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Abstract

LLM agents have attracted much attention recently. However, how to build successful LLM
agents, esp. w.r.t. autonomy and optimality, is still an open problem. We present a per-
spective paper with a brief survey about building LLM agents with iterative improvements
based on ground truth, in the era of experience inspired by the successes of games AI. We
propose AgentZero, Agentµ, and Agent∞, agent frameworks with perfect, learned and no
world models, following AlphaZero, MuZero and a model-free method like DQN, respec-
tively. We propose to leverage domain knowledge for data collection, architecture design
and algorithm design, and propose decision time planning and meta reinforcement learning
at both pre- and post-training stages. We present case studies for building agents for games,
maths, or coding, with approximate simulators, facts, and/or human-in-the-loop.

1 Introduction

The whole fields of artificial intelligence (AI) (Russell & Norvig, 2020) and reinforcement learning (RL) (Sut-
ton & Barto, 2018) are constructed around agents: relevant techniques to make agents feasible/optimal, from
prediction or machine learning methods for function approximations with e.g. neural networks or decision
trees, to decision-making frameworks like search, planning and reinforcement learning, and to fields for per-
ception (computer vision), communication (natural language processing) and acting (robotics). Silver &
Sutton (2025) draw a big picture of the era of simulation, era of human data and era of experience.

Large language models (LLMs) have been making significant progress, e.g., BERT (Devlin et al., 2019),
T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020), ChatGPT (OpenAI, 2022), GPT-4 (OpenAI et al.,
2024a), Claude (Anthropic, 2024), Gemini (Gemini Team et al., 2024), Llama (Grattafiori et al., 2024),
OpenAI o1 (OpenAI et al., 2024b), DeepSeek-V3 (DeepSeek-AI, 2024), and DeepSeek-R1 (DeepSeek-AI,
2025). LLM-based agents attract lots of attention recently (Kapoor et al., 2024).

Games AI boasts many successful agents, e.g., AlphaGo (Silver et al., 2016), based on which, we can build
(close to) autonomous and optimal game programs. Games AI has changed the games industry and commu-
nity, e.g., chess players have to learn from chess programs. However, how to build successful LLM agents,
esp. w.r.t. autonomy and optimality, is still an open problem (Morris et al., 2024; Feng et al., 2024). LLM
agents are still relying on manual and/or heuristic (approximate) methods, e.g., chain of thought (CoT) (Wei
et al., 2022; Stechly et al., 2024b), ReAct (Yao et al., 2023; Verma et al., 2024), workflows, and imperfect
world models (Vafa et al., 2024; Wang et al., 2024c; Li et al., 2025). A root cause is the fixed yet imperfect
LLMs. Games AI features iterative improvements based on ground truth. However, most LLM agents lack
frequent iterative improvements, esp. for the underlying LLMs, and many LLM agents lack ground truth.
Moreover, games are broad, with a wide range of problem formulations and applications, considering also
game theory (Leyton-Brown & Shoham, 2008) and gamification (Werbach & Hunter, 2020), characterizing
many dimensions, like discrete or continuous for time, observations and actions, deterministic or stochastic
for dynamics, and single or multi-agent, similar to RL (Silver et al., 2021). Games to AI is like fruit flies to
genetics. We expect games AI inspires further progress in LLM agents.

We present a perspective paper with a brief survey about building LLM agents with iterative improvements
based on ground truth, in the era of experience, inspired by the successes of games AI. We propose AgentZero
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and Agentµ, agent frameworks with perfect and learned world models, following AlphaGo and MuZero,
respectively. We also propose a model-free framework Agent∞. We propose to leverage domain knowledge
for data collection, architecture design and algorithm design, and propose decision time planning and meta
reinforcement learning at both pre- and post-training stages. We present case studies for building agents for
games, maths, or coding, with approximate simulators, facts, and/or human-in-the-loop.

What are ground truth? We identify three sources of ground truth data: 1) perfect verifiers with formal
methods, 2) perfect rules/laws/world models, and 3) experience by interacting with the world.1

Sources 1 and 2 can guarantee correctness, e.g., AlphaZero (Silver et al., 2018) with a perfect game rule, and
AlphaGeometry (Trinh et al., 2024) with a perfect theorem prover. Facts are in Source 2. We treat this as
ground truth in the strong sense. Note, knowledge may evolve; see Section 4. For Source 3, the world can
be viewed as a perfect model itself. However, Source 3 may come with noises or uncertainty. We may need
to deal with sampling errors, partial observability, imperfect/incomplete information, strategic/adversarial
scenarios, and/or weak specifications like code unit tests. Also, collecting experience requires interactions
with the world, which may be costly. Sources 1 and 2 are special cases of Source 3, with experience from
interactions with special environments, like a theorem prover or a game engine. In practice, we may define
ground truth in a broad sense, including code tests, annotated examples, environment feedback and experts’
feedback, etc. That is, we treat Source 3 as ground truth in the broad sense.

We take the broad view in this paper, being aware that it may not guarantee correctness, e.g., as in formal
verification. One factor is, ground truth in the strong sense may be limited, available only to a small classes of
applications, e.g., games, maths and coding, while ground truth in the broad sense are necessary and valuable
complement. We attempt to reconcile formal verification and LLMs communities. The strong sense, esp.
Source 1 perfect verifiers with formal methods, corresponds to the formal verification community; see e.g. Li
et al. (2024) and Yang et al. (2024a). The broad sense, which may correspond to weak specifications (Stoica
et al., 2024) w.r.t. formal verification, is close to works in the LLMs community, which may take an LLM
as a verifier. Note, mathematical proofs generated by LLMs are not treated as ground truth, before being
verified with correctness guarantee. Also note, there are papers talking about “verifier” and “verifiable”,
but not in the sense of formal verification, or not ground truth in the strong sense, e.g., training a verifier
(Cobbe et al., 2021), RL with verifiable rewards (RLVR) (Lambert et al., 2024), and generalization of RLVR
(Su et al., 2025).

