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ABSTRACT

Recent attempts at image steganography make use of advances in deep learn-
ing to train an encoder-decoder network pair to hide and retrieve secret mes-
sages in images. These methods are able to hide large amounts of data, but they
also incur high decoding error rates (around 20%). In this paper, we propose
a novel algorithm for steganography that takes advantage of the fact that neural
networks are sensitive to tiny perturbations. Our method, Fixed Neural Network
Steganography (FNNS), yields significantly lower error rates when compared to
prior state-of-the-art methods and achieves 0% error reliably for hiding up to 3
bits per pixel (bpp) of secret information in images. FNNS also successfully
evades existing statistical steganalysis systems and can be modified to evade neu-
ral steganalysis systems as well. Recovering every bit correctly, up to 3 bpp,
enables novel applications that requires encryption. We introduce one specific use
case for facilitating anonymized and safe image sharing. Our code is available at
https://github.com/varshakishore/FNNS.

1 INTRODUCTION

Image steganography aims to hide a secret digital message within a cover image (
) — ideally, through minimal alterations, such that only intended recipients are aware of the
hidden secret. Steganography has been widely used in applications such as watermarking (
, ), copyright certification (Lu, ) and private information storage ( ,
). Classic steganography tools use pixel statistics to hide information in images (
). Secret messages hidden with these methods can be recovered with 0% error, but to evade de-
tection by steganalysis tools, they can only hide up to 0.5 bits per pixel (bpp) of information (

; , ). Encouraged by data-driven deep learning
techmques recent methods propose trammg deep encoder-decoder networks to hide and recover up
to 6 bpp of information in images (

, ). These methods do achleve higher bpp rates but they also result in
h1gher error rates for the retrieved messages ( ,

Many applications have low error rate requirements for the steganography algorithm. In some sce-
narios, the hidden message has no redundancy for error correction, and there is zero tolerance for
even a single incorrectly recovered bit. For example, if the secret message is encrypted, it will be a
random bit string that must be recovered with zero error for successful decryption. In this paper, we
propose a novel approach for image steganography that aims to simultaneously and reliably achieve
high steganographic capacity and low error rates. Notably, we achieve 0.0% error when encoding
up to 3 bpp of information. We make no assumptions on the secret message and allow it to be any
arbitrary bit string. We show that our method can be used with randomly initialized neural networks
or in conjunction with pre-trained networks.

Unlike previous steganography methods that train deep networks to hide and recover messages in
a specific dataset ( s ; s ; , ), our method is based upon

*Equal contribution.
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a very different approach, which originated in the context of adversarial attacks on neural net-
works ( , ). Adversarial attacks are based on the key insight that deep neural
networks are highly sensitive to small changes to the input. An adversary can therefore manipulate
an image with imperceptible perturbations to influence the prediction of a neural network that uses
this image as input. The last eight years have witnessed an outpouring of analysis ( ,
s ; ) and methods ( s ; s

; ; ; s ) to understand
and create adversarlal perturbatrons Notably, it is fa1r to say that vulnerability to adversarial attacks
is generally considered inevitable in most settings ( , ) and frustratingly hard to
defend against ( , ), especially when the target network
architecture is known to the adversary (Wthh is generally referred to as white-box setting).

Adpversarial attacks are typically considered a nuisance, or a limitation of machine learning. How-
ever, in this paper we utilize their persistence and reliability as a desired feature for what we refer
to as Fixed Neural Network Steganography (FNNS). In a nutshell, FNNS is based on the following
procedure (see Figure 1): We initialize a neural network (decoder) that takes as input an image and
produces sufficient binary outputs. Given a secret message and a cover image, the sender (Alice)
perturbs the original image in a fashion similar to adversarial perturbations ( , ).
However, instead of targeting a single prediction bit (e.g. the classification of an image), the sender
manipulates thousands or even millions of output bits simultaneously. The intended recipient (Bob)
can use the same decoder network and recover the hidden message.

We show that FNNS reliably yields 0% error rate for hiding up to 3 bpp of information and
lower error rates than current state-of-the-art methods for higher bit rates on multiple datasets.
FNNS can also be used in conjunction with existing trained encoder-decoder methods (like
SteganoGAN ( , )) to further reduce the error rates obtained by the trained meth-
ods. Addltlonally, we show that FNNS evades existing statlstlcal steganalysis methods ( ,
;b; s ) and can be made
resrstant to JPEG compressron ( , ) for low bpp. Fmally, we introduce an example appli-
cation of error-free steganography for anonymized image sharing: We replace faces in images with
GAN generated substitutes that contain the original faces encrypted and hidden through FNNS —
ensuring that only intended recipients (with the secret key) can recover the original images.

2 RELATED WORK

Statistical image steganography methods ( , ) typically pre-date the use of neural
networks. Least-Significant Bit (LSB) methods modify lower-order b1ts of each pixel to encode a
secret message ( )
). Although compellingly s1mple and lossless these methods are easrly detectable (
:b; , ) and often lack robustness ( s
) Many statistical image steganography methods were proposed to evade detection by such
steganalysis algorithms. Highly Undetectable Steganography (HUGO) ( , ), is one
such method, that uses hand crafted features to measure distortion caused by modifying pixels and
modifies pixels that cause the least amount of distortion. Wavelet Obtained Weights (WOW) (

, ) uses directional high-pass filters to find regions of the cover image with high
texture and penalizes changes in low-textured regions. S-UNIWARD ( , ) is similar
to WOW but is designed to work with non-spatial domains (e.g. the frequency domain). The main
limitation of statistical methods is that the number of bits they encode is relatively low (< 0.5 bpp).

