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Abstract
Boosting provides a practical and provably effec-
tive framework for constructing accurate learning
algorithms from inaccurate rules of thumb. It ex-
tends the promise of sample-efficient learning to
settings where direct Empirical Risk Minimiza-
tion (ERM) may not be implementable efficiently.
In the realizable setting, boosting is known to
offer this computational reprieve without com-
promising on sample efficiency. However, in the
agnostic case, existing boosting algorithms fall
short of achieving the optimal sample complexity.

We highlight a previously unexplored avenue of
improvement: unlabeled samples. We design
a computationally efficient agnostic boosting al-
gorithm that matches the sample complexity of
ERM, given polynomially many additional unla-
beled samples. In fact, we show that the total
number of samples needed, unlabeled and labeled
inclusive, is never more than that for the best
known agnostic boosting algorithm – so this result
is never worse – while only a vanishing fraction of
these need to be labeled for the algorithm to suc-
ceed. This is particularly fortuitous for learning-
theoretic applications of agnostic boosting, which
often take place in the distribution-specific setting,
where unlabeled samples can be availed for free.
We also prove that the resultant guarantee is re-
silient against mismatch between the distributions
governing the labeled and unlabeled samples. Fi-
nally, we detail an application of this result in
reinforcement learning.

1. Introduction
The methodology of boosting, starting with the work of
Schapire (1990), has deep roots both in the practice and
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theory of machine learning. In practice, combining classi-
fiers trained on adaptively weighted data points to highlight
past mistakes has proven to be a powerful idea. In theory,
boosting provides a highly general and provably efficient
framework to convert learning algorithms that are ever so
slightly better than random into accurate learners. The his-
torical origins of boosting began with the realization that
although Empirical Risk Minimization (ERM), that is, the
act of choosing the hypothesis that best fits the observed
data, provides a general scheme for statistical learning, for
many hypothesis classes it may not be approachable in terms
of computational efficiency. Often instead, in theory and
practice, it is possible to quickly construct weakly accu-
rate rules-of-thumb (or weak learners). Can one use such
weak learners to construct an accurate learning algorithm?
Boosting provides an affirmative answer to this question
by giving a principled way of combining many weak learn-
ers, each incrementally focusing on regions of the sample
space where others have failed. Part of the original moti-
vation here, as laid out by Kearns & Valiant (1994), was
that such an aggregation of hypotheses would no longer be
in-class (in modern parlance, improper) and hence could
potentially circumvent the computational hardness of direct
ERM. Interestingly, Kearns & Valiant (1994) were interested
in the representation-independent hardness of learning, that
is, the hardness that persists independently of algorithmic
parameterization. However, the main impact of the boost-
ing methodology has been as a positive theory, that is, in
constructing powerful new learning algorithms, a view that
the present work also takes. A natural follow-up question
is: Does the computational reprieve that boosting provides
come at a cost?

Here, we are primarily concerned with sample efficiency. In
the realizable case, that is, when a perfect classifier exists,
the general answer is no. This serves to reaffirm our faith in
the realizable boosting framework. The celebrated Adaboost
algorithm (Freund & Schapire, 1997), for instance, achieves
the same (near-optimal) sample complexity as ERM for VC
classes 1. In fact, Green Larsen & Ritzert (2022) recently
showed that for a carefully designed variant the equivalence
holds even up to logarithmic terms.

1But also see the note in Section 2.1 in Blanc et al. (2024) for
potentially a gap given arbitrary weak learners.
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Let us now move to the agnostic case, where we make
no assumptions about the conditional distribution of labels
given features; in many ways, this has become the default
stance in machine learning. Firstly, the classical notion of
realizable weak learning requires that weak learners attain
a 0/1 loss strictly better than half, or equivalently, a corre-
lation strictly better than zero on signed labels. However,
such notions are unattainable in the agnostic setting. Early
works on agnostic boosting using weak learning definitions
that mended this issue did not produce results that were
additively competitive with the underlying hypothesis class,
thus a direct comparison to ERM remained elusive. Fol-
lowing this, Kanade & Kalai (2009) gave a computationally
efficient agnostic boosting that in fact achieves ε-excess
population loss compared to the best-in-class hypothesis,
mirroring the guarantee ERM provides when coupled with
generalization bounds (for example, in Shalev-Shwartz &
Ben-David (2014)). However, the sample complexity of
their boosting algorithm scales as (log |H|)/ε4, where H is
the (let us say for now, finite2.) hypothesis class. A recent re-
sult of Ghai & Singh (2024) provides a booster that requires
(log |H|)/ε3 samples. However, both exhibit significantly
higher sample complexity than the familiar (log |H|)/ε2
required for ERM, which is also optimal.

Although agnostic boosting has seen considerable recent
progress both in methodology, for example, through ex-
tensions to online (Brukhim et al., 2020) and multiclass
(Raman & Tewari, 2022) settings, and in finding new appli-
cations (Brukhim et al., 2022; Kothari & Livni, 2018), this
limitation persists.

In this work, we highlight an unexplored avenue of im-
provement: unlabeled samples. As usual, to measure the
statistical efficiency of the learner, we shall keep track of
the number of labeled samples it needs. However, we also
imbue the learner with the ability to additionally draw poly-
nomially many unlabeled samples from the underlying fea-
ture distribution. Under this stipulation, our main result is a
computationally efficient agnostic boosting algorithm with
(labeled) sample complexity scaling as (log |H|)/ε2, and
therefore for the first time matching that of ERM.

This is fortuitous and relevant both on practical and theoret-
ical fronts. In practice, it is widely acknowledged that, in
many domains, unlabeled samples are substantially cheaper
to collect than labeled ones. Furthermore, as exemplified by
previous works, many applications of agnostic boosting in
learning theory take place in distribution-specific settings
where unlabeled samples can be drawn for free. Here, we
expressly utilize the fact that the distribution on features is

2Purely for ease of presentation, in the introduction, we stick
to finite classes and drop dependencies in the weak learning edge
and the failure probability, later denoted by γ and δ respectivey. In
fact, our results hold for infinite VC classes. See Theorem 3.1
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Figure 1. The potential ϕ(z, 1)/2 compared against the Madaboost
potential ϕMADA(z, 1) (Domingo, 2000), along with the the Huber
loss ψ(z).

parsimonious, for example, uniformly distributed or Gaus-
sian, to guarantee that simple classifiers can act as weak
learners for the hypothesis class of interest, utilizing tools
from L1-approximation theory. Since in these settings, the
feature distributions are explicitly noted, even closing the
aforementioned gap will obtain results that are no better than
what we get. We offer further refinements and applications
of our main result, as we detail next.

1.1. Overview of contributions and techniques

Sample-optimal boosting with unlabeled data. Our first
and main result is a computationally efficient agnostic boost-
ing algorithm that produces a classifier with ε excess error,
given (log |H|)/ε2 labeled and (log |H|)/ε4 unlabeled sam-
ples. Our labeled sample complexity is essentially optimal.

Using unlabeled data to accelerate boosting is a novel idea.
Our work also differs qualitatively, in that it does not require
additional assumptions, compared to semi-supervised learn-
ing methods (Chapelle et al., 2006), which often require a
tight clustering of data or smoothness of labels.

Despite differing in algorithmic techniques, previous works
(Kanade & Kalai, 2009; Ghai & Singh, 2024) on agnos-
tic boosting almost invariably use the Madaboost potential
(Domingo, 2000) or a closely related variant:

ϕMADA(z, y) =

{
e−zy if zy ≥ 0,

1− zy if zy < 0,

where z is a real-valued prediction of the discrete label y.

Our key innovation is to design a new bivariate potential

ϕ(z, y) = −yz +

{
|z| − 1

2 if |z| > 1,
1
2z

2 if |z| ≤ 1.
,

whose derivative (with respect to z) is decomposable as one
term exclusively dependent on the label, and the other exclu-
sive involving the features. Thus, by linearity of expectation,
the population analogues of these parts can be estimated
separately with labeled and unlabeled data. Furthermore, it
is essential that the labeled data part, or formally its deriva-
tive, does not depend on the ensemble whose value is being
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assessed; this allows us to reuse the same set of labeled
data across all rounds of boosting unlike Kanade & Kalai
(2009), without needing a uniform convergence argument
as in Brukhim et al. (2020), or a martingale argument as in
Ghai & Singh (2024).

This non-conforming potential function violates some key
tenets of prior work. For example, the centerpiece of the
Madaboost potential is that it, or formally, its functional
derivative, does not downweight points that are misclassi-
fied by the ensemble. This property is best captured in the
definition of a conservative relabeling in Kanade & Kalai
(2009). Intuitively, it makes sense; one wants not to with-
draw any focus from wrongly classified data points. Not
only is this false for us, it is incompatible with the require-
ment of having a (smooth) separable potential function of
the manner we have just described. This can be seen in Fig-
ure 1: the negative slope of the potential, always between 0
and 1, specifies the weight of each sample. The derivative
of Madaboost for the negative domain is always −1, but for
us this is not true, and our potential curves upward between
−1 and 0.