Silver & Sutton (2025) discuss the importance of experience from interacting with the real world and rein-
forcement learning for further progress in AI, at an abstract level. We provide a more pragmatic plan as a
complement with a pseudo-code and discussions for a potential implementation. We highlight the impor-
tance of ground truth, in particular, in the strong sense with perfect models and formal verification, and the
difficulties of generalizing / transferring achievements in games, maths, and coding to other problems. We
also highlight that iterative improvements are a mechanism for agents to achieve grounding and agency. See
also discussions about agency, e.g., Bisk et al. (2020) and Laird et al. (2023).

We discuss the following research questions (RQ). RQ1: Should we leverage domain knowledge? RQ1.1:
How to leverage domain knowledge? RQ2: How to attain ground truth data? RQ3: How to make iterative
improvements? RQ3.1: Why are iterative improvements important? RQ3.2: What are limitations of current
LLMs? RQ3.3: Will scaling up current LLMs achieve reasoning and planning capacity to build agents?
RQ3.4: Large vs small models? RQ3.5: Modularity? Generalist vs specialist? RQ3.6: What algorithms are
suitable for iterative improvements?

We make the following contributions for building LLM agents: 1) We highlight the importance of both
iterative improvements and ground truth. 2) We highlight the importance of domain knowledge, w.r.t.
data collection, architecture design and algorithm design, and to strike a balance between a) scale and b)
performance, efficiency and cost. 3) We expect to help improve the interpretability, trustworthiness and
safety. 4) We briefly survey relevant works, make a critical examination, and propose a potential solution.

1We follow the definition of a (world) model as transition (dynamics) and reward models / functions in Sutton & Barto
(2018). This is consistent with the definition of a world model in LeCun (2022). A model may also refer to a machine learning
model or a language model. This should not be ambiguous in the context.

2



Under review as submission to TMLR

Next we introduce background in agents and games AI. We propose agent frameworks in Section 3. Then
we discuss research questions about domain knowledge, ground truth and iterative improvements, in Section
4, 5 and 6, respectively. We discuss case studies in Section 7, compare with current approaches in Section 8,
and close with a discussion.

2 Background

2.1 Agents

What is an agent? In Sutton & Barto (2018): “The learner and decision maker is called the agent.” In Russell
& Norvig (2020): “An agent is anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through actuators. For each possible percept sequence, a rational agent
should select an action that is expected to maximize its performance measure, given the evidence provided
by the percept sequence and whatever built-in knowledge the agent has.” Decision making involves action
selection, and is distinct from prediction, e.g., classification and regression by supervised learning. Note,
however, imitation learning (Osa et al., 2018) apply supervised learning to decision making, in behavioral
cloning and in inverse reinforcement learning (in the reward learning part). LLM agents leverage LLMs for
building agents. We focus on multi-step, sequential decision making agents, with the goal of maximizing
some performance metric. The aim is to build autonomous and optimal agents.

2.2 Games AI

AlphaGo (Silver et al., 2016), AlphaGo Zero (Silver et al., 2017), and AlphaZero (Silver et al., 2018) are
characterized by perfect information w.r.t. the rule and the observability. MuZero (Schrittwieser et al.,
2020) learns an iterable model that produces predictions relevant to planning: the action-selection policy,
the value function and the reward. AlphaGo and MuZero correspond to model-based RL with a perfect and
a learned model, respectively. Deep Q-Network (DQN) (Mnih et al., 2015) for Atari games is model-free RL,
i.e., without a model. Note, however, there are perfect game engines in DQN. Dreamer (Hafner et al., 2025;
2020) for many games, including Minecraft, is a model-based method. Here a model means a world model.

AlphaGo series and MuZero use MCTS for decision time planning for lookahead search (Sutton & Barto,
2018). Experiments show the raw neural network, without MCTS after training, achieved an Elo rating of
3055 and AlphaGo Zero with MCTS at decision time achieved a rating of 5185 (Silver et al., 2017). Such
results support the recent test time compute in LLMs. See e.g., OpenAI o1, Chen et al. (2024) and Wan et al.
(2024). The results also show that imitation learning is not enough to achieve superhuman performance.

Besides a world model, we may refine agent design in other factors, e.g., multi-agent, imperfect informa-
tion, and/or verbal communication. There are corresponding successful games AI, e.g., AlphaStar (Vinyals
et al., 2019) for StarCraft, DeepStack (Moravčík et al., 2017), Libratus (Brown & Sandholm, 2017) and
Pluribus (Brown & Sandholm, 2019) for Poker, and Cicero (Bakhtin et al., 2022) for Diplomacy.

2.3 Classical solution methods for agents

We categorize classical solution methods into three classes. Search methods include: 1) AI search meth-
ods (Russell & Norvig, 2020), e.g., A* and genetic programming, 2) operations research methods (Bertsekas
& Tsitsiklis, 1996; Powell, 2011; 2022), e.g., mathematical programming, and 3) optimal control meth-
ods (Bertsekas, 2019; 2022), e.g., model predictive control (MPC). We treat optimization and planning as
search. These methods work with a perfect model, or assume so. A notable example is Deep Blue. Bertsekas
(2022) discusses lessons from AlphaZero for optimal, model predictive, and adaptive control.

Data-driven learning methods (Sutton & Barto, 2018; Bertsekas, 2019; Powell, 2022) include: 1) model-
free methods, like imitation learning and model-free RL, e.g., Deep Q-Network (Mnih et al., 2015), and 2)
model-based methods, like model-based RL, e.g. Dreamer (Hafner et al., 2025; 2020).

In the integration of learning and search methods (Sutton & Barto, 2018; Bertsekas, 2019; Powell, 2022), if
with a perfect model or a perfect verifier, we can generate infinite perfect training data, e.g. AlphaGo series,
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with applications in maths (See Section 7). Otherwise, if without a perfect model, we have to estimate a
model and approximate a simulator. And, we have to deal with estimation errors and bridge the simulation
to reality gap. MuZero (Schrittwieser et al., 2020) is an example.

