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ABSTRACT

Deep learning’s success relies heavily on the availability of extensive labeled
datasets. Compared to 2D data, acquiring 3D data is substantially more expensive
and time-consuming. Current multi-modal self-supervised approaches often in-
volve converting 3D data into 2D data for parallel multi-modal training, ignoring
the prior knowledge of extensively trained 2D models. Therefore, it is important
to find ways to utilize 2D feature priors to facilitate the learning process of 3D
models. In this paper, we propose MV3D-MAE, a masked autoencoder framework
that utilizes a pre-trained 2D MAE model to enhance 3D representation learning.
Initially, we convert single 3D point clouds into multi-view depth images. Building
on a pre-trained 2D MAE model, we adapt the model for multi-view depth image
reconstruction by integrating group attention and incorporating additional atten-
tion layers. Then we propose a differentiable 3D reconstruction method named
Mv-Swin, which maps the reconstructed results back to 3D objects without using
camera poses, thereby learning 3D spatial representations. Thus, MV3D-MAE,
through the bidirectional transformation between 2D and 3D data, mitigates the
differences between modalities and enhances the network’s representational perfor-
mance by leveraging the prior knowledge in the pre-trained 2D MAE. Our model
significantly improves performance on few-shot classification and achieves SOTA
results in linear Support Vector Machine classification. It also demonstrated com-
petitive performance in other downstream tasks of classification and segmentation
in synthetic and real-world datasets.

1 INTRODUCTION

3D perception has emerged as a central focus in the field of computer vision research. Inspired by the
self-supervised training of Mask Autoencoders (MAEs) (He et al., 2022) for 2D images, researchers
are now expanding their efforts to develop an array of self-supervised models for 3D perception tasks
(He et al., 2022; Zhang et al., 2023; 2022; Pang et al., 2022; Yu et al., 2022). These models begin
with a pre-training phase, utilizing masked point cloud data for reconstruction purposes, before being
fine-tuned to excel in various downstream tasks. The potential of these 3D masked models will play a
significant role in enhancing our understanding of the 3D world.

Most current 3D masked models, such as PointBert (Yu et al., 2022) and PointMAE (Pang et al.,
2022), are inspired by the 2D MAE model. They encode 3D point clouds into a sequence of tokens
after patching, followed by random masking. Moreover, these models utilize a transformer-based
encoder-decoder model to restore masked point cloud features to complete point clouds. Recently,
multi-modal point cloud MAEs like joint-MAE (Guo et al., 2023), and I2P-MAE (Zhang et al., 2023)
have emerged (Fig. 1(a)). Joint-MAE converts point clouds into images and conducts joint 2D and
3D training through an MAE structure. On the other hand, I2P-MAE uses converted images as guide
masks for directing the masking and reconstruction of point clouds. However, there are limitations
to consider for these approaches. Using multi-view 2D images to represent 3D objects inevitably
results in 3D geometry information loss. Moreover, the aforementioned methods typically focus
solely on the mapping transformation from 3D to 2D, neglecting the alignment process required
to reconstruct 3D objects from 2D images. Another kind of approach for multi-modal pre-training
resembles PointCLIP V2 (Zhu et al., 2023), incorporating contrastive learning (Fig. 1(b)). The most
recent method, MM-Point (Yu & Song, 2024), converts point clouds into multi-view 2D images and
3D point clouds for contrastive learning. The inter-modal contrastive learning across 2D and 3D
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Figure 1: Comparison of 2D-3D MAE, 2D-3D contrastive learning, and MV3D-MAE (Ours).

domains enriches the feature representation. However, none of the aforementioned methods explicitly
execute modality transformation between 2D and 3D, nor do they fully exploit the robust capabilities
of existing 2D pre-trained models. Therefore, we raise an evident question: Can a method leverage
pre-trained 2D MAE networks, facilitating mutual transformation between 2D and 3D, to achieve
self-supervised pre-training for 3D representation?

To tackle this issue, we introduce a novel 2D-3D architecture, MV3D-MAE (Fig. 1(c)). First, our
model converts 3D point clouds into multi-view 2D depth images. Then we apply a pre-trained
2D MAE to conduct self-supervised learning on 2D depth images. Subsequently, a 2D-to-3D
differentiable model reconstructs the depth maps back into 3D point clouds and does supervision.
Specifically, we employ a depth rendering model akin to Point-CLIP V2 (Zhu et al., 2023), generating
depth maps from ten perspectives of a single point cloud object, each capturing distinct 3D features.
Subsequently, these depth maps are processed through masked reconstruction with a ViT-base MAE
model, which can be specifically fine-tuned for this task. However, the fundamental 2D MAE can not
handle multi-view images directly. Therefore, we introduce group attention to aggregate geometric
features from multiple perspectives. Additionally, we incorporated new attention layers into the MAE
encoder to adapt the model to the reconstruction of depth images. Traditional methods transform
from multi-view 2D depth images to 3D point clouds through discretized geometric mapping, which
is non-learnable. Additionally, this mapping imposes strict requirements on both camera poses
and data accuracy. To further address the challenge while ensuring the shape features of the point
cloud involved in the reconstruction process, we introduce the MV-Swin module. This module is
differentiable and merges multi-view depth map features into explicit 3D shapes without requiring
camera poses. This capability facilitates end-to-end 2D to 3D learning during pre-training and ensures
the alignment between 2D and 3D data. For downstream tasks, we utilize only the MAE encoder,
supplemented by a task-specific head. This design not only leverages a pre-trained 2D MAE model
as a strong 2D prior for self-supervised 3D representation training but also maximally mitigates the
modality differences between 2D and 3D.