Improved unlabeled sample efficiency. Since our main
innovation, as described above, is orthogonal to previous
approaches, it can be layered on top of existing algorithmic
techniques.

Specifically, applying techniques from Ghai & Singh (2024)
selectively to the part of potential that arises from unlabeled
data, we further reduce the number of unlabeled samples
needed to log(|H|)/ε3. With this result, our total number
of samples (labeled and unlabeled) matches the number of
labeled samples needed by the previous best result, yet for
us, only a vanishing, concretely ε, fraction of these needs to
be labeled.

Resilience to covariate shift. Since, in addition to the
labeled dataset, our algorithm has access to a stream of unla-
beled examples, a natural practical concern may be that the
underlying law governing the latter’s generation may not
exactly match the distribution of features in labeled exam-
ples. Unlike realizable learning where every sample helps
to narrow down to the correct classifier, agnostic learning
is often brittle against changes in the covariate distribution,
since no classifier is the best in all regions of the feature
space. However, we show that if there is a mismatch be-
tween the labeled and unlabeled distributions available to
learner, our learner still succeeds in learning an arbitrarily
accurate classifier as long as these distributions have the
same support on the feature space. Moreover, the labeled
sample complexity is unaffected by such a mismatch.

We point out that for the covariate shift setting, one must
suitably generalize the measure of the progress being made
in each round of boosting. This requires a few changes, the

first among which is that the potential function is no longer
the population (expectation) version of a scalar potential.
We keep track of the progress on the labeled and unlabeled
distributions separately.

Applications. We apply our results to boosting for rein-
forcement learning, where we reduce the required number
of reward-annotated episodes, and learning halfspaces.

1.2. Related work

The early theory of boosting was developed in a sequence
of papers (Freund, 1995; Schapire & Singer, 1998; Bartlett
et al., 1998) starting with Schapire (1990) leading to a break-
through in the form of Adaboost (Freund & Schapire, 1997).
Even earlier the possibility of boosting was posed in Kearns
(1988); Kearns & Valiant (1994). A comprehensive survey
can be found in Schapire & Freund (2013). Early boosting
algoritms were quite sensitive to noise (Long & Servedio,
2008; Domingo, 2000). To mitigate this, boosting was then
studied in the random classification noise model (Diakoniko-
las et al., 2021; Kalai & Servedio, 2003). Agnostic boosting
started with Ben-David et al. (2001); Mansour & McAllester
(2002); Kalai et al. (2008); Kale (2007); Chen et al. (2016)
where new types of weak learners suitable for the agnos-
tic setting were defined. Kanade & Kalai (2009) (see also
Feldman (2010)) gave weak learning definition that led to
additive excess error guarantees. Boosting in online set-
ting is also well studied (Beygelzimer et al., 2015; Chen
et al., 2012; Jung et al., 2017; Brukhim et al., 2020; Raman
& Tewari, 2022; Hazan & Singh, 2021). See Alon et al.
(2021); Green Larsen & Ritzert (2022); Lyu et al. (2024) for
more recent work.

An ostensible alternative to our approach, especially given
that realizable boosting achieves a near-optimal sample com-
plexity, is to reduce agnostic boosting to the realizable case
à la Hopkins et al. (2022). The concurrent work of da Cunha
et al. (2025) pursues this and, in fact, obtains much more
refined fat-shattering bounds. Although statistically opti-
mal, this reduction requires pruning the hypothesis class
by enumeration while considering all possible labelings of
samples, and hence takes exponential time, rivaling ERM.
In contrast, the present work offers computationally efficient
algorithms that run in polynomial time, a requirement that
has been central to the theory of boosting since its origin in
computational learning theory.

2. Problem setting
We consider the fundamental setting of binary classification
where X represents the set of feature descriptions, and the
possible labels are {±1}. There is an underlying joint dis-
tribution D over X × {±1}, which, while unknown to the
learner, is crucial to determining its performance. Let DX
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be the marginal distribution D induces on the feature space
X . Given any binary classifier h : X → {±1}, its success
on D can be measured as

corrD(h) = E
(x,y)∼D

[yh(x)] .

Correlation can readily be translated to the more commonly
used metric, the 0/1-loss l0/1D (h) = E(x,y)∼D

[
1y ̸=h(x)

]
,

as corrD(h) = 1− 2l
0/1
D (h).

Consider a hypothesis class H ⊆ X → {±1} against
which the learner aims to be competitive. The objective
of the learner is to produce a hypothesis h : X → {±1}
such that with probability at least 1 − δ, corrD(h) ≥
maxh∈H corrD(h) − ε, where ε, δ are pre-specified error
tolerances. A crucial remark here is that this final hypothesis
may not belong to the hypotheses class H. The learners who
are given such flexibility are called improper, and all known
boosting algorithms fall into this class.

Definition 2.1 (Agnostic Weak Learner). For any ε0, δ0 >
0, a γ-agnostic weak learner for a hypothesis class H and a
base class B draws m(ε0, δ0) independently and identically
distributed samples from any distribution D′ supported on
X × {±1} and outputs a base hypothesis W ∈ B such that
with probability at least 1− δ0,

corrD′(W) ≥ γmax
h∈H

corrD′(h)− ε0.

This definition of agnostic weak learning was introduced
in Kanade & Kalai (2009), where it is noted that typically
m(ε, δ) = O(log(|B|/δ)/ε2). Mirroring the presentation
of results in Kanade & Kalai (2009); Brukhim et al. (2020);
Ghai & Singh (2024), we present the formal statement of
results for fixed ε0, δ0. In this way, the magnitudes of con-
tribution to the final error for the boosting algorithm and the
weak learner are made distinct.

Finally, a further refinement of the agnostic boosting frame-
work is the distribution-specific setting (Kanade & Kalai,
2009; Feldman, 2010), in which the set of input distributions
to the weak learner are constrained so that their marginals on
the feature space match that of the true underlying distribu-
tion. Thus, any regularity present in the feature distribution
DX , e.g., if it follows a uniform or a Gaussian distribution,
is also made available to the weak learner, which makes the
design of such weak learners easier. Our results will also
apply under this restriction. Like in previous work, our main
algorithm works by relabeling examples; there is no need to
adaptively reweigh them. This ensures that, for any sample
fed to the weak learner, the overall marginal distribution
follows DX .

3. The algorithm and the main result
Our main result and its proof are completely contained in
this section. We describe some notation and essential algo-
rithmic ingredients in the following.

Notation. Let h∗ = argmaxh∈H corrD(h) be the best-
in-class hypothesis. For brevity of notation, for any finite
set D ⊆ X × {±1}, we denote the empirical average over
it by ÊD[·] = 1

|D|
∑

(x,y)∈D(·). We define sign(z) as 1 if
z ≥ 0 and −1 otherwise. For a real-valued function f , we
take sign f to mean its precomposition with sign.

Potential function. Consider the potential function

ϕ(z, y) = ψ(z)− yz , (1)

where ψ(z) is the Huber loss (Huber, 1992):

ψ(z) =

{
|z| − 1

2 if |z| > 1,
1
2z

2 if |z| ≤ 1.

Since we never differentiate ϕ(z, y) with respect to y, let
ϕ′(z, y) = ∂ϕ(z,y)

∂z and ϕ′′(z, y) = ∂2ϕ(z,y)
∂2z . To measure

the progress of any real-valued H : X → R, consider the
population potential

ΦD(H) = E
(x,y)∼D

[ϕ(H(x), y)] .

Φ′
D(H,h) = E

(x,y)∼D
[ϕ′(H(x), y)h(x)]

The quantity Φ′
D(H,h) is the directional derivative of

ΦD(H) on h.

Description of the Algorithm. Algorithm 1 roughly fol-
lows the potential based boosting framework of Kanade &
Kalai (2009). The algorithm simulates the process where
the true label is kept with probability −ϕ′(Ht(x), y)/2 and
chosen randomly otherwise. As can be seen in Figure 1, the
probability of flipping increases monotonically in the mag-
nitude of yHt(x), so the more certain Ht is of the correct
label, the closer to uniformly random the label will be in Dt
for the weak learner. Since predicting on random labels is
impossible, this randomized relabeling increases the relative
importance of data that Ht does not predict accurately.

The main trick we employ in this work is that the potential
ϕ(z, y) in (1) is split into two parts such that the first part
ψ(z) has no dependence on the label, and hence can be
estimated via unlabeled examples. The second part −yz
is linear in z, hence the derivative has no dependence on
z. As a result estimating this does not depend on Ht, but
just a weak hypothesis. Since this is a simple class, the
samples required for this estimation are small and we can
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use uniform convergence to assure concentration across all
boosting rounds. The formal concentration argument can
be seen in Lemma 3.3. One interesting observation, is that
in this construction, samples from the labeled part of the
distribution are never relabeled. Line 6 of Algorithm 1 can
be interpreted as providing a regularization, wherein predic-
tions on the unlabeled data are pushed towards 0 because
pt(x) ≤ 1

2 if and only if Ht(x) ≥ 0.

