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Facing Anomalies Head-On: Network Traffic Anomaly Detection
via Uncertainty-Inspired Inter-Sample Differences

Anonymous Author(s)

Abstract
Network traffic anomaly detection is pivotal in cybersecurity, espe-
cially as data volume grows and security requirement intensifies.
This study addresses critical limitations in existing reconstruction-
based methods, which quantify anomalies relying on intra-sample
differences and struggle to detect drifted anomalies. In response, we
propose a novel approach, the Uncertainty-Inspired Inter-Sample
Differences method (UnDiff), which leverages model uncertainty
to enhance anomaly detection capabilities, particularly in scenarios
involving anomaly drift. By employing evidential learning, the Un-
Diff model gathers evidence to minimize uncertainty in normal net-
work traffic, enhancing its ability to differentiate between normal
and anomalous traffic. To overcome the limitations of intra-sample
difference quantification in reconstruction-based methods, we pro-
pose a novel anomaly score based on inter-sample uncertainty
deviation that directly quantifies the anomaly degree. Benefiting
from a concise model design and parameterized uncertainty quan-
tification, UnDiff achieves high efficiency. Extensive experiments
on three benchmarks demonstrate UnDiff’s superior performance
in detecting both undrifted and drifted anomalies with minimal
computational overhead. This research contributes to the field of
network security by introducing a new uncertainty-based modeling
paradigm and a novel uncertainty-inspired anomaly score.

CCS Concepts
• Security and privacy → Intrusion detection systems; • In-
formation systems→ Traffic analysis.

Keywords
Network Traffic Anomaly Detection; Uncertainty Quantification;
Drifted Anomaly Detection; Zero-Positive Learning

1 Introduction
Network traffic anomaly detection, a fundamental component of
cybersecurity infrastructure [50], plays a pivotal role in identifying
malicious activities across various network environments. As data
volumes surge exponentially and security requirements are strin-
gent, precisely identifying anomalous network traffic patterns has
emerged as a critical imperative. This capability underpins multiple
important applications, including enhancing the stability and relia-
bility of network services [12, 29] and fortifying personal privacy
protection mechanisms [23, 27].

Current literature on network traffic anomaly detection predom-
inantly employs a reconstruction-based “zero-positive learning”
paradigm [5, 19, 26, 50], which only reconstructs normal network
traffic distributions during the training phase, typically leveraging
architectures such as auto-encoder [51]. Subsequently, during the
inference phase, common practice for evaluating anomaly degrees
is to utilize a distance-based metric [4, 14, 31, 45, 50, 51], i.e., sam-
ples exhibiting significant distance deviation between their pre- and
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Figure 1: Motivation for this work. (a) Existing methods en-
counter the “identical shortcut” issue, exemplified by the
proximity of pre- and post-reconstruction drifted anomalies.
(b) Our UnDiff is based on uncertainty-inspired inter-sample
differences, facilitating direct anomaly identification.

post-reconstruction representations are identified as anomalous
network traffic, while those demonstrating minimal divergence are
considered as normal network traffic (cf. left part of Figure 1(a)).
Limitations. Despite the recent advancements in reconstruction-
based methods for network traffic anomaly detection, an intrinsic
limitation persists. These approaches fully rely on intra-sample
differences of pre- and post-reconstruction from an egocentric per-
spective while insufficiently leveraging inherent inter-sample dif-
ferences, i.e., the diverse distribution between normal and anoma-
lous traffic [19]. This limitation is exacerbated by the potential
“identical shortcut” issue in reconstruction models [42]. Instead
of capturing differentiated characteristics of normal and anoma-
lous patterns, reconstruction-based methods tend to converge on
a set of shortcut parameters that merely replicate the input as
output [30, 32]. This limitation becomes particularly salient in de-
tecting drifted anomalies, where the distribution of anomalous data
evolves over time. The right part of Figure 1(a) visualizes the pre-
and post-reconstruction embedding of drifted anomalies using a
state-of-the-art reconstruction-based model Trident [50]. Empir-
ical observations indicate that the pre- and post-reconstruction
representations exhibit high proximity in the representation space.
The intra-sample differences do not satisfy the ideal institution of
reconstruction-based methods, thereby significantly impeding the
discrimination of drifted anomalies.
Contributions. To address this limitation, we propose a novel
Uncertainty-Inspired Inter-Sample Differences model (UnDiff).
UnDiff leverages the concept of model uncertainty to enhance the
discriminative capacity of anomaly detection systems, with particu-
lar emphasis on anomaly drift scenarios. As illustrated in Figure 1(b),
the key intuition of our model is rooted in the differential uncer-
tainty characteristics exhibited by normal and anomalous traffic
patterns. Normal samples, well-represented in the training data,
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manifest low model uncertainty. Conversely, anomalous samples,
particularly drifted anomalies, induce higher uncertainty due to
their deviation from the learned normal patterns [19]. In contrast
to existing reconstruction-based methods, our proposed UnDiff
addresses the limitation above by directly facilitating inter-sample
differences rather than relying on the sub-optimal intra-sample
quantification.

Central to our UnDiff is a novel uncertainty learning module
that quantifies model detection uncertainty based on informative
reconstructed representations. This module employs an eviden-
tial learning approach [6], acquiring evidence from training ex-
amples to construct an evidential distribution, facilitating robust
uncertainty modeling for normal network traffic. Furthermore, we
introduce explicit objectives to minimize uncertainty in normal
network traffic during training. These objectives provide a more
pronounced separation between normal and anomalous samples in
the uncertainty space. To overcome the limitation of intra-sample
disparity quantification in reconstruction-based methods, we fur-
ther propose an innovative uncertainty-inspired anomaly score
that adequately leverages inter-sample distributional differences
for detecting anomalies. Notably, thanks to the concise design of
the uncertainty learning module and the efficient parameterized
uncertainty quantification technique, the enhancements we pro-
posed above have negligible additional computational overhead.
We conduct extensive experiments on three real-world encrypted
anomaly traffic datasets and evaluate the performance of UnDiff in
both undrifted and drifted anomaly detections. Empirical results
verified the effectiveness of our proposed model in detection per-
formance across both scenarios. In summary, our key contributions
are threefold:

• We propose a novel uncertainty-based evidential detection
framework from an inter-sample difference perspective. Un-
like the suboptimal intra-sample difference quantification
in existing methods, our approach better utilizes the prior
knowledge that anomalies inherently deviate from normal
patterns, achieving more effective anomaly detection, par-
ticularly in scenarios involving anomaly drift.

• We introduce an innovative uncertainty learning module
and a new anomaly score. This module provides an efficient
and robust method for capturing sample uncertainty, while
the anomaly score effectively quantifies inter-sample differ-
ences, significantly enhancing the discriminative capacity
of the detection system.

• We conduct comprehensive empirical evaluations on three
real-world anomaly network traffic datasets, comparing
our approach against several state-of-the-art baselines. The
results demonstrate the effectiveness of our framework,
UnDiff, in detecting both drifted and undrifted anomalies.