Our model is pre-trained on the ShapeNet (Chang et al., 2015) dataset. We then conduct a few
downstream tasks, as classification tasks on ModelNet (Wu et al., 2015), ScanObjectNN (Uy et al.,
2019) dataset, and segmentation tasks on the ShapeNet Part dataset (Yi et al., 2016) dataset. And we
do more experiments in real-world scenarios like 2D-3D retrieval and classification of incomplete
datasets. Our main contributions are summarized as follows:

• We leverage a pre-trained 2D MAE model as the 2D prior to enhance the feature learning
from multi-view 2D depth images, which are derived from projecting 3D objects. To adapt
multi-view depth images to MAE, we introduce group attention after patching images and
more attention layers in the MAE encoder, respectively.

• We introduce a novel multi-view reconstruction module, MV-Swin, which enables the
transformation of multi-view depth images into point clouds. MV-Swin facilitates the
aggregate of multiple depth maps, ensuring a smooth transition from 2D to 3D while
aligning features across 2D-3D modalities.

• Through the 2D-3D pre-training with MV3D-MAE, we achieve excellent results in down-
stream tasks. Notably, in few-shot classification tasks, our model significantly outperforms
other 2D-3D self-supervised models, which proves pre-trained 2D MAE is the effective 3D
representation learner.
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2 RELATED WORK

Self-supervised Point Cloud Learning. Supervised learning for 3D point clouds has gained traction
since the emergence of PointNet (Qi et al., 2017a). However, due to the limited size of 3D point cloud
datasets, supervised 3D models have struggled with generalization problems (Uy et al., 2019). To
tackle this challenge, self-supervised learning has emerged as a prominent approach for its ability to
leverage the vast amounts of unlabeled data effectively (Pang et al., 2022). Self-supervised learning
approaches for 3D point clouds can generally be categorized into two classes: one focuses on
reconstruction, primarily leveraging masked models, while the other concentrates on discrimination,
predominantly employing contrastive learning designs. Although a few 3D models employ contrastive
learning for self-supervised learning (Du et al., 2021; Afham et al., 2022), the majority of models
still adopt the masked autoencoder (MAE) (He et al., 2022) approach. For example, Point-MAE
(Pang et al., 2022), Point-BERT (Yu et al., 2022), and Point-M2AE (Zhang et al., 2022) have
marked significant advancements in 3D MAE models. Point-MAE introduces a novel approach
by applying the concept of masking and reconstruction to point clouds, aiming to encode the
underlying structure of 3D data effectively. On the other hand, Point-BERT adapts the BERT (Devlin
et al., 2018) methodology from natural language processing to point clouds scenario, using masked
point prediction to capture the complex spatial relationships within the data. Meanwhile, Point-
M2AE (Zhang et al., 2022) adopts a multi-scale approach, applying hierarchical masking to point
clouds before proceeding with their reconstruction. However, merely learning 3D modality might
neglect the implicit semantic and geometric correlations between 2D and 3D data. Compared to
these methods, our approach introduces a novel method that embeds 3D spatial features into the 2D
self-supervised pre-training process. This strategy innovatively leverages the strengths of both 2D
and 3D, offering a comprehensive understanding of the 2D-3D features underlying data.

2D-3D Representation Learning. Recent research in self-supervised learning has been taking
advantage of the multi-modalities nature of data. These methods primarily involve converting 3D
data into 2D data and then applying models to explore the intrinsic relationships between modalities.
PiMAE (Chen et al., 2023) introduces a self-supervised pre-training framework based on MAE that
fosters interaction between 3D and 2D data to enhance performance in downstream object detection
tasks. Joint-MAE (Guo et al., 2023), similar to PiMAE, starts by converting object point clouds into
2D images, followed by multi-modal self-supervised MAE pre-training. I2P-MAE (Zhang et al.,
2023) diverges from directly training with 2D images and 3D point clouds together. Instead, it uses
2D images to guide the creation of 3D masks while concurrently reconstructing 2D features. Differing
from previous approaches, MM-Point (Yu & Song, 2024) first transforms 3D objects into multi-view
images, then employs contrastive learning between these multi-view images and 3D data to learn the
similarities between modalities. These methods all leverage 2D data to enhance the performance of
3D tasks, yet they overlook the potential of utilizing already well-developed pre-trained 2D models to
improve 3D task outcomes. Moreover, many approaches consider converting 3D data into multi-view
2D data, such as MM-Point (Yu & Song, 2024) and PointCLIP V2 (Zhu et al., 2023), and align the
2D-3D feature with the semantic feature as an implicit way. A valid method is lacking, which can
map 2D data back to 3D point clouds to do the explicit alignment in an end-to-end manner. Therefore,
in our approach, we propose a method that utilizes the prior 2D information from a pre-trained 2D
MAE model to enhance the reconstruction of multi-view images. Then we introduce an Mv-Swin
module that maps 2D back into 3D explicitly.

3 METHOD

In this section, we elaborate on the pipeline of our proposed method MV3D-MAE (Fig. 2). We
describe the transformation of 3D point clouds into multi-view depth maps in Sec. 3.1, the pre-
training process using a pre-trained 2D MAE framework in Sec. 3.2, and the MV-Swin architecture
for mapping multi-view 2D images back to 3D objects in Sec. 3.3. Additionally, we introduce
reconstruction loss for both 2D and 3D data in Sec. 3.4.