The relabeling is designed so correlation on the relabeled
distribution corresponds to the derivative of a population po-
tential (see Lemma 3.3). As such, a weak learner produces
a hypothesis that has nonnegligeable correlation with the
(negative) functional gradient of the population potential
ΦD(Ht). With properly chosen η, this assures a descent in
potential as long as the weak learner has sufficient edge on
the current distribution (Case A of Theorem 3.1 and line
10 of Algorithm 1). However, this need not be the case
because we have access to an agnostic weak learner, and
it’s possible that no h ∈ B performs well on Dt. If this is
the case and if Φ′

D(Ht, sign(Ht)) ≥ ε we are in Case B of
Theorem 3.1. In this case, this condition on the derivative as-
sures us that ht = − signHt is also a descent direction (line
12 of Algorithm 1). Now, because the potential is bounded
from below, only a certain number of such descent steps
can occur. Eventually, we must reach a point where neither
Case A nor Case B holds. Here Φ′

D(Ht, sign(Ht)) is small
and there is no h ∈ B that performs well on Dt. Stitching
these together with Lemma 3.5 relating the correlations to
the potential gradient can be used to provide the result.

3.1. Main result on sample-optimal agnostic boosting

Theorem 3.1 (Main theorem). For any ε, δ > 0, there
is an instantiation of parameters such that η = O(γ2ε),
T = O(1/γ2ε2), τ = O(γε), S = O(VC(B) /γ2ε2),
U = O(VC(B) /γ2ε2), S0 = O(1/ε2), m = m(ε0, δ0) +
O(1/γ2ε2) for which Algorithm 1 guarantees with proba-
bility 1− δ − Tδ0 that

corrD(h) ≥ max
h∈H

corrD(h)−
2ε0
γ

− ε.

During its execution, Algorithm 1 makes T =
O(1/γ2ε2) calls to the weak learner, and samples S +
S0 = O(VC(B) /γ2ε2) labeled samples and TU =
O(VC(B) /γ4ε4) unlabeled samples.

3.2. Proof of the main result

To maintain the continuity of presentation, our organization
and notation closely mirror Kanade & Kalai (2009). We
will use the following properties of ϕ and ψ.

Proposition 3.2. |ψ′(z)| ≤ 1 and zψ′(z) ≥ 0 for all z ∈ R.
For all y ∈ {±1}, ϕ(·, y) is continuously differentiable,
1-smooth, and satisfies ϕ(0, y)−minz ϕ(z, y) ≤ 1/2.

Algorithm 1 Agnostic Boosting with Unlabeled Data
1: Inputs: Samplers for labeled data from D and unla-

beled data from DX , γ-agnostic weak learning oracle
W , parameters η, T, τ, S, U, S0,m.

2: Initialize a zero hypothesis H1 = 0.
3: Sample S labeled examples to create dataset D̂.
4: for t = 1 to T do
5: Sample U unlabeled examples to create dataset D̂t.
6: Construct a resampling distribution Dt that chooses

between steps A and B with equal probability.
A. Return (x, y) picked uniformly from D̂.

B. Pick x uniformly from D̂t, and return (x, ŷ),
where the pseudo-label ŷ is chosen as

ŷ =

{
+1 with probability pt(x) =

1−ψ′(Ht(x))
2 ,

−1 with remaining probability.

7: Sample m times from Dt to create dataset D̂′
t.

8: Call the weak learner on D̂′
t to get Wt = W(D̂′

t).
9: if corrD̂′

t
(Wt) =

∑
(x,ŷ)∈D̂′

t
ŷWt(x) > τ then

10: Update Ht+1 = Ht + ηWt/γ.
11: else
12: Update Ht+1 = Ht − η sign(Ht)t.
13: end if
14: end for
15: Sample S0 labeled examples to create dataset D̂0.
16: Output h = argmax

h∈{sign(Ht):t∈[T ]}

∑
(x,y)∈D̂0

yh(x).

Proof of Proposition 3.2. Let us begin by noting that
ψ′(z) = sign(z)min{1, |z|} from which the first two prop-
erties can be seen. From this, all but the last properties
follow. The last part can be verified by elementary calcula-
tions.

We show that Φ′
D(H,h) can be estimated efficiently on the

base class B.

Lemma 3.3. There exists a universal constant C > 0 such
that with probability 1− δ, for all t ∈ [T ], h ∈ B ∪ {h∗},∣∣∣∣12Φ′

D(Ht, h) + corrDt
(h)

∣∣∣∣ ≤ εGen := C

√
VC(B)+ log 1

δ

min{S,U}
.

Proof of Lemma 3.3. By the definition of Dt, we have that

corrDt(h) =
1

2
ÊD̂[yh(x)]−

1

2
ÊD̂t

[ψ′(Ht(x))h(x)],

where we use the fact that Line 6.B in Algorithm 1 ensures
E[ŷ|x] = −ψ′(Ht(x)). Since D̂ and D̂t are composed of
IID draws from D and DX respectively, we use the follow-
ing uniform convergence result (e.g., see Anthony & Bartlett
(2009)), originally due to Talagrand (1994).
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Theorem 3.4 ((Talagrand, 1994)). Fix a hypothesis class
B ⊆ X → {±1}, and distribution D over X ×{±1}. There
is a universal constant C ≥ 0 such that with probability
1− δ, for all h ∈ B, it holds∣∣∣∣∣ E
(x,y)∼D

[yh(x)]− 1

m

m∑
i=1

yih(xi)

∣∣∣∣∣ ≤ C

√
VC(B)+ log 1

δ

m
,

where {(xi, yi)}i∈[m] are sampled IID from D.

Hence, for some constant C ≥ 0 we have with
probability 1 − δ that |ÊD̂[yh(x)] − corrD(h)| and
|ÊD̂t

[ψ′(Ht(x))h(x)] − Ex∼DX [ψ
′(Ht(x))h(x)]| are at

most εGen. Since ϕ′(z, y) = ϕ′(z)− y, and hence

Φ′
D(Ht, h) = E

x∼DX
[ψ′(Ht(x))h(x)]− E

(x,y)∼D
[yh(x)],

completes the proof. Including h∗ changes the VC dimen-
sion by a constant (Eisenstat & Angluin, 2007).

Finally, we will use the following lemma that upper bounds
the correlation gap, which is our ultimate concern, by the
difference in the directional derivative of the potential.
Lemma 3.5. For any real-valued classifierH : X → R, we
have corrD(h

∗)− corrD(sign(H)) ≤ Φ′
D(H, sign(H))−

Φ′
D(H,h

∗).

Proof. We start by noting that

Φ′
D(H, sign(H))− Φ′

D(H,h
∗)

= E
(x,y)∼D

[(ψ′(H(x))− y)(sign(H(x))− h∗(x))]

= E
(x,y)∼D

[(1− yψ′(H(x)))y(h∗(x)− sign(H(x)))] ,

where in the last line we use the fact that y2 = 1.

Consider any (x, y) such that yH(x) > 0: Here y(h∗(x)−
sign(H(x))) < 0. Furthermore, since y and H(x) have the
same sign, so do y and ψ′(H(x)) by Proposition 3.2, and
hence (1−yψ′(H(x))) ≤ 1. Similarly, whenever yH(x) <
0: Then y(h∗(x)− sign(H(x))) > 0, and y and ψ′(H(x))
have opposite signs that imply (1− yψ′(H(x))) ≥ 1.

Now the claim follows as

Φ′
D(H, sign(H))− Φ′

D(H,h
∗))

= E

1yH(x)≥0 (1− yψ′(H(x)))︸ ︷︷ ︸
≤1

y(h∗(x)− sign(H(x)))︸ ︷︷ ︸
≤0

+ 1yH(x)<0 (1− yψ′(H(x)))︸ ︷︷ ︸
≥1

y(h∗(x)− sign(H(x)))︸ ︷︷ ︸
≥0


≥ E

(x,y)∼D
[y(h∗(x)− signH(x))]

= corrD(h
∗)− corrD(sign(H)).

This wraps up the lemma.

We are now ready to prove the main result.

Proof of Theorem 3.1. Let us dispense with the random
events at once. The success of Lemma 3.3, the event
that maxt∈[T ] | corrD̂0

(signHt)−corrD(signHt)| ≤ ε/10,
and maxt∈[T ] | corrD̂′

t
(Wt) − corrDt

(Wt)| ≤ γε/10 can
be ensured with probability 1− δ by a simple application
of Hoeffing’s inequality and union bound given the set-
ting of m and S0 in the statement of the theorem. Sim-
ilarly, εGen ≤ γε/10 holds in Lemma 3.3 for S,U =
Ω((VC(B)+ log δ−1)/γ2ε2).