2 Related Work
2.1 Network Traffic Anomaly Detection
Anomaly detection, particularly zero-positive learning anomaly
detection, has gained extensive attention. In this paradigm, only
normal data are available during training, and samples that devi-
ate from the learned model behavior are identified as anomalies
during inference. Existing methods can be broadly categorized into

three groups: distillation-based, statistics-based, and normalizing
flow-based approaches [28]. Distillation-based methods focus on
intra-sample differences, utilizing a student-teacher architecture to
compare the distilled disparities [47, 48]. Conversely, the statistic-
based [3, 10] and normalizing flow-based methods [17, 34] aim to
learn a mapping from an input domain to a low-dimensional dis-
tribution. These approaches quantify inter-sample differences by
analyzing deviations in the low-dimensional distribution. However,
these methods, primarily designed for natural images, often en-
counter significant limitations when applied to traffic data. This is
due to the unique characteristics of traffic images, such as redundant
high-frequency information and disordered texture [51].
Network Traffic Anomaly Detection. Current network traffic
anomaly detection methods mainly follow a reconstruction-based
paradigm. These methods typically reconstruct the normal traffic
during training and employ intra-sample differences (i.e., dispari-
ties between pre- and post-reconstruction) to identify anomalies.
A notable example is GANomaly [4], a prominent reconstruction
framework that utilizes a discriminator network to improve nor-
mal sample modeling. This approach has been successfully ap-
plied to network traffic analysis in subsequent studies [31, 45].
MANomaly [45] introduce a dual autoencoder adversarial training
strategy to enhance representation learning, while ARCADE [31]
employWGAN-GP optimization formore effective adversarial train-
ing. MFAD [51] identifies a critical “identical shortcut” issue in
traffic reconstruction and utilizes low-pass filtering to mitigate this
problem. Trident [50] incorporates a U-Net structure to retain more
detailed reconstruction information. Most anomaly detection meth-
ods for traffic data focus on enhancing the reconstruction quality
of normal samples. However, these approaches often evade the
“identical shortcuts” issue inherent in reconstruction-based models.
To overcome this limitation, we propose a novel paradigm based on
inter-sample differences. In contrast to the suboptimal intra-sample
differences employed by existing methods, we leverage the prior
knowledge that anomalous samples inherently deviate from normal
samples, achieving a more effective anomaly identification.

2.2 Uncertainty Learning
As deep learning models find increasingly widespread application
across diverse domains, accuracy is no longer the only criterion for
evaluation. In fields where safety is paramount, there is an urgent
need for more trustworthy neural networks. Reliable uncertainty
quantification emerges as a critical aspect in this context, as it
measures the model’s confidence in its output.

As elucidated in the literature [1, 16, 24, 33], two primary cate-
gories of uncertainties are associated with neural networks: data un-
certainty and model uncertainty. Data uncertainty arises from noise
or randomness in the input and can be reduced to zero with suffi-
cient training examples. For model uncertainty, Bayesian learning-
based networks provide a mathematically grounded framework,
albeit prohibitively expensive to implement and infer. Alternatively,
Monte Carlo Dropout [15] approximates Bayesian inference on
model parameters. Furthermore, leveraging the ensemble learning
paradigm, Deep Ensemble [25] integrates multiple models for uncer-
tainty estimation. To analyze data uncertainty, a unified Bayesian
learning-based method [24] has been proposed to directly map
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input data to estimations of both data and model uncertainties. Un-
certainty learning has also received attention in the field of anomaly
detection, with approaches such as Bayesian learning [20] and its
variational approximations [18, 21, 22, 43].

Recently, evidential learning has emerged as a promising uncer-
tainty quantification approach [20, 36, 38]. This method enables
uncertainty estimation in a single model and forward pass with
parameterized distributions. In this approach, a neural network out-
puts the hyperparameters of an evidential distribution, allowing the
model to estimate both model and data uncertainties without requir-
ing sampling, thus enhancing the efficiency of uncertainty quantifi-
cation [6]. However, most existing works on evidential learning are
designed for supervised learning in computer vision [20] and ne-
cessitate large volumes of labeled data to estimate the uncertainty
distribution. This requirement does not fit the typical anomaly
detection setting. Therefore, in this study, we explore the applica-
tion of evidential learning for quantifying the anomaly degree of
network traffic in a zero-positive learning context.

3 Methodology
In this section, we detail our proposed uncertainty-inspired inter-
sample difference method, UnDiff. We describe the research prob-
lem and introduce a novel research scenario, anomaly drift. Sub-
sequently, we explicate the requisite data processing modules. We
then detail our proposed uncertainty learning module, designed to
learn the uncertainty space, thereby facilitating the comparison of
inter-sample distribution differences. The schematic representation
of our methodological pipeline is illustrated in Figure 2.

3.1 Problem Statement
Network Traffic Anomaly Detection. This work investigates the
zero-positive learning anomaly detection problem in the context of
network traffic analysis. Let X = {x1, x2, ..., x𝑁 } denote a set of 𝑁
normal samples, where x𝑖 ∈ R𝑑 is a 𝑑-dimensional data instance.
The objective of detection models is to learn the distributional
patterns of normal samples during training. For inference, themodel
assigns an anomaly score to each test sample xtest ∈ Xtest, where
Xtest represents the set of test samples. This score is derived based
on the learned behavior of normal samples. The magnitude of the
anomaly score is positively correlated with the likelihood of a
sample being identified as anomalous.
Drifted Anomaly Detection. The dynamic nature of network
activities frequently leads to divergence in the distribution of test-
ing data, a phenomenon known as concept drift [14]. This drift
often results in the performance degradation of anomaly detection
systems [19, 51]. Existing research on concept drift in anomaly
detection primarily focuses on two scenarios: whole drift, where
both normal and anomalous data experience drift [7, 8, 41, 50] and
normal drift, where only normal data undergoes drift [19]. How-
ever, this study addresses a more realistic scenario: anomaly drift,
wherein only anomalous data experience drift. This scenario is
particularly relevant because, in real-world applications, normal
network traffic patterns typically exhibit relative stability, whereas
anomalous network traffic patterns often change due to the evolu-
tion of attack strategies. Consequently, our research emphasizes
the generalization capability of the anomaly detection model when

Table 1: Comparison of drift scenarios in anomaly detection.

Setup Whole Drift Normal Drift Anomaly Drift

Training Normal (A & B) Normal (A) Normal (A)

Evaluation Normal (B) Normal (B) Normal (A)
Anomalous (B) Anomalous (A) Anomalous (A & B)

confronted with drifts in the distribution of anomalous data. Table 1
outlines the distinctions among three scenarios.