3.1 FROM 3D TO MULTI-VIEW 2D

The transformation of 3D data into 2D data is a pivotal aspect of our proposed method. Traditional
methods often rely on projecting point clouds to depth maps, yet they yield sparse and discontinuous
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Figure 2: The pre-training pipeline of MV3D-MAE. Given a point cloud object p, we apply a
3D-to-2D projection function G(·) to obtain multi-view depth images mv. Using a pre-trained 2D
MAE, we reconstruct these images by dividing them into patches, adding a group attention layer,
and performing random masking before passing them through the MAE’s self-attention layers. The
decoder follows the same structure as the 2D MAE. After reconstructing mv′, we use Mv-Swin to
transform mv′ back into a 3D object p′, completing the supervision process.

depth images, hindering subsequent 2D feature learning. Moreover, the discrete nature of their
mapping process is incompatible with neural network modeling. Therefore, we seek a continuous
mapping function, denoted as G, capable of rendering a single 3D object p into multi-view depth
images mv = {mv1,mv2, ...,mvn}. This function facilitates a smoother transition from 3D to 2D data,
supporting our objectives without complicating the re-mapping to 3D point clouds.

We adopt the 3D-to-2D rendering pipeline from PointCLIP V2 (Zhu et al., 2023) as our mapping
function G. This pipeline involves four steps: Voxelize, Densify, Smooth, and Squeeze. Through this
process, our pipeline effectively projects a single 3D point cloud object into multi-view depth images
with smoothed and continuous shapes, facilitating seamless integration into our framework.

3.2 PRE-TRAINING WITH 2D-3D DATA

Multi-view consistency. After acquiring the multi-view depth data, the subsequent step is to
reconstruct the multi-view 2D depth images using the MAE framework. Unlike RGB images, multi-
view depth images present two distinct characteristics: (1) the need to extract features consistently
across multiple views; (2) their single-channel property.

To address these differences, we diverge from the traditional depth images. Firstly, we adjust the depth
of images by inverting the background color, opting for a default dark background. Additionally, we
replicate the single-channel depth image into three channels, treating it as a conventional three-channel
image for further processing.

Furthermore, to ensure consistency across multi-view images, we apply group attention to multi-view
images to aggregate features. The group attention mechanism GroupAttn(·) decomposes a tensor of
shape [g×n,cmv] into [g,n,cmv], where g is the number of groups, n is the number of views, cmv is the
feature channels, following the self-attention separately to each of the g groups. It’s important to note
that our group attention operates sequentially within one batch. This approach allows inter-group
perspectives to remain unaffected by others, while the intra-group multi-view attention ensures
consistency of geometric features across different views.

Tuning a pre-trained 2D MAE model. The pre-trained 2D MAE model (He et al., 2022), with
its proficiency in understanding features, textures, and patterns specific to 2D images, lays a solid
groundwork for feature extraction from depth images. Although depth images primarily focus on
spatial depth rather than color information, they possess patterns and structures that the MAE model
can skillfully decode. By converting 3D objects into multi-view depth images, employing an MAE to
handle these images facilitates the prior knowledge extended into 3D representation learning. This
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Figure 3: The overview of Mv-Swin to transform multi-view 2D to 3D. (a) Inspired by the point
cloud reconstruction process, we propose a novel 2D-to-3D reconstruction differentiable process,
Mv-Swin. (b) Our model, building upon the existing Swin Transformer block, introduces a Multi-
view Attention mechanism to aggregate features from multi-views. Finally, we use a decoder similar
to that used in point cloud reconstruction to rebuild the 3D feature f3D back into the point cloud p′.

approach not only leverages the strength of 2D insights but also bridges the gap to encompass 3D
data understanding, enhancing the model’s capacity for interpreting and representing 3D spaces.

To optimize the utilization of feature priors from the pre-trained MAE, we begin by integrating
its comprehensive pre-trained components, the embedding layer, encoder, and decoder into our
framework. This incorporation, enriched by the addition of a group attention module after the
embedding layer, refines the MAE structure for the specific task of reconstructing multi-view depth
images. Further, to bolster the encoder’s capability in extracting salient features from depth images,
we enhance its existing attention mechanisms by introducing extra, trainable multi-head attention
layers. Throughout the tuning process, we optimize all layers, drawing upon the 2D priors to
significantly refine the MAE model’s capability to adeptly navigate the nuances of multi-view depth
image reconstruction. This approach ensures that our model leverages the depth of 2D insights to
master the challenges of 3D representation learning.

Multi-view MAE pre-training pipeline. The whole self-supervise learning process of our multi-view
MAE can be described as follows: First, we divide our multi-view depth images mv into patches with
pre-trained convolution layers, in order to extract the patches’ feature as tokens. To accommodate
multi-view data, we employ a group attention mechanism GroupAttn(·) to ensure token consistency
across different views. Next, we introduce random masking of the 2D tokens with a high ratio, e.g.,
70%. This strategy challenges the model to reconstruct the missing information solely based on
a limited set of visible tokens, denoted as tv. Consistent with MAE’s design, we append the cls
token to tv and then feed them input into the MAE encoder. Inside the encoder, we initially utilize
pre-trained MAE encoder’s multi-head attention layers, denoted as M (·), to leverage the 2D prior
knowledge acquired by the MAE. Subsequently, we introduce a new set of multi-head attention layers,
represented as A (·). These layers are specifically designed to adapt the representation learning
process according to the depth images. The initial layers, M (·), serve as the foundation by providing
a comprehensive understanding of image features, which is essential for establishing a robust feature
representation baseline. Following this, the introduction of A (·) layers specifically addresses the
nuances of depth images, such as the importance of spatial relationships and depth value variations
across different image regions. The embedding embv can be formulated as:

embv = A (M (Concat(tv,cls))). (1)

Before feeding the token into the MAE decoder Dec, we concatenate the visible tokens embv, with
the masked tokens Tm. We utilize the pre-trained 2D MAE decoder to reconstruct the combined token,
aiming to reconstruct the multi-view depth images:

mv′ = Dec(Concat(embv, tm)). (2)

3.3 FROM MULTI-VIEW 2D TO 3D

Several previous methods have processed 3D point cloud objects by transforming them into multi-
view 2D images, including MM-Point (Yu & Song, 2024), PointCLIP V2 (Zhu et al., 2023), and
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multi-view point completion model (Hu et al., 2020). These approaches initially convert point clouds
into 2D depth images or RGB images and then extract their features to represent individual 3D
objects. However, intuitively, the transformation from 3D to multi-view 2D inherently leads to the
loss of geometry information of the 3D objects. This loss of information poses challenges, such as
the inability of 2D features to directly reconstruct 3D shapes in PointCLIP V2 (Zhu et al., 2023).
Moreover, in the case of MV-Completion (Hu et al., 2020), the method relies on traditional discrete
mapping algorithms from depth maps to point clouds, often requiring downsampling to achieve point
cloud reconstruction. As a result, we propose a novel differentiable algorithm for mapping multi-view
depth features to 3D point clouds, MV-Swin, which reconstructs 3D shapes without the need for
camera poses.