Let ht = (Ht+1 −Ht)/η. Since ϕ is 1-smooth by Proposi-
tion 3.2:

ΦD(Ht+1)− ΦD(Ht) (2)

≤ E
(x,y)∼D

[
ηϕ′(Ht(x), y)ht(x) +

η2(ht(x))
2

2

]
≤ ηΦ′

D(Ht, ht) +
η2

2γ2
. (3)

Case A: Consider any step t where corrD̂′
t
(Wt) > τ . Here

ht =Wt/γ. It follows from Lemma 3.3 that

Φ′
D(Ht, ht) ≤ −2 corrDt(ht)

γ
+

2εGen

γ

≤ −
2 corrD̂′

t
(ht)

γ
+

2εGen

γ
+
ε

5

≤ −ε

where we set τ = γε and η = γ2ε. By Equation (2), the
potential drops as ΦD(Ht+1)− ΦD(Ht) ≤ −γ2ε2/2.

Case B: Consider any step t where corrD̂′
t
(Wt) ≤ τ and

crucially Φ′
D(Ht, signHt) ≥ ε. Here ht = − signHt.

Since Φ′
D(Ht, ht) = −Φ′

D(Ht, signHt) ≤ −ε, by Equa-
tion (2), we have ΦD(Ht+1)− ΦD(Ht) ≤ −γ2ε2/2.

By Proposition 3.2, at initialization, ΦD(0) is at most a
half away from the minimum. Thus, setting T = 2/γ2ε2,
there must arise an iterate such that neither Case A nor
Case B hold. That is, there is some s ∈ [T ] such that
corrD̂′

s
(Ws) ≤ τ and Φ′

D(Hs, signHs) ≤ ε. Now using
Lemma 3.3 and that the weak learner γ-approximately max-
imizes correlation (Definition 2.1), we have

−Φ′
D(Hs, h

∗) ≤ 2 corrDs
(h∗) + 2εGen

≤ 2 corrDs(Ws)

γ
+

2ε0
γ

+ 2εGen

≤
2 corrD̂′

s
(Ws)

γ
+

2ε0
γ

+
2ε

5

≤ 2ε0
γ

+
12ε

5
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where in the last line we recall τ = εγ and εGen = εγ/10.

By Lemma 3.5, we have

corrD(h
∗)− corrD(sign(Hs))

≤ Φ′
D(Hs, sign(Hs))− Φ′

D(Hs, h
∗)

≤ 2ε0
γ

+
17ε

5
.

To complete the proof, we observe that

corrD(h) ≤ corrD̂0
(h) + ε/10

≤ corrD̂0
(signHs) + ε/10

≤ corrD(signHs) + ε/5

≤ 2ε0/γ + 18ε/5,

where we use the fact that h maximizes the empirical corre-
lation on the dataset D̂0. Substituting ε appropriately yields
the claim.

4. Improving unlabeled sample efficiency
In this section, we reduce the number of unlabeled samples
needed to 1/γ3ε3, using the data reuse scheme from Ghai &
Singh (2024), which is crucially only applied to unlabeled
data. The key idea behind the scheme is that since Ht

changes by a small amount each time, the change it induces
on any twice-continuously differentiable potential is also
small. Therefore, the desired relabeling distributions are not
too different across rounds, and one may be able to reuse the
distribution of past rounds to some extent. This difference
is reflected in Algorithm 2 in Line 6 which allows recursive
use of unlabeled data from past rounds. To do this, we first
construct a twice-continuously differentiable potential using
a Pseudo-Huber loss.

ϕ(z, y) = ψ(z)− yz, and ψ(z) =
√
1 + x2 − 1. (4)

Theorem 4.1 (Main theorem with unlabeled data reuse).
For any ε, δ > 0, there is an instantiation of parameters
such that η = O(γ2ε/ log |B|), T = O(log |B|/γ2ε2),
τ = O(γε), S = O(VC(B) /γ2ε2), U = O(1/γε),
S0 = O(1/ε2), m = m(ε0, δ0) + O(1/γ2ε2) for which
Algorithm 2 guarantees with probability 1− δ − Tδ0 that

corrD(h) ≥ max
h∈H

corrD(h)−
3ε0
γ

− ε.

During its execution, Algorithm 2 makes T =
O(log |B|/γ2ε2) calls to the weak learner, and needs
S + S0 = O(log |B|/γ2ε2) labeled samples and TU =
O(log |B|/γ3ε3) unlabeled samples.

Although the above result is always better in terms of the
demand for unlabeled samples, it comes at the cost of

Algorithm 2 Agnostic Boosting with Selcetive Reuse of
Unlabeled Data

1: Inputs: Samplers for labeled data from D and unla-
beled data from DX , γ-agnostic weak learning oracle
W , parameters η, T, τ, S, U, S0,m, σ.

2: Initialize a zero hypothesis H1 = 0.
3: Sample S labeled examples to create dataset D̂.
4: for t = 1 to T do
5: Sample U unlabeled examples to create dataset D̂t.
6: Construct a resampling distribution D′

t that picks x
uniformly from D̂t, picks ŷ ∈ {±1} uniformly and
returns (x, ŷ) if t = 1; for t > 1, do:

A. With probability 1 − σ, return a sample (x, ŷ)
from D′

t−1.
B. Else return (x, ŷ) where x is uniformly chosen

from D̂t, η′ ∼ Unif[0, η], and ŷ is created as

ŷ =

{
+1 with probability pt(x, η′),
−1 with remaining probability, where

pt(x, η
′) =

1

2
− σψ′(Ht−1(x))

2(η + σ)

− ηψ′′(Ht−1(x) + η′ht−1(x))ht−1(x)

2(η + σ)
.

7: Construct a resampling distribution Dt that chooses
between steps A and B with equal probability.

A. Return (x, y) picked uniformly from D̂.
B. Return (x, ŷ) sampled uniformly from D′

t.

8: Sample m times from Dt to create dataset D̂′
t.

9: Call the weak learner on D̂′
t to get Wt = W(D̂′

t).
10: if corrD̂′

t
(Wt) =

∑
(x,ŷ)∈D̂′

t
ŷWt(x) > τ then

11: Update Ht+1 = Ht + ηWt/γ.
12: else
13: Update Ht+1 = Ht − η sign(Ht)t.
14: end if
15: end for
16: Sample S0 labeled examples to create dataset D̂0.
17: Output h = argmax

h∈{sign(Ht):t∈[T ]}

∑
(x,y)∈D̂0

yh(x).

increased oracle complexity, that is, the number of calls
to the weak learner, which now has a log |B| factor un-
like Theorem 3.1. Again mirroring techniques in Ghai
& Singh (2024) provides some mitigation. In particu-
lar, in Appendix A.2, we provide a different guarantee
for the same algorithm that makes O(1/γ2ε2) calls to the
weak learner, while needing O(log |B|/γ2ε2) labeled and
O(log |B|/γ3ε3 + (log |B|)3/γ2ε2) unlabeled samples.
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5. Resiliency against covariate shift
We consider the setting when the learner has access to a
distribution D supported over X × {±1} and a different,
possibly unrelated, distribution Q supported over features
X . We show that under mild conditions the learner can still
produce an arbitrarily accurate classifier. To measure how
different Q and DX are, we define CX = ∥dDX /dQ∥∞,
which is a uniform upper bound on the Radon-Nikodym
derivative of DX with respect to Q.

Theorem 5.1 (Main theorem for covariate shift). For any
ε, δ > 0, there is an algorithm that makes O(CX /γ2ε2)
calls to the weak learner, samples O(VC(B) /γ2ε2) la-
beled samples from D and TU = O((CX )3 VC(B) /γ4ε4)
unlabeled samples from Q, and outputs h such that with
probability 1− δ − Tδ0 that

corrD(h) ≥ max
h∈H

corrD(h)−
(1 + CX )ε0

γ
− ε.

Recall that ε0 can be made arbitrarily small by feeding more
samples to the weak learner from the empirical distribu-
tion. Although this comes at a (polynomial) computational
cost, in particular, the weak learner now needs to be more
accurate, the sample complexity remains unaffected.

The key step is in Lemma B.3; it proves an analogue of
Lemma 3.5 implying that oversampling the part of the poten-
tial connected to the Huber loss does not hurt the correlation
gap. From there, we set up a non-scalar potential measure
to keep track of the progress of the learner.

6. Applications
6.1. Agnostic learning of halfspaces

We illustrate how our method, when used as a black box, ag-
nostically learns halfspaces over the n-dimensional Boolean
hypercube under uniform marginals on the features. Since
unlabeled samples can be drawn from the uniform distribu-
tion at essentially no statistical cost, the added complexity
of acquiring unlabeled data becomes solely a computational
concern.

This procedure improves upon existing boosting-based ap-
proaches. In particular, building on Kanade & Kalai (2009),
we rely on empirical risk minimization (ERM) over all pari-
ties of degree at most d ≈ 1/ε4. Such an ERM rule achieves
a weak learner advantage γ = n−d. As shown in Theo-
rem 6.1 below (proved in Appendix D), this instantiation of
our boosting framework reduces the labeled sample com-
plexity from O(ε−7n60ε

−4

) to O(ε−6n40ε
−4

).

