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Abstract

There is a recent surge in the development of spatio-temporal forecasting models in many
applications, and traffic forecasting is one of the most important ones. Long-range traffic
forecasting, however, remains a challenging task due to the intricate and extensive spatio-
temporal correlations observed in traffic networks. Current works primarily rely on road net-
works with graph structures and learn representations using graph neural networks (GNNs),
but this approach suffers from over-smoothing problem in deep architectures. To tackle this
problem, recent methods introduced the combination of GNNs with residual connections
or neural ordinary differential equations (NODEs). The existing graph ODE models are
still limited in feature extraction due to (1) having bias towards global temporal patterns
and ignoring local patterns which are crucial in case of unexpected events; (2) missing
dynamic semantic edges in the model architecture; and (3) using simple aggregation lay-
ers that disregard the high-dimensional feature correlations. In this paper, we propose a
novel architecture called Graph-based Multi-ODE Neural Networks (GRAM-ODE) which is
designed with multiple connective ODE-GNN modules to learn better representations by
capturing different views of complex local and global dynamic spatio-temporal dependen-
cies. We also add some techniques to further improve the communication between different
ODE-GNN modules towards the forecasting task. Extensive experiments conducted on four
real-world datasets demonstrate the outperformance of GRAM-ODE compared with state-
of-the-art baselines as well as the contribution of different GRAM-ODE components to the
performance.

1 Introduction

Spatio-temporal forecasting is one of the main research topics studied in the context of temporally varying
spatial data that arises in many real-world applications such as traffic networks, climate networks, urban
systems, etc. In this paper, we study one of the most important applications of spatio-temporal forecasting,
traffic forecasting, in which we statistically model and identify historical traffic patterns in conjunction with
the underlying road networks to predict the future traffic flow. This task is challenging primarily due to the
intricate and extensive spatio-temporal dependencies in traffic networks, also known as intra-dependencies
(i.e., temporal correlations within one traffic series) and inter-dependencies (i.e., spatial correlations among
correlated traffic series). In addition to this, frequent events such as traffic peaks or accidents lead to the
formation of non-stationary time-series among different locations, thus, posing challenges for the prediction
task.

Traffic forecasting is a spatio-temporal prediction task that exploits both the location and event data collected
by sensors. Traditional methods such as AutoRegressive Integrated Moving Average (ARIMA) and Support
Vector Machine (SVM) algorithms only consider the temporal patterns and ignore the corresponding spatial
relations (Jeong et al., 2013; Williams & Hoel, 2003; Van Der Voort et al., 1996). Statistical and classical
machine learning methods suffer from limitations in learning complex spatio-temporal interactions, and
thus deep learning models were later introduced for this task. Early examples of deep learning approaches
to capture spatial and temporal relations are FC-LSTM (SHI et al., 2015) where authors integrate CNN
and LSTM modules; and ST-ResNet (Zhang et al., 2017) which uses deep residual CNNs for both spatial
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and temporal views. However, these CNN-based methods are developed towards grid data and cannnot
account for traffic road networks which are more akin to graph-structures. Hence, researchers in the domain
have recently developed Graph neural network (GNN) based approaches for effectively learning graph-based
representations. Examples of these graph-based models are STGCN (Yu et al., 2018) which utilizes complete
convolutional structures for both temporal and spatial views; and DCRNN (Li et al., 2018b) which combines
the diffusion process with bi-directional random walks on directed graphs in order to capture spatio-temporal
dependencies.

However, such GNN-based methods cannot capture long-range spatio-temporal relations or develop deeper
representations due to their limitation of over-smoothing (Li et al., 2018a; Zhou et al., 2020). Deep GNN
over-smoothing occurs when a GNN model with deeper architecture tends to lose the discriminative ability
and learn similar node representations for all nodes. , thus making it challenging to learn richer represen-
tations and investigate more complex spatial features. In order to address this problem, researchers have
introduced combining GNNs with residual connections (Chen et al., 2020). Recently, this problem was stud-
ied by the STGODE (Fang et al., 2021b) model that integrates GNN-based model with the Neural Ordinary
Differential Equations (NODE) (Chen et al., 2018) which can derive a continuous GNN (CGNN) with resid-
ual connections, consequently, alleviating the over-smoothing problem. Nevertheless, current CGNN models
still encounter the following limitations:

1. Previous approaches in this area tend to overemphasize the global temporal structures while under-
valuing local patterns, which are often crucial for predictions in the presence of unexpected traffic
events, e.g., a road has a higher chance of getting clogged shortly after a car accident. This will
cause drivers to switch to a faster route and thus the traffic flow on this road may significantly drop
for a short period of time. Therefore, ignoring these local temporal patterns may cause significant
problems in the final predictions for roads facing unexpected events.

2. The dynamic correlation of traffic nodes is ignored by existing approaches. In other words, models
usually do not consider the dynamic semantic spatial correlations (i.e., dynamic semantic edges) in
their architecture.

3. Several baselines use vanilla aggregations, such as average pooling, to combine latent features learned
from multiple streams which ignore the high-dimensional feature interactions.

To overcome the above limitations, we propose a novel framework called GRAM-ODE, GRAph-based Multi-
ODE Neural Networks. First, in order to balance the consideration of global and local temporal patterns,
we design new ODE modules for the local temporal patterns in addition to the existing ODE module for
the global temporal patterns (Fang et al., 2021b) using different sizes of temporal kernels (represented as
grey and orange dashed lines in Fig. 1). Specifically, for local dependencies, we assign ODE functions to
the local kernel’s output that approximate local patterns, and then concatenate the results. These local
and global ODE modules are explained in more detail in Fig. 3(a) and Fig. 3(b), respectively. Second, we
design a new ODE module into our model to consider the dynamic correlation of traffic nodes as well as
edges. In other words, at each time step, we find the intermediate dynamic spatial correlations based on the
embedding representations of nodes (i.e., dynamic semantic edges), and then construct a new ODE module
to approximate patterns of semantic edge-to-edge correlations over time (represented with different edge
colors and patterns over time in Fig. 1). More details regarding this dynamic semantic edge ODE module
are provided in Fig. 3(c). Third, we design the nonlinear aggregation paradigm and a multi-head attention
across different ODE modules (represented in Fig. 3(d) ) and different streams of traffic graphs (represented
in the last layer of Fig. 2), respectively. Through these two operations, we account for high-dimensional
correlations and similarities of latent features corresponding to different ODE modules and traffic graphs.
By doing so, we let the model intelligently select and fuse latent features from different views for the intended
forecasting task.