We revisit the encoder-decoder architecture for the point cloud reconstruction process, taking PointNet
(Qi et al., 2017a) as an example for the encoder (Fig. 3a). The encoder initially maps discrete
point cloud data into a high-dimensional space, producing a continuous high-dimensional feature
representation. The decoder D as Pcl2pcl (Chen et al., 2019), which consists of MLPs, then expands
the high-dimensional features to map the features back into the discrete space of the point cloud.
Similarly, we can utilize a mapping function F to project multi-view depth images mv′ into the
high-dimensional feature space. By using the same decoder D as the reconstruction decoder, we can
map continuous high-dimensional features f3D back into the discrete space of the point cloud p′, thus
achieving a differentiable mapping from 2D to 3D: p′ = D( f3D) = D(F(mv′)).

In our method, we introduce a new module, Mv-Swin (Fig. 3b), to serve as the mapping function F .
The Swin Transformer (Liu et al., 2021) is adept at aggregating information from multi-scale images,
making it particularly suitable for perceiving edge information of depth images to synthesize 3D
shapes. However, to integrate multi-view depth image information, a capability lacking in Swin, we
insert an Mv-attention module before each Swin module. The Mv-attention module decomposes the
original image into patches following the Swin Transformer. Subsequently, patch features are used to
calculate query, key, and value. The query features are duplicated according to the number of views,
and then the maximum value across multiple views is computed to represent the overall feature of all
views, while key and value features remain unchanged. These features are processed by Mv-attention
before being fed into the Swin module for further attention processing. The process of Mv-attention
and Swin module cascades three times sequentially. Following this, we apply a linear transformation
layer, to fuse the multi-view features into a high-dimensional feature f3D.

Mv-Swin effectively aggregates multi-view depth features into a unified representation, enabling the
conversion of 2D features into a 3D shape. Employing self-supervised training on 2D depth images
with a 2D MAE, we can utilize Mv-Swin to convert reconstructed depth maps back into 3D data,
facilitating end-to-end learning and 2D-3D alignment. To make the MAE training more efficient, we
pre-train the Mv-Swin module initially. During MV3D-MAE training, we freeze Mv-Swin parameters
while retraining the point cloud decoder.

3.4 2D & 3D RECONSTRUCTION

As illustrated in Fig. 2, our loss function emphasizes the reconstruction of both 2D images and 3D
shapes. For the 2D reconstruction loss, we employ the Mean Squared Error (MSE) loss, which is
consistent with the loss function utilized in MAE. For the reconstruction of 3D shapes, we utilize the
traditional Chamfer Distance (CD Loss). Our loss function can thus be represented as follows:

L2D(mv,mv′) = MSE(mv,M(mv))

L3D(p, p′) =CD(p,F(mv′)).
(3)

Our 2D-3D reconstruction process is sequential, indicating that if the reconstruction of 2D data
achieves the desired quality, the reconstruction of 3D data will also be enhanced. Therefore, the
overall loss for the MV3D-MAE pre-training is formulated below to reflect this dependency, as
L = L2D +λ ·L3D, where λ are weight factors. These two self-supervised losses are crucial in
enabling our MV3D-MAE structure to effectively learn the representational features of both 2D
and 3D data. By tuning the model with the loss, we encourage it to capture the intricate details
and complexities inherent in multi-view depth images and corresponding 3D objects. And the
classification and segmentation heads‘ details are explained in the Appendix A.7.
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Table 1: Linear SVM classification results on ModelNet40, ModelNet10 and ScanObjectNN.
Self. and Sup. represent pre-training with self-supervised and supervised methods.

Type Method Accuracy (%)

ModelNet40 ModelNet10 ScanObjectNN

Sup.
PointNet (Qi et al., 2017a) 89.2 - -
GIFT (Bai et al., 2016) 89.5 91.5 -
MVCNN (Su et al., 2015) 89.7 - -

Self.

Point-BERT (Yu et al., 2022) 87.4 - 83.1
Point-MAE (Zhang et al., 2022) 91.0 - 85.2
Joint-MAE (Guo et al., 2023) 92.4 - -
CrossPoint (Afham et al., 2022) 91.2 - 81.7
MM-Point (Yu & Song, 2024) 92.4 95.4 87.8
I2P-MAE (Zhang et al., 2023) 93.4 - 87.1
MV3D-MAE 93.8 95.7 88.0

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Pre-training dataset. Following the precedent setting by prior studies such as (Yu et al., 2022; Zhang
et al., 2023; Guo et al., 2023), we select ShapeNet (Chang et al., 2015) as our pre-training dataset.
The dataset contains more than 57,000 synthetic 3D shapes from 55 categories. In our pre-training
process, we random sample 8192 points from each object as the point cloud input. As the multi-view
depth images transform from the 3D objects, we set one object to have 10 multi-view depth images
to describe the shape representation and each depth image size H ×W as 224×224 as PointCLIP
V2 (Zhu et al., 2023).