Deep learning image steganography methods have recently achreved impressive results in terms
of bpp rates ( , ). In gen-
eral, they mostly share a s1m11ar plpehne that can be trained end to- end An encoder network takes
as input a cover image and a message that should be concealed within the image. From these in-
puts it generates a steganographic image that has hidden information but is visually similar to the
cover image. A subsequent decoder network recovers the hidden message from the steganographic
image. Multiple loss functions ensure that 1) the generated image is close to the original one; 2)
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the decoder’s output matches the secret message. ( )’s HiddenNet pioneered such an
encoder-decoder pipeline, and their HiddenNet could hide up to 0.2 bpp with an error rate of 1072,
SteganoGAN ( , ) uses a slightly different encoder-decoder architecture and intro-
duces an additional critic network that ensures the produced images look realistic, i.e. like a natural
image. The authors show experiments of hiding up to 6 bpp of information with an error rate of 5-
30% (depending on how many bits are hidden). In a similar vein, AdvSGAN ( R ) hides
up to 1 bpp by learning an image steganography scheme that plays an adversarial game between a
restricted neural coder and a critic. Deep Steganography ( , ), ISGAN ( , ),
Attention Based Data Hiding (Yu, ), Universal Deep Hiding ( ) and End-to-
end CNN for Image Steganography ( , ) use similar encoder-decoder architectures
to hide and recover structured images instead of random bits. These methods assume the secret
message is an image, which allows them to learn image priors that aid in hiding the secret image.
Invertible networks have also been explored to hide images within images ( , ;

). Despite handling a large number of bits, these end-to-end neural approaches also share a set
of disadvantages: 1) the error rate for the recovered messages is very high, 2) they assume access to
hundreds or even thousands of training images from the target domain to train encoder and decoder
pairs, and 3) there is little recourse if the model produces an image with high error rate or distortions.
There are also methods that have explored hiding messages in physical photographs (

, ; s ), but our work focuses on digital images.

Imperceptible image perturbations. Adversarial examples ( , ) are inputs
to machine learning models that an attacker has 1ntent10nally designed to cause the model to make a
mlstake Many approaches ( ,

, ; , ) try to construct adversar1a1 examples by perturblng
1mage pixels. ( ) propose a systematic algorithm for computing univer-
sal perturbations that many deep neural networks are highly vulnerable to. ( ) propose
a differential evolution method to generate low-dimensional one-pixel adversarial perturbations that
change the output of a classification network. ( ) create adversarial examples
that are robust to affine image transformations, noises, and other distortions. Projected gradient de-
scent (PGD) ( , ) is one of the most widely used algorithms to generate adversarial
examples by adding small perturbations to the input. This method iteratively updates the input with
gradient descent until a desired output is obtained. The input is projected, or more precisely clipped
to be within [—e, €] at the end of every step. This precaution ensures that the perturbations stay
reasonably small for all pixels and remain imperceptible. ( ) propose performing
stenography by finding perturbations using PGD with a classification network. However, the amount
of information they are able to hide is low and they need multiple images to hide long messages.

3 FIXED NEURAL NETWORK STEGANOGRAPHY

Setting. Let X € [0, 1]7*W>3 be an RGB color image with height H and width W. Further, let
M € {0,1}1XWxD be a message that we are trying to conceal in X, where D specifies the number
of bits we need to hide per pixel.! We assume there are two parties involved — the sender, Alice,
who hides M in X, creating X ; and the receiver, Bob, who extracts M out of X. Given a decoder
network F : [0, 1]7*Wx3 _ [0, 1)7*WxP our goal is to generate a perturbed image X, which is
close to X (according to metrics specified in the subsequent section) such that F(X) = M.

Encoding and Decoding. In order to generate image X, we use an approach similar to adversarial
perturbations ( , ). Given the cover image X and the ground truth message M, the

sender (Alice) solves the following optimization problem over the perturbed image X:
min (M, log F(X)) + ((1 — M),log(1 — F(X))),
* Loer ()
St X — X|loo <eand 0 < X <1,

where (, ) denotes inner-product across all H x W x D dimensions and the objective function is the
binary cross entropy (BCE) loss. The first of the two linear constraints enforces that the maximum

'For convenience we assume the message is of length H x W x D. In practice, if the message length is not
a multiple of H x W we can simply ignore the unused output bits during optimization.
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Figure 1: FNNS workflow: Alice (sender) encodes the message M into image X such that F (X' )=
M ; Bob (receiver) decodes the message with the same decoder F'. Alice generates perturbed image
X by using the gradient from the loss between the decoder output F (X ) and secret message M .

Algorithm 1 Adversarial Attack for Message hiding
1: Inputs: decoder network F', cover image X, secret message M
2: Hyper-parameters: learning rate o > 0, perturbation bound € > 0, optimization steps n > 0,
max L-BFGS iterations k£ > 0

3 X+ X

4: for n iterations do .

5: X = LBFGS(F(X X), M, Lcg, k) > Take k steps to optimize Lpcg(F'(X), M).
6: 0« clip *{X — X} > Clip pixel value changes exceeding =+e.
7: X « clipl{X + 6} > Clip pixel values to [0, 1].
8: return X

perturbation does not exceed a value of € and stays imperceptible. The second constraint enforces
that the perturbed image, X, is a well-defined image, with pixel values ranging within [0, 1].

Our optimization algorithm is outlined in Algorithm 1, where clip}(x) = max(min(z,1),0). We
use the unconstrained L-BFGS (Fletcher, 2013) algorithm to optimize the objective with respect to
X. We used L-BFGS because it keeps track of second order gradient statistics and results in faster
optimization. To ensure that the constraints are not violated, we project the solution back into the
feasible region after k steps. We assume that the recipient (Bob) has access to the same network F’
as the sender (Alice). He can then recover the concealed message M by computing F/(X).

Decoder weights and initialization. Our encoding procedure optimizes the image X directly and
considers the weights of F' fixed throughout. This gives us the freedom to explore multiple ways to
initialize X and to obtain weights for the decoder F', yielding three distinct variants of our method:
1) FNNS-R: F'is a random network and X is initialized to be the cover image X. When a random
network is used, the sender and the receiver only need to share the architecture of the decoder
network and the random seed used to initialize its weights; the actual weights of the network do not
have to be shared. Additionally, if the image quality of the perturbed image is low, a different random
decoder can easily be initialized with a new random seed and the optimization can be repeated.