Also, since our proposed GRAM-ODE includes multiple ODE modules, we ensure that these different modules
are not isolated and have effective connectivity in the intermediate layers. To do so, we design coupled ODE
modules in two ways: (1) adding similarity constraint between the semantic parts of local and global modules
to ensure these two semantic embeddings do not diverge from one another (represented with orange marks
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Figure 1: An overview of the proposed model compared to the prior models. The sub-figures from left
to right represent the traffic data over time with blue nodes displaying the recording points and the lines
between them representing roads. The orange dashed line refers to the common global temporal pattern. In
our model, grey dashed line shows the local temporal patterns; orange arrows depict node-edge correlations;
and green arcs display dynamic edge-edge correlations. The red cross on some edges implies that the road
may be temporarily closed; and the connections with different colors show the dynamic temporal correlations
between nodes.

in Fig. 3); (2) sharing weights for the global node-based and edge-based ODE modules (represented with
green marks in Fig. 3). Therefore, we create a coupled graph multi-ODE structure as GRAM-ODE in which
all modules are designed to effectively communicate with each other for downstream application of traffic
prediction. The major contributions of this work are summarized below.

• Developing a new ODE module for capturing local temporal patterns. Due to the importance of short-
term temporal dependencies in the traffic prediction in case of unexpected events, we develop a new ODE
module for the short-term dependencies in addition to the current ODE block for the global temporal
patterns. Different sizes of temporal kernels are set to capture different levels of temporal patterns.

• Developing a new ODE module for the dynamic semantic edges. In addition to ODE blocks for traffic
nodes, which model the dynamic node-to-node correlations over time, we also add a new ODE module for
the dynamic semantic edges based on node representations (i.e., dynamic spatial correlations) to model
the edge-to-edge correlations over time.

• Building effective communications between different ODE modules (coupled multi-ODE blocks). To build
effective interactions between multiple ODE modules, we consider shared weights for node-based and
edge-based ODE modules as well as adaptive similarity constraints for the outputs of local and global
temporal ODE modules.

• Designing a new aggregation module with multi-head attention across features of different streams. To
enhance the model’s awareness in the selection and fusion of different ODE modules as well as the
streams corresponding to different types of traffic graphs, we design multi-head attention mechanism at
the aggregation layers.
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The rest of this paper is organized as follows. Section 2 summarizes existing traffic forecasting works based
on machine learning, graph-based and NODE-based methods. Section 3 provides some of the required pre-
liminaries and explains the problem formulation. Section 4 covers the details of our proposed GRAM-ODE
method and its different components. Our experimental evaluation including both quantitative and quali-
tative comparison results, ablation studies, and robustness assessments are reported in Section 5. Finally,
Section 6 concludes the paper.

2 Related Works

In this section, we describe the traffic forecasting approaches proposed in the literature based on various
techniques including machine learning, graph-based methods, and neural differential equations.

2.1 Machine Learning and Deep Learning Methods

Researchers have employed traditional statistical and machine learning methods for the task of traffic fore-
casting. Some prominent example models are (1) K-Nearest Neighbor (KNN) (Zhang et al., 2013) which will
predict traffic of a node based on its k-nearest neighbors; (2) ARIMA (Van Der Voort et al., 1996; Alghamdi
et al., 2019) which integrates the autoregressive model with moving average operation; and (3) SARIMA
(Williams & Hoel, 2003) which adds a specific ability to ARIMA for the recognition of seasonal patterns.
Many of these machine learning models only consider the temporal dependencies and ignore the spatial
information. Also, they are usually based on human-designed features and have limitations in learning infor-
mative features for the intended task. Later, deep learning methods became popular due to their ability in
considering the complex and high-dimensional spatio-temporal dependencies through richer representations.
Early examples of deep learning models considering the spatial and temporal relations are FC-LSTM (SHI
et al., 2015), ConvLSTM (Xingjian et al., 2015), ST-ResNet (Zhang et al., 2017), ST-LSTM (Liu et al.,
2016), and STCNN (He et al., 2019) which are usually based on convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) to account for spatial and temporal information. However, these models
are developed for the grid-based data and disregard the graph structure of traffic road networks. Due to
this limitation, researchers moved into the application of graph-based deep learning models like graph neural
networks.

2.2 Graph-based Methods

Graphs provide vital knowledge about the spatial, temporal, and spatio-temporal relationships that can
potentially improve performance of the final model. Recently, researchers employed the graph convolution
(GCN) (Kipf & Welling, 2017) to model the spatio-temporal interactions. DCRNN (Veeriah et al., 2015) is an
early example of it that utilizes diffusion GCN with bi-directional random walks to model the spatial corre-
lations as well as a GRU (Gated Recurrent Unit) based network to model the temporal correlations. GRU is
an RNN-based method which is not effective and efficient in modeling long-range temporal dependencies. To
address this limitation, works such as STGCN (Yu et al., 2018) and GraphWaveNet (Wu et al., 2021) utilize
convolutional operations for both spatial and temporal domains. After the rise of attention-based models in
deep learning, researchers realized that these two models still have some limitations in learning spatial and
temporal correlations due to the limited capability of convolutional operations in capturing high-dimensional
correlations. Therefore, two attention layers are later employed in ASTGCN (Guo et al., 2019) to capture
the spatial and temporal correlations. However, these models are limited in capturing local relations and
may lose local information due to the sensitivity of representations to the dilation operation. STSGCN (Song
et al., 2020) used localized spatio-temporal subgraphs to enhance prior models in terms of capturing the local
correlations. However, since the model formulation does not incorporate global information, this model still
had limitations when it came to long-term forecasting and dealing with data that included missing entries
or noise. In addition to the spatial graphs from predefined road networks, STFGNN (Li & Zhu, 2021) later
introduced the use of Dynamic Time Warping (DTW) for data-driven spatial networks which helped the
model to learn representations from different data-driven and domain-driven views. STFGNN also utilized a
new fusion module to capture spatial and temporal graphs in parallel. However, due to the over-smoothing
problem of deep GNNs (which happens when a GNN model learns similar node representations for all nodes
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in case of adopting deeper architecture), current GNN-based models incur some difficulties in learning rich
spatio-temporal representations with deep layers.