In LLMs, supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) (Rafailov et al., 2023) are
behavioral cloning. Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022) learns a reward model first, then optimizes the policy, thus it is inverse RL. SFT, DPO and
RLHF are imitation learning. LLMs start to explore the integration of learning and search methods, in
particular, OpenAI o1, DeepSeek R1 and their successors, in post-training and test time compute stages.

3 LLM agents in the era of experience inspired by games AI

3.1 AgentZero: AlphaZero-like LLM agents

We present AgentZero, an AlphaZero-like framework for LLM agents. We present its pseudo code in Algo-
rithm 1, and compare it with current LLM agents in Table 1. Algorithm 1 and Table 1 are also for Agentµ
and Agent∞, as discussed later.

1: //AgentZero: model-based, with a perfect world model
2: //Agentµ: model-based, with a learned world model
3: //Agent∞: model-free, without a world model, thus can

not perform decision time planning
4: // Stage 1. representation learning
5: collect ground truth data, train with SSL
6: train with auxiliary tasks, e.g., with meta RL
7: repeat
8: // Stage 2. learning to make decisions
9: // solve agent problems, e.g., with meta RL
10: collect experience
11: for each iteration do
12: decision time planning, e.g., with MCTS
13: update value function and policy
14: Agentµ: also update/improve world model
15: end for
16: until threshold met, e.g., for compute budget
17: // Stage 3. decision time planning
18: meta-RL and/or MCTS

Algorithm 1: AgentZero / Agentµ / Agent∞

AgentZero has three stages. In Stage 1 for rep-
resentation learning, we employ self-supervised
learning (SSL) to improve the representation,
e.g., with GPT as in normal LLMs. Fur-
thermore, for decision making problems, we
may also train with auxiliary tasks to im-
prove the representation (Jaderberg et al.,
2017; Mirowski et al., 2017). Take program
synthesis as an example, there may be many
auxiliary tasks, e.g., Tipirneni et al. (2024)
consider abstract syntax tree (AST) path pre-
diction and dataflow prediction.

In Stage 2 for learning to make decisions, we
formulate agent (usually RL) problems, by
defining corresponding state, action, and re-
ward, as well as transition, value function, pol-
icy, etc. We collect experience in the form of
(state, action, reward, next state). As for a
normal RL problem, we take an action, observe
a reward, and transition to the next state. We
then update the value function and the policy.
We may employ meta RL for better general-
ization (Finn et al., 2017; Wang et al., 2017;
Hospedales et al., 2022; Beck et al., 2025). To
make stronger decisions, we leverage decision time planning, e.g., with MCTS, which, as a results, generates
better data. In Stage 3 for decision time planning, we may employ meta RL and/or MCTS, to make a
stronger decision.

3.2 Agentµ: MuZero-like AI agents

AlphaGo series are model-based RL with a perfect model. MuZero is model-based RL with a learned model.
Inspired by MuZero, we propose Agentµ, a MuZero-like framework for LLM agents. Agentµ is similar to
AgentZero. The major difference is that Agentµ learns the world model, while AgentZero works with a perfect
world model. AgentZero applies to problems with perfect rules, laws, and/or theorems, like many games,
maths and coding tasks. Agentµ applies to problems starting with an approximate or no model/simulator.
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current LLM agents AgentZero / Agentµ / Agent∞
domain knowledge agnostic to domain knowl-

edge
leverage domain knowledge as much as possible,
w.r.t. data collection, architecture design and al-
gorithm design

ground truth training data are usually
not ground truth, esp. in
the strong sense

ground truth data are considered by design; rich data
types, esp. those in strong sense

iterative improve-
ments

SSL during pre-training;
infrequent then, e.g., in
months

frequent by design, pre- & post-training, with al-
gorithms like RL; update value, policy, and world
model for Agentµ

base LLM generalist, fixed generalist or specialist, iterative improvements
scale of base LLM large large or small (around 7B or smaller)
world model approximate, implicitly

learned, infrequent up-
date

AgentZero: perfect world model; Agentµ: learned
world model, frequent updates; Agent∞, no world
model

correctness a common issue a goal by design; aim to eliminate hallucinations
optimality base LLM (SSL with next

token prediction) and
agent usually do not share
the same goal

aim to achieve optimal agency by design; the goal
may be the same during pre- and post-training stages

Table 1: Comparison of current LLM agents vs AgentZero / Agentµ / Agent∞.

The significant difference between Agentµ and most current LLM agents hinges on iterative improvements
based on ground truth of the base LLM and the world model.

Agentµ may also benefit from the progress in world model learning, e.g., Dreamer (Hafner et al., 2025; 2020),
and reward model learning, e.g., RLHF (Christiano et al., 2017; Ouyang et al., 2022). Imitation learning
from human data is not enough to achieve superhuman performance (Silver & Sutton, 2025), as shown e.g.
in AlphaGo Zero (Silver et al., 2017). We may design iterative versions of Dreamer and RLHF to make
improvements of world or reward models based on experience from interactions with the world.

Note it is still infeasible to build fully autonomous and optimal LLM agents without human data. This is true
even for maths and coding with formal systems (See Section 7). In MuZero, an agent collects ground truth
data by interacting with the environment, the perfect game engine built from perfect game rules. We need to
pay attention if the data collected by Agentµ are ground truth, and interactions with environments may be
costly, e.g., for human-centric problems like education and physical problems like robotics. However, we may
borrow ideas from games AI, and strive to make agents as autonomous and optimal as possible. Also note
that even with a perfect world model, finding an optimal policy still requires exploration of algorithms. For
example, Go is an ancient game with a perfect rule. However, only recently, AlphaGo found a superhuman
strategy, decades after the invention of computers.