2) FNNS-DE: Given a trained encoder-decoder pair (from any of the prior neural work mentioned in
section 2), we can define F' to be the pre-trained decoder and initialize X as Enc(X, M), where
Enc is the trained encoder that is paired with the decoder F'. With this initialization, a part of the
message M is already encoded into X such that F'(X) ~ M. As a result, the optimization is
much faster. However, the encoding step sometimes deteriorates image quality, and it is hard for the
optimization algorithm to “recover” in terms of quality in such cases.

3) FNNS-D: F' is a pre-trained decoder and X is initialized to be the cover image X. With a
trained decoder, messages can be hidden in images using both perturbations and by training weights
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Figure 2: Examples of cover and steganographic image pairs from MS-COCO and CelebA. In each
image FNNS-D is used to hide 4 bpp. (Zoom in for image details.)

conducive to hiding information in the images. As a result, the output image quality is better and
the optimization does not suffer from getting stuck in bad local optima.

Decoder architecture. Prior work on adversarial attacks has explored network designs that are
especially robust to small perturbations (Xu et al., 2020). In contrast, for our decoder we want net-
work architectures that are particularly susceptible in that regard. We develop our method based on
the basic decoder of SteganoGAN (Zhang et al., 20192), a 4-layer convolutional neural network that
takes an H x W x 3 RGB image as input and outputs a bit string {0, 1} >*W*D (after rounding).
We choose SteganoGAN because it has been shown to achieve state-of-the-art performance for hid-
ing arbitrary messages in images. For our experiments, we set the pre-trained encoder and decoder
for FNNS-D and FNNS-DE, to be the trained SteganoGAN encoder and decoder. For the FNNS-R
random network we empirically explore many variations with different depths, widths, normaliza-
tion layers, and activation functions, and evaluate them w.r.t. bit error rates, PSNR, and SSIM.2
Due to space constraints, we summarize our results in Appendix B. Throughout, we use 128 hidden
channels in FNNS-R and 32 in FNNS-D and FNNS-DE. This is because for trained SteganoGAN
models, increasing the number of hidden units leads to no significant improvements in accuracy or
image quality (see Appendix E), but slows down the optimization process.

3.1 EVALUATION METRICS

We use three popular metrics to evaluate our 1 A )
results. 1. The bit error rate, %, MSE = HW ZZ [Xi’j - XW}
where || denotes rounding function, measures =1i=1
how many bits are incorrectly recovered. 2. PSNR = 20log,(mazx) — 10log,(MSE)
Peak signal-to-noise ratio (PSNR) is a common (2MXM;2 + Cl)(2o'XX +ca)
metric used to measure image distortions be- SSIM = (12 2 p) 2

> px +pg +a)lox +o% +c2)
tween X and X and has been shown to be
correlated with human evaluation scores (Isola  Table 1: Metrics to evaluate image quality. Note
et al, 2017). 3. Structural Similarity Index that ¢y, c5 are small stabilization constants.
(SSIM) is another metric used to measure the
similarity between two images. SSIM differs
from PSNR in that it tries to capture the change in structural information as opposed to considering
pixel-wise changes. PSNR and SSIM between two images X and X with maximum possible pixel
value maxx, averages f, fi, standard deviation o, & and co-variance o y % are defined in Table 1.

4 STEGANOGRAPHY RESULTS AND DISCUSSION

Experimental Setup We evaluate FNNS on three diverse datasets — a scenic image dataset
Div2k (Agustsson & Timofte, 2017), a 2D object detection dataset MS-COCO (Lin et al., 2014) and
a human face dataset CelebA (Liu et al., 2015). For each dataset, we use the provided test/validation
images (if unavailable, we use the first 100 images in the dataset for validation). We randomly

>We also explored the use of fully connected networks but found them to yield far higher error rates, while
being slower to be optimize and requiring larger amounts of memory.
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Error Rate (%) | PSNR 1 SSIM 1
Dataset Method Tbit 2bits 3bits 4bits | 1bit 2bits 3bits 4bits | 1bit 2bits 3 bits 4 bits
SteganoGAN | 3.04 736 8.84 10.00 | 25908 2553 25.70 2508 | 0.85 086 085 082
CelebA FNNS-R | 0.14 180 528 1517 | 39.79 35.12 3340 3253|096 089 084 079
FNNS-D | 0.00 0.00 000 3.17 | 36.06 3443 3005 3392|087 086 071 0.84
ENNS-DE | 0.00 0.00 0.00 258 | 21.16 20.85 20.67 21.03|0.71 0.68 063 064
SteganoGAN | 5.12 831 1374 2285 | 21.33 21.06 2142 2184 | 0.76 076 077 0.78
Divak FNNS-R | 002 0.8 329 10.88 | 3531 30.73 2899 28.60| 093 085 078 0.76
FNNS-D | 0.00 0.00 0.01 545 | 2930 2625 2290 2574 | 082 073 053  0.65
FNNS-DE | 0.00 0.00 001 175 | 18.54 18.02 17.16 17.38 | 0.60 053 039  0.60
SteganoGAN | 340 629 11.13 15.70 | 2532 2427 2501 2494 | 0.84 082 082 082
MS.COCO FNNS-R | 004 032 216 1038 | 34.68 30.79 2932 2822 | 091 084 079 0.74
ENNS-D | 0.00 0.00 0.0 13.65|37.94 3451 2777 3478|095 090 072 0.89
FNNS-DE | 0.00 0.00 0.00 174 | 2252 2235 21.02 2133|077 074 062 0.64

Table 2: Performance of FNNS and its variants with different bpp rates. All values shown are
averaged over 100 images. We bold the lowest error rate numbers up to statistical significance. Note
that the 0.00 numbers are exactly zero.

initialized the message bit strings; each bit in the string is independently sampled from a Bernoulli-
distribution with probability % 3 The hyper-parameters used for Algorithm 1 are as follows: per-
turbation bound e = 0.3, optimization steps n = 100, and L-BFGS iterations £ = 10 with early
stopping if the output has zero error. * In cases where the image quality of X is poor, we restart
optimization with a different learning rate . Concretely, we set the learning rate to 0.1 and change it
to 0.05 or 0.5 if the output image gets a PSNR lower than 20. We train SteganoGAN models for only
one epoch for FNNS-D and FNNS-DE, as we observe that a fully-trained (32 epochs) SteganoGAN
decoder over-fits to its training objective such that it’s hard to use it for FNNS. Appendix G shows
the result of using SteganoGAN models trained for 32 epochs.