2.3 Neural Differential Equation Methods

Neural Differential Equations (NDEs) (Kidger, 2022) provide a new perspective of optimizing neural networks
in a continuous manner using differential equations (DEs). In other words, DEs help to create a continuous
depth generation mechanism for neural networks, provide a high-capacity function approximation, and offer
strong priors on model space. There are a few types of NDEs: (1) neural ordinary differential equation
(NODE) such as ODE-based RNN models (Habiba & Pearlmutter, 2020; Lechner & Hasani, 2022) (e.g.,
ODE-RNN, ODE-GRU, ODE-LSTM) and latent ODE models (Rubanova et al., 2019); (2) neural controlled
differential equation (NCDE) (Kidger et al., 2020; Morrill et al., 2021) which is usually used to learn functions
for the analysis of irregular time-series data; and (3) neural stochastic differential equation (NSDE) (Kidger
et al., 2021b;a) which is usually employed for generative models that can represent complex stochastic
dynamics.

More recently, STGODE (Fang et al., 2021a) is proposed in the traffic forecasting domain to address the
aforementioned over-smoothing problem of GNN-based models. STGODE provides a new perspective of
continuous depth generation by employing Neural Graph ODEs to capture the spatio-temporal dependencies.
However, complex spatio-temporal correlations such as the lack of local temporal dependencies and dynamic
node-edge communications are not captured by this model. In this paper, we utilize the idea of Neural Graph
ODE to generate multiple coupled ODE-GNN modules which take into account the local temporal patterns
and dynamic spatio-temporal dependencies, and as a result, can provide better function approximation for
the forecasting in the presence of complex spatio-temporal correlations.

3 Problem Formulation

This section explains the required preliminaries and definitions for GRAM-ODE, and then defines the main
problem statement. All notations used in this paper are summarized in Table 1.

3.1 Definitions

Definition 1: Traffic Graphs. We consider the traffic network as a graph G = (V, E, A), where V is the set of
nodes, E is the set of edges and A is the adjacency matrix such that A ∈ RN×N if |V | = N . In this paper,
we use two types of graphs, the connection map graph and the DTW (dynamic time warping) graph. In the
connection map graph, the adjacency matrix, denoted by AC , represents the roads and actual connectivity
among traffic nodes with binary value to indicate whether they are connected or not.

AC
i,j =

{
1, if vi and vj are neighbors
0, otherwise

(1)

where vi and vj refer to traffic nodes i and j in the graph. In the DTW graph, the adjacency matrix,
indicated by ASE , is generated from the Dynamic Time Warping (DTW) algorithm (Berndt & Clifford,
1994) which calculates the distance between two time-series corresponding to a pair of nodes.

ASE
i,j =

{
1, DTW

(
Xi, Xj

)
< ϵ

0, otherwise (2)

where Xi and Xj refers to the time-series data of nodes i and j, respectively; ϵ also identifies the sparsity
ratio of adjacency matrix. Note that DTW is superior compared to other point-wise similarity metrics (such
as Euclidean distance) due to its sensitivity to shape and pattern similarities.

Definition 2: Graph Normalization. Adjacency matrix A ∈ {AC , ASE} ∈ RN×N is normalized with
D− 1

2 AD− 1
2 where D is the degree matrix of A. As shown in Eq. (3), the self-loop identity matrix I is

incorporated in normalization to avoid the negative eigenvalues.

Â = α
(

I + D− 1
2 AD− 1

2

)
(3)
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Table 1: Notations used in this paper.
Notation Description
G Traffic graph
V Set of nodes
E Set of edges

AC Connection adjacency matrix
ASE DTW adjacency matrix

D Degree matrix
Â Normalized adjacency matrix

fe/ fg/ fl Message generation for Edge/Global/Local Neural ODEs
H(t) ODE function (integrals from 0 to t) initialized with H(0)

He(t)/Hg(t)/Hl(t) Edge/Global/Local ODE function features
X Historical time series data
Y Future time series data
Ŷ Predicted future time series
L Length of historical time series
L′ length of target time series
N Number of nodes, |V |
C Numbers of channels
H Input of multi ODE-GNN
A Updated adjacency matrix with shared spatial weights

Te/Tg/Tl Updated Global/Local/Edge temporal shared weights
EM Edge message
GM Global message
LM Local message
HAi(t) Features of single embedded time step in Local ODE-GNN

L′′ Length of the embedded temporal window in Local ODE-GNN
K(i) Local ODE-GNN’s output for the i-th embedded temporal step

e Learnable threshold parameter in Message Filtering
pn Embeddings of n-th ODE module in Aggregation Layer
H ′ Output of multi ODE-GNN’s Aggregation Layer

Wr/br Weight matrix/bias vector in Update Layer
H ′′ Output of multi ODE-GNN’s Update Layer

Hl
tcn Hidden states of l-th TCN’s layer

Cl Embedding size of l-th TCN’s layer
W l Convolutional kernel of l-th TCN’s layer
dl Exponential dilation rate of l-th TCN’s layer

Wq/ Wk/ Wv The attention Query/Key/Value weight matrix
bq/ bk/ bv The attention Query/Key/Value bias vector

h Number of attention heads
X ′

i Attention output of the i-th head
δ Error threshold in the Huber Loss

where Â is the normalized adjacency matrix; and α ∈ (0, 1) is a hyper-parameter identifying the eigenvalue
range to be in [0, α].

Definition 3: Graph-based Neural ODE. The standard formulation of GNN-based continuous-time ODE
function is defined in Eq. (4). It takes the initial value H(0), temporal integrals from 0 to given time t,
traffic graph G, and the Neural ODE’s network parameter θ.