3.3 Agent∞: model-free agents

We also introduce the model-free Agent∞. It collects data by interactions with the environment, either
offline or online. It does not attempt to learn a world model. An offline version is close to the current LLM
agents, with enhancements from iterative improvements based on ground truth. Note, a model-free Agent∞
can not use decision time planning.

There are lots of RL/AI techniques to explore and exploit for better efficiency, generalization and scalability
for AgentZero, Agentµ and Agent∞, such as, search space reduction with exploration, e.g., intrinsic motiva-
tion (Poesia et al., 2024; Barto, 2013), epistemic neural networks (Osband et al., 2023), and a survey (Amin
et al., 2021), better representation with auxiliary tasks, e.g., Jaderberg et al. (2017) and Mirowski et al.
(2017), causal representation, e.g., Schölkopf et al. (2021), better generalization with meta RL, e.g., Xiang
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category world model data examples
AIZero perfect world

model
infinite perfect data
from world model

AgentZero; AlphaZero, AlphaProof

AIµ approximate
world model

from approximate
world model and real
world

Agentµ (with learned, approximate models, yet
frequent iterative improvements); robotics simula-
tors; LLM-based methods, e.g., LLM agents (with
implicit, approximate simulators)

AI∞ no world model from real world Agent∞; AlexNet, LLMs, LLM agents

Table 2: A taxonomy of AI models, with non-agentic and agentic examples, like AgentZero, Agentµ, and
Agent∞ for AIZero, AIµ, and AI∞, respectively. µ ∈ (0,∞) indicates the degree of model inaccuracy, which
is related to the degree of effort to collect data or to bridge simulation to reality gap. Note, we put “LLM
agents” as an example for both AIµ and AI∞, depending on we treat them as model-based or model-free.

et al. (2025), Setlur et al. (2025), Qu et al. (2025), Vettoruzzo et al. (2024), Beck et al. (2025), and Kirk
et al. (2023), planning like MCTS, e.g., Zhang et al. (2023) and Guez et al. (2018), better abstraction with
hierarchical RL, e.g., the option framework (Sutton et al., 1999) and Pateria et al. (2021), offline RL with
batch data, e.g., Snell et al. (2023) and Levine et al. (2020), and better generalization with general value
functions, e.g., Sutton et al. (2011) and Schaul et al. (2015).

By leveraging domain knowledge, w.r.t. data, architectures and algorithms, we expect AgentZero, Agentµ
and Agent∞ to improve interpretability, trustworthiness and safety innately. Hallucinations are inherent for
current LLMs and LLM agents. We may mitigate or even eliminate hallucinations with domain knowledge
during training and/or test stages, e.g., by parsing them out with game rules (Schultz et al., 2024), mathe-
matical theorems (Trinh et al., 2024) and/or code syntax & semantics (Ugare et al., 2024). This may also
improve efficiency and cost saving. With a stronger LLM, test time compute can be more efficient.

4 RQ1: Should we leverage domain knowledge?

The answer should be clear: precise, rich and valuable domain knowledge implies strong prior information
or strong inductive bias, thus leads to more efficient and effective learning systems. It is thus a waste of
information if an AI is agnostic to, or does not leverage enough, domain knowledge. We treat it as a common
sense in AI. Examples abound, like AlphaZero (Silver et al., 2018), AlphaGeometry (Trinh et al., 2024), and
AlphaFold (Jumper et al., 2021; Abramson et al., 2024). Logic, maths and theoretical computer science are
based on axioms and deductive reasoning, so that their domain knowledge is perfect. See Section 7.3 for
discussion about coding. Domain knowledge in natural science and engineering represent the best knowledge
humans have and may be under evolution, e.g., the understanding of physics evolves from animism, theism,
Newtonian mechanics, to quantum mechanics (Silver & Sutton, 2025). In practice and in a relatively short
term, we may incorporate the best domain knowledge to build an efficient AI system, e.g., for robotics,
chip design, protein folding, drug design and chemical process. In theory and in a long term, learning from
experience interacting with the world is an approach to achieve an evolution of domain knowledge (Silver
& Sutton, 2025). It is worthwhile to contrast domain knowledge with human knowledge, which may be
heuristic to the best domain knowledge humans’ have. How much human knowledge should be incorporated
into an AI system is debatable. See, e.g., The Bitter Lesson (Sutton, 2019), A Better Lesson (Brooks, 2019),
and Engineering AI (Kaelbling, 2019). We tackle RQ1.1: How to leverage domain knowledge? when
we discuss data collection, architecture design and algorithm design.

5 RQ2: How to attain ground truth data?

In the Introduction, we discuss what is ground truth, which also include the sources. A relevant question
is: Are synthetic data helpful? Definitely yes, if from a perfect world model or verifier. Yes, to some
extent, if from a high fidelity model or simulator. Otherwise, something may go wrong. We illustrate this
with the following categories of AI models: AIZero, AIµ, and AI∞, as shown in Table 2.
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When there is a perfect model, we can build a perfect simulator to generate infinite training data in a digital
world with correctness guarantee, much less costly than collecting data in a physical world. This includes
cases with 1) a perfect rule, like AlphaZero, 2) a perfect verifier, like AlphaProof, and 3) a perfect dynamics,
like a partial differential equation. We classify them as AIZero. AIZero can attain ground truth in the strong
sense. There is a good chance to handle such cases in a way similar to AlphaZero. Note, compiling, passing
tests, and execution results in coding, and numerical results for maths word problems, are ground truth in
the broad sense, i.e., can’t guarantee correctness without formal verification.

Many deep learning, or big data methods, like AlexNet, rely on a huge amount of annotated data. Model-free
RL interacts with the environment online or offline to collect a huge amount of training data. Humans may
make mistakes. Even well-calibrated datasets like ImageNet have label errors (Northcutt et al., 2021). For
human-centric problems, e.g., education, we may have to rely on humans’ feedback. So such ground truth
data in the broad sense may be the best we can obtain. We classify these cases as AI∞.