Quantitative Comparison. We compare FNNS with SteganoGAN, the current state-of-the-art
method, in Table 2. ° In addition (not shown in the table), we also compare with steganography
methods that hide lower payload messages (thatis < 0.5 bpp messages): HUGO (Pevny et al., 2010),
UNIWARD Holub et al. (2014), WOW (Holub & Fridrich, 2012) and HiDDeN (Zhu et al., 2018).
These methods can achieve an error rate of 0% but only for < 0.5 bpp messages. In contrast, FNNS
also achieves 0% error for significantly higher bit rates as shown in Table 2. FNNS-D achieves the
best performance in terms of both low error rates and good image quality. FNNS-DE is also able to
achieve error rates of 0%, but the corresponding image quality is worse when compared to FNNS-
D. From Table 2, we also see that for Div2k it is hard to achieve 0% error with 3 bpp. Div2k is a
small dataset with only 800 images and as a result there is not enough diversity to train a flexible
SteganoGAN model; this is evidenced by the fact that 0% error for Div2k with 3 bpp can be achieved
by using a model trained on MS-COCO.

Qualitative Comparison. Several qualitative examples
are presented in Figure 2 (more images from all the
method variants can be found in Appendix A). Even with
4 bpp information hidden, the cover and stenographic im-
ages look identical. There are a few examples where the
stenographic images look pixelated, especially when a
random network is used. This is either because the image
is over-optimized to get a low bit error rate or because of Figure 3: An Example of artifacts
a bad random seed. To produce a better stenographic im- that arise when using an out-of-domain
age, the random network can be re-initialized (if using a model. Left: original image; right:
random network), the optimization can be stopped earlier a steganographic image generated from
or the hyper-parameters of FNNS can be changed slightly =~ SteganoGAN.

(in order to change the optimization problem).

Domain independence. The performance of trained encoder-decoder models like SteganoGAN
degrade for out-of-domain cover images. For example, a SteganoGAN (Zhang et al., 2019a) model
trained on Div2k images (which contains primarily landscapes) produces noticeable artefacts when

3We did not observe that any of the randomly initialized strings are harder. But, it was harder to optimize

an all Os or all 1s message with some decoder initializations.
*We continue optimizing for 25 steps after achieving 0 error in order to ensure that even after converting X

into integer color values (integers between 0 to 255), F/(X) = M.
SResults with higher bpp are shown in Appendix F.
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tested on facial images from CelebA (Figure 3). The only recourse to correcting artifacts or quality
would be to train another model with in-domain data. In contrast, FNNS-R is completely domain
independent. Although FNNS-D uses a trained decoder, we find it to be just as robust against domain
shift. We explain these findings by the fact that the secret message is hidden through an optimization
procedure that is very robust to the exact filter values of the decoder network.

Optimization time. Most encoder-decoder deep stenography methods require many hours of
training on hundreds of images. However, once trained, it takes less than a second for inference
with the model given any cover image and message. FNNS-D and FNNS-DE perform a per-image
optimization process for encoding a message in an image and this takes on average 10 seconds for
1-2bpp and 20 seconds for 3-4bpp. For FNNS-R encoding a message takes about 3 minutes because
optimizing the random network is a harder task. Appendix C has a table showing the amount of time
required to use each method variant with different bpp rates.

JPEG Compression. A desirable property for any “opp | Error Rate (%) PSNR SSIM
steganography system is robustness against lossy image 0.1 0.06 229 049
compression. Unfortunately the goal of imperceptibil- 8-§ 2-3‘5‘ g”{g 8-12

ity is inherently at odds with most image compression 10 3203 2265 048
methods, which by design aim to remove imperceptible,

and therefore unnecessary, information. JPEG ( ,  Table 3: Performance of JPEG-resistant

) is a lossy compression method for digital images FENNS on MS-COCO. FNNS achieves
that transforms an image into frequency space and re- Jow error rates when the bpp rate is low.

moves high frequency components via quantization and

rounding. Past work has shown that adversarial perturbations can be removed via JPEG compres-
sion ( , ) and trained encoder-decoder steganography networks also fail to be
resistant to JPEG compression. Modifications to the loss functions can improve resistance to com-
pression, but significantly increase error rates. We can improve the robustness of FNNS to JPEG
compression by adding a JPEG layer (with quality factor 80) in our optimization pipeline, in which
the back-propagated gradients are approx1mated with identity transformation (

We evaluate on MS-COCO and show results in Table 3. Although we can successfully encode 0. l
bpp (enforcing BCE loss on 10% of pixels) at only 0.06% error, it is fair to say that bit-rates beyond
0.5 bpp are currently still out of reach. Alternative approaches that we may explore in the future
include adopting the Shadow Attack approach from ( , ) to find larger semantically
meaningful perturbations and incorporating global smoothness constraints.