H(t) = H(0) +
∫ t

0
f(H(s), s; G, θ)ds (4)

where f is the process to generate semantic message of Neural ODE parameterized by θ to model the hidden
dynamics of graph G. Since the structure of our proposed method consists of multiple ODE-GNN blocks,
we have different types of Eq. (4) graph neural ODEs which are elaborated with more details in Section 4.

Definition 4: Tensor n-mode multiplication. We use subscript to identify the tensor-matrix multiplication
on the specific dimension as shown below.

(B × 2 C)ilk =
n2∑

j=1
BijkCjl (5)

where B ∈ RN1×N2×N3 , C ∈ RN2×N ′
2 , so, B ×2 C ∈ RN1×N ′

2×N3 . The n-mode tensor-matrix multiplication is
denoted as ×n with the n-th subscript.
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Figure 2: A graphical representation of the proposed GRAM-ODE framework. The DTW-based graph will be
obtained from data at the blue triangle mark. The connection map will be obtained from the distance among
recording nodes at the blue diamond mark. These two traffic graphs will be separately imported into the
model which consists of three parallel channels of two consecutive GRAM-ODE layers. Each layer contains
a sandwiched multi ODE-GNN block (check Fig. 3 for more details) between two temporal convolution
networks (TCNs). Outputs of these two streams will be aggregated with an Attention Module in the final
layer.

3.2 Problem Statement

The spatio-temporal forecasting problem is described as learning a mapping function F that transforms the
current historical spatio-temporal data X = (Xt−L+1, Xt−L+2, ..., Xt) into the future spatio-temporal data
Y = (Xt+1, Xt+2, ..., Xt+L′), where L and L′ denote the length of historical and target time-series to be
predicted, respectively. In the traffic forecasting problem, we have a historical tensor X ∈ RB×N×L×C and
traffic graph G, where B is the batch size; N is the number of nodes; L is the input temporal length; and C is
the number of input features (e.g., traffic speed, flow, density). The goal is to find Ŷ = F(X , f, G) in which
F is the overall forecasting network and f corresponds to different graph-based Neural ODE processes.

4 GRAM-ODE

The general structure of our proposed GRAM-ODE is shown in Fig. 2, which is composed of two streams of
operations: (i) DTW-based graph (top row) which is constructed based on semantical similarities, and (ii)
connection map graph (bottom row) which is constructed based on geographical spatial connectivities. These
two types of adjacency matrices will be fed into the model separately to capture spatial correlations from
both data-driven and geographical domain-driven views. They will be later integrated with the multi-head
attention mechanism in the final layer. As shown in Fig. 2, we have three parallel channels for each graph,
each of which has two consecutive GRAM-ODE layers with a multi ODE-GNN block sandwiched between two
blocks of temporal dilated convolution (TCN). The final features of each graph from different channels will
then be concatenated and imported into the attention module which is designed to fuse these two separate
set of operations more intelligently towards the intended forecasting task. We provide further details about
each of these components in the subsections below.
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Figure 3: An overview of the multi ODE-GNN block which consists of three ODE modules, i.e., (a) global,
(b) local, and (c) edge-based temporal dependencies as well as a new aggregation layer (d). The inputs and
outputs of the multi ODE-GNN block are displayed with H and H ′ blocks on the left and right sides of
the diagram. It uses shared weights and message filtering constraint to make the outputs of different ODE
modules communicate. These shared weights among different ODE modules are represented with the green
mark. The constraint to limit divergence of embeddings is also represented with orange mark.

4.1 GRAM-ODE Layer

Each GRAM-ODE layer consists of a multi ODE-GNN block placed between two TCNs. Fig. 3 illustrates
details of our proposed Multi ODE-GNN block in which we combine multiple ODE modules to take into
account all the essential temporal and spatial patterns from different viewpoints and extract informative
features from their fusion. In the multi ODE-GNN block, we design three types of message passing operations,
a message filtering constraint as well as a new aggregation module to consider high-dimensional correlations.

4.1.1 Message Passing Layer

The current models primarily focus on node-based global temporal correlations and do not consider short-
term temporal patterns as well as the dynamic edge-based correlations into the model formulation. Hence,
we design three types of message passing processes to formulate ODE modules corresponding to global, local,
and edge-based temporal dependencies.

Shared Weights: Despite different semantic meaning corresponding to node-based and edge-based features,
they can share some important spatial and temporal patterns. In order to consider these common patterns
in our problem formulation, we design a shared weight matrix between node-based and edge-based global
temporal ODE modules (shown in Fig. 3(a) and 3(c) ). We define two weight matrices for consideration of
these shared spatial weights and shared temporal weights. The shared spatial weight, denoted by M , will
be added to the normalized adjacency matrix as Â = Â + M , where M is initialized randomly from normal
distribution. The shared temporal weights, denoted by Ws1, Ws2, will be added into the node-based and
edge-based global temporal modules, given by Eqs. (6) and (7), respectively. To consider the local temporal
patterns in model formulation, we apply different sizes of temporal kernels Wl1, Wl2 into the local temporal
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module as shown in Eq. (8).

Te = (He(t) ×4 Ws1)T (He(t) ×4 Ws2) (6)
Tg = (HT

g (t) ×3 Ws1)(HT
g (t) ×3 Ws2)T (7)

Tl = (HT
l (t) ×3 Wl1)(HT

l (t) ×3 Wl2)T (8)

where Ws1, Ws2 ∈ RL×L represent the global temporal shared weights with L referring to the global temporal
length; Wl1, Wl2 ∈ R1×1 represent the local temporal weights for each time step in the embedded temporal
space; and He(t), Hg(t), and Hl(t) represent the feature of edge, global, and local ODE module, respectively.

