) every two ViT blocks.
Each EB uses 16 heads with head dimension 64, retrieving the k=9 nearest exemplars. Results are
reported on a three-fold cross-validation with the same experimental setting in EGN. We train for
50 epochs with a batch size of 32. Experiments run on 2× A6000 GPUs. We apply the same pre-
processing and gene-selection protocol throughout and keep dataset-provided tiles and slide/patient
groupings intact for fair comparison.

Extra Results. Figure 8 and Figure 9 provide extra visualization results on PCC@S and PCC@F
metrics for each fold.

G.4 MULTIMODAL SENTIMENT ANALYSIS (MSA) DATASET

Data Processing We conduct multimodal sentiment analysis (MSA) experiments on the CMU-
MOSI dataset (Zadeh et al., 2016), a standard benchmark comprising 2,199 opinion-centric video
segments. Each segment pairs a short monologue clip with synchronized language, acoustic, and
visual modalities and is annotated with a continuous sentiment intensity score on a seven-point scale
from −3 (strongly negative) to +3 (strongly positive). Following the widely adopted split, the data
are partitioned into 1,284 / 229 / 686 segments for train/validation/test. In line with community
practice and THUIAR’s public releases (Yu et al., 2020; 2021), we use pre-extracted, unaligned
features where acoustic streams are sampled at 12.5 Hz and visual streams at 15 Hz; text features
are aligned to the same timeline.

Task formulation and metrics. We evaluate models in the regression setting (predicting the con-
tinuous sentiment score) while also reporting the standard classification metric used in prior MSA
work. Concretely, we report: (i) MAE: mean absolute error between predicted and ground-truth
sentiment; (ii) PCC: Pearson’s correlation coefficient between predictions and ground truth, mea-
suring rank/linear consistency; and (iii) F1: the binary F1 score computed under the standard MOSI
protocol from prior work and THUIAR’s toolkit (Yu et al., 2020; 2021). This suite jointly captures
absolute deviation (MAE), correlation structure (PCC), and discrete decision quality (F1) and is
consistent with the prevailing MOSI evaluation practice.

Baselines. To situate our method among representative approaches, we compare against widely
cited MSA baselines that span tensor fusion, low-rank factorization, recurrent and deep feed-forward
fusion, graph-based memory models, and cross-modal transformers. Below we list each baseline
with its canonical citation (the superscripts indicate the source of numbers when we report them in
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tables: † from THUIAR’s GitHub/toolkit, ∗ from the original paper, and ∗∗ reproduced by us with
released code/hyperparameters):

• TFN† (Zadeh et al., 2017): Tensor Fusion Network introducing explicit multimodal tensor
interactions.

• LMF∗ (Liu et al., 2018): Low-Rank Multimodal Fusion reducing TFN’s cubic complexity
via factorization.

• EF-LSTM† (Williams et al., 2018b): Early-fusion recurrent model that concatenates
modalities prior to sequence modeling.

• LF-DNN† (Williams et al., 2018a): Late-fusion deep network combining modality-specific
predictors at the decision level.

• Graph-MFN† (Zadeh et al., 2018): Graph-structured Memory Fusion Network for cross-
view temporal reasoning.

• MulT∗ (Tsai et al., 2019): Cross-modal Transformer that performs directional attention
across modalities.

• MISA† (Hazarika et al., 2020): Modality-Invariant/Specific representations with con-
trastive objectives to disentangle factors.

• ICCN∗ (Sun et al., 2020): Cross-modal correlation networks leveraging canonical correla-
tion constraints.

• DLF∗∗ (Wang et al., 2025): A recent strong multimodal baseline emphasizing deep latent
fusion.

• ALMT∗∗ (Zhang et al., 2023): Attention-based latent model trained with MSE; we use
ALMT as the host architecture for our ECA augmentation.

Implementation. Unless otherwise noted, we follow the standard MOSI preprocessing and the
train/validation/test partition described above. For baselines, we adhere to the configuration choices
recommended by the original authors or by THUIAR’s toolkit (Yu et al., 2020; 2021). Our primary
report includes F1, PCC, and MAE on the held-out test set, with validation used solely for early
stopping and hyperparameter selection. The model training is with 2 A6000 GPUs.