There are ways to help improve data efficiency, e.g., self-supervised learning, simulation, and model-based
methods, and for RL in particular, intrinsic motivation and auxiliary signals. We call such approaches as
AIµ, where µ is a number between 0 and∞, indicating the degree of inaccuracy of the model involved, or the
degree of effort for manual data collection, or the degree of effort for interacting with physical environments.
AIµ approaches AIZero as the underlying model approaches perfect. AI∞ implies there is no model involved.
Admittedly, µ is only loosely defined.

High-fidelity simulators require significant efforts and are usually problem-specific. Data generated from
such approximate models are close to ground truth in the broad sense. Such data may be helpful as training
data. However, we need to bridge the simulation to reality gap. See, e.g., learning quadrupedal robot
locomotion (Lee et al., 2020) and magnetic control of tokamak plasmas (Degrave et al., 2022).

Most LLMs are trained with Internet data, and RLHF involves human feedback, thus most LLMs are in
AI∞. LLMs may be a resourceful source for general information. There may be evidences that synthetic
data are “superior to” data collected by humans. However, there may be issues like the evaluation method
and the accuracy of the synthetic data. LLMs can serve as approximate but not perfect world models or
simulators (Vafa et al., 2024; Wang et al., 2024c; Li et al., 2025). LLMs by themselves can not provide
formal verification (Li et al., 2024; Yang et al., 2024a) or program synthesis with correctness guarantee
(Olausson et al., 2024). A verifier is needed to filter out incorrect data, e.g., the LLM-modulo framework
(Kambhampati et al., 2024). Knowledge graphs (KGs) or retrieval augmented generation (RAG) may help
to mitigate inaccuracy or hallucinations from LLMs, however, still with limitations, e.g., Wu et al. (2025).
When a model is trained with synthetic data sampled from LLMs, 1) if the data are filtered by a perfect
verifier, then the model becomes AIZero, e.g., AlphaGeometry (Trinh et al., 2024); 2) otherwise, it is AIµ.

Attempts of self-play with AIµ and AI∞ may cause problems. See discussions about model collapse (Shu-
mailov et al., 2024; Dohmatob et al., 2025). Stroebl et al. (2024) show the probability of false positives so
that incorrect solutions may pass imperfect verifiers. Admittedly, a weak model may improve with data
generated from a strong model, yet being limited by the strong model. LLMs may help RL (Murphy, 2024)
with input pre-processing, e.g., autoformalization (Li et al., 2024; Yang et al., 2024a), prior (Yan et al.,
2024), reward (Ma et al., 2024), world model (Yang et al., 2024b; Tang et al., 2024), and policy (Yao et al.,
2023; Wang et al., 2024b). However, fixed, imperfect LLMs do not provide ground truth. The Bitter Lesson
(Sutton, 2019) argues against reliance on human prior. Silver & Sutton (2025) treat LLMs as results from the
era of human data, and discuss its limitations. For human-centric problems, human data are irreplaceable,
however, ideally, with top experts’ data. The Internet data are from a mixture of diverse expertises.

How to attain ground truth data? A brief summary follows. For problems like games, maths and coding,
with a perfect world model or a perfect verifier, it is (relatively) easy to attain ground truth data in the
strong sense (AIZero). However, ground truth data may be rare for many problems, esp. in the strong
sense. Approximate world models or simulators, including LLMs, may help, but we need to handle the
reality gap (AIµ). For many problems, e.g., human-centric problems like education and physical problems
like robotics, real world data are likely irreplaceable (AI∞). Silver & Sutton (2025) outline a promising
future with learning from experience interacting with the world, including a virtual, a physical, or a human
world. However, there are still questions to tackle. How to deal with limited ground truth data? How to
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collect experience efficiently? How to design efficient learning algorithms, esp. with limited experience? We
leave them as open problems.

6 RQ3: How to make iterative improvements?

6.1 RQ3.1: Why are iterative improvements important?

Iterative improvement is a universal framework, with wide applications including gradient descent in opti-
mization, boosting, expectation-maximum and temporal difference learning in AI, policy iteration in dynamic
programming, close-loop feedback control, (agile) software development, trial and error in animal learning,
evolutionary methods like genetic programming, and, evolution of our humankind. Iterative improvements
require ground truth data. Iterative improvements are a natural approach for learning from experience by
interacting with the world (Silver & Sutton, 2025). Interaction and embodiment are critical to agency (Bisk
et al., 2020). Consider an example like learning bicycling. Books and videos may help. However, bicycling
skills has to be achieved by practicing and learning from trial and error in the real world. Interactions and
embodiments with the world are irreplaceable. Silver & Sutton (2025) emphasize the importance of experi-
ence and iterative improvements, and discuss the limitations of current LLMs and human knowledge. Silver
& Sutton (2025) present an example of the progress of humans’ understanding of physics, from animism,
theism, Newtonian mechanics, to quantum mechanics, and highlight the essence of the feedback loop with
the real world: from hypotheses, experiments, results, to refinements of physical principles.

RQ3.2: What are limitations of current LLMs?

Generative pre-trained transformer (GPT) with next token prediction is the most popular approach to LLMs,
with Transformers (Vaswani et al., 2017) as the backbone for most LLMs. However, Transformers come with
limitations. See, e.g., Dziri et al. (2023) for lack of compositionality, Deletang et al. (2023) for issues with
generalization on non-regular tasks, and Merrill et al. (2024) for issues with state tracking problems like
chess and code. There are studies for issues with popular approaches, e.g., Stechly et al. (2024b) for chain
of thought (CoT) (Wei et al., 2022) in planning, Verma et al. (2024) for ReAct (Yao et al., 2023) in LLM
agents, Stechly et al. (2024a) for self-verification in reasoning and planning, and Olausson et al. (2024) for
self-repair for code generation.