3.2 Data Preprocessing
Network traffic fundamentally manifests as a flow format compris-
ing an ordered sequence of packets. In contrast to statistical features
designed based on manual heuristics [31, 45], we directly utilize
the original traffic packet information for network traffic modeling.
This approach circumvents the introduction of bias associated with
manually crafted features. A critical consideration in the data pro-
cessing of network flows is the appropriate representation method,
as it significantly influences the detection accuracy and computa-
tional overhead. In this study, we employ a Multi-Channel Traffic
Image Construction strategy for traffic flow representation. This
approach allows for a more comprehensive and nuanced capture of
the multidimensional nature of network traffic.
Multi-Channel Traffic Image Construction.While image-based
single packet processing has been widely adopted in network traffic
anomaly detection [13, 51], the potential of flow-level image con-
struction remains largely unexplored. Drawing inspiration from
video anomaly detection methodology [46], which addresses spatio-
temporal representation tasks, we propose a novel approach to
network flow representation. In our method, we formulate each
network flow as a multi-channel image analogous to a video frame
sequence. The specific channel order is determined by the packets’
chronological arrival, preserving the flow’s temporal dimension.
This approach offers two significant advantages: (i) Dimensional
Efficiency: By extending the representation along the channel di-
mension rather than width and height, we reduce the generation
of subsequent high-dimensional feature maps. This design choice
ensures enhanced inference speed. (ii) Informative Representation
Preservation: Crucially, this approach adequately preserves infor-
mative representations as the contextual relationships between
packets (represented as multi-channel images), reflecting the spatio-
temporal characteristics of network flows. This temporal and spa-
tial information preservation is critical for capturing the nuanced
patterns that may indicate anomalies. For each traffic image, we im-
plement a low-pass filtering process to mitigate noise. This step is
necessitated by the unique characteristics of traffic images, which,
in contrast to natural images, exhibit a chaotic and textureless
state [51]. This phenomenon arises from the abundance of high-
frequency components inherent in network traffic data. However,
these high-frequency components often manifest as detrimental
noise, impeding the model’s ability to generalize effectively due to
the excessive complexity of the information.

3.3 Proposed UnDiff
As shown in Figure 2(a), our UnDiff contains two main components:
an evidence extractor to extract evidence and a novel uncertainty

3
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Figure 2: Overall framework of UnDiff. (a) Training: Uncertainty-Inspired Modeling Process. UnDiff first extracts informative
representations from normal network traffic. These refined representations are then utilized to instruct uncertainty parameters
for uncertainty representation. (b) Inference: Anomaly Metric Process. UnDiff directly outputs model uncertainty to quantify
anomalies by assessing inter-sample differences via a distribution prior that differentiates normal and anomalous traffic.

learning module to construct an uncertainty space for subsequent
anomaly quantification and detection.

3.3.1 Evidence Extractor. The autoencoder is designed to process
original input traffic x, encoding it into a latent evidence represen-
tation z, and subsequently decoding it to produce a reconstruction
of the input x̂. Given that the input is a multi-channel image, we
employ Convolutional Neural Networks (CNNs) as the encoder, fol-
lowing established practices in the literature [51]. It is imperative to
note that network traffic inherently comprises a series of packet se-
quences with distinct spatio-temporal characteristics [49]. However,
previous autoencoder-based reconstruction methods have primar-
ily focused on enhancing reconstruction quality, often neglecting
the crucial spatio-temporal relationships inherent in the network
packets. To address this limitation, we introduce a spatio-temporal
aware channel-spatial based attention mechanism, specifically the
Convolutional Block Attention Module (CBAM) [40], into our au-
toencoder architecture. This approach enables us to assign higher
importance to significant channel images (temporal features) and
spatially relevant regions (spatial features), thereby facilitating the
extraction of evidence for critical patterns in multi-channel images.
More details of the evidence extractor are in Appendix A.

3.3.2 Uncertainty LearningModule. The predominant zero-positive
learning paradigm for anomaly network traffic typically frames
this task as a reconstruction problem, optimizing the similarity
loss of the original input x and the reconstructed output x̂. The
intra-sample differences between pre- and post-reconstruction from
an egocentric perspective are utilized to quantify the anomaly de-
grees. However, this paradigm exhibits suboptimal performance
due to two primary limitations. Firstly, comparing the differences
between samples before and after reconstruction does not directly
address the fundamental nature of the problem: anomalous traffic
is inherently defined relative to normal traffic patterns. Secondly,
the classical “identical shortcut” problem inherent in autoencoder
architectures significantly impacts the intra-sample differences of
anomalous samples, particularly leading to performance degrada-
tion in scenarios involving anomaly drift.

To address these issues concurrently, we propose a novel uncer-
tainty learning module designed to construct an uncertainty space,
facilitating direct inter-sample comparisons to detect anomalous
network traffic. This module is based on estimating the detection
uncertainty, explicitly focusing on model uncertainty, also known

as epistemic uncertainty. Model uncertainty quantifies the uncer-
tainty in estimating model parameters given the training data, ef-
fectively measuring the degree of congruity between the model and
the data [1]. We posit that this model uncertainty score is intrinsi-
cally linked to anomalous patterns and can be leveraged to identify
anomalies effectively. The fundamental intuition underpinning our
methodology is rooted in the differential uncertainty characteristics
exhibited by normal and anomalous traffic patterns [19]. Normal
samples, well-represented in the training data, typically manifest
low model uncertainty. Conversely, anomalous traffic, particularly
in the context of drifted anomalies, induces higher uncertainty due
to its deviation from the learned normal patterns.

The uncertainty learning module comprises an encoder and a
group of uncertainty parameter heads. The encoder, which shares
its architectural design with the preceding encoder of evidence
extractor, is based on the reconstruction output x̂. It processes the
reconstruction x̂ as input and generates an uncertainty representa-
tion 𝛾 , quantifying model’s detection uncertainty. The uncertainty
parameter heads, implemented as linear layers, translate the uncer-
tainty representation 𝛾 into their corresponding uncertainty param-
eters. This transformation facilitates effective uncertainty modeling.
Through this mechanism, we explicitly incorporate evidential learn-
ing to quantify evidence distribution of normal network traffic. In
contrast to Bayesian Neural Networks (BNNs), which place priors
on network weights, our evidential-based approach sets priors di-
rectly over the likelihood function. This methodology achieves a
more computationally efficient uncertainty quantification.

We consider the uncertainty representations z extracted from
the preceding autoencoder, which encapsulates the evidential infor-
mation about normal network traffic, to conform to independent
homogeneous distributions from a Gaussian distribution. These
distributions are characterized by their mean and variance (𝜇, 𝜎2).
These parameters to be quantified, 𝜇 and 𝜎2, are intrinsically linked
to the model uncertainty that is the focus of our investigation [1].
To estimate these parameters, we employ a hierarchical Bayesian
approach. Specifically, we utilize a Gaussian prior to estimate the
mean value and place an Inverse-Gamma prior on the variance. This
choice of priors is motivated by their conjugate relationship with
the Gaussian likelihood, facilitating closed-form posterior updates.
The hierarchical model can be expressed as follows:

z ∼ N(𝜇, 𝜎2) 𝜇 ∼ N(𝛾, 𝜎2𝑣−1) 𝜎2 ∼ Γ−1 (𝛼, 𝛽), (1)

where Γ(·) denotes the Gamma function, 𝛾 represents the uncer-
tainty space to be estimated, 𝑣 > 0, 𝛼 > 1 and 𝛽 > 0. We aim to
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estimate a posterior distribution 𝑞(𝜇, 𝜎2 |z). Following the approach
described in work [6], we employ a factorization of the estimated
distribution such that 𝑞(𝜇, 𝜎2) = 𝑞(𝜇)𝑞(𝜎2). This factorization al-
lows for a tractable approximation of the posterior distribution.
Our approximation takes the form of the Gaussian conjugate prior,
specifically the Normal Inverse-Gamma (NIG) distribution:

𝑝 ({𝜇, 𝜎2} | Ω) = 𝛽𝛼
√
𝑣

Γ(𝛼)
√
2𝜋𝜎2

(
1
𝜎2

)𝛼+1
exp

{
−2𝛽 + 𝑣 (𝛾 − 𝜇)2

2𝜎2

}
,

(2)
where Ω = {𝛾, 𝑣, 𝛼, 𝛽} denotes the set of uncertainty parameters
we aim to estimate. Given a NIG distribution parameterized by Ω,
we can compute the uncertainty space and model uncertainty:

E[𝜇] = 𝛾︸    ︷︷    ︸
uncertainty space

Var[𝜇] = 𝛽

𝑣 (𝛼 − 1)︸                  ︷︷                  ︸
model uncertainty

. (3)

This mathematical formulation delineates the theoretical frame-
work underpinning our approach to uncertainty quantification. The
evidential learning paradigm we have introduced essentially con-
stitutes an uncertainty estimation methodology based on the likeli-
hood function. This approach involves training a neural network
to output the hyperparameters for fitting an evidential distribution.

Next, we outline our method for obtaining evidential parame-
ters. Our training process is designed to optimize a dual-objective
function that simultaneously addresses two critical aspects: (i) in-
creasing model evidence to support the training samples, which
in this context represent normal network traffic patterns, and (ii)
reducing evidence when uncertainty space exhibits inconsistencies
or inaccuracies. Objective (i) can be conceptualized as a mechanism
for adapting our data to the evidential model, while objective (ii)
serves to enforce a prior that mitigates inaccurate evidence and
amplifies uncertainty where appropriate.
Objective (i): Maximizing the Normal Evidence. In accordance
with Bayesian probability theory, the “model evidence” is defined
as the likelihood of an observation, given the evidential distribu-
tion parameters Ω. This is computed by marginalizing over the
likelihood parameters (𝜇, 𝜎2):

𝑝 (z | Ω) =
∫ ∞

𝜎2=0

∫ ∞

𝜇=−∞
𝑝

(
z | 𝜇, 𝜎2

)
𝑝

(
𝜇, 𝜎2 | Ω

)
d𝜇d𝜎2 . (4)

The direct fitting of the evidential model parameters Ω to this like-
lihood distribution presents significant computational challenges.
However, by applying a Normal Inverse-Gamma (NIG) evidential
prior to the Gaussian likelihood function, we can derive an analyti-
cal solution, as demonstrated in work [6]:

𝑝 (z | Ω) = St
(
z;𝛾,

𝛽 (1 + 𝑣)
𝑣𝛼

, 2𝛼
)
, (5)

where St(·; 𝜇St, 𝜎2St, 𝑣St) denotes the Student’s t-distribution evalu-
ated at location parameter 𝜇St, scale parameter 𝜎2St, and degrees
of freedom 𝑣St. To optimize the model’s representation of normal
network traffic, we maximize the logarithm of the model evidence,
which is equivalent to minimizing its negative. This objective guides
the uncertainty parameter heads to output the parameters of a NIG
distribution that best fits the distribution of normal network traffic.

Formally, we define the training objective LNLL for maximizing
the normal evidence as:

LNLL =
1
2
log

(𝜋
𝑣

)
− 𝛼 log(𝜔) + log

©«
Γ(𝛼)

Γ
(
𝛼 + 1

2

) ª®®¬
+
(
𝛼 + 1

2

)
log

(
(z − 𝛾)2𝑣 + 𝜔

)
,

(6)

where 𝜔 = 2𝛽 (1 + 𝑣).
Objective (ii): Minimizing Evidence on Errors. In addition to
maximizing the evidence for normal patterns, we incorporate a
regularization term that imposes a high uncertainty prior to penal-
ize incorrect evidence in the uncertainty space. The fundamental
principle underlying this regularization is that it should attenuate
the weight of evidence where the uncertainty space deviates sig-
nificantly from the true evidence while having minimal impact on
evidence predictions that closely align with the instructive evidence
z. To achieve this, we formulate an evidence regularizer [6] LR as:

LR = |z − 𝛾 | · (2𝑣 + 𝛼). (7)

3.3.3 Training. Our training loss function comprises three princi-
pal components: LNLL, LR, and LRec:

L = LRec · 𝜆Rec + LNLL · 𝜆NLL + LR · 𝜆R, (8)

where 𝜆· is the hyperparameter to control the contribution of each
component. LRec is the reconstruction loss for the autoencoder:.

LRec = | |x − x̂| |1, (9)

where | | · | |1 denotes the L1 norm. The inclusion of this term ensures
the preservation of the autoencoder’s fundamental reconstruction
capability, enabling the generation of meaningful latent representa-
tions. These representations serve as effective evidence instructors
for the subsequent uncertainty quantification.

3.3.4 Inference. The anomaly detection process fundamentally re-
lies on an anomaly score to quantify the degree of deviation from
normality. Given that our model is trained exclusively on normal
network traffic, the proposed UnDiff naturally assigns low uncer-
tainty to patterns consistent with normal network behavior. Our
approach is motivated by the well-established principle that there
exists a distributional divergence between normal and anomalous
network traffic, encompassing both undrifted and drifted anom-
alies [8, 19, 51]. Leveraging this insight, we adopt an inter-sample
differences method, utilizing model uncertainty as a direct proxy
for anomaly scoring. This approach is underpinned by the widely
accepted notion in uncertainty learning that deviant samples in-
herently induce higher model uncertainty [20]. As depicted in Fig-
ure 2(b), our method yields an effective and computationally effi-
cient uncertainty-inspired anomaly score. This score is character-
ized by its ability to generate high uncertainty values for anomalous
samples (i.e., out-of-distribution instances relative to the training
set) while maintaining low uncertainty for normal samples (i.e.,
in-distribution instances relative to the training set). In contrast to
traditional reconstruction-based anomaly quantification methods,
which we categorize as intra-sample difference approaches, UnDiff
capitalizes on the intrinsic distributional divergence between nor-
mal and anomalous network traffic. This enables a more nuanced
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Table 2: Performance comparisons (%) for undrifted anomaly detection on the DataCon2020, CIC-IDS2017, and USTC-TFC2016
datasets. The best results are in bold, and the runner-up results are underlined.