Pre-training settings. Within the MAE framework, we base our model on the pre-trained 2D MAE
model with ViT-base/16 (Dosovitskiy et al., 2020). This fundamental model includes 12 layers in the
encoder and 8 layers in the decoder. Building upon this, we add an additional 4 attention layers to
the encoder to better adapt the learning of depth representations. For the 2D-to-3D reconstruction
module, we follow the Swin Transformer (Liu et al., 2021), setting the window size to 14.

During the pre-training process, our initial step involves pre-training the Mv-Swin module and then
freezing its parameters. The mask ratio is set to 0.75. Subsequently, we fully tune the pre-trained
2D MAE structure to adapt the MAE model for the reconstruction of our multi-view depth images.
Due to the significant difference in order of magnitude between the 3D CD loss and the 2D MSE
loss in our pipeline, we need to apply a larger weight on the 3D loss than the 2D loss to ensure a
balance between them. Therefore, we assign a weight of 25 to λ . The optimization is carried out
using the AdamW optimizer, with a learning rate of 1e-4, weight decay of 5e-2, and employing a
cosine scheduler for adjusting the learning rate. The batch size is configured at 16, with the training
over 300 epochs on four 40GB Nvidia A100 GPUs.

Downstream tasks. We choose the classification and part segmentation tasks to validate the perfor-
mance and generalizability of our pre-trained MV3D-MAE: (1) Shape classification: Experiments
are conducted on three datasets: ModelNet40 (Wu et al., 2015), ModelNet10 (Wu et al., 2015), and
ScanObjectNN (Uy et al., 2019). ModelNet is a widely utilized synthetic dataset for 3D objects.
ModelNet40 comprises objects from 40 categories, featuring 9,843 objects for training and 2,468
objects for testing. On the other hand, ModelNet10 consists of 4,899 CAD models from 10 categories.
ScanObjectNN is a real-world scanned dataset that includes approximately 2,880 unique point cloud
objects, offering a more realistic and challenging setting for evaluating models. (2) Shape part
segmentation: The ShapeNet Part Dataset (Yi et al., 2016), includes 16,880 models spanning 16
shape categories, with each model consisting of 2 to 6 parts. Adhering to the established evaluation
methodology outlined (Qi et al., 2017b), we sample 2,048 points from each shape for analysis. Our
evaluation metrics were calculated for each class (classified as cls. mIoU) and the mean IoU was
computed across all test instances (denoted as ins. mIoU).

4.2 PERFORMANCE ON DOWNSTREAM TASKS
In this section, we evaluate the classification and segmentation performance of our model. Initially,
following the latest multi-view self-supervised model, MM-Point (Yu & Song, 2024), we assess the
linear Support Vector Machine (SVM) classification capabilities of our model using a pre-trained
encoder. Then we evaluate the accuracy of the few-shot classification capability of our model on
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ModelNet40. We test classification performance on both the ModelNet40 and ScanObjectNN datasets.
Finally, we test the segmentation capability of our model on ShapeNet Part. And also illustrate the
2D-3D retrieval applications.

Linear SVM Classification. As indicated in Tab. 1, MV3D-MAE outperforms the latest multi-
view self-supervised learning framework, MM-Point, across all three datasets. Our model
achieved performance levels of 93.8%, 96.7%, and 88.0%, respectively. Furthermore, com-
pared to other methods like I2P-MAE, which utilize 2D features, our approach delivers supe-
rior results, showcasing significant performance enhancements. The consistent performance ex-
hibited by our model on both synthetic and real-world datasets further solidifies its efficacy.

Table 2: Few-shot classification on ModelNet40. The average
accuracy (%) and standard deviation (%) from 10 independent
experiments.

Method 5-way 10-way

10-shot 20-shot 10-shot 20-shot

PointNet (Qi et al., 2017a) 52.0±3.8 57.8±4.9 46.6±4.3 35.2±4.8
PointNet + CrossPoint (Afham et al., 2022) 90.9±4.8 93.5±4.4 84.6±4.7 90.2±2.2
DGCNN (Wang et al., 2019) 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
DGCNN + CrossPoint (Afham et al., 2022) 92.5±3.0 94.9±2.1 83.6±5.3 87.9±4.2

Transformer (Vaswani et al., 2017) 87.8±5.2 93.3±4.3 84.6±5.5 89.4±6.3
Transformer + OcCo (Wang et al., 2021) 94.0±3.6 95.9±2.3 89.4±5.1 92.4±4.6
Point-BERT (Yu et al., 2022) 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
MaskPoint (Liu et al., 2022) 95.0±3.7 97.2±1.7 91.4±4.0 93.4±3.5
Point-MAE (Pang et al., 2022) 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
MM-Point (Yu & Song, 2024) 96.5±2.8 97.2±1.4 90.3±2.1 94.1±1.9
Joint-MAE (Guo et al., 2023) 96.7±2.2 97.9±1.8 92.6±3.7 95.1±2.6
MV3D-MAE 98.0± 1.2 98.1±1.5 93.9±1.8 96.2±2.9

Few-shot Classification. Few-
shot learning is crucial in scenar-
ios where only limited labeled
data is available, mimicking real-
world scenarios where acquir-
ing large labeled datasets can be
costly and time-consuming. Fol-
lowing the experimental setting
of the previous studies (Pang
et al., 2022; Guo et al., 2023;
Yu & Song, 2024), we conduct
few-shot classification on Model-
Net40 using the “K-way, N-shot”
settings, repeated 10 times. This
involves randomly selecting N
classes from ModelNet40 and sampling K objects from each selected class. We carried out tests
under the configurations of 5-way 10-shot, 5-way 20-shot, 10-way 10-shot, and 10-way 20-shot. As
indicated in Tab. 2, we report the mean accuracy and standard deviation for each of these settings.
Notably, our approach achieved SOTA performances in every tested setting, and lower standard
deviation demonstrating higher stability as well. We attribute this success to the prior knowledge em-
bedded within the pre-trained 2D MAE, which significantly bolstered the model’s few-shot learning
capabilities. This experiment further facilitates that the model effectively aligns 2D and 3D features.