5 STEGANALYSIS

Steganalysis tools are used to identify whether an image Method | 1bpp 2bpp 3bpp 4 bpp
has a hidden message. Broadly, these tools can be divided FNNS 8 18 22 31
into two categories — statistical and neural steganalysis. ~ FNNS-D |17 13 15 8

c . FNNS-DE 2 3 0 0
The former uses statistical methods to detect steganogra-
phy, while the latter trains a neural network to distinguish

between natural images and steganographic images. Table 4: Detection Rates (in %) ob-
o i tained by using StegExpose on CelebA
Statistical steganalysis methods were developed to detect  gteganographic images. Lower is better.

LSB (least significant bit) steganography (

) in lossless images. ( ) presents StegExpose a library combining many existing
steganalysis techniques including Sample Pairs ( , ), RS Analysis (
R ), Chi Squared Attack ( s ), and Primary Sets (

). We show the detection rate of StegExpose for the Div2K dataset in in Table 4. As seen in
the table, some images are detected, but the detection rates are low in comparison with traditional
methods that are detected with an accuracy of over 75% ( s ). It is worth noting that
even if the image is detected as stegnographic, messages cannot be accessed if they are encrypted.

Neural steganalysis makes use of recent advances in deep learning to detect images with hidden
information ( , ). Neural networks are pow-
erful and are capable of accurately detectlng steganographlc images from most ex1st1ng methods,
even when they hide less than 0.5 bpp of information. Recent work has explored using signal from
steganalysis systems in the encoding process to evade detection ( , ; ,
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, ). Along similar lines, we use the gradient signal from a differentiable
steganaly51s network, SiaStegNet( , ), and include its classification score as an aux-
iliary detection loss in FNNS optimization, and find perturbations such that SiaStegNet does not
classify the image as steganographic. We evaluate this method’s feasibility and compare results in
Table 5. The detection rates are shown in the right most section of the table. Since SiaStegNet per-
forms random cropping when loading the image, it is hard to guarantee 100% detection avoidance.
Still, with < 2 bpp, we see that FNNS achieves 0.0% error rate, while 80% of generated images
can successfully evade detection. Furthermore, the weight for this detection loss can be adjusted to
obtain higher quality images with a slightly higher error rate (see Appendix H). We also present
the detection results for hiding < 1 bpp of information in Appendix H. In future, we would like
to investigate to what extent we can evade detection by black box steganalysis networks and find
robust defenses against them.

Error Rate (%) | PSNR 1 Detection Rate (%) J.
Ibit 2bits 3bits 4bits | 1bit 2bits 3bits 4bits | Ibit 2bits 3bits 4 bits
CelebA 0.00 0.00 0.00 0.00 | 21.04 20.60 20.18 19.70 | 13 30 58 100
Div2k 0.00 0.00 0.00 0.02 | 20.32 18.07 17.66 18.23 3 20 100 100
MS-COCO | 0.00 0.00 0.00 0.01 | 2228 2235 2130 21.36 7 12 14 33

Dataset

Table 5: Performance of FNNS-D with auxiliary detection loss from SiaStegNet ( , )
trained on MS-COCO. The detection rate is measuring the number of steganographic images that
can be detected as steganographic by SiaStegNet.

6 APPLICATION - FACE ANONYMIZATION

Original Image Public Image Recovered Image

As shown in table 2, we can reliably obtain 0%
error rates for hiding 3 bpp messages. The abil-
ity to recover the bit string with zero error al-
lows us to encrypt the message, which is cur-
rently the only provable way to safeguard pri-
vate information. This property enables us to
create a protocol where an encrypted message
or image is sent from one party to another, and
the file is itself an indistinct looking image —
allowing users to use photo sharing webpages
or social media as a medium of transmission.
Below, we describe how FNNS can be used
to create a protocol to share images that are
anonymized to the public but not to trusted re-

cipients. L A
\/- \/‘ )

Motivation. Social media platforms have be-
come a central part of our communication, with
photo sharing as one of the center activities

Figure 4: The left column contains original im-
ages. The middle column shows the result of re-
(e.g. Instagram, Facebook). There are how- placing the face with a fake face, which contains a
ever well documented dangers Wlth SUCh, prac- encrypted form of the original face steganograph-
tices. If photos become publicly ayaﬂable, ically hidden through FNNS. The right column
the owner loses control. Snapshots intended shows the image recovered by ENNS decoding the

to ,z,imu§e friends or grandparents can “go vi- encrypted face, decrypting and re-inserting it.
ral”, with traumatic consequences for individ-

uals portrait in the photos. Further, public photos are quickly indexed by image search engines (e.g.
https://clearview.ai/)and can haunt individuals decades later. We use FNNS to facilitate
a mechanism that allows users to share pictures with their friends on social media, but if these are
leaked (e.g. through wrong privacy settings on social media pages, or careless behavior), the identity
of the people in the images is preserved.

FNNS face anonymization. Current methods for face anonymization either significantly alter the
image by using modifications (like blurring or masking) ( s ; s ),
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Original Image Public Image Recovered Image
v -

Figure 5: Example of anonymizing multiple faces in an image. In this example each private face is
hidden within the corresponding fake face that replaces it.
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Compressed and
encrypted code

Private Face hidden encrypted code

Figure 6: Pipeline for FNNS face anonymization.

or remove the face completely and replace it with a “fake” face ( , ). The former
approach can still leak information and cause the quality of the image to degrade, and the latter
approach non-reversibly changes the image. We propose a novel approach for face anonymization
using FNNS (see Figure 4).

We make use of DeepPrivacy ( , ) to detect faces in the original image (left) and
replace them with plausible looking GAN-generated faces to obtain an anonymized public image
(middle image). Because the original face is cut before a fake face is generated, the public image
leaks no information about the sensitive face and can safely be shared. Since FNNS can reconstruct
the message perfectly, each original private face can be hidden inside its corresponding fake face in
the public image. To ensure the private face is secure, we first compress it (e.g. using JPEG ( ,
)) and then encrypt it into a cryptographically secure bit string (e.g. using AES ( ,
)). The intended recipient can decode this bit-string, using the decoder network and decrypt
the image with a private key to obtain the recovered image (right image). Any third party will only
observe the public image without any access to private information. See Figure 6 for a layout of
the application pipeline. Because all information is hidden inside the faces in the public image, it is
naturally compatible with existing image sharing pages, and the encryption / decryption portion can
be realized easily in practice e.g. through a simple browser plugin. As each fake face contains all
the information required to reconstruct the original private face, this approach can be applied to an
arbitrary number of (non-overlapping) faces in an image. An example is presented in Figure 5.