Theorem 6.1. Let D be any distribution over {±1}n ×
{±1} with uniform feature marginals, and let

H =
{
sign

(
w⊤x − θ

)
| (w, θ) ∈ Rn+1

}

denote the class of halfspaces. There exists a degree
d = O(ε−4) such that running Algorithm 1 with ERM over
parities of degree at most d produces a classifier h satisfying

lD
(
h
)

≤ min
h∈H

lD(h) + ε,

while using only O
(
ε−6 n40 ε

−4)
labeled samples in

npoly(1/ε) time.

6.2. Boosting for reinforcement learning

The construction of near-optimal policy for reinforcement
learning (RL) via boosting was first pursued in Brukhim
et al. (2022). Ghai & Singh (2024) improve on these results.
Modifying the RL setting to include the ability to sample
trajectories without observing reward, we can apply our
results to reduce the number of samples that require reward
feedback. Such a feedback model could be useful where
rollouts are cheap but reward feedback is not because it
comes from human labeling or an expensive processes (Finn
et al., 2016). In Appendix E, we provide a formal description
of this modified setting.

Plugging Algorithm 1 into a modified meta-algorithm of
Brukhim et al. (2022) in a manner that allows for trajectories
without reward yields the following result for binary-action
MDPs. Our result improves upon Ghai & Singh (2024)
in that it requires fewer with-reward episodes. Here, V π

is the expected discounted reward of a policy π, V ∗ is its
maximum. β is the discount factor of the underlying MDP,
andC∞, D∞ and E , Eν are distribution mismatch and policy
completeness terms (related to the inherent Bellman error).
In the episodic model, the learner interacts with the MDP
in episodes. In the ν-reset model, the learner can seed the
initial state with a fixed well dispersed distribution ν as
a means to exploration. See Appendix E for a complete
statement of results and details of the setting.
Theorem 6.2 (Informal; stated formally in Theorem E.1).
Let W be a γ-weak learner for the policy class Π op-
erating with a base class B, with sample complexity
m(ε0, δ0) = (log |B|/δ0)/ε20. Fix tolerance ε and fail-
ure probability δ. In the episodic access model, there
is an algorithm using that uses the weak learner W to
produce a policy π such that with probability 1 − δ, we
have V ∗ − V π ≤ (C∞E)/(1− β) + ε, while sampling
O((log |B|)/γ3ε4) episodes of length O((1 − β)−1) with-
out reward feedback and O((log |B|)/γ2ε3) episodes of
length O((1− β)−1) with reward feedback. In the ν-reset
access model, there is a setting of parameters such that
Algorithm 4 when given access to W produces a policy
π such that with probability 1 − δ, we have V ∗ − V π ≤
(D∞Eν)/(1− β)2 + ε, while sampling O((log |B|)/γ3ε5)
episodes of length O((1− β)−1) without reward feedback
and O((log |B|)/γ2ε4) episodes of length O((1 − β)−1)
with reward feedback.
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Dataset No Added Noise 5% Noise 10% Noise 20% Noise
PAB Ours PAB Ours PAB Ours PAB Ours

Ionosphere 0.87 ± 0.05 0.91 ± 0.04 0.88 ± 0.05 0.90 ± 0.04 0.84 ± 0.06 0.90 ± 0.04 0.81 ± 0.06 0.83 ± 0.06
Diabetes 0.84 ± 0.09 0.89 ± 0.07 0.86 ± 0.08 0.86 ± 0.09 0.79 ± 0.09 0.79 ± 0.10 0.76 ± 0.10 0.80 ± 0.10

Spambase 0.91 ± 0.02 0.94 ± 0.02 0.90 ± 0.03 0.92 ± 0.03 0.89 ± 0.03 0.90 ± 0.02 0.83 ± 0.04 0.87 ± 0.03
German 0.79 ± 0.07 0.86 ± 0.07 0.84 ± 0.08 0.84 ± 0.08 0.76 ± 0.08 0.87 ± 0.07 0.75 ± 0.08 0.77 ± 0.08
Sonar 0.78 ± 0.08 0.92 ± 0.05 0.68 ± 0.09 0.89 ± 0.06 0.84 ± 0.08 0.87 ± 0.07 0.69 ± 0.10 0.77 ± 0.08

Waveform 0.89 ± 0.02 0.89 ± 0.02 0.88 ± 0.03 0.87 ± 0.03 0.86 ± 0.03 0.86 ± 0.03 0.83 ± 0.03 0.83 ± 0.03
Average 0.84 0.89 0.84 0.88 0.81 0.84 0.78 0.81

Table 1. 50-fold cross-validated accuracies of the Potential based Agnostic Booster (PAB) (Kanade & Kalai, 2009) and our proposed
boosting algorithm on six datasets with 0%, 5%, 10%, and 20% added label noise (during training). Sonar and Ionosphere have 50%
of labels dropped while the remaining datasets have 90% of labels dropped. A final row is included for the average accuracy (evenly
weighted) over all 6 datasets.

7. Experiments
In this section, we demonstrate the empirical viability of
our approach. Table 1 showcases the results from our ini-
tial experiments comparing Algorithm 1 with the agnostic
boosting method introduced by Kanade & Kalai (2009),
herein referred to as the Potential-based Agnostic Booster
(PAB). These evaluations were performed on various UCI
classification datasets (Sigillito et al., 1989; Hopkins et al.,
1999; Smith et al., 1988; Hofmann, 1994; Sejnowski & Gor-
man, 1988; Breiman & Stone, 1984), employing decision
stumps (Pedregosa et al., 2011) as the weak learners. No-
tably, Algorithm 1 extends PAB to handle unlabeled data
by incorporating our newly defined potential function, as
defined in Equation (1).

To evaluate the robustness of all algorithms against label
noise, we introduced noise levels of 5%, 10%, and 20%
during the training phase. We randomly remove a certain
percentage of labels from each dataset to create scenarios
with both labeled and unlabeled instances. Specifically, we
omitted 50% of labels for smaller datasets (Sonar and Iono-
sphere) and 90% for the other datasets. Our findings indicate
that incorporating unlabeled examples leads to improved
performance. This enhancement is likely attributed to the
limitation of PAB in reusing samples, which consequently
restricts the number of boosting iterations when the sample
size is constrained. For a comprehensive overview of the
experimental setup, please refer to Appendix C.

8. Conclusion
This paper aims to leverage unlabeled data to reduce the
sample complexity of agnostic boosting. The theoretical
improvements are stark. When given as much unlabeled
data as the amount of labeled data required for existing ap-
proaches, the resultant sample complexity reduces to that
of ERM, becoming essentially optimal. This is accom-
plished by a novel decomposable potential function, whose
derivative naturally splits into two parts that are estimable

independently by labeled and unlabeled data, respectively.

We end with a few concrete directions for future work. The
possibility of achieving an optimal sample complexity for
agnostic boosting in polynomial time without any conces-
sion remains open. In our view, an equally important and
likely fruitful direction is to improve the oracle complexity
of agnostic boosting where known results scale as 1/ε2,
which is substantially worse than log 1/ε for the realizable
case. Developing algorithms that adapt, on a per-round ba-
sis, to the weak learning edge γt is a key unresolved step
to making agnostic boosting practical. Finally, it would be
worthwhile to extend the sample complexity improvements
in recent works to the filtering framework (cf. sub-sampling;
see, for example, the discussion in Domingo (2000)), which
essentially treats the weak learners as black-box learning al-
gorithms and hence avoids appeals to uniform convergence
arguments on the weak hypothesis class.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix
Map of the appendix. In Appendix A, we complete the proofs for results concerning improved unlabeled sample efficiency.
Appendix B discusses the proofs for covariate shift. In Appendix C are provided experimental details not found in the
main paper. Appendix D and Appendix E provide further details on applications of boosting to learning halfspace and
reinforcement learning, respectively.

A. Improving unlabeled sample efficiency
A.1. Proofs for the result

Notice that in this section we use different choices of ϕ and ψ, those stated in Equation (4). However, Lemma 3.5 continues
to hold. In fact, the latter only requires that zψ′(z) ≥ 0 for all z. To maintain the continuity of presentation, our organization
and notation closely mirror Ghai & Singh (2024). Throughout this section, we will always set σ = η/γ.

Define ΨD(H) = E(x,y)∼D[Ψ(H(x))] and Ψ′
D(H,h) = E(x,y)∼D[Ψ

′(H(x))h(x)].

Proof of Theorem 4.1. This proof is almost identical to that of Theorem 4 in Ghai & Singh (2024). We reproduce it for
completeness. In fact, the only change stems from the new upper bound on εGen in Lemma A.1, which unlike the previous
work makes a distinction between labeled and unlabeled samples.

Lemma A.1. There exists a universal constant C > 0 such that with probability 1− δ, for all t ∈ [T ], h ∈ B ∪ {h∗} :

|Φ′
D(Ht, h) + 3 corrDt(h)| ≤ C

√ log |B|+ log 1
δ

S
+
η

γ

(√
log |B|T/δ

σU
+ log |B|T/δ

)
︸ ︷︷ ︸

εGen

.