Global and Local Message Passing: Fig 3(a) represents the global message passing with the goal of modeling
long-term node-based temporal patterns in a continuous manner. Eqs. (9) and (10) represent the global
message processing operations and return the global message GM, respectively. Additionally, Fig 3(b)
represents the local message passing operations on local temporal data to emphasize the importance of short-
term temporal patterns. In this module, we will first use self-attention mechanism with dense projection
layers to create the input in the lower-dimensional embedded temporal space by considering all the possible
high-dimensional correlations (similar to the attention module (AM) explained with more details in Section
4.2). Then, features of each time stamp in the embedded temporal inputs will be separately imported into
the local ODE functions, encouraging the network to learn implicit local dependencies. These features at
each embedded time step are denoted by HAi ∈ RB×N×1×C , where i ∈ {0, 1, 2, 3, ..., L′′ − 1}, and L′′ is
the size of the embedded temporal window. As shown in Eqs. (13) and (15), at each embedded time step,
HAi will be used as the initial value to formulate temporal dependencies of future t = L/L′′ time stamps
which will be returned as K(i). Then, the outputs will be concatenated to form the final local message
LM = K(0)||K(1)|| . . . ||K(L′′ − 1).

GM = GlobalMessagePassing(Hg(0), Â, Tg, W) = Hg(0) +
∫ t

0
fg(Hg(τ), Â, Tg, W)dτ (9)

fg = Hg(t) ×2 (Â − I) + ((S(Tg) − I)HT
g (t))T + Hg(t) ×4 (W − I) (10)

LM =LocalMessagePassing(ATT, Hl(0), Â, Tl, W) = K(0)||K(1)||......||K(L′′ − 1) (11)
HA0,HA1, ..., HAl = ATT (Hl(0)) (12)

K(i) =Fl(HAi, t0)||Fl(HAi, t1)||......||Fl(HAi, tL/L′′−1) (13)

Fl(HAi, tj) = HAi +
∫ tj

0
fl(HAi(τ), Â, Tl, W)dτ (14)

fl =HAi(t) ×2 (Â − I) + ((S(Tl) − I)HT
Ai(t))T + HAi(t) ×4 (W − I) (15)

Edge Message Passing: Fig. 3(c) depicts the edge message passing procedures that take into account the
dynamic edge-based temporal patterns in addition to the node-based correlations. We will first create the
initial edge features He(0) ∈ RB×N×N×L from the node representation H ∈ RB×N×L×C by taking an
average over C channels and copying the N dimension. Eqs. (16) and (17) represent the edge message
passing operations which return edge message EM.

EM = EdgeMessagePassing(He(0), Â, Te) = He(0) +
∫ t

0
fe(He(τ), Â, Te)dτ (16)

fe = He(t) ×2 (Â − I) + He(t)(S(Te) − I) (17)

In Eqs (9)-(17), Hg, Hl, and He represent the feature of global, local, and edge ODE modules, repsectively;
Tg, Tl, and Te represent the global, local, and edge temporal weights formulated in Eqs. (6)-(8), respectively;
Â represents the updated adjacency matrix based on shared spatial weights; W ∈ RC×C represents the
weight matrix for modeling interaction of different channels; S(.) shows the sigmoid operation; and I is the
identical matrix.
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4.1.2 Message Filter

To prevent the semantic parts of local and global modules diverging from one another, we add a message
filtering constraint into the problem formulation (shown with orange mark in Fig. 3). Eq. (18) shows that
this message filtering constraint works like a both-way clipping operation in which we clip local semantic
embeddings if they are significantly larger or smaller than global semantic embeddings.

LM =

 GM + e, if LM > GM + e
GM − e, if LM < GM − e
LM, otherwise

(18)

where LM and GM represent the local and global semantic embeddings; and e represents a learnable noise
parameter initialized with normal distribution.

4.1.3 Aggregation Layer

Fig. 3(d) represents our aggregation paradigm designed for combining output features of the three ODE
modules. Instead of employing single add or pooling operations in the aggregation layer, we use the non-
linear matrix multiplication operation to account for key correlations in the higher dimensions. Eq. (19)
represents our designed aggregation in which the output of each ODE module is multiplied by the sum of
other modules that are normalized by softmax operation. This gated aggregation has several benefits: (i) it
enables the selection of features that are more crucial for forecasting; (ii) it allows for non-linear aggregation;
and (iii) it contains a linear gradient path, reducing the risk of vanishing gradient.

H ′ = Aggregation(GM, LM, EM) = 1
2K

K∑
m

K∑
n ̸=m

pm ⊙ softmax(pn) (19)

where H ′ represents the output of Multi ODE-GNN aggregation layer; LM , GM and EM represent the
local, global, and edge-based semantic embeddings, respectively; K = 3 refers to three ODE modules (p0 =
GM, p1 = LM, p2 = EM); and ⊙ operation represents the point-wise multiplication.

4.1.4 Update Layer

After obtaining the aggregated information, we add a residual connection around the multi ODE-GNN
block to update the node information of GNN. To achieve this, the input of multi ODE-GNN block will be
remapped to the aggregated output using a Fully Connected Layer as shown below.

H ′′ = Update(H ′, H) = α ∗ Sigmoid(WrH + br) + β ∗ H ′ (20)

where H and H ′ represent the inputs and outputs of the multi ODE-GNN block, respectively; Wr and br

denote the weight matrix and bias vector of the residual fully connected layer, respectively. Also, α and β
are the hyperparameters identifying the combination weights in the residual connection.

4.1.5 Temporal Convolutional Network

Since the problem being considered in this paper is spatio-temporal in nature, we need to consider the
temporal correlations of nodes in addition to their spatial relations in the problem formulation. To model
the temporal correlations, we utilize temporal convolutional networks (TCNs) which usually have more
efficient training, more stable gradients, and faster response to dynamic changes compared to recurrent
neural networks (RNNs). The architecture of TCN adopts the dilated convolutional operations with 1-D
kernels along the time axis.

10
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H l
tcn =

{
X , l = 0
Sigmoid

(
W l ⊙ dlH l−1

tcn

)
, l = 1, 2, . . . , L

(21)

where X ∈ RB×N×L×C is the input of TCN; H l
tcn ∈ RB×N×L×Cl is the latent output with Cl as the

embedding size in the l-th TCN’s layer; W l represents the convolutional kernel of the l-th layer; and dl is
the exponential dilation rate which is used to expand the receptive field during the convolution. We usually
take dl = 2l−1 in the temporal dilated convolution.