We adopt ALMT as the base architecture and keep the optimizer and data pipeline fixed across all
runs to ensure a clean ablation. We train for 100 epochs with a batch size of 64, using AdamW with
lr=1e-4 and batching and loading use num workers=8. Other hyperparameters are shown in Table 5.

ALMT, in its original form, is trained with MSE loss only. To probe correlation-aware training and
our correlation-aware aggregation, we evaluate two controlled settings (all other hyperparameters
are held constant):

1. ALMT + PCC loss (no architectural change). We augment the training objective with a
differentiable PCC term, yielding a weighted sum

L = λMSE ·MSE + λPCC · LPCC,

where λMSE=1.0 and λPCC=1.0. This setting isolates the effect of explicitly encouraging
high Pearson correlation during training while leaving the model architecture unchanged.

2. ALMT + PCC loss + ECA (ours). In addition to the above loss, we adopt our proposed
ECA method in the vision stream by modifying the ViT-style token aggregation step.

Extra Results Analysis. By comparing Setting 1 to the MSE-only ALMT, we measure the gain
from correlation-aware training alone. Comparing Setting 2 to Setting 1 isolates the benefit of
ECA’s vision-token aggregation. As summarized in Table 2, adding PCC improves correlation-
oriented metrics without harming classification quality, and coupling PCC with our ECA aggregation
further improves all three metrics (F1, PCC, MAE). These results indicate that ECA enhances the
multimodal pipeline beyond loss-level changes, demonstrating tangible benefits for multimodality
on MOSI.
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Table 5: Configuration for MOSI experiments (ALMT backbone).

Param Value
Optimizer / weight decay / lr AdamW / 1× 10−4 / 1× 10−4

Batch size / epochs 64 / 100
Text / audio / vision dims 768 / 5 / 20
Projection dim (all modalities) 128
Token count / token dim 8 / 128
Seq. lengths (l/a/v) 50 / 375 / 500
Projection transformer (depth/heads/MLP) 1 / 8 / 128
Text encoder (heads/MLP) 8 / 128
Hyper-layer (depth/heads/head-dim/dropout) 3 / 8 / 16 / 0
Loss weights (MSE / PCC) 1.0 / 1.0
ECA module ✓ in Setting 2

H BATCH SIZE EFFECT ON PCC PLATEAU

A potential concern regarding the joint optimization of MSE and PCC is whether the batch size S
influences the optimization dynamics, specifically the onset of the PCC plateau. Theoretically, as
discussed in Section 2.3 and the Equation (6), both the MSE and PCC gradient magnitudes scale
proportionally with 1/S. Consequently, the ratio between the two gradients that determines the
effective optimization direction is invariant to the batch size. This suggests that the conflict causing
the plateau is fundamental to the gradient properties (specifically the 1/σŷ attenuation) and the
homogeneous PCC bound, rather than batch statistics.

To empirically validate this independence, we conducted an ablation study using the synthetic
dataset described in Section 5.1, training the standard attention regression model with varying batch
sizes S ∈ {32, 64, 128}.

Figure 10: MSE and PCC curve under various batch size settings.
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Appendix H presents the learning curves for these settings. The results align with our theoretical
analysis:

• Consistent Plateau Behavior: Across all batch sizes, we observe the characteristic decou-
pling of the metrics. The PCC curves (red) flatten and plateau significantly earlier than the
MSE curves (blue), which continue to decrease steadily throughout training.

• Generalization Gap: Both training (dashed) and validation (solid) curves exhibit similar
trends, indicating that this phenomenon is an optimization issue rather than a generalization
issue.

These results confirm that increasing or decreasing the batch size does not resolve the PCC plateau,
further validating the necessity of the architectural interventions proposed in our ECA to explicitly
counteract gradient attenuation.
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I DISCLOSURE OF LLM USAGE

A large language model (LLM) was used only for language refinement (grammar, phrasing, and
clarity) in the main paper and the appendix. The LLM did not contribute to the research ideas,
mathematical derivations, theorems, proofs, or experimental design. All technical content was inde-
pendently produced and reviewed by the authors.
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