7 CONCLUSION

In this paper, we propose a novel and effective algorithm for image steganography based on tech-
niques from the adversarial attacks literature. We show that our method can achieve very low error
rates while making visually unnoticeable changes to the input image. In contrast to prior work, we
are able to achieve error rates of exactly 0% for up to 3 bpp, which in turn enables new applications.
In the future we plan to explore other variants and extension of FNNS. One useful variant would
be to explore new spaces in which to conduct the optimization. Currently we use RGB space, but
other color spaces like YCbCr or non-spatial spaces like the frequency space can be used as well
with FNNS. Using different spaces could result in better image quality and could allow for easier
encoding of constraints. For instance, to find perturbations robust to JPEG compression, FNNS can
be used in only the low frequency region. In the future, we would also like to explore meta-learning
algorithms for finding networks that are conducive to FNNS optimization.
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ETHICS STATEMENT

Steganography is a tool and it’s usage depends on the user. Steganography can potentially be used
for activities with negative societal impact, such as hidden communication for criminal activities,
or espionage. But it can also be used for beneficial applications like preventing copyright infringe-
ments through watermarking, tracing illegal images on social media or anonymizing publicly shared
images (as shown in the paper).

REPRODUCIBILITY STATEMENT

For our experiments, we use three publicly available datasets as mentioned in section 4. We use
common metrics to evaluate our results and these metrics are explained in subsection 3.1. Our
method is outlined in Algorithm 1 and we have also clearly described all the hyper-parameter values
we used to obtain our results in section 4. Our code is available at Our code is available at ht tps :
//github.com/varshakishore/FNNS.
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A ADDITIONAL QUALITATIVE EXAMPLES

A.1 EXAMPLES FROM FNNS-R

Steganographic Image
(3 bpp)

Steganographic Image
(1

Steganographic Image
bpp) (2

Steganographic Image
bpp) (4

bpp)

Cover Image

Error: 0.14%, PSNR: 36.61 Error: 1.29%, PSNR: 31.67 Error: 0.79%, PSNR: 21.67 Error: 24.93%, PSNR: 35.1

Error: 7.56%, PSNR: 31.12

Error: 0.0%, PSNR: 36.91 Error: 0.04%, PSNR: 32.73

Error: 2.04%, PSNR: 31.25 Error: 11.77%, PSNR: 30.83

Error: 0.0%, PSNR: 36.96

Error: 0.0%, PSNR: 21.18 Error: 0.13%, PSNR: 21.76 Error: 3.97%, PSNR: 22.01

Figure 7: Examples of images with different amounts of hidden information. The first two images
are from CelebA, the next two are from Div2k and the last two are from MS-COCO. PSNR values
vary mostly due to the randomness of the networks. For images with low PSNR values the quality
improves with a re-initialized network.
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A.2 EXAMPLES FROM FNNS-D

Steganographic Image
(1 bpp)

Steganographic Image
(2 bpp)

Steganographic Image
(3 bpp)

Steganographic Image
(4 bpp)

Cover Image

Error: 0.0%, PSNR: 35.71 Error: 0.0%, PSNR: 32.33 Error: 0.0%, PSNR: 27.2 Error: 3.11%, PSNR: 29.39

Error: 0.0%, PSNR: 38.65 Error: 0.0%, PSNR: 36.69

Error: 0.0%, PSNR: 40.73 Error: 0.0%, PSNR: 37.82 Error: 0.0%, PSNR: 28.48 Error: 16.5%, PSNR: 37.26

Figure 8: Examples of images with different amounts of hidden information. The first two images
are from CelebA, the next two are from Div2k and the last two are from MS-COCO.
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A.3 EXAMPLES FROM FNNS-DE

Steganographic Image Steganographic Image
(1 bpp) (2 bpp)

Steganographic Image
(3 bpp)

Steganographic Image
(4 bpp)

Cover Image

Error: 0.0%, PSNR: 22.0 Error: 0.0%, PSNR: 22.22 Error: 0.0%, PSNR: 21.72 Error: 2.13%, PSNR: 22.59

Error: 0.0%, PSNR: 24.09 Error: 0.53%, PSNR: 24.55

Error: 0.0%, PSNR: 27.73 Error: 0.0%, PSNR: 26.77 Error: 0.0%, PSNR: 25.53 Error: 0.43%, PSNR: 25.93

Figure 9: Examples of images with different amounts of hidden information. The first two images
are from CelebA, the next two are from Div2k and the last two are from MS-COCO. As seen in
row 1 or row 4, the color of the image changes sometimes. This is because the trained Steganogan
network learns that information can be hidden by changing the color and maintaining the structure.
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B RANDOM DECODER ARCHITECTURE

The decoder introduced in section 3 can be any net-
work that takes an image as input and produces suf-
ficiently many binary outputs, but some architectures
are better suited for the task at hand. Unlike most
prior work, that explores networks that are robust to
adversarial attack ( s ), we find ourselves
looking for architectures that are susceptible to it.
Consequently, in our search for a suitable decoder, we
empirically explore many network architectures with
different network depth, width, normalization and ac-
tivation functions and evaluate them w.r.t. pixel error

Average percent error rate (3 BPP)

Width (num hidden units)
128 64 32 16

256

9
Depth (num conv layer blocks)

rates, PSNR, and SSIM. For the experiments in this
sections, we test different architectures using 100 im-
ages from the training set of the Div2K (

, ) dataset, with dimensions 512x512x 3
unless otherwise noted. Since, our input consists of
images, we focus on convolutional networks (CNN) ( ,

Figure 10: Error rates (%) of 3 bits based on
various widths and depths. We calculate the
error rate on average over 100 images from
Div2k. The lower the better.