Algorithm 1 provides the pseudocode for the GRAM-ODE layer by sequentially passing the input via TCN,
Multi ODE-GNN, and another TCN blocks. The previously explained steps of Multi ODE-GNN block
including initialization, message passing, message filtering, aggregation, and update are summarized in lines
4 - 26.

Algorithm 1: GRAM-ODE Layer
Input: Node Information X , Traffic Graph G
Output: Updated Node Information X̂

1 # TCN Block
2 H ← TCN(X )
3 # Find Initial Values
4 Hg(0)← H
5 HAi(0)← ATT(H)
6 Ĥ ← Mean(H) # average on channel dimension
7 He(0)← Repeat(Ĥ) # repeat N times
8 # Edge Message Passing
9 EM ← He(t)×2 (Â − I) +He(t)(S(Te)− I)

10 # Global Message Passing
11 GM ← Hg(t)×2 (Â − I) + ((S(Tg)− I)HT

g (t))T +Hg(t)×4 (W − I)
12 # Local Message Passing
13 LM ← HAi(t)×2 (Â − I) + ((S(Tl)− I)HT

Ai(t))T +HAi(t)×4 (W − I)
14 # Message Filtering
15 if LM >GM+e then
16 LM ← GM + e
17 else if LM < GM-e then
18 LM ← GM − e
19 else
20 LM ← LM
21 end
22 # Aggregate Multi ODE-GNNs
23 p0, p1, p2 ← GM, LM, EM

24 H ′ ← 1
2K

K∑
m

K∑
n ̸=m

pm ⊙ softmax(pn)

25 # Update
26 H ′′ ← α ∗ Sigmoid(WrH + br) + β ∗H ′

27 # TCN Block
28 X̂ ← TCN(H ′′)

4.2 Attention Module

We use the attention mechanism in the last layer of GRAM-ODE to aggregate the final learned embeddings
of two traffic graphs (i.e., DTW-based graph and the connection map graph) in a more intelligent way
towards the forecasting objective. The attention module (AM) is designed to replace the previous fully
connected layers while capturing the correlations of high-dimensional information. In this module, we will
first concatenate the embeddings of two graphs and then compute the attention scores between them. Eqs.
(22) and (23) mathematically describe this attention operation.

Q = XWq + bq, K = XWk + bk, V = XWv + bv (22)

11
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X ′
i = softmax (

√
h

C ′ ∗ ( QT
i Ki )) Vi (23)

where Wq(bq), Wk(bk), and Wv(bv) represent the attention query, key, and value weight matrix (bias vector),
respectively; X is the input of attention module; h is the number of heads; and

√
h

C′ is the normalization
factor with C ′ representing the embedding dimension. Therefore, Q:{Q1, Q2, ..., Qh}, K:{K1, K2, ..., Kh},
V :{V1, V2, ..., Vh} shows the query, key, and value set for multiple attention heads. Finally, output of the
attention module X ′

i can be mapped to the feature space of original data for prediction with a linear dense
layer.

4.3 Loss Function

In regression problem settings (such as the traffic flow forecasting), Huber loss function between the real
value and predicted value is widely used in the literature. It combines the merits of L1 and L2 loss functions.
Huber loss is a piece-wise function which consists of two parts: (1) a squared term with small and smooth
gradient when the difference between the true and predicted values is small (i.e., less than a δ threshold
value) and (2) a restricted gradient term when the true and predicted values are far from each other. Eq.
(24) represents the standard form of Huber loss function.

L(Ŷ, Y) =


1
2(Ŷ − Y)2, |Ŷ − Y| ≤ δ

δ|Ŷ − Y| − 1
2δ2, otherwise

(24)

where δ is a hyperparameter value set for the intended threshold; Y is the true future spatio-temporal data;
and Ŷ is the predicted future data.

Algorithm 2 provides the pseudocode of GRAM-ODE training. In each optimization step of this algorithm,
the outputs of all GRAM-ODE layers across parallel channels will be concatenated, and these concatenated
outputs of different graph types will then be fed into the attention module for better aggregation and
prediction.

Algorithm 2: GRAM-ODE training
Input: Historical Data X , Future Data Y, Traffic Graph G
Output: Forecast Model with parameter θ

1 initialize model parameters θ

2 normalize the historical data X ← X −mean(X )
std(X )

3 for number of epochs until convergence do
4 for batch in num_batches do
5 layers=[ ]
6 for graph g in G do
7 repeat
8 X̂ ← GRAM-ODE Layer(X, g)
9 layers ←[layers, (X̂)] # Concatenation

10 until num_paralleled_layers
11 end
12 X ′ ← Attention Module(layers)
13 Ŷ ← X ′ × std(X ) + mean(X )
14 l← Huber Loss(Ŷ,Y) # Compute Loss
15 θ ← θ −∆θl # Update Parameters
16 end
17 end

5 Our Experiments

We conduct experiments on four real-wold datasets and seven baseline models to evaluate the effectiveness
of our proposed GRAM-ODE and its components for the traffic forecasting task.

12
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5.1 Datasets

We use four widely used public traffic datasets 1 (PEMS03, PEMS04, PEMS07, and PEMS08) which are
collected from the Freeway Performance Measurement System in California, USA. All these datasets collect
three features (flow, occupation, and speed) at each location point over a period of time (with 5-minute time
intervals). The spatial connection network for each dataset is constructed using the existing road network.
The details of data statistics are shown in Table. 2. To use these datasets in experiments, we pre-process
the features by z-score normalization.

Table 2: Basic statistics of the datasets used in our experiments.
Data PEMS03 PEMS04 PEMS07 PEMS08

Location CA, USA
Time Span 9/1/2018 - 1/1/2018 - 5/1/2017 - 7/1/2016 -

11/30/2018 2/28/2018 8/31/2017 8/31/2016
Time Interval 5 min

Sensors 358 307 883 170
Edges 547 340 866 295

Time Steps 26208 16992 28224 17856

5.2 Evaluation Metrics

We use Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE) metrics to evaluate the spatio-temporal forecasting. These metrics are defined as follows.