But before that let us dispense with the random events at once. The success of Lemma A.1, the event that
maxt∈[T ] | corrD̂0

(signHt) − corrD(signHt)| ≤ ε′′/10, and maxt∈[T ] | corrD̂′
t
(Wt) − corrDt

(Wt)| ≤ ε′/10 can be
ensured with probability 1− δ by a simple application of Hoeffing’s inequality and union bound given the setting of m and
S0 appropriately. We will soon set precise values of ε′ and ε′′.

Recall that ht = η(Ht+1 −Ht). Equation (2) can be rearranged to get

− 1

T

T∑
t=1

Φ′
D(Ht, ht) ≤

∑T
t=1(ΦD(Ht)− ΦD(Ht+1))

ηT
+

η

2γ2
≤ 2

ηT
+

η

2γ2

where we use the fact that ϕ(0, y)−minz ϕ(z, y) ≤ 1.

Case A: If ht =Wt/γ, observe that corrDt
(Wt) ≥ corrD′

t
(Wt)− ε′/10 ≥ τ − ε′/10. Now apply Lemma A.1 to get

−Φ′
D (Ht, ht) ≥

3

γ
corrDt

(Wt)−
εGen

γ
≥ 3

γ

(
τ − ε′

10

)
− εGen

γ

Case B: If ht = −sign(Ht), then corrDt(Wt) ≤ corrD′
t
(Wt) + ε′/10 ≤ τ + ε′/10. Applying Lemma A.1, we get

3

(
τ +

ε′

10

)
≥ 3corrDt(Wt) ≥ 3γcorrDt(h

∗)− 3ε0 ≥ −γΦ′
D(Ht, h

∗)− 3ε0 − γεGen

Using Lemma 3.5, this translates to

Φ′
D(Ht,−sign(Ht)) = −Φ′

D(Ht, sign(Ht)) ≤ −Φ′
D(Ht, h

∗)− (corrD(h∗)− corrD(sign(Ht)))

≤ −(corrD(h∗)− corrD(sign(Ht))) +
3

γ

(
τ +

ε′

10
+ ε0

)
+ εGen.

12
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In either case, we have

−Φ′
D(Ht, ht) ≥ min

{
3

γ

(
τ − ε′

10

)
− εGen

γ
, (corrD(h∗)− corrD(sign(Ht)))−

3

γ

(
τ +

ε′

10
+ ε0

)
− εGen

}
.

Now, set

τ =
1

3

(
4

ηT
+

η

γ2
+
εGen

γ

)
γ +

ε′

10
.

Hereafter let s be the time step satisfying

corrD(h∗)− corrD(sign(Hs)) ≤
3

γ
(2τ + ε0) +

(
1− 1

γ

)
εGen =

8

ηT
+

2η

γ2
+

(
1 +

1

γ

)
εGen + 3

(
ε0
γ

+
ε′

5γ

)
.

Such a choice must exists, since otherwise we get for all t that

−Φ′
D(Ht, ht) ≥

3

γ

(
τ − ε′

10

)
− εGen

γ
=

4

(ηT )
+

η

γ2
,

which contradicts Equation (2). Combining this with the observation that h minimizes the correlation on D̂0, we get

corrD(h∗)− corrD(h) ≤
8

ηT
+

2η

γ2
+

2εGen

γ
+

3

γ

(
ε0 +

ε′

5

)
+
ε′′

5
.

Setting ε′ = γε/100, ε′′ = γε/100 and plugging in the proposed hyper-parameters with appropriate constants yields the
claimed result.

Proof of Lemma A.1. By the definition of Dt, we have that

corrDt
(h) =

1

3
ÊD̂[yh(x)] +

2

3
ED′

t
[yh(x)] =

1

3
ÊD̂[yh(x)] +

2

3
corrD′

t
(h),

Since D̂ is composed of IID draws from D, the standard uniform convergence result via union bound gets that for some
constant C ≥ 0 we have with probability 1− δ that |ÊD̂[yh(x)]− corrD(h)| is at most

√
(log |B|+ log δ−1)/S.

By inspecting Line 6 in Algorithm 2 here and Line 5 in Algorithm 1 in Ghai & Singh (2024) with the substitution that y = 1,
we note that the two are identical. Therefore, we can apply the following result from Ghai & Singh (2024).

Lemma A.2 (Lemma 6 in Ghai & Singh (2024)). Setting σ = η/γ. There exists a universal constant C > 0 such that with
probability 1− δ, for all t ∈ [T ], h ∈ B ∪ {h∗} :

∣∣Ψ′
D(Ht, h) + 2 corrD′

t
(h)
∣∣ ≤ Cη

γ

(√
log |B|T/δ

σU
+ log |B|T/δ

)
.

Since ΦD(H) = ΨD(H)− corrD(H), we get∣∣∣∣13Φ′
D(Ht, h) + corrDt

(h)

∣∣∣∣ ≤ 1

3
|ÊD̂[yh(x)]− corrD(h)|+

1

3

∣∣Ψ′
D(Ht, h) + 2 corrD′

t
(h)
∣∣

Φ′
D(Ht, h) = E

x∼DX
[ψ′(Ht(x))h(x)]− E

(x,y)∼D
[yh(x)],

completing the proof.

13
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A.2. Trading off oracle Complexity and unlabeled sample complexity

Theorem A.3 (Main theorem with unlabeled data reuse). For any ε, δ > 0, there is an instantiation of parameters for which
Algorithm 2 guarantees with probability 1− δ − Tδ0 that

corrD(h) ≥ max
h∈H

corrD(h)−
3ε0
γ

− ε.

During its execution, Algorithm 2 makes O(1/γ2ε2) calls to the weak learner, and samples S + S0 = O(log |B|/γ2ε2)
labeled samples and TU = O(log |B|/γ3ε3 + (log |B|)3/γ3ε2) unlabeled samples.

Proof. The proof is identical to that of Theorem 4.1, except crucially to the substitution of the following bound on εGen.

There exists a universal constant C > 0 such that with probability 1− δ, for any t ∈ [T ], h ∈ B ∪ {h∗} :

∣∣∣∣13Φ′
D(Ht, h) + corrDt

(h)

∣∣∣∣ ≤ C

√ log |B|+ log 1
δ

S
+

(
σ +

η

γ

)(√
log |B|T/δ

σU
+

(log |B|T/δ)3/2√
U

)
︸ ︷︷ ︸

εGen

.

To prove this claim itself, we follow the same recipe as in the proof of Lemma A.1. Once again we observe that By Line 6 in
Algorithm 2 here is identical to Line 5 in Algorithm 1 in Ghai & Singh (2024) with the substitution that y = 1. Therefore,
we can apply the following result from Ghai & Singh (2024).

Lemma A.4 (Lemma 15 in Ghai & Singh (2024)). Setting σ = η/γ. There exists a universal constant C > 0 such that with
probability 1− δ, for all t ∈ [T ], h ∈ B ∪ {h∗} :

∣∣Ψ′
D(Ht, h) + 2 corrD′

t
(h)
∣∣ ≤ Cη

γ

(√
log |B|T/δ

σU
+ log |B|T/δ

)
.

B. Resiliency against covariate shift
Let ψ(z) be the Huber loss. Instead of definite a scalar potential, this time we will directly define the population potential
measure that involves both D and Q. Recall that CX ≥ ∥dDX /dQ∥ has to be at least one.

Φ(H) = CX E
x∼Q

[ψ(H(x))]− E
(x,y)∼D

[yH(x)]

Φ′(H,h) = CX E
x∼Q

[ψ′(H(x))h(x)]− E
(x,y)∼D

[yh(x)]

We describe a variant of Algorithm 1 that can tolerate a mismatch between DX and Q. The key modification happens in
Line 6 of Algorithm 3, where pseudo-labeled samples created from the unlabeled distribution Q are sampled a higher rate
than labeled samples.

The uniform convergence still applies after some minor adjustment.

Lemma B.1. There exists a universal constant C > 0 such that with probability 1− δ, for all t ∈ [T ], h ∈ B ∪ {h∗},

|Φ′(Ht, h) + (1 + CX ) corrDt
(h)| ≤ εGen := C

√VC(B)+ log 1
δ

S
+ CX

√
VC(B)+ log 1

δ

U

 .

Proof of Lemma B.1. By the definition of Dt, we have that

corrDt
(h) =

1

1 + CX

(
ÊD̂[yh(x)]− CX ÊD̂t

[ψ′(Ht(x))h(x)]
)
,

14
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Algorithm 3 Covariate-shift Resistant Agnostic Boosting with Unlabeled Data
1: Inputs: Samplers for labeled data from D and unlabeled data from Q, γ-agnostic weak learning oracle W , parameters
η, T, τ, S, U, S0,m.

2: Initialize a zero hypothesis H1 = 0.
3: Sample S labeled examples to create dataset D̂.
4: for t = 1 to T do
5: Sample U unlabeled examples to create dataset D̂t.
6: Construct a resampling distribution Dt that:

A. With probability 1
CX

, returns (x, y) picked uniformly from D̂.