)0

Network depth and width. Figure 10 presents results of convolutional networks with varying
height and width, and their respective error rates. Similar to the finding in ( ), we
observe that wider networks are less robust and that increasing the width can lead to networks that
are more sensitive to perturbations. However, we notice that the opposite is true for depth; the deeper
the network, the less sensitive it is to perturbations. Although a width of 256 seems clearly superior,
it is fair to say that the optimization is also slower. Finding a perturbed version of a 512 x 512 x 3
image with 3 bpp takes 1 minute for network with a width of 32, but 6 minutes with width 256 (on
a NVIDIA GTX 1080 GPU).

Normalization. As the

weights of the decoder network ~ Normalization | Error Rate(%) { | PSNR(dB)1 | SSIM?T
are set randomly, the gradients None 36.1+£9.5 15.8 0.35
can have high variance. In PONO 154 £ 8.6 17.7 0.34
Table 6 we experiment with two IN 25+£27 23.9 0.55

types of normalization layers
that do not require mini-batch
statistics. We include Positional ~average across 10 images.

Normalization (PONO) ( , ) and Instance normalization (IN) ( , )
in our model. The results show that both normalization methods improve the error rates and both
visual metrics, but IN performs the best in this setting. We hypothesize this is because normalization
stabilizes the gradients and brings activations near the activation tipping points, which eases the

Table 6: Results with different normalizations. We calculate the

optimization process. Unlike IN, PONO removes the structural statistics ( , ), which
might be informative to create small perturbations.

Activation.  One important design  —3 o = F o rate (%) T T PSNR(AB)T | SSIMT
choice for neural networks are the ac-

tivation functi In Table 7 sh None 1.8 £3.9 20.9 0.39
olte for vare D o ReLU 7.1+ 9.6 19.3 0.29
results for various popular choices. akyReLU 20443 247 057
We observe that LeakyReLu results Si d 253 141 395 096

in better performance when com- 18mot ’ ’ ) )

m Tanh 394416 455 0.95

pared to other activations like sig-
moid or tanh. The PSNR and SSIM
values for sigmoid or tanh are (triv-
ially) high because the optimization
fails and very few changes are made

Table 7: Error rates of different activation functions. We
conceal 3 bits for each pixel. The model without any activa-
tion function performs best.

5We have also explored the use of fully connected networks but found them to yield far higher error rates,
while being slower to optimize for.
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to the input image. Omitting the activation layer, despite having low error rates, produces images of
inferior quality. Adding the ReL.U non-linearity makes the optimization easier and more stable.

The different architectures have different trade-offs in terms of memory, time, and performance.
Wider and deeper networks require more time and memory. For our random network experiments,
we settled on four convolutional layers (three intermediate layers and one output layer) with 128
hidden units each, along with instance normalization and ReLU activation.

C TIMING

For all our reported results, we used images with have a resolution of 512 x 512 (this which results
in 1,048,576 hidden bits at 4-BPP). Table 8 shows the amount of time required to encode a message
with different FNNS variants and different bit rates (with standard deviations in parentheses) on
a NVIDIA GTX 1080 GPU. We also explored using images of different sizes and found that the
encoding time scales approximately linearly with the number of pixels; for every factor of 4 increase
in the number of pixels, the encoding time increases by a little less than a factor of 4. Note that the
encoding optimization is significantly slower if run on a CPU. We have currently not optimized the
code explicitly for CPU or mobile GPU cards, and this is an interesting avenue for future work.

Time in seconds

Dataset Method Thit 2 bits 3 bits Ihits
FNNS-D | 9.77 3.46) | 1342 (5.17) | 30.81 (21.20) | 47.39 (15.32)
CelebA | ENNS-DE | 7.47 (220) | 11.31(4.90) | 35.65(12.32) | 45.39 (16.78)
FNNS | 45.94 (5.23) | 124.85(11.29) | 151.94 (7.42) | 152.18 (8.15)
FNNS-D | 4.95(1.08) | 1053 (9.9) | 4439 (5.27) | 44.29 (5.40)
Div2K | FNNS-DE | 4.86(0.54) | 8.09(5.05) | 43.82(4.75) | 44.13 (6.73)
FNNS | 42.18 (4.17) | 114.44 (6.48) | 156.91 (3.88) | 159.19 (4.63)
FNNS-D | 7.41(2.50) | 10.61(5.9) | 37.72(15.27) | 48.39 (9.40)
MS-COCO | ENNS-DE | 5.13(1.97) | 7.04(2.34) | 32.76 (16.20) | 48.29 (9.63)
FNNS | 47.35 (4.23) | 131.85(12.31) | 182.47 (6.49) | 184.39 (5.74)

Table 8: Time in seconds for different methods

D UNCONSTRAINED OPTIMIZATION

As we saw in Equation 1, we have two constraints- 1) to ensure that the pixels are between 0 and
1 and 2) to ensure that no pixel changes by more than e. We tried translating this optimization
problem defined in Equation 1 to an unconstrained optimization problem by reparameterizing to
check if unconstrained optimization yielded better results. Constraint 1 can easily be relaxed by
reparameterizing X € [0, 1]7*W>*3 10 Z € RH*W>3 by applying an inverse sigmoid transform
Z = o~ }(X) and optimizing Z instead of Z. We can also relax the second constraint with a
slightly more involved process by computing the softmax over the set of admissible pixel values.
However, we see no improvements by using these relaxations. We believe that the main source of
error is not the projection step (that is clipping), but rather the restrictions (subpixels remain in [0,1]
and change by at most d) on the perturbation. Regardless of the parameterization, these restrictions
remain and in some cases will not be satisfiable.