MAE = 1
n

n∑
i=1

|yi − ŷi|

MAPE =( 1
n

n∑
i=1

|yi − ŷi

yi
|) ∗ 100%

RMSE =

√√√√ 1
n

n∑
i=1

(
yi − ŷi

)2

(25)

5.3 Baselines

We compared our proposed GRAM-ODE with the following baselines.

• ARIMA(Box & Pierce, 1970): Auto-Regressive Integrated Moving Average is one of the most
well-known statistical models for time-series analysis.

• DCRNN(Veeriah et al., 2015): Diffusion Convolutional Recurrent Neural Network utilizes diffusion
graph convolutional networks with bidirectional random walks on directed graphs, and seq2seq gated
recurrent unit (GRU) to capture spatial and temporal dependencies, respectively.

• STGCN (Yan et al., 2018): Spatio-Temporal Graph Convolutional Network combines graph struc-
ture convolutions with 1D temporal convolutional kernels to capture spatial dependencies and tem-
poral correlations, respectively.

• GraphWaveNet (Wu et al., 2021): Graph WaveNet integrates adaptive graph convolution with
1D dilated casual convolution to capture spatio-temporal dependencies.

1All four datasets are provided in STSGCN github repository https://github.com/Davidham3/STSGCN/
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Table 3: Performance comparison of GRAM-ODE and baselines on four datasets. A lower
MAE/MAPE/RMSE indicates better performance. The best results are in bold and the second-best are
underlined.

Dataset Metric ARIMA DCRNN STGCN GraphWaveNet STSGCN STFGNN STGODE GRAM-ODE

PEMS03
MAE 33.51 18.18 17.48 19.85 17.48 16.77 16.50 15.72

MAPE(%) 33.78 18.91 17.15 19.31 16.78 16.30 16.69 15.98
RMSE 47.59 30.31 30.12 32.94 29.21 28.34 27.84 26.40

PEMS04
MAE 33.73 24.70 22.70 25.45 21.19 20.84 20.84 19.55

MAPE(%) 24.18 17.12 14.59 17.29 13.90 13.02 13.77 12.66
RMSE 48.80 38.12 35.55 39.70 33.65 32.51 32.82 31.05

PEMS07
MAE 38.17 25.30 25.38 26.85 24.26 23.46 22.99 21.75

MAPE(%) 19.46 11.16 11.08 12.12 10.21 9.21 10.14 9.74
RMSE 59.27 38.58 38.78 42.78 39.03 36.60 37.54 34.42

PEMS08
MAE 31.09 17.86 18.02 19.13 17.13 16.94 16.81 16.05

MAPE(%) 22.73 11.45 11.40 12.68 10.96 10.60 10.62 10.58
RMSE 44.32 27.83 27.83 31.05 26.80 26.22 25.97 25.17

• STSGCN (Song et al., 2020): Spatio-Temporal Synchronous Graph Convolutional Networks de-
compose the problem into multiple localized spatio-temporal subgraphs, assisting the network in
better capturing of spatio-temporal local correlations and consideration of various heterogeneities in
spatio-temporal data.

• STFGNN (Li & Zhu, 2021): Spatio-Temporal Fusion Graph Neural Networks uses Dynamic Time
Warping (DTW) algorithm to gain features, and follow STSGCN (Song et al., 2020) in using sliding
window to capture spatial, temporal, and spatio-temporal dependencies.

• STGODE (Fang et al., 2021a): Spatio-Temporal Graph ODE Networks attempt to bridge con-
tinuous differential equations to the node representations of road networks in the area of traffic
forecasting.

5.4 Experimental Settings

Following the previous works in this domain, we perform 5-fold cross validation experiments by splitting the
entire dataset into 3:1:1 for train, validation, and test sets. We use the past 1 hour to predict the future
1 hour. Since the time interval of data collection is 5 minutes, L, L′ = 12 temporal data points. Based
on Table 2, we have different number of sensors among different datasets, therefore, |V | will be different.
DTW threshold (ϵ) in Eq. (2) is 0.1; number of channels (C) in the historical data is 3 (i.e., flow, speed,
and occupation) and in the embedding space is 64. The shared temporal weights Ws1, Ws2 ∈ R12×12 are
initialized randomly from normal distribution. The length of latent space for the input of local ODE block
is L′′ = 4, and in the final attention module, number of attention heads h = 12. During training, we use
the learning rate of 10−4, 10−4, 10−5, and 10−5 for PEMS03, PEMS04, PEMS07, and PEMS08 datasets,
respectively. The optimizer is AdamW. All experiments are implemented using PyTorch (Paszke et al.,
2019) and trained using Quadro RTX 8000 GPU, with 48GB of RAM. The source code for our model will be
available at https://anonymous.4open.science/r/GRAM-ODE-FBF6/ upon the acceptance of this paper.

5.5 Experimental Results

Table 3 shows that our proposed GRAM-ODE outperforms other baselines on all the datasets with different
metrics (with the only exception of MAPE metric in PEMS07 - which is slightly larger than that of STFGNN).
In this table, ARIMA performs considerably worse than other baselines which is probably because it ignores
the graph structure of spatio-temporal data. GraphWaveNet is also performing comparatively poor which
might be due to the limited capability of this method in stacking spatio-temporal layers and expanding
the receptive field learned from 1D CNN temporal kernels. DCRNN uses bi-directional random walks to
model spatial information, while a gated recurrent unit (GRU) is used to model temporal information.
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The GRU is an RNN-based operation with a relatively low modeling efficacy and efficiency for long-range
temporal information, which may contribute to its subpar performance. STGCN uses graph convolutional
network (GCN) for spatial domain and 1D dilated convolutional operations for the temporal domain which
is more efficient than RNN-based operations but may cause some performance issues, such as losing the
local information because of the dilation operation. The relatively poor performance of STGCN might also
be due to the absence of attention-based operations and the limited capability of convolutional operations
in the modeling high-dimensional spatial, temporal, and spatio-temporal correlations. STSGCN employs
the localized spatio-temporal subgraphs to capture the local correlations, however this method missed the
global information, potentially resulting in poor performance in the case of long-range forecasting and data
with missing entries or noise. In addition to the spatial graphs from road networks, STFGNN uses Dynamic
Time Warping (DTW) for latent spatial networks which offered considerably good performance. However,
STFGNN is still limited in the learning of comprehensive spatio-temporal correlations. STGODE uses
Neural ODEs to capture the spatio-temporal dynamics, resulted in a very good performance compared to
other baselines. However, STGODE is still not very strong as it is unable to capture complicated spatio-
temporal correlations, balance local and global patterns, or capture the dynamic interactions between its
various components.