Model DataCon2020 CIC-IDS2017 USTC-TFC2016

AUC ACC F1 AUC ACC F1 AUC ACC F1

PaDim 61.01±0.5 55.07±0.2 67.23±0.2 57.74±0.4 55.06±0.1 68.16±0.1 98.79±0.0 96.93±0.1 96.85±0.1
DFM 83.03±0.3 78.67±0.3 78.85±0.3 69.91±0.2 63.89±0.3 66.87±0.1 94.94±0.3 93.03±0.3 92.63±0.3

DFKDE 72.85±0.5 64.37±0.3 71.86±0.2 67.67±0.6 63.62±0.3 68.61±0.2 91.63±2.4 93.38±0.2 93.79±0.2
Fastflow 69.98±0.5 63.93±0.3 71.65±0.3 78.25±0.3 74.82±0.4 76.39±0.4 99.14±0.0 95.60±0.2 95.42±0.2
Cflow 68.69±1.6 64.14±1.0 72.40±0.8 66.42±0.9 69.46±0.6 69.41±0.5 97.22±0.2 96.76±0.2 96.68±0.2
STFPM 82.37±0.6 80.44±2.1 80.93±1.7 85.89±1.7 80.00±2.1 81.50±1.1 91.63±2.4 89.02±1.3 89.71±1.3
ReverDis 74.53±2.4 68.80±3.1 75.30±1.1 82.22±0.3 77.87±0.4 76.62±0.4 98.05±0.5 95.21±0.9 95.07±0.9
MMR 80.60±2.1 78.85±2.1 79.64±1.3 85.87±1.2 74.36±1.1 74.40±1.0 99.44±0.0 96.15±0.2 96.04±0.2

GANomaly 81.50±1.0 79.40±2.1 79.95±1.6 82.75±4.7 80.85±1.7 81.21±0.9 95.36±1.0 91.27±2.9 91.07±3.2
ARCADE 81.98±4.1 81.48±2.0 80.31±3.4 84.85±2.6 80.15±1.6 82.78±1.0 88.62±2.2 93.13±0.1 93.57±0.1
MFAD 83.16±1.9 76.28±2.4 78.59±1.1 86.02±0.8 81.66±1.9 83.67±1.7 99.73±0.0 97.45±0.4 97.43±0.4
Trident 63.89±0.5 73.67±0.3 78.37±0.3 82.99±0.1 77.42±0.2 75.17±0.2 96.19±0.2 89.86±0.3 89.47±0.3

UnDiff (ours) 86.93±0.3 83.16±0.2 82.78±0.2 88.88±0.4 83.31±0.4 83.72±0.4 99.90±0.0 99.47±0.2 99.47±0.2
Improve 4.53%↑ 2.06%↑ 2.29%↑ 3.32%↑ 2.02%↑ 0.18%↑ 0.17%↑ 0.02%↑ 0.04%↑

and potentially more robust detection mechanism. Formally, we
define our anomaly score as follows:

Anomaly Score = Var[𝜇] = 𝛽

𝑣 (𝛼 − 1) . (10)

4 Experiments
In this section, we present a comprehensive empirical evaluation
to assess the efficacy of UnDiff. Our experiments aim to answer the
following research questions, each probing a critical aspect of our
proposed model:

• RQ1: To what extent does UnDiff demonstrate superior
performance relative to established baselines in detecting
undrifted anomalies across multiple datasets?

• RQ2: How does the efficacy of UnDiff compare to baselines
when confronted with drifted anomalies?

• RQ3:What is the relative impact of intra- and inter-sample
differences on the detection performance?

• RQ4: What is the contribution of the various components
within UnDiff to its overall detection capability?

4.1 Experimental Setting
Dataset. We use three publicly available network traffic anom-
aly detection datasets for evaluation: (i) DataCon2020 [9] is an
encrypted network traffic dataset comprising normal and malicious
traffic, with the latter consisting of encrypted malware communica-
tions; (ii) CIC-IDS2017 [35] is a network intrusion detection dataset
that includes seven common attacks, including Brute Force Attack,
Heartbleed Attack, Botnet, DoS, DDoS, Web Attack, and Infiltration
Attack; (iii) USTC-TFC2016 [39] is malware traffic detection dataset
with malicious traffic from public sources and normal traffic from
eight application types. For consistent evaluation, we randomly
sample 10,000 normal network flows for training and 5,000 normal
plus 5,000 anomalous flows for testing across all datasets.
Baselines.We evaluate UnDiff with 12 state-of-the-art baselines,
categorized into two groups as follows: (i) Network Traffic Anom-
aly Detection: GANomaly [4], ARCADE [31], MFAD [51], and Tri-
dent [50]; (ii) Other Advanced Anomaly Detection: PaDim [10], DFM

[2],DFKDE [3], FastFlow [44],CFlow [17], STFPM [37], ReverDis [11],
and MMR [48]. More details of baselines are shown in Appendix B.
Evaluation Metrics. In alignment with recent models in network
traffic anomaly detection [31, 51], we employ three commonly used
metrics: AUC, Accuracy (ACC), and F1-Score (F1).
Drifted Anomaly. We assess model’s robustness to anomaly drift
by conducting cross-dataset evaluations. Specifically, we train one
model on one dataset and evaluate this model’s performance on
anomalous samples from other two datasets. This approach allows
us to investigate model’s generalization capability and resilience to
potential concept shifts in network traffic patterns, thereby assess-
ing model’s efficacy in detecting drifted anomalies in real-world
environments.
Implementation Details. All experiments are conducted on an
NVIDIA GeForce RTX 3090 GPU. We use the Adam optimizer with
learning rates of 1𝑒−4, 1𝑒−3, 1𝑒−6 for DataCon2020, CIC-IDS2017,
and USTC-TFC2016, respectively. Loss coefficient (𝜆Rec, 𝜆NLL, 𝜆R)
are set as (1, 1𝑒−2, 1𝑒−4), (1, 5𝑒−2, 5𝑒−5) and (1, 1, 1𝑒−2), while the
low-pass filter uses a cutoff radius of 5. The parameter search scope
is described in Appendix C. Training proceeds with a batch size of
128 for a maximum of 50 epochs, with early stopping implemented
to mitigate overfitting. To ensure statistical robustness, we perform
five independent runs with different random seeds, reporting mean
results with standard deviations. To facilitate reproducibility, the
source code for our UnDiff is available at https://anonymous.4open.
science/r/WWW25-1522 and will be made public.

4.2 Anomaly Detection on Benchmark (RQ1)
To assess UnDiff’s efficacy in typical anomaly traffic detection
scenarios (i.e., undrifted anomalies), we conducted a comprehen-
sive comparison of our model against 12 competitive baselines on
three datasets. The results, as presented in Table 2, demonstrate
that our model consistently outperforms baselines across all three
datasets. Notably, on the DataCon2020 and CIC-IDS2017 datasets,
UnDiff exhibits significant performance improvements over the
best-performing baseline MFAD, with enhancements of 4.53%↑
and 3.32%↑ in AUC, respectively. These quantitative improvements
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Table 3: Performance comparisons (%) for drifted anomaly detection on the DataCon2020, CIC-IDS2017, and USTC-TFC2016
datasets. The abbreviations are explained as follows: D: DataCon2020, I: CIC-IDS2017, and U: USTC-TFC2016.