Stoica et al. (2024) discuss the ambiguity of specifications in LLMs, and as a result, the challenges to achieve
verifiability, debuggability, modularity, resuability, and automated decision making, and to make LLMs
robust systems following engineering deciplines. A formal specification is the input to a formal verification,
which guarantees the correctness of a program. Formal verification for deep learning or deep RL software
systems is an emerging yet nascent research area, see e.g., Marabou 2.0 (Wu et al., 2024), α, β-CROWN
(Zhang et al., 2022), and NNV 2.0 (Lopez et al., 2023), König et al. (2024) and Landers & Doryab (2023).

There are alternative neural network architectures, e.g., state space models, like Mamba (Gu & Dao, 2024)
and xLSTM (Beck et al., 2024), as well as TreeLSTM (Tai et al., 2015) and graph neural networks (GNN)
(Corso et al., 2024; Wu et al., 2023). Wang et al. (2023) apply discontinuous networks for mathematics (Della
Santa & Pieraccini, 2023) to contract design. Language models and multimodality models may use different
Transformer architectures, e.g., Visual Transformers (ViT) for image recognition (Dosovitskiy et al., 2021).
Schultz et al. (2024) study multi-action-value Transformer model for board games.

A complex agent’s representation may need more study. There are works for different levels of abstraction,
other than token. See e.g., CodeBPE (Chirkova & Troshin, 2023) about tokenization for code, Pagnoni
et al. (2024) about byte latent Transformer, Gloeckle et al. (2024) about multi-token prediction, The LCM
team et al. (2024) about a sentence level representation, and Pertsch et al. (2025) for action tokenization for
vision-language-action models.

RL enjoys a renaissance, esp. after OpenAI o1, for post-training, e.g., RLVR (Lambert et al., 2024), Xiang
et al. (2025), Setlur et al. (2025), DeepSeek-R1 (DeepSeek-AI, 2025) and Kimi-k1.5 (Kimi Team, 2025).
Ground truth has not attracted much attention, esp. in the strong sense. Also, there are few studies
applying RL at the pre-training stage. The current LLMs, and the human data they are based on, lack of
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a feedback loop with the real world (Silver & Sutton, 2025; Bisk et al., 2020). To this end, we present a
perspective paper with a pseudo code as a relatively concrete plan to overcome these issues.

RQ3.3: Will scaling up current LLMs achieve reasoning and planning capacity to build agents?

“Scaling laws” (Kaplan et al., 2020; Hoffmann et al., 2022) refer to that the more data, the larger models or
neural networks and the more compute, the better performance. Being true to some extent, some factors like
high quality data, alternative neural network architectures and algorithms may make learning more efficient.
It is also arguable that simply scaling up can lead to causation and general intelligence. “Compression is
intelligence” may be true in the limit at convergence (Solomonoff, 1964; Ma et al., 2022). In practice, we
may not have enough data, esp. for superhuman intelligence. Consider, e.g., a human-centric problem like
education, without an objective objective / reward function, without a perfect world model or a perfect
verifier, what is the definition of super-human and how to collect such “super-human” data? Ultimately,
we may have to rely on both data and model (Sutton, 2022), integrating empiricism and rationalism, to
climb the ladder of causation from association to intervention to counterfactual (Pearl & Mackenzie, 2018).
There are counter-examples to the scaling laws, e.g., a recent empirical study shows that larger and more
instructable LLMs may have become less verifiable (Zhou et al., 2024).

The Bitter Lesson (Sutton, 2019) is often referred to as a support of scaling laws. However, the author,
Richard Sutton is actually very critical on LLMs (Sutton et al., 2024). The Bitter Lesson highlights not
only that general methods of learning and search can leverage computation, but also the importance of
meta-methods. It is desirable to see the community start to explore search and meta-methods not only in
post- but also in pre-training. However, ground truth, esp. in the strong sense, is still an issue. Following
Silver & Sutton (2025), it is interesting to study how to scale up learning from experience.

RQ3.4: Large vs small models? RQ3.5: Modularity? Generalist vs specialist?

It is likely prohibitive to iteratively improve a monolithic, gigantic model. It is desirable to explore parameter
efficient fine-tuning methods, e.g., Low-Rank Adaptation (LoRA) (Hu et al., 2022), and / or “small” models.
Small language models (SLMs) (≤ 7B) come with advantages w.r.t. cost-effectiveness, low inference latency,
efficient development, easy customization, and easy adaptability (Wang et al., 2024a). Subramanian et al.
(2025) show that SLMs can achieve comparable or better performance than much larger LLMs, and highlight
the importance of data quality and specialty. See e.g. rStar-Math (Guan et al., 2025).

AlphaZero (47M), AlphaGeometry (125M), and AlphaFold (200M) outperform LLMs w.r.t. their specialities.
In fact, the Python programming language and a calculator are not AI models, and are tiny in size comparing
with LLMs, but can solve arithmetic problems perfectly, while all LLMs make mistakes. It is thus desirable
to investigate specialized SLMs, exploit domain knowledge, explore pre-trainng, fine-tuning (last layers) and
prompt techniques, computation efficient architectures, and model compression methods, including pruning,
distillation, and quantization, to trade knowledge, data, architectures and algorithms for scale and compute.

Stoica et al. (2024) discuss that modularity is critical for building reliable systems, with examples from
computer, software, automotive, and construction industries. There are efforts for modular design for LLMs.
Zaharia et al. (2024) discuss the shift from models to compound AI systems. Ostapenko et al. (2024) propose
to build and reuse a libraries of LoRAs for modular LLMs. Yadav et al. (2024) survey model MoErging for
collaborative learning. Mixture of Experts (MoE) or routing (Pfeiffer et al., 2023), e.g., Transformer2 (Sun
et al., 2025), essentially implement multiple models with a single neural network.