B. With remaining probability, picks x uniformly from D̂t, and returns (x, ŷ), where ŷ is chosen as

ŷ =

{
+1 with probability pt(x) =

1−ψ′(Ht(x))
2 ,

−1 with remaining probability.

7: Sample m times from Dt to create dataset D̂′
t.

8: Call the weak learner on D̂′
t to get Wt = W(D̂′

t).
9: if corrD̂′

t
(Wt) =

∑
(x,ŷ)∈D̂′

t
ŷWt(x) > τ then

10: Update Ht+1 = Ht + ηWt/γ.
11: else
12: Update Ht+1 = Ht − η sign(Ht)t.
13: end if
14: end for
15: Sample S0 labeled examples to create dataset D̂0.
16: Output h = argmax

h∈{sign(Ht):t∈[T ]}

∑
(x,y)∈D̂0

yh(x).

where we use the fact that Line 6.B in Algorithm 3 ensures E[ŷ|x] = −ψ′(Ht(x)). Since D̂ and D̂t are composed of IID
draws from D and Q respectively, we have that, for some constant C ≥ 0 we have with probability 1− δ that |ÊD̂[yh(x)]−
corrD(h)| ≤

√
(VC(B)+ log δ−1)/S and |ÊD̂t

[ψ′(Ht(x))h(x)]− Ex∼Q[ψ
′(Ht(x))h(x)]| ≤

√
(VC(B)+ log δ−1)/U .

|(1 + CX ) corrDt(h) + Φ′(Ht, h)| ≤ CX |ÊD̂t
[ψ′(Ht(x))h(x)]− E

x∼Q
[ψ′(Ht(x))h(x)]|+ |ÊD̂[yh(x)]− corrD(h)|

The decomposition above completes the proof.

We will need the following well-known property of Random-Nikodym derivatives.

Lemma B.2. For any non-negative function f : X → R≥0, it is true that CX Ex∼Q[f(x)] ≥ Ex∼DX [f(x)].

Proof. Since CX ≥ ∥dDX /dQ∥, we have CX Ex∼Q[f(x)] ≥ Ex∼Q
[
f(x)dDxdQ (x)

]
= Ex∼DX [f(x)].

The key idea in the analysis occurs in the following lemma. Essentially, it says oversampling the ψ part from unlabeled data
does not hurt the correlation gap.

Lemma B.3. For any real-valued classifier H : X → R, we have

Φ′(H, sign(H))− Φ′(H,h∗) ≥ corrD(h
∗)− corrD(sign(H)).

Proof. Using Lemma B.2 below, we arrive at

Φ′(H, sign(H))− Φ′(H,h∗) = CX E
x∼Q

[ψ′(H(x))(sign(H(x))− h∗(x))]− E
(x,y)∼D

[y(sign(H(x))− h∗(x))]

≥ E
x∼DX

[ψ′(H(x))(sign(H(x))− h∗(x))]− E
(x,y)∼D

[y(sign(H(x))− h∗(x))]

= E
(x,y)∼D

[(ψ′(H(x))− y)(sign(H(x))− h∗(x))] .
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Recall that z and ψ′(z) always have the same sign, and hence so do ψ′(z) and sign(z). This ensures non-negativity as
ψ′(H(x))(sign(H(x))− h∗(x)) = |ψ′(H(x))| − ψ′(H(x))h∗(x), since h∗(x) is restricted to {±1}.

From here onward, our original proof strategy work. In particular since y2 = 1, we get

Φ′(H, sign(H))− Φ′(H,h∗) ≥ E
(x,y)∼D

[(1− yψ′(H(x)))y(sign(H(x))− h∗(x))] .

As before, consider any (x, y) such that yH(x) > 0: Here y(h∗(x)− sign(H(x))) < 0. Furthermore, since y and H(x)
have the same sign, so do y and ψ′(H(x)), and hence (1 − yψ′(H(x))) ≤ 1. Similarly, whenever yH(x) < 0: Then
y(h∗(x)− sign(H(x))) > 0, and y and ψ′(H(x)) have opposite signs that imply (1− yψ′(H(x))) ≥ 1.

Now the claim follows as

Φ′
D(H, sign(H))− Φ′

D(H,h
∗))

= E
(x,y)∼DX

1yH(x)≥0 (1− yψ′(H(x)))︸ ︷︷ ︸
≤1

y(h∗(x)− sign(H(x)))︸ ︷︷ ︸
≤0

+1yH(x)<0 (1− yψ′(H(x)))︸ ︷︷ ︸
≥1

y(h∗(x)− sign(H(x)))︸ ︷︷ ︸
≥0


≥ E

(x,y)∼D
[y(h∗(x)− signH(x))]

= corrD(h
∗)− corrD(sign(H)).

We are finally ready to prove the main result.

Proof of Theorem 3.1. Let us dispense with the random events at once. The success of Lemma B.1, the event that
maxt∈[T ] | corrD̂0

(signHt) − corrD(signHt)| ≤ ε/10, and maxt∈[T ] | corrD̂′
t
(Wt) − corrDt

(Wt)| ≤ γε/20CX can
be ensured with probability 1 − δ by a simple application of Hoeffing’s inequality and union bound given the set-
ting of m = m(ε0, δ0) + O((CX )2/ε2γ2) and S0 = O(1/γ2ε2). Similarly, εGen ≤ γε/10 holds in Lemma 3.3 for
S = Ω((VC(B)+ log δ−1)/γ2ε2) and U = Ω((CX )2(VC(B)+ log δ−1)/γ2ε2).

Let ht = (Ht+1 −Ht)/η. Since ψ is 1-smooth, we have

ΦD(Ht+1)− ΦD(Ht) ≤ ηΦ′
D(Ht, ht) +

η2CX
2γ2

. (5)

Case A: Consider any step t where corrD̂′
t
(Wt) > τ . Here ht =Wt/γ. It follows from Lemma B.1 that

Φ′(Ht, ht) ≤ − (1 + CX ) corrDt(ht)

γ
+
εGen

γ

≤ −
(1 + CX ) corrD̂′

t
(ht)

γ
+

2εGen

γ
+
ε

5

≤ −ε

where τ = 2γε/(1 + CX ) and η = γ2ε/CX . By Equation (5), the potential drops as Φ(Ht+1)− Φ(Ht) ≤ −γ2ε2/2CX .

Case B: Consider any step t where corrD̂′
t
(Wt) ≤ τ and crucially Φ(Ht, signHt) ≥ ε. Here ht = − signHt. Since

Φ′(Ht, ht) = −Φ′(Ht, signHt) ≤ −ε, by Equation (5), we have Φ(Ht+1)− Φ(Ht) ≤ −γ2ε2/2CX .

At initialization, Φ(0) = 0. Further for any H : X → R, using non-negativity of ψ, we have

Φ(H) = CX E
x∼Q

[ψ(H(x))]− E
(x,y)∼D

[yH(x)] ≥ E
x∼DX

[ψ(H(x))]− E
(x,y)∼D

[yH(x)] ≥ 1

2
.

Thus, at initialization Φ is at most half away from its minimum. Thus, setting T = 2CX /γ2ε2, there must arise an iterate such
that neither Case A nor Case B hold. That is, there is some s ∈ [T ] such that corrD̂′

s
(Ws) ≤ τ and ΦD(Hs, signHs) ≤ ε.
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Now using Lemma B.1 and that the weak learner γ-approximately maximizes correlation (Definition 2.1), we have

−Φ′(Hs, h
∗) ≤ (1 + CX ) corrDs

(h∗) + 2εGen

≤ (1 + CX ) corrDs(Ws)

γ
+

(1 + CX )ε0
γ

+ 2εGen

≤
(1 + CX ) corrD̂′

s
(Ws)

γ
+

(1 + CX )ε0
γ

+
ε

5

≤ (1 + CX )ε0
γ

+
12ε

5

where in the last line we recall τ = 2εγ/(1 + CX ) and εGen = εγ/10.

By Lemma 3.5, we have

corrD(h
∗)− corrD(sign(Hs)) ≤ Φ′

D(Hs, sign(Hs))− Φ′
D(Hs, h

∗)

≤ (1 + CX )ε0
γ

+
17ε

5
.

To complete the proof, we observe that

corrD(h) ≤ corrD̂0
(h) + ε/10

≤ corrD̂0
(signHs) + ε/10

≤ corrD(signHs) + ε/5

≤ (1 + CX )ε0/γ + 18ε/5,

where we use the fact that h maximizes the empirical correlation on the dataset D̂0.

C. Additional experimental details
For PAB, the number of samples that can be fed to a week learner in a round scales inversely with the number of boosting
rounds, as the algorithm requires fresh samples each round.As such, we perform a grid search on the number of boosting
rounds with T ∈ {25, 50, 100}, while we just use 100 for our implementation of Algorithm 1. In both algorithms we search
over the parameter m, the number of samples we feed to the weak learner each round with a grid of {5, 20, 50, 100}, though
if such a setting is invalid for PAB, we continue until all samples are used.