Model D->I D->U I->D I->U U->D U->I
AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

GANomaly 50.73 50.99 66.86 60.96 75.82 79.68 56.58 72.35 75.76 74.92 72.32 77.49 90.30 90.70 91.25 96.01 88.67 87.95
ARCADE 49.99 49.99 66.66 57.87 74.83 78.74 67.47 79.24 80.94 49.60 59.74 69.60 97.87 93.44 93.84 88.61 90.67 91.44
MFAD 62.28 51.09 67.01 79.50 72.76 77.90 77.90 70.56 74.60 82.18 75.84 78.02 98.20 95.27 95.43 98.62 93.92 94.19
Trident 55.11 49.90 66.66 66.08 78.99 81.77 51.20 57.90 70.07 67.47 66.24 72.57 97.47 98.28 98.31 98.83 97.57 97.62

UnDiff-AE 64.48 70.57 77.10 71.08 76.97 80.73 81.48 79.21 80.47 61.88 62.27 71.91 99.57 98.92 98.92 98.75 92.80 93.27
UnDiff 84.10 76.14 80.46 96.08 87.95 88.66 93.70 88.65 88.57 91.18 86.43 86.69 99.83 99.59 99.59 99.76 98.07 98.07
Improve 30.43%↑ 7.89%↑ 4.36%↑ 20.86% ↑ 11.34%↑ 8.43%↑ 15.00%↑ 11.88%↑ 9.43%↑ 10.95%↑ 10.59%↑ 13.96%↑ 0.26%↑ 0.68%↑ 0.68%↑ 0.94%↑ 0.51%↑ 0.46%↑
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Figure 3: Statistics of the uncertainty-based anomaly scores
for UnDiff under the undrifted anomaly scenario.

underscore the effectiveness and robustness of our model. The un-
derlying strength of our method lies in its innovative utilization of
uncertainty measures to directly quantify inter-sample differences,
thereby facilitating more accurate discrimination of anomalous
network traffic patterns.

While statistics-basedmethods such as PaDim, DFM, andDFKDE,
as well as normalizing flow-based approaches like FastFlow and
CFlow, attempt to compute distribution deviations by exploiting
inter-sample differences, their comparative spaces lack the dis-
criminative power of our uncertainty space. Our approach, built
upon the informative reconstruction of latent variables and guided
by evidential learning, constructs a more robust and discerning
comparative framework. Moreover, distillation-based methods in
anomaly detection, including STFPM, ReverDis, and MMR, are con-
strained by the limitation in effective feature extraction. In contrast,
approaches specific to anomaly network traffic detection, while not
requiring additional feature extractors, quantify anomalies through
intra-sample reconstruction differences. However, these methods,
including GANomaly, ARCADE, MFAD, and Trident, suffer from
the “identical shortcut” issue, which may significantly compromise
the intra-sample differences of anomalies, leading to suboptimal
performance. Our uncertainty-inspired framework addresses these
limitations by effectively leveraging distributional differences be-
tween normal and anomalous samples. By quantifying anomalies
from an inter-sample differences perspective, UnDiff provides a
more nuanced and robust approach to anomaly detection.

To further corroborate the feasibility of our UnDiff framework,
we present a detailed analysis of the anomaly score distributions in
Figure 3. The graphical representation reveals a marked bimodal
distribution, with a clear separation between the scores associated
with normal and anomalous samples. This pronounced divergence
in score distributions provides compelling evidence for the discrim-
inative power of our uncertainty-inspired anomaly metric. The
clear detachment between normal and anomalous samples also

Normal in A Aomaly in B Aomaly in C

Trident

UID-AE

UID

A :“D” B: “I” C: “U” A :“I” B: “D” C: “U” A :“U” B: “D” C: “I”

Trident

UID-AE

UID

Normal in A Aomaly in B Aomaly in C
A :“D” B: “I” C: “U” A :“I” B: “D” C: “U” A :“U” B: “D” C: “I”

Trident

UnDiff-AE

UnDiff

Normal in A Anomaly in B Anomaly in C
A :“D” B: “I” C: “U” A :“I” B: “D” C: “U” A :“U” B: “D” C: “I”

Figure 4: Anomaly score distribution for Trident, UnDiff-AE,
and UnDiff under the anomaly drift scenario.

underscores the method’s ability to generate highly informative in-
dicators, facilitating more accurate and reliable anomaly detection.

4.3 Drifted Anomaly Detection (RQ2)
To assess the efficacy of our approach in addressing drifted anom-
alies, we compare our UnDiff with state-of-the-art network traffic
anomaly detectionmethods and a variant of our UnDiff –UnDiff-AE,
which employs a pure auto-encoder architecture without uncer-
tainty learning. As evidenced in Table 3, these approaches have
suboptimal performance, particularly in the drifted experiments
from DataCon2020 (D) to CIC-IDS2017 (I), D to USTC-TFC2016 (U),
I to D, and I to U. These empirical observations highlight the critical
necessity for robust drifted anomaly detection methodologies. The
primary limitation of these baselines stems from their reliance on
an intra-sample difference paradigm, which is inherently suscep-
tible to the “identical shortcut” issue prevalent in reconstruction-
based models. Therefore, the divergence in anomaly scores between
normal and anomalous samples is suppressed and obfuscated. We
visualize the detailed anomaly scores for Trident and UnDiff-AE in
Figure 4 to elucidate this phenomenon. The anomaly score distri-
bution for Trident exhibits significant overlap between normal and
anomalous samples, with anomalous samples occasionally scoring
lower than normal samples. This observation indicates that the
“identical shortcut” issue profoundly compromises the efficacy of
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Figure 5: The t-SNE visualization comparison between intra-
sample and inter-sample differences.

intra-sample differences in detecting drifted anomalies. In contrast,
UnDiff achieves apparent distinction in the distribution between
normal and drifted anomaly samples, thereby validating the ef-
fectiveness of our inter-sample differences approach. Notably, the
comparative analysis with UnDiff-AE shows that the substantial im-
provement in UnDiff’s performance is predominantly attributable
to the uncertainty-inspired inter-sample differences rather than the
fundamental auto-encoder architecture. Appendix D provides more
comparison results.

4.4 Qualitative Study (RQ3)
We now elucidate the underlying mechanisms contributing to Un-
Diff’s enhanced performance by two 𝑡-SNE visualizations, which
leverage an inter-sample differences methodology. As illustrated in
Figure 5, we observe a degree of confusion between the pre- and
post-reconstruction embeddings of anomalous samples on Trident,
manifested as certain overlaps and approximate profiles with mini-
mal distance. We posit that this phenomenon arises from the “iden-
tical shortcut” issue, an inherent limitation in reconstruction-based
approaches. This limitation leads to well-reconstructed representa-
tions even for anomalous samples, a phenomenon that contradicts
the fundamental detection motivation of reconstruction methods.
Consequently, this results in indistinguishable intra-sample differ-
ences between normal and anomalous traffic patterns, compromis-
ing the efficacy of traditional approaches. In contrast, UnDiff is
based on a novel inter-sample differences perspective, effectively
leveraging the axiom that anomalous samples inherently deviate
fromnormal samples in the feature space. The representationwithin
our uncertainty space demonstrates the feasibility and effective-
ness of uncertainty-inspired modeling and detection. This approach
makes the discrimination by exploiting inter-sample differences,
thereby overcoming the limitations inherent in intra-sample com-
parison methods. More qualitative results are in Appendix E.

4.5 Ablation Studies (RQ4)
To evaluate the contributions of each component in our UnDiff, we
conduct an ablation study comprising four variants. These variants
are constructed by removing one of the key components in UnDiff:
the reconstruction loss LRec (w/o LRec), the regularization loss LR

(w/o LR), the uncertainty-based anomaly score (w/o AS), and both
the uncertainty-based modeling and anomaly score (w/o T&AS). As
illustrated in Table 4, the removal of LRec results in substantial per-
formance degradation, underscoring the critical role of reconstruc-
tion loss in ensuring a refined representation of normal network

Table 4: Ablation studies for drifted and undrifted anomaly
detection (AUC). The gray color denotes undrifted detection.