To make a model, esp. small ones, perform well, we may need to focus on specific task(s), rather than to
aim for generality. Intuitively, a general intelligence system strikes the balance among multiple objectives
and constraints. E.g., Wolf et al. (2024) discusses that making capabilities more distinct might improve
their reliability but at the cost of requiring more specific prompts and as the number of objectives increases,
maintaining consistent performance across all of them becomes exponentially harder. The evolution from
ENIAC to iPhone indicates that further progress in AI calls for more innovations. Complex tasks can be
achieved by collaboration of multiple models. We expect specialized, smaller models to play important roles.

RQ3.6: What algorithms are suitable for iterative improvements?

9
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RL is a natural framework for an agent to interact with an environment, receives (ground truth) feedbacks
and makes improvements iteratively. We expect RL, evolutionary and neuro-symbolic methods, etc. to
play important roles in building agents. See Sections 3 and 7 for more detail. We quote from David
Silver’s recent talk (Silver, 2024): “LLMs alone are insufficient to achieve superhuman intelligence.” “Super-
scaled RL provides a clear pathway to superhuman intelligence.” “Perfect verifiability allows us to generate
provable correct proofs.” Silver & Sutton (2025) draw a blueprint for achieving super-human intelligence
with experience and reinforcement learning. We provide a more pragmatic and concrete plan.

7 Case studies

7.1 Games agents

For many games, like chess, go, Atari and Starcraft, deep RL has made significant, usually superhuman
achievements. GPT may not be an efficient and effective approach. However, investigating games with GPT
may shed light on LLMs’ reasoning and planning capacity (Ruoss et al., 2024).

Schultz et al. (2024) pre-train a Transformer, the multi-action-value (MAV) model, on textual game data,
to function as a world model, a value function and a policy function for several board games with perfect
information. A world model requires state tracking, legal move prediction and terminal state detection.
Schultz et al. (2024) employ external and internal planning and achieve Grandmaster-level performance in
chess with language models of 2.7B parameters, however, not the competence of AlphaZero or MuZero yet.
Schultz et al. (2024) is Agentµ, following MuZero.

For games with verbal communication like the seven-player game of Diplomacy, agents powered by LLMs
would be a great fit. Cicero (Bakhtin et al., 2022) integrates an LLM with planning and RL algorithms in
Diplomacy to infer players’ beliefs and intentions from conversations and to generate dialogues for negotiation
and tactical coordination. Human players’ experience is critical, and it is a mixture of Agentµ and Agent∞.

7.2 Maths agents

AlphaGo series inspire AlphaTensor (Fawzi et al., 2022) for discovering faster matrix multiplication al-
gorithms, AlphaDev (Mankowitz et al., 2023) for discovering faster sorting algorithms and AlphaProof
(AlphaProof and AlphaGeometry teams, 2024) for proving mathematical statements in a formal language.
AlphaProof has a formalizer network and a solver network. The formalizer network is obtained by fine-tuning
a Gemini model. It translates problems from natural language to formal statements. The solver network
leverages the AlphaZero algorithm, searching for proofs or disproofs of the problems in the formal language
Lean. Then verified formal proofs become training data for the next iteration.

7.3 Coding agents

For both maths and coding, there is precise, rich and valuable domain knowledge. It is thus desirable to
investigate the best designs of data collection, architecture and algorithms. Treating programming languages
as a natural language wastes such valuable information. A code model may operate at multiple levels of
abstraction, from word, statement, function, class, to project, which calls for more studies. See Section 6 for
more discussion about alternative architectures.

There are papers exploiting code domain knowledge for LLMs, like Abstract Syntax Tree (AST), control
flow graphs (CFG), data flow graphs (DFG), and compiler intermediate representation, with trees and/or
graphs, e.g., StructCoder (Tipirneni et al., 2024), FAIR (Niu et al., 2024), GrammarT5 (Zhu et al., 2024),
and PPOCoder Shojaee et al. (2023). Bounsi et al. (2024) propose the TransNAR architecture, combining
Transformers and graph neural network (GNN), to achieve robustness for algorithmic tasks. RL is studied in
code LLMs, e.g., CodeRL (Le et al., 2022), PPOCoder (Shojaee et al., 2023), RLSF (Jha et al., 2024), RLEF
(Gehring et al., 2025), PGTD (Zhang et al., 2023), and DeepSeek-Coder-V2 (DeepSeek-AI et al., 2024), as
well as general LLMs, e.g., Tulu 3 (Lambert et al., 2024),
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Maths and coding, with a formal verifier, come close to games AI, with a perfect game engine / simulator.
However, the goal of fully autonomous and correct maths or coding agents is likely infeasible, due to the
impossibility results, e.g., Gödel’s incompleteness theorems and the halting problem. Hüttel (2025) discuss
program synthesis and LLMs. Brooker & Desai (2025) discuss a hybrid approach with formal verification
and semi-formal methods like testing and fuzzing. This being said, there are and will be lots of academic and
business opportunities and we may try our best, by iterative improvements based on ground truth. Before
becoming fully autonomous, a maths or a coding agent is a mixture of 1) Agentµ, for feedback from a verifier
for both maths and coding and feedback from compiler, tests, etc., and 2) Agent∞ for humans’ feedback.

7.4 Agents with approximate simulators

This is about wide applications in natural science, engineering, economics, finance, social science, or any
disciplines, where we may have scientific or engineering principles, but still need to rely on high fidelity yet
approximate simulators. It is critical to bridge the simulation to reality gap, see e.g., Wagenmaker et al.
(2024). Robotics is a representative application in this category. Lavin et al. (2022) discuss the merge of
scientific computing, scientific simulation, and AI. LLMs can be treated as approximate simulators (Vafa
et al., 2024; Wang et al., 2024c; Li et al., 2025). Thus most current LLM agents fall into this category,
however, without iterative improvements of underlying LLMs, and maybe also without ground truth, as in
Agentµ. Popular approaches like prompt engineering, Chain of Thought, ReAct, and LLM multi-agent, as
well as the recent test time compute, can be regarded as attempts to bridge the simulation to reality gap.