5.6 Case Study

We selected two nodes from the PEMS08 road networks to conduct our case study for the qualitative
demonstration of results. As Fig.4 shows, the predicted curves by our proposed GRAM-ODE (red curve) is
better (more closely) aligned with the ground truth than STGODE (grey curve). The ground truth in node
109 has more fluctuations compared to the node 17 which causes more difficulty in the forecasting task. We
can also observe that our model provides faster response in case of these abrupt fluctuations. This highlights
the effectiveness of local ODE-GNN block in our model architecture which helps the model to better learn
the local fluctuations.

Figure 4: The comparison of traffic flow forecasting between our proposed GRAM-ODE and STGODE
visualized for node 17 (left column) and node 109 (right column) of the PEMS08 dataset.

5.7 Ablation Study

To investigate the effect of different components of GRAM-ODE, we conduct ablation experiments on PEMS04
and PEMS08 with the several different variants of our model.

(1) Base: In this model, data only passes through a TCN, an ODE block and another TCN module.
The ODE block only contains the global ODE-GNN with a fully connected layer after that. The
output of TCN will be then imported to a simple fully connected layer instead of an attention
module.
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Figure 5: Ablation study experiments with different configurations of GRAM-ODE on PEMS03 (top row)
and PEMS08 (bottom row) datasets.

(2) +E: Beyond (1), this model adds the dynamic edge correlations with an edge-based ODE-GNN
block and aggregates its outputs with the global ODE-GNN block through a simple weighted sum
operation.

(3) +L: Beyond (2), this model adds the local ODE-GNN block with different temporal kernels to better
consider the local temporal patterns. The outputs of local ODE modules will be aggregated with
other ODE modules through a weighted sum operation.

(4) +share: Compared to (3), this model uses shared temporal weights between the edge and global
ODE-GNN modules and uses shared spatial weights among all three ODE-GNN modules, global,
local and edge module.

(5) +cons: Beyond (4), this model adds an adaptive message filtering constraint to restrict the diver-
gence of embeddings from local and global ODE modules.

(6) +agg: Beyond (5), this model replaces the weighted sum aggregation with a newly designed aggre-
gation module explained in Eq. (19).

(7) +res: Beyond (6), this model adds the intra-block residual connections between outputs and inputs
of the multi ODE-GNN blocks (which is explained in Eq. (20)).

(8) GRAM-ODE: Beyond (7), this model replaces the last linear layer with the attention module to better
combine the features learned from different traffic graphs and parallel channels of GRAM-ODE layers
(given by Eqs. (22) and (23)).

Fig. 5 shows the results of ablation experiments with MAE, MAPE, and RMSE metrics. It can be observed
that the edge and local ODE-GNN modules are both enhancing the feature representation in the traffic
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forecasting task. The model variant ‘+E’ improves the performance of the base model across all metrics
and both datasets. This shows that the simple node-based global ODE-GNN is insufficient in learning
informative features and adding the edge-based global ODE-GNN module can considerably help the perfor-
mance. Without any further techniques, the model gets worse by only using ‘+L’ beyond ‘+E’. However,
after adding the shared weight and divergence constraint techniques, the model usually gets better across
all metrics. The shared weights are applied in the spatial and temporal operations of global node-based and
edge-based ODE-GNN blocks to take into account the dynamic correlations of edges as well as nodes in the
model formulation. The constraint is added to prevent local and global ODE-GNN embeddings deviating
from one another. In this figure, we can also observe the impact of aggregation layer, residual-based update
layer as well as the designed attention module. It appears that, among these three elements, adding the
attention module will always result in better performance, which is consistent with our hypothesis that the
attention mechanism makes the model more intelligent in considering all the high-dimensional correlations
during feature extraction.

5.8 Robustness Study

To evaluate the robustness of our model, we add noise to the historical input of training data, which can
potentially mimic uncertainties and biases that can arise during the data collection process. The added
noise follows zero-mean i.i.d Gaussian distribution with fixed variance, e.g., N (0, γ2), where γ2 ∈ {2, 4}.
We conduct robustness analysis across different values of n ∈ {0.1, 0.2, 0.3, 0.4} representing the ratio of
training data impacted by noise. In other words, n = 0 captures the performance without any noise. Fig.
6 represents the results of robustness comparisons between GRAM-ODE and STGODE on PEMS04 dataset
across all the three metrics (MAE, MAPE, and RMSE). It can be observed that GRAM-ODE performance is
more robust than STGODE with different levels of added noise n = 0.1; 0.2; 0.3; 0.4 which is probably due to
the powerful spatio-temporal feature extraction gained by multiple ODE-GNN modules. We can also notice
that, when the noise levels are high (with γ2 = 4 and n = 0.4), GRAM-ODE can still beat many baseline
models listed in Table 3, demonstrating the significant benefit of incorporating various ODE modules in our
framework which can improve robustness.

Figure 6: Robustness comparison of GRAM-ODE and STGODE on PEMS04 dataset.

6 Conclusion

In this paper, we propose Spatio-Temporal Graph Multi-ODE Neural Networks (GRAM-ODE) for the traffic
forecasting task. In this model, multiple coupled ODE-GNN blocks are used to capture complex spatio-
temporal dependencies from different views and learn better representations. We also add some techniques to
further improve the communication between different ODE-GNN blocks including sharing weights, advanced
aggregation, and divergence constraint. Extensive experiments on four real-world datasets show the superior
performance of our proposed model compared to other state-of-the-art models as well as the effectiveness of
each component in our model. Since our proposed framework is designed in a generic way, it can be applied
to several other spatio-temporal forecasting applications.
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