E STEGANOGAN HIDDEN LAYER SIZE

Table 9 shows difference in performance when using 32 hidden channels vs 128 hidden channels.
As seen in the table the difference is quite small. However, using networks with a smaller hidden
size speeds up both the training of the network and using it for FNNS. Hence, for FNNS we use
networks with 32 hidden channels.
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Method error rate (%) PSNR SSIM
THit  2bits 3bits  4bis | Tbit  2bis  3bits  4bits | Tbit  2bits  3biis  4bits
SteganoGAN - 15 1) g3 574 2085 | 2353 2366 2286 2287 | 083 082 08 082
32 hidden units

SteganoGAN - 15 07 o098 1811 2493 | 2098 2152 2154 2175 | 076 076 077 078
128 hidden units

Table 9: Performance of SteganoGAN with 32 hidden units and 128 hidden units.

F HIGHER BITS PER PIXEL

Table 10 shows the performance of FNNS with large message payloads (5-6 bpp). SteganoGAN
results in a very high error rate. FNNS-based methods can achieve lower error rates with its op-
timization. However, in some cases the image quality is not great. Since the SteganoGAN model
cannot encode and decode 5-6 bpp well, FNNS works better with randomly initialized weights than
with the pre-trained decoder.

Error Rate (%) | PSNR 1 SSIM 1

Dataset | Method |54 ™5 hits 6 bits | Sbit 6 bits

StcganoGAN [ 3215 31.16 | 1951 2182 | 0.74 0.79
ENNS-R | 1414 1627 | 18.68 17.86 | 0.18 0.16

Celeba FNNS-D 153 1841 | 1294 1299 | 0.07 0.07
ENNS-DE | 1595 17.88 | 1822 16.56 | 0.17 0.13
SteganoGAN | 3144 3535 | 20.05 2034 | 0.79 03

Divak ENNS-R | 13.01 1598 | 1671 1646 | 025 0.26

FNNS-D 18.12 19.67 1234 123 | 0.13 0.14
FNNS-DE 16.03 17.63 1474 1494 | 02 0.21

Table 10: Performance of FNNS and its variants with 5-6 bpp. All values shown are averaged over
100 images.

G OPTIMIZE FULLY TRAINED STEGANOGAN

For FNNS-D and FNNS-DE we used SteganoGAN models trained for 1 epoch as mentioned in
section 4. This ensured that the model was flexible enough to achieve 0% error. Table 11 shows
the result of using SteganoGAN models trained to completion for 32 epochs. As seen in the table,
the error rate decreases significantly for FNNS-D when compared with the numbers in Table 2.
The learning rate was set to 0.5 and the number of optimization steps was set to 200 when using a
SteganoGAN model trained for 32 epochs. All other hyper-parameters were the same as listed in
section 4.

o Error Rate (%) | PSNR SSIM

Dataset Method Thit  2bits 3bits 4bits | 1bit 2 bits STbits Zbits | 1bit 2bits 3 I)its T bits

SteganoGAN | 242 402 7.76 1056 | 2749 27.04 2664 26.73 | 088 0.87 084 0.8
FNNS-D | 0.00* 001 131 288 |27.30 2698 2656 2661 | 086 086 0.84 0.84

SteganoGAN | 3.94 736 884 10.00 | 2598 2553 2570 2508 | 0.85 086 085 0.82
FNNS-D | 1.00 088 273 338 | 2602 2554 2577 2508 | 0.84 085 085 0.8l

Divak | SteganoGAN | 512 831 1374 2285 | 2133 2106 2142 2184 | 076 076 077 078

FNNS-D | 0.00% 1.12 437 1196 | 21.01 2098 20.88 2127 | 0.71 074 067 068

mscoco

celeba

Table 11: Performance obtained when using a SteganoGAN trained for 32 epochs. In the table, *
implies that the value is 0 rounded to two decimal places but it is not exactly 0.

H STEGANALYSIS EVASION

In section 5, we see that we can add signal from SiaStegNet into the FNNS optimization process
by adding an auxiliary SiaStegNet loss term, to evade detection from SiaStegNet. In Table 12 we
follow the same setting and show results for hiding < 1 bpp of information. To hide less than 1 bpp
of information we only compute Lpcg with a subset of pixels in the image. We see that FNNS is
able to achieve 0.0% error rate and low detection rates for hiding < 1 bpp of information.
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Table 5 shows that the image quality is a little low when the additional SiaStegNet loss term is
added. To increase the image quality, we can decrease the weight on the SiaStegNet loss term (from
1000 to 100) and the results of doing so are shown in Table 13. This results in a slight increase in
the error rate but the error rate is still under 1% for <3 bpp.

Dataset Error Rate (%) | PSNR 1 Detection Rate (%) |
0.Ibit 0.2bit 05bit | 0.Ibit 0.2bit 0.5bit | 0.1bit 0.2bit 0.5 bit

CelebA 0.00 0.00 0.00 18.04 18.05 20.72 0 0 0

Div2k 0.00 0.00 0.00 25.02 2495 25.13 24 17 18

MS-COCO | 0.00 0.00 0.00 21.55  21.67 21.27 15 8 8

Table 12: Performance of FNNS-D with the auxiliary detection loss from SiaStegNet (

) for hiding < 1 bpp of information.

Dataset Error Rate (%) | PSNR 1 Detection Rate (%) |
” Ibit 2bits 3bits 4bits | 1bit 2bits 3bits 4bits | 1bit 2bits 3 bits 4 bits
CelebA 0.00 0.00 0.55 1.35 | 2642 19.28 18.66 25.07 | 24 52 66 93
Div2k 0.00 0.02 021 395 | 26.15 19.12 1923 21.14 | 37 69 84 99
MS-COCO | 0.02 0.01 0.01 13.69 | 36.27 30.29 18.37 34.87 2 19 49 55

Table 13: Performance of FNNS-D with a lower weight on auxiliary detection loss from SiaSteg-

Net (

b}

) trained on MS-COCO.

22