Our experiments were performed using the fractional relabeling scheme stated in (Kanade & Kalai, 2009), intended to
reduce the stochasticity the algorithm is subject to. In particular, rather than sampling labels, we provide both (x, y) and
(x,−y) in our dataset with weights equal to their sampling probabilities. Experiments are all run on an M1 Macbook Pro
and complete within an hour. Multiclass datasets are converted to binary.

D. Proof of Theorem 6.1
Proof. We observe that ERM on the Fourier basis χS(x) =

∏
i∈S xi, namely parities on subsets S, can be used to produce

a weak learner (Klivans et al., 2004). As such, an n-dimensional halfspace can be approximated with uniform weighting on
the hypercube to ε2 ℓ2-error using degree-limited Bn,d = {±χS : |S| ≤ d} as a basis, where d = 20ε−4. As a result, at
least one h ∈ Bn,d must have high correlation.

Lemma D.1 (Lemma 5 in (Kalai et al., 2008)). Let D be any data distribution over {±1}n × {−1, 1} with marginal
distribution Unif({±1}n) on the features. For any fixed ε and d = 20ε−4, there exists some h ∈ Bn,d such

corrD(h) ≥
maxc∈H corrD(c)− ε

nd

The result follows directly from the preceding lemma, which provides a weak learner for the task, and Theorem 3.1. We
note that |Bn,d| < nd and γ = n−d, so

log |Bn,d|
γ2ε2

≤ dn2d log(n)

ε2
.
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The unlabeled samples used in Algorithm 1 can be produced by sampling from the hypercube adding to the npoly(1/ε)

runtime, but not the sample complexity.

E. Boosting for reinforcement learning
In this section, we consider boosting in the reinforcement learning setting. We wish to separately consider the number of
reward-annotated episodes against the number of reward-free episodes needed to learn a near-optimal policy.

Consider a Markov Decision Process M = (S,A, r, P, β, µ0), where S is a set of states, A = {±1} is a binary set of
actions, r : S × A → [0, 1] determines the (expected) reward at any state-action pair (which is sometimes available),
P : S ×A → S captures the transition dynamics of the MDP, i.e., P (s′|s, a) is the probability of moving to state s′ upon
taking action a at state s, β ∈ [0, 1) is the discount factor, and µ0 is the initial state distribution. Let Qπ(s, a) and V π(s) be
the state-action and state value functions. Let V πµ = Es∼µ[V (s)] be the expected total reward when starting from the start
state distribution µ, and we will say V πµ0

= V π . Finally, the occupancy measure µπµ′ induced by a policy π starting from an
initial state distribution µ′ is stated below. We will take µπ = µπµ0

as a matter of convention.

In the episodic model, the learner interacts with the MDP in a limited number of episodes of reasonable length (i.e.,
≈ (1 − β)−1), and the starting state of MDP is always drawn from µ0. In the second, termed rollouts with ν-resets, the
learner’s interaction is still limited to a small number of episodes, however, the MDP now samples its starting state from ν.
It is important to stress that in both cases, the learner’s objective is the same, to maximize V π starting from µ0. However,
ν could be more spread out over the state space than µ0, and provide an implicit source of explanation, and the learner’s
guarantee as shown next benefits from its dependence on a milder notion of distribution mismatch in this case. In this setting,
we do not always assume the reward is revealed. We consider a model where we can rollout a policy and observe rewards or
alternatively can just observe the state trajectories.

Since we have binary actions, our weak learners are policies, which we denote π instead of h. This notion is equivalent
to that used by Brukhim et al. (2022) and Ghai & Singh (2024), because for binary actions, a random policy induces an
accuracy of half regardless of the distribution over features and labels.

Say π∗ ∈ argmaxπ V
π be a reward maximizing policy, and V ∗ be its value. Let Π be the convex hull of the boosted policy

class, i.e., the outputs of the boosting algorithm. For any state distribution µ′, define the policy completeness Eµ′ term as

Eµ′ = max
π∈Π

min
π′∈Π

Es∼µπ
µ′ [max

a∈A
Qπ(s, a)− Ea∼π′(·|s)Q

π(s, a)].

In words, this term captures how well the greedy policy improvement operator is approximated by Π in an state-averaged
sense over the distribution induces by any policy in Π. Finally, we define distribution mismatch coefficients below.

C∞ = max
π∈Π

∥µπ
∗
/µπ∥∞, D∞ = ∥µπ

∗
/ν∥∞.

Theorem E.1. Let W be a γ-weak learner for the policy class Π operating with a base class B, with sample complexity
m(ε0, δ0) = (log |B|/δ0)/ε20. Fix tolerance ε and failure probability δ. In the episodic access model, there is a setting of
parameters such that Algorithm 4 when given access to W produces a policy π such that with probability 1− δ, we have

V ∗ − V π ≤ C∞E
1− β

+ ε,

while sampling

O
(

C5
∞ log |B|

(1− β)9γ3ε4

)
episodes of length O((1− β)−1) without reward feedback (via Algorithm 6) and

O
(

C4
∞ log |B|

(1− β)7γ2ε3

)
episodes of length O((1− β)−1) with reward feedback (via Algorithm 5).
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Algorithm 4 RL Boosting adapted from (Brukhim et al., 2022)
1: Input: iteration budget T , state distribution µ, step sizes ηt, post-selection sample size P
2: Initialize a policy π0 ∈ Π arbitrarily.
3: for t = 1 to T do
4: Run Algorithm 2 to get π′

t, using

• Algorithm 5 to produce a distribution over state-actions (ignore Q̂) by executing the current policy πt−1 starting
from the initial state distribution µ as the labeled samples.

• Algorithm 6 to produce a distribution over states by executing the current policy πt−1 starting from the initial
state distribution µ as the unlabeled samples.

5: Update πt = (1− ηt)πt−1 + ηtπ
′
t.

6: end for
7: Run each policy πt for P rollouts to compute an empirical estimate V̂ πt of the expected return.
8: return π = πt′ where t′ = argmaxt V̂

πt .

Algorithm 5 Trajectory Sampler adapted from (Brukhim et al., 2022)
1: Sample state s0 ∼ µ and action a′ ∼ Unif(A).
2: Sample s ∼ µπ as follows: at every step h, with probability β, execute π; else, accept sh.
3: Take action a′ at state sh, then continue to execute π, and use a termination probability of 1− β. Upon termination, set
R(sh, a

′) as the sum of rewards from time h onwards.
4: Define the vector Q̂, such that for all a ∈ A, Q̂(a) = 2R(sh, a

′) · Ia=a′ .
5: With probability CQ̂(a′), set y = a′ else set y ∈ A− {a′}, where C = (1− β)/2.
6: return (sh, Q̂, y).

In the ν-reset access model, there is a setting of parameters such that Algorithm 4 when given access to W produces a
policy π such that with probability 1− δ, we have

V ∗ − V π ≤ D∞Eν
(1− β)2

+ ε,

while sampling

O
(

D5
∞ log |B|

(1− β)15γ3ε5

)
episodes of length O((1− β)−1) without reward feedback (via Algorithm 6) and

O
(

D4
∞ log |B|

(1− β)12γ2ε4

)
episodes of length O((1− β)−1) with reward feedback (via Algorithm 5).

Proof. The proof follows by applying the result in Theorem 4.1 within the proof of Theorem 22 from Ghai & Singh (2024).

For the episodic model, applying the second part of Theorem 9 in (Brukhim et al., 2022), while noting the smoothness of
V π , and combining the result with Lemma 18 and Lemma 11 in (Brukhim et al., 2022), we have with probability 1− Tδ

Following the logic of Theorem 22 from Ghai & Singh (2024), we need to ensure is that output of Algorithm 2 as instantiated
in Algorithm 4 every round has an excess correlation gap over the best policy Π no more that (1 − β)2ε/C∞, which
Algorithm 2 assures us can be accomplished with O

(
C3

∞ log |B|
(1−β)6γ3ε3

)
unlabeled samples and O

(
C2

∞ log |B|
(1−β)4γ2ε2

)
labeled samples.

The total number of samples is T = O
(

C2
∞

(1−β)3ε

)
times greater.

Similarly, for the ν-reset model, we need to ensure is that output of Algorithm 2 as instantiated in Algorithm 4 every round
has an excess correlation gap over the best policy Π no more that (1 − β)3ε/D∞, which Algorithm 2 assures us can be
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Algorithm 6 Reward-free Trajectory Sampler
1: Sample state s0 ∼ µ and action a′ ∼ Unif(A).
2: Sample s ∼ µπ as follows: at every step h, with probability β, execute π; else, accept sh.
3: Take action a′ at state sh, then continue to execute π, and use a termination probability of 1− β.
4: return sh.

accomplished with O
(
D3

∞ log |B|
(1−β)9γ3ε3

)
unlabeled samples and O

(
D2

∞ log |B|
(1−β)6γ2ε2

)
labeled samples. The total number of samples

is T = O
(

D2
∞

(1−β)6ε2

)
times greater.
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