Variant DataCon2020 CIC-IDS2017 USTC-TFC2016
D I U D I U D I U

w/o LRec 83.44 61.79 80.26 78.46 76.22 59.41 98.95 80.97 98.25
w/o LR 84.80 71.48 72.50 85.31 86.80 81.12 99.55 99.39 99.78
w/o AS 85.66 82.52 83.25 83.28 87.67 86.15 99.74 98.81 99.84

w/o T&AS 85.55 64.48 71.08 81.48 86.02 61.88 99.51 98.75 99.71
UnDiff 86.93 84.10 96.08 93.70 88.88 91.18 99.83 99.76 99.90

Table 5: Overhead comparison for inference.

GANomaly ARCADE MFAD Trident UnDiff
MACs (G) 0.98 0.82 0.99 0.03 0.25
#Paras (M) 9.66 6.7 10.07 27.61 2.55

traffic. Furthermore, we observe a notable decline in performance
upon removal of LR, indicating its efficacy as a regularization con-
straint in preventing the formation of erroneous evidence spaces
during the uncertainty quantification process. While removing the
uncertainty-based anomaly score (w/o AS) and both uncertainty-
based modeling and anomaly score (w/o T&AS) resulted in per-
formance degradation, our complete UnDiff model demonstrates
optimal performance in drifted anomaly detection. This suggests
that the uncertainty-based modeling and inter-sample difference de-
tection components effectively leverage prior differences between
normal and anomalous samples, mitigating the inherent limitations
of purely reconstruction-based methods. More experimental results
using other metrics are presented in the Appendix F.

4.6 Overhead evaluation
We conduct an analysis of model efficiency, focusing on multiply-
accumulate operations per second (MACs) and the number of model
parameters (#Paras) during inference. The results of this analysis
are summarized in Table 5. Our UnDiff demonstrates excellent
performance with favorable computational overhead compared to
alternative baselines. This efficiency can be attributed to strategic
design choices, such as the multi-channel image representation, a
low-parameter evidence extractor, and a set of concise uncertainty
parameter heads. Notably, UnDiff balances performance and compu-
tational requirements, rendering it particularly suitable for practical
deployment in network traffic anomaly detection scenarios.

5 Conclusions
This study presents a pioneering approach to network traffic anom-
aly detection by developing an inter-sample differences method
based on uncertainty. This novel methodology directly addresses
the challenges of anomaly detection while circumventing the “iden-
tical shortcut” issue inherent in existing methods that rely on intra-
sample differences between pre- and post-reconstruction repre-
sentations. Our proposed UnDiff effectively leverages the prior
knowledge that anomalous samples inherently deviate from normal
samples. This enables learning a more discriminative uncertainty
space, facilitating optimal detection performance. Comprehensive
empirical evaluations across three benchmark datasets demonstrate
UnDiff’s superior performance in detecting undrifted and drifted
anomalies with minimal additional computational overhead.
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A Additional Details for Model Design
UnDiff consists of two main components: the autoencoder and the
uncertainty learning module. The autoencoder follows a standard
architecture comprising 4 convolutional layers and 4 deconvolu-
tional layers. Each convolutional and deconvolutional layer is fol-
lowed by a Convolutional Block Attention Module (CBAM) [40],
which allows the model to prioritize significant channel images
(temporal features) and spatially relevant regions (spatial features).
This design aids in extracting key evidence from critical patterns
in multi-channel images. The detailed number of channels in the
convolutional layers is [32, 64, 128, 256], with a kernel size of 3 for
all layers.

B Baselines
(1) Advanced anomaly detection methods, including PaDim [10],
DFM [2],DFKDE [3], FastFlow [44],CFlow [17], STFPM [37], ReverDis
[11], and MMR [48] are implemented with official code. Notably,
our multi-channel image data type may not satisfy their needs. As
a solution, we concatenate traffic images with spatial dimension
instead of channel dimension to incorporate these methods. (2)
Network traffic anomaly detection methods, such as GANomaly [4]
and Trident [50], are also implemented with official code. For AR-
CADE [31] and MFAD [51], we reproduce them from the original
paper. To ensure a fair comparison, we perform the grid search
for their training parameters and learning rate, setting the search
range according to the original articles for each baseline. We pro-
vide implementation details of network traffic anomaly detection
methods as follows:

• GANomaly [4]. GANomaly is a classical comparisonmethod
used for anomaly detection in network traffic, featuring
an encoder-decoder-encoder architecture. Since it does not
consider the effects of image filtering, we use unfiltered im-
ages as input. The network architecture is based on the offi-
cial implementation, and hyper-parameters are adjusted to
better adapt to the distributions of different traffic datasets.

• ARCADE [31]. To process image data inputs like other
baselines, we use a 2D convolutional layer to build the
encoder-decoder architecture. The WGAN-GP strategy is
incorporated into the framework, and hyper-parameters
are adjusted according to the specific traffic datasets.

• MFAD [51]. MFAD is an ensemble-based method utilizing
multi-scale filtering. Since the fusion coefficients need to be
determined based on ground truth labels, we only use the
best-performing low-frequency branch for the final results.
The filtering methods and scales follow the original pa-
per, and hyper-parameters are adjusted for different traffic
datasets.

• Trident [4]. We follow the official code for implementation,
and the learning rate is fine-tuned to optimize performance
on different datasets.

• UnDiff-AE. This variant of our UnDiff method serves to
demonstrate the effectiveness of our approach. In UnDiff-
AE, we remove the uncertainty parameter heads from the
uncertaintymodule but retain the encoder-decoder-encoder
architecture. It trains using reconstruction loss and uses

standard reconstruction error to quantify anomalies, pro-
viding a comparison with the full UnDiff model.

C Complete Implementation Details
We use the Adam optimizer with a weight decay of 0.05 and a batch
size of 128. The maximum training epoch is 50, and early stopping is
applied to prevent overfitting. The training process will halt when
parameter updates no longer yield improvements for 6 epochs. For
the three datasets, we perform a grid search for learning rates within
the range (1𝑒−2, 1𝑒−3, 1𝑒−4, 1𝑒−5, 1𝑒−6), and the final learning rates
are set to 1𝑒−4, 1𝑒−3 and 1𝑒−6 respectively. The search scope of low-
pass filtering is (15, 10, 5), and for the reconstruction loss coefficient
𝜆Rec is (1, 5𝑒−1, 1𝑒−1, 5𝑒−2, 1𝑒−2). Similarly, the search scope for
loss coefficients 𝜆NLL and 𝜆R is (1, 5𝑒−1, 1𝑒−1, ..., 5𝑒−3, 1𝑒−3) and (1,
5𝑒−1, 1𝑒−1, ..., 5𝑒−5, 1𝑒−5), respectively. The final loss coefficients
(𝜆Rec, 𝜆NLL, 𝜆R) are set to (1, 1𝑒−2, 1𝑒−4), (1, 5𝑒−2, 5𝑒−5) and (1, 1,
1𝑒−2). A relatively larger 𝜆Rec ensures stable autoencoder training,
making it an effective evidence extractor. In contrast, 𝜆R is a penalty
term to assist in modeling evidence. Therefore, it is kept low to
avoid overwhelming the main evidence modeling loss, which could
lead to training instability.