Classification. Subsequently, we evaluated our model’s classification performance on ModelNet40
and ScanObjectNN datasets. As shown on the left side in Tab. 3, our model achieved a competitive
level of overall classification performance on ModelNet40, reaching a classification accuracy of
94.1%, which is comparable to the performance of joint-MAE. On the ScanObjectNN dataset, our
model reaches the SOTA result of 89.85 %. This demonstrates the effectiveness of modifying and fine-
tuning a 2D MAE model, enabling it to attain competitive performance on 3D tasks. It indicates that
3D features can be effectively represented through 2D images after being bridged by MV3D-MAE.

Part Segmentation. Additionally, to assess the model’s effectiveness on fine-grained dense 3D
data, we followed prior work and tested our model’s segmentation capabilities on the ShapeNet Part
dataset. The right side of Tab. 3 showcases a comparison of the segmentation performance between
MV3D-MAE and previous models. As indicated in the table, our model achieved competitive results
compared to other models, both in terms of class-wise Intersection over cls. mIoU and ins. mIoU.
This demonstrates that our approach can effectively leverage 2D data prior knowledge to handle
complex 3D tasks.

4.3 2D-3D RETRIEVAL APPLICATION

While previous works like Joint-MAE, I2P-MAE, and MM-point have not explored similar retrieval
tasks, we think investigating the retrieval capabilities of 2D-3D models is both interesting and feasible.
Our model, which leverages a pre-trained 2D MAE, can effectively encode features from RGB images.
For the retrieval task, we encode a grayscale-processed RGB image using the MV3D-MAE encoder to
obtain image features. The retrieval candidates’ features are encoded parts of the multi-view images
of 3D objects within the MV3D-MAE structure. We compute the cosine similarity between the query
image and the MV3D features, identifying the top 5 most similar features and their corresponding 3D
objects from the depth maps.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparison on downstream tasks. The left table shows the accuracy of classification on
ModelNet40 and ScanObjectNN dataset. The right table shows the performance of segmentation on
ShapeNet Part with cls. mIoU and ins. mIoU.

Method Classification Segmentation

ModelNet40 ScanObjectNN ins. mIoU cls. mIoU

PointNet (Qi et al., 2017a) 89.2 79.2 83.70 80.39
PointNet++ (Qi et al., 2017b) 90.5 84.3 85.10 81.85
DGCNN (Wang et al., 2019) 92.9 86.2 85.20 82.33
MVNet (Yan et al., 2023) - 89.7 86.10 84.80

Transformer (Vaswani et al., 2017) - 80.55 85.10 83.42
Transformer + OcCo (Wang et al., 2021) 92.1 85.54 85.10 83.42
Point-BERT (Yu et al., 2022) 93.2 88.12 85.60 84.11
MaskPoint (Liu et al., 2022) 93.8 88.10 86.00 84.40
Point-MAE (Pang et al., 2022) 93.8 88.29 86.10 -
MM-Point (Yu & Song, 2024) - - - 85.71
Joint-MAE (Guo et al., 2023) 93.8 88.86 86.28 85.41
MV3D-MAE 94.1 89.85 86.24 85.48

As shown in Figure 5, we test several samples, such as lamp, helmet, microphone, and guitar. These
items could all retrieve corresponding or similar objects, which means that although our model
encodes depth structures, it effectively captures the shape structure of objects. Using grayscale
processed RGB images, it can also find closely related 2D depth maps.

4.4 ABLATION STUDIES

In our ablation study, we explore the influence of different components within Mv-MAE on the
classification task performance on ModelNet40. To quantitatively assess this, we select the Cham-
fer Distance (Eq. (3)) as the metric for reconstruction quality. More ablation studies are shown
in Appendix A.6 about the impact of various components within the Mv-Swin on the multi-view
reconstruction performance.

Real-world Generalization. In the real world, researchers often find it challenging to obtain complete
scans or all viewpoints of a 3D object. Existing 3D object point cloud perception pipelines rarely
experiment with or focus on this aspect. To address this problem, we include two experiments to
demonstrate the stability of MV3D-MAE. Based on pre-trained depth images from 10 viewpoints, we
randomly remove 2, 5, 7, and in the most extreme case, 9 depth maps in the downstream classification
task. We apply the Gaussian noise as a substitute input to the model to verify the reliability of
the pre-trained multi-view base model’s performance when viewpoints are missing in downstream
tasks and to conduct an analysis. As shown in Fig. 5, the performance of the fine-tuned model
gradually decreases as 2 to 9 views are removed. Removing 2 views had almost no impact on
performance, proving the model’s robustness. The most significant drop occurred from 3 views to
1 view, with accuracy decreasing to 89.6%. When generalized to incomplete views, performance
dropped significantly with only one view (71%), while 5 views maintained 93%. This shows the
model’s stability with up to 5 missing views.

Table 4: Performance on incomplete datasets.
Dataset Our Model (%) Point-MAE (%)

PCN dataset 92.2 91.1
MN40-Crop (Fine-tuned) 92.0 90.4
MN40-Crop (Generalized) 67.3 69.4

Also, we test MV3D-MAE’s perfor-
mance on incomplete point cloud
datasets, which are common in real-
world scenarios. We test our model on
the PCN Dataset and create an incom-
plete ModelNet40-Crop dataset by crop-
ping ModelNet40 to 4096 points. We compare our model’s fine-tuned performance on PCN and
ModelNet40-Crop with the classical point cloud self-supervised model, Point-MAE. We sample
8000 data points from the PCN dataset for training and use 1200 data points for testing. As shown
in Tab. 4, our method achieves an accuracy of 92.2% on PCN, showing credible results even with
incomplete point cloud structures. Point-MAE achieves 91.1%. On the ModelNet40-Crop dataset,
our model maintains stable classification performance with an accuracy of 92.04%, while Point-MAE
achieves 90.41%. When transferring the model fine-tuned on ModelNet40, our model maintains an
accuracy of 67.3%, and Point-MAE achieves 69.4%. This discrepancy is within the expected range
because our training is based on depth maps, and there is a certain domain gap between the depth
maps generated by incomplete point clouds and those from complete point clouds.
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Figure 4: The retrieved examples across four different
classes. Using 2D RGB images, we first retrieve similar
depth maps and then find the corresponding 3D objects.

Figure 5: Classification performance v.s.
the remaining views. We test fine-tuned
and generalized ways for classification
with different remaining views.

Multi-view MAE Design. Building upon the foundation of the basic MAE model, we make
enhancements by incorporating group attention and increasing the number of attention layers in the
encoder. In this section, we conduct ablation experiments using unpretrained MAE (ViT-base) and
MAE variants that either lack the added group attention or include the additional layers, to evaluate
the impact of these modifications. Tab. 5 shows that using an MAE model without 2D pre-training
results in a classification performance of only 90.8%. In contrast, a pre-trained MAE model boosts
performance to 93.0% directly. This demonstrates that the prior knowledge in a pre-trained MAE,
when subjected to our multi-view training, can better understand 3D spatial structures. Furthermore,
the inclusion of group attention and the addition of more attention layers further enhance the model’s
learning capability for multi-view models, which enhances the performance to 94.1%.

Table 5: Ablation study on ModelNet40 classification.
Pre-trained Add Layers Group Attn. λ Accuracy (%)

- - - 25 90.8
✓ - - 25 93.0
✓ ✓ - 25 93.5

✓ ✓ ✓ 0 91.4
✓ ✓ ✓ 25 94.1
✓ ✓ ✓ 50 93.1
✓ ✓ ✓ 100 92.2

The Weight Balance of λ . To verify
the impact of our added 3D module on
the 2D experiments, we need to reset the
value of λ to test the experimental re-
sults on the ModelNet40 classification
task. Here, we adjust the value of λ

to 0, 25, 50, and 100 for the experi-
ments Tab. 5. When we set λ to 0, it
means that the model is pre-trained us-
ing only the 2D MAE part without using
3D supervision. At this point, while the
model can achieve certain results in downstream classification tasks, it lacks a better ability to distin-
guish 3D objects. On the other hand, if λ is set too high, the 3D supervision can affect the 2D MAE’s
reconstruction ability to some extent, thereby impacting the performance of the downstream model.
When we set λ as 25, the model achieves the best performance on the downstream classification task.

5 CONCLUSION

In this work, we present MV3D-MAE, a novel self-supervised training framework that enriches
3D pre-training with 2D priors within the pre-trained 2D MAE. Diverging from traditional 2D-
to-3D pre-training methods, our strategy initiates by converting individual 3D objects into multi-
view depth images. Leveraging a pre-trained 2D MAE for prior knowledge, we introduce an
innovative multi-view MAE structure tailored for the self-supervised pre-training of multi-view depth
images. Following the reconstruction of 2D depth images, our MV-Swin module facilitates the
transition back to 3D point clouds, enabling effective 3D reconstruction. Significantly, the group
attention mechanism within our multi-view MAE structure captures consistency across multiple
views, while the integration of new self-attention layers allows the adaptation of the pre-trained MAE
for depth image feature learning. The MV-Swin module further ensures semantic feature alignment
from 2D to 3D, exemplifying our method’s capacity to merge 2D insight with 3D representation
learning seamlessly. Our model not only achieves state-of-the-art results in linear SVM and few-shot
classification tasks but also exhibits competitive results in other evaluations. This highlights that
leveraging the pre-existing 2D knowledge can elevate the expressive quality of 3D information and
enhance the effectiveness of subsequent 3D endeavors.
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Figure 6: The visualization of the 2D and 3D reconstruction on validation dataset.† We illustrate
the ground truth of the 3D objects and multi-view depth maps, the masked multi-view depth maps
with 75% mask ratio, and reconstructed depth maps. Please zoom in to see the details. †Following
MAE He et al. (2022), there is no loss computed on visible patches, the model output on visible
patches is qualitatively worse. By overlaying the output onto the visible patches, one could enhance
the visual quality. However, we deliberately choose not to employ this, allowing us to showcase the
behaviour of our method.

A APPENDIX

A.1 VISUALIZATION OF THE 2D&3D RECONSTRUCTION

We showcase the visualization results on the 2D and 3D reconstruction on the validation dataset in the
Fig. 6 to display MV3D-MAE’s 3D and 2D representation learning capability and modality alignment.
The Fig. 6 shows that even with the high mask ratio (75%), MV3D-MAE still can reconstruct the
high-quality 2D and 3D objects, which can lead to enhanced performance on downstream tasks.
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A.2 DETAILS OF THE 3D-TO-2D PROJECTION

In 3D-to-2D projector G(·), we utilize a similar projection method as PointClIP V2 Zhu et al. (2023).
The G(·) pipeline has four steps.

Voxelize. First voxelized the point cloud space and projected the points belonging to the object into
the voxels. Due to the occlusion properties of the point cloud, we simply assign the minimum depth
value for the corresponding voxel.