D Complete Drifted Anomaly Detection
Figure 6 illustrates the detailed anomaly score distribution for all
anomaly detection scenarios in network traffic, including normal
samples (light blue distribution), undrifted anomalies (dark blue
distribution), and other drifted anomalies (red and orange distribu-
tions) across three datasets. The baseline results show significant
confusion between normal and anomalous scores, particularly in
the DataCon2020 (D) and CIC-IDS2017 (I) datasets. This highlights
the insufficient discriminative ability of reconstruction-based meth-
ods, which rely on an intra-sample differences paradigm and are
inherently prone to the “identical shortcut” issue common in such
models. As a result, the divergence in anomaly scores between
normal and anomalous samples is suppressed and often obfuscated.

Notably, in scenarios such as DataCon2020 (D) to CIC-IDS2017
(I), a counter-intuitive phenomenon occurs where drifted anomalies
exhibit more minor deviations than normal samples, further expos-
ing the limitations of reconstruction models in handling such cases.
In contrast, our UnDiff method effectively leverages inter-sample
differences (i.e., the inherent distributional divergence between
normal and anomalous samples), resulting in the most distinct sep-
aration between normal samples (light blue) and anomalies (other
colors).

E Complete Qualitative Study
As shown in Figure 7, we provide a complete t-distributed stochas-
tic neighbor embedding (t-SNE) comparison between Trident and
our UnDiff method. In the top row of Figure 7, a common pattern
emerges where pre- and post-reconstruction embeddings of anoma-
lous samples show a degree of confusion, marked by embedding
overlaps and closely aligned profiles (highlighted in the blue box).
This indicates the potential presence of the “identical shortcut” issue.
For UnDiff, which employs an inter-sample differences-based quan-
tification, we visualize the first layer of the uncertainty parameters.
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Figure 6: Complete anomaly score distribution comparing other methods with our UnDiff, including both drifted and undrifted
detection performance. The abbreviations are explained as follows: D: DataCon2020, I: CIC-IDS2017 and U: USTC-TFC2016.

As seen in the bottom row of Figure 7, the distributional embed-
dings for normal and drifted anomalies form distinct clusters. This
demonstrates that our designed uncertainty module effectively gen-
erates an uncertainty distribution in the uncertainty space, where

normal samples exhibit low uncertainty and anomalous samples
show high uncertainty. By leveraging this distinct representation,
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Figure 7: Complete t-SNE visualization results comparing the Trident (intra-sample differences) with our UnDiff (inter-sample
differences) method.

Table 6: Ablation studies (%) for drifted anomaly detection on the DataCon2020, CIC-IDS2017 and USTC-TFC2016 datasets. The
abbreviations are explained as follows, D: DataCon2020, I: CIC-IDS2017 and U: USTC-TFC2016.

Variant D->I D->U I->D I->U U->D U->I

AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

w/o LPF 74.73 69.96 76.41 68.75 68.81 75.02 70.57 80.08 82.04 70.07 70.17 76.2 98.21 96.18 96.25 98.04 93.14 93.58
w/o LRec 61.79 60.18 69.96 80.26 76.24 80.24 78.46 76.66 79.49 59.41 64.05 71.73 98.95 96.71 96.71 80.97 86.72 85.75
w/o LR 71.48 67.58 74.22 72.50 77.06 78.33 85.31 82.95 82.46 81.12 80.05 80.31 99.55 98.97 98.97 99.39 95.67 95.79

w AS-trans 57.95 51.85 67.44 82.20 83.53 84.24 81.00 74.80 77.69 80.96 79.68 80.37 99.5 98.94 98.95 96.16 93.03 93.48
w/o AS 82.52 74.21 79.84 83.25 85.66 86.68 83.28 80.46 82.08 86.15 80.44 79.95 99.74 99.32 99.32 98.81 97.73 97.73

w/o T&AS 64.48 70.57 77.10 71.08 76.97 79.73 81.48 79.21 80.47 61.88 62.27 71.91 99.51 98.92 98.92 98.75 92.80 93.27
UnDiff 84.10 76.14 80.46 96.08 87.95 88.66 93.70 88.65 88.57 91.18 86.43 86.69 99.83 99.59 99.59 99.76 98.07 98.07

Table 7: Ablation studies (%) for undrifted anomaly detection on the DataCon2020, CIC-IDS2017 and USTC-TFC2016 datasets.

Variant DataCon2020 CIC-IDS2017 USTC-TFC2016

AUC ACC F1 AUC ACC F1 AUC ACC F1
w/o LPF 81.03 81.38 81.74 81.27 76.93 79.47 99.76 98.22 98.23
w/o LRec 83.44 79.23 79.43 76.22 69.57 72.80 98.25 96.81 96.78
w/o LR 84.80 82.14 82.80 86.80 83.06 83.22 99.78 98.57 98.57

w AS-Trans 84.77 83.00 82.01 85.90 75.65 78.62 99.40 97.64 97.67
w/o AS 85.66 83.01 82.66 87.67 82.69 84.22 99.84 99.33 99.33

w/o T&AS 85.55 82.76 82.87 86.02 79.49 81.59 99.71 98.40 98.39
UnDiff 86.93 83.16 82.78 88.88 83.31 83.72 99.9 99.47 99.47

our anomaly scores, based on inter-sample differences, fully uti-
lize the prior distributional knowledge, significantly enhancing
detection performance. 12
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F Complete Ablation Studies
We conducted extensive ablation studies, with the complete re-
sults shown in Table 6 (drifted anomaly detection) and Table 7
(undrifted anomaly detection). Apart from removing the recon-
struction loss LRec (w/o LRec), the regularization loss LR (w/o
LR), the uncertainty-based anomaly score (w/o AS), and both the
uncertainty-based modeling and anomaly score (w/o T&AS), we
also report performance after removing the low-pass filtering (w/o
LPF) and using a variant that trains with the uncertainty score but
tests using the reconstruction loss (w AS-Trans).

Overall, we can observe a notable decline in performance upon
removal of (w/o LPF) in both drifted and undrifted studies, indicat-
ing that the high-frequency information in traffic images hinders
the uncertainty quantification process. The removal of (w/o LRec)

results in a significant decline in undrifted studies, highlighting its
crucial role in extracting meaningful evidence and preventing the
collapse of uncertainty modeling.

While the variant (w AS-Trans) shows a performance decline,
it still achieves acceptable results under suboptimal testing condi-
tions. This demonstrates UnDiff’s robustness in uncertainty-based
modeling, even when faced with suboptimal evaluation methods.

Comparing these results with the intra-sample differences lim-
itations in reconstruction-based methods, we observe a substan-
tial decline in performance when removing the uncertainty-based
anomaly score (w/o AS) and(w/o T&AS). These findings suggest
that the uncertainty-based modeling and inter-sample difference
detection components effectively leverage prior knowledge of dif-
ferences between normal and anomalous samples, mitigating the
inherent limitations of purely reconstruction-based methods.
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