Densify. Following PointCLIP V2, we densify the grid using a local minimum value pooling operation
to improve visual continuity in sparse point clouds, ensuring that vacant voxels between sparse points
are filled with reasonable depth values. This method, favoring minimum depth values, results in
denser and smoother spatial representations, while keeping background voxels empty.

Smooth. To counteract potential artefacts from local pooling on 3D surfaces, we use a non-parametric
Gaussian kernel for smoothing and noise filtering, achieving a balance between noise removal and
edge sharpness preservation. In all experiments in our paper, we utilize the learnable smoothing as
the few-shot classification in PointCLIP V2 with 1 × 3 × 3 kernel size 3D convolution.

Squeeze. Finally, we compress depth to form a depth map to get a point cloud’s depth map from a
particular view.

A.3 DETAILS OF MULTI-VIEW MAE

In our pipeline, we apply the basic 2D masked autoencoder (MAE) He et al. (2022) as a part of
our pre-training backbone. Due to the limitation of the resource, we have to utilize the ViT-base
Dosovitskiy et al. (2020) MAE. The MAE is pre-trained on the ImageNet1K dataset. The additional
layers in the MAE encoder have the same architecture as the multi-head attention in the ViT-base.

A.4 DETAILS OF THE 2D-TO-3D MV-SWIN

In Mv-Swin part, we utilize the multi-view attention and the Swin transformer blocks to extract the
point cloud feature. We utilize very small dimensions 56 in swin blocks, and each block has [2,2,6]
and [3,4,12] heads, respectively. The head dimension is set as 16, and the window size is set as 14.
The point cloud features f3D in our experiments with [bs,1024] dimension.

A.5 DETAILS OF 2D&3D RECONSTRUCTION LOSS

We apply the MSE loss and Chamfer Distance loss to evaluate the reconstruction results of 2D and
3D respectively.

Mean Squared Error (MSE) loss, measures the average squared differences between the predicted
images and the actual images. The mathematical representation of MSE loss is given by:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2,

where N is the number of samples, yi is the actual value of the i-th sample, ŷi is the predicted value
for the i-th sample. The goal of minimizing MSE loss is to find model parameters that reduce the
average squared difference between predicted and actual iamges.

Chamfer Distance (CD) is a commonly used metric and loss function for comparing two point clouds.
It measures the average closest point distance between two point sets, providing a symmetric and
differentiable metric that quantifies how similar two point clouds are. The Chamfer Distance between
two point clouds A and B, where A = {a1,a2, ...,aM} and B = {b1,b2, ...,bN}, can be defined as
follows:

CD(A,B) =
1
|A| ∑

a∈A
min
b∈B

||a−b||22 +
1
|B| ∑

b∈B
min
a∈A

||b−a||22,
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Table 6: The metrics between PointNet recon-
struction and Mv-Swin 2D to 3D, where CD is
scaled by 104.

Recon. Methods CD ↓

PointNet Recon. 2.8
Mv-Swin 3.3

Table 7: Point cloud reconstruction metric with
different blocks in the Mv-Swin, where CD is
scaled by 104.

Mv-S Blocks CD ↓

Self-attention 4.6
w/o Mv-attention 4.8
w/ Mv-attention 3.3

where ||a−b||2 denotes the Euclidean distance (L2 norm) between points a and b, |A| and |B| denote
the number of points in point clouds A and B respectively. In point cloud tasks, using Chamfer
Distance as a loss function encourages the reconstructed point cloud to closely approximate the shape
and distribution of the target point cloud.

A.6 MORE ABLATION STUDY

Mv-Swin Performance Evaluation. In this section, we aim to validate the 3D representation
capabilities of the 2D-to-3D reconstruction module, demonstrating that the reconstruction of 3D
objects does not hinder the overall performance of the model. We utilize the Chamfer Distance (CD)
for evaluating point cloud reconstruction as our metric and compare the multi-view reconstruction
performance against the PointNet reconstruction model as a benchmark on the ShapeNet55 dataset.
As shown in Tab. 6, our 2D-to-3D reconstruction module Mv-Swin gets 3.3 CD performance, which
is close to the PointNet reconstruction performance. This indicates that the Mv-Swin 2D-to-3D
reconstruction capability has achieved commendable performance, enabling the MV3D-MAE model
to learn reasonable 3D representations.

Mv-Attention in Mv-Swin. Mv-Attention block is applied to aggregate multi-view depth image
features in Mv-Swin to reconstruct the point cloud. In this ablation study Tab. 7, we remove the
Mv-Attention blocks to evaluate the original Swin transformer capability to reconstruct the single
point cloud object. Furthermore, when we substitute self-attention for Mv-attention, we observe that
the performance is similar to that achieved when Mv-attention was removed. This demonstrates that
the use of multi-view attention can assist Mv-Swin in better aligning 2D-3D features.

A.7 FOR DOWNSTREAM TASKS

Classification Task: After obtaining the image features [B, 10, 197, 768], we extract the cls token
values, resulting in [B, 10, 1, 768]. Since one 3D object corresponds to 10 depth images, we first
compute the GroupAttention for each set of 10 cls tokens, then perform max pooling to obtain a [B, 1,
768] feature vector. This feature vector is then linearly transformed to produce a [B, 40] classification
vector.

Segmentation Task: For the segmentation task, we take the dense part of the image features, which
is [B, 10, 196, 768]. We then reverse map this feature to the 2D image and perform upsampling to
get features of [B, 10, 224, 224, 768]. Using the back projection strategy from PointCLIP V2, we
map these image features back to 2048 points using the saved coordinates of the point cloud on the
image, resulting in [B, 10, 2048, 768] features. After max pooling, we obtain [B, 2048, 768] feature
values. Finally, these features are linearly transformed to produce [B, 2048, 50] dense segmentation
logits. This ensures that the dense features of the image are mapped onto the point cloud to facilitate
segmentation.
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