7.5 Agents with facts

We refer this type of agents to those that depend on factual information, e.g., in the form of knowledge graph
(KG) or retrieval augmented generation (RAG). This may be complementary to other types of agents. We
note that KGs and RAGs are usually not perfect. How to make them perfect or bridge the factuality gap
appears as an open problem.

7.6 Agents with human-in-the-loop

Here we refer to agents with humans playing a major role, e.g., in education and healthcare. For many
NLP problems, e.g., translation and summarization, objectives are subjective, and performance metrics like
BLEU, ROUGE and perplexity are heuristic. This may also apply to many human-centric problems in social
sciences like psychology, cognitive science, and behavioural science. Even there may be principles, they are
not in the perfect sense, and behavioural study with humans are essential.

As a result, we may not be able to define a precise objective or reward function for the decision problem.
RLHF is a principled way to learn a reward function, however, with human preference data. See, e.g., Casper
et al. (2023) for RLHF and Retzlaff et al. (2024) for human-in-the-loop RL. In such cases, a key issue is how
to guarantee the information is ground truth. Interactions with humans esp. experts are the best effort, yet
may be the best data we can obtain. See e.g. Chakrabarty et al. (2025) about writing quality. We propose
to make iterative improvements based on ground truth following Silver & Sutton (2025).

We note that for maths, coding, scientific, engineering and factual agents, before becoming fully autonomous,
human-in-the-loop is inevitable. So the discussions here may complement to those agents to some extent.

8 Compare with current approaches

Most current approaches directly apply LLMs to downstream tasks, including agents, by employing auxiliary
techniques like prompt engineering, CoT, ReAct, RAG, workflows, the Model Context Protocol (MCP),
and/or test time compute, based on one or multiple fixed LLMs, without improving the underlying LLM(s).
The significant difference with our approach is iterative improvements to the base LLM(s). Ground truth
may also be a significant difference, when adjustments are based on information generated by LLM(s)
without formal verification. “Foundation models” were supposed to learn good representations, and adapt
to downstream applications (Bommasani et al., 2022). We propose to revisit this view and highlight the
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importance of adaptation of the LLMs themselves, with iterative improvements based on ground truth. See
e.g., Cosmos (NVIDIA et al., 2025).

We propose to build specialist models, rather than generalist LLMs. We propose to divide and conquer,
rather than following a holistic appraoch. See e.g., the integration of the Transformer as a long term memory
with the Soar cognitive architecture (Laird et al., 2023). We highlight the importance of ground truth, and
bridge the gap between approximate models to reality, in contrast to several current approaches based on
fixed, imperfect LLMs: 1) synthetic data generated by LLMs; 2) self-play with LLMs; 3) treat LLMs as
policy, value function, and world model; 4) rely on LLMs for decision making and agency. We highlight the
importance of interactions and embodiment, and thus iterative improvements. See, e.g., Silver & Sutton
(2025) and Bisk et al. (2020) for the importance of experience. We propose to explore and exploit domain
knowledge, w.r.t. data collection, architecture design and algorithm design, leverage both learning and
search, make iterative improvements based on ground truth. This is in contrast to 1) scaling up GPT with
next token prediction to achieve general superhuman performance, and 2) compression is intelligence. We
propose to build many specialized agents, with one or many coordinator agents, and then form the multi-
agent system with specialists, making iterative improvements based on ground truth, in contrast to the
current popular approach in which agents are based on general, fixed, imperfect LLMs.

Autonomy and optimality are two critical features for agents. Many current LLM agent works use the success
rate as a performance metric, and use manual, heuristic workflows when constructing prompts. We propose
to return to aiming at autonomy and optimality, as in Sutton & Barto (2018) and Russell & Norvig (2020).
Both iterative improvements and ground truth are important ingredients for achieving such a goal.

In academia, there are discussions even debates about LLMs’ reasoning and planning capacities, which are
fundamental for building agents. In practice, after around two years’ endeavours by many people worldwide,
few successful agents emerge, esp. considering autonomy and optimality. We highlight the importance of
iterative improvements and ground truth, along with perspectives on specialized and small models. We
expect to help make progress in the research and commercialization of LLM agents.

By exploring and exploiting domain knowledge, w.r.t. data, architectures and algorithms, we expect to
improve interpretability (Barredo Arrieta et al., 2020; Zhao et al., 2024; Bereska & Gavves, 2024; Milani
et al., 2024), trustworthiness (Huang et al., 2024; Liu et al., 2024) and safety ("davidad" Dalrymple et al.,
2024; Gu et al., 2024) innately. This may address the issue of in-context reward hacking in feedback loops
(Pan et al., 2025). This may also improve efficiency and cost saving, as advocated, e.g., in the Abstraction
and Reasoning Corpus (ARC) Prize. Kapoor et al. (2024) discuss benchmarks for agents, highlighting jointly
optimization of accuracy and cost.

Chen et al. (2025) shows that self-play fine-tuning improves LLMs. It works in the way of generative
adversarial (GAN) (Goodfellow et al., 2020). A hypothesis is: The initial LLM is not trained well enough
yet. Thus it is critical to make iterative improvements based on ground truth. Chu et al. (2025) study SFT
vs. RL for memorization vs generalization for post-training. Rohatgi et al. (2025) show that GPT with next
token prediction is imitation learning with performance barrier for error amplification. This may explain
why LLMs demonstrate reasoning and planning capacity, however, with issues: quality and coverage of data
and efficiency and competency of learning. Moreover, imitation learning may not be enough to achieve
super-human performance (Silver et al., 2017).

9 Discussion

Silver & Sutton (2025) draw a blueprint for (reinforcement) learning from experience. We provide a more
pragmatic plan as a complement. We propose LLM agent frameworks in the era of experience inspired by
the successes of games AI. We highlight the importance of both iterative improvements and ground truth,
propose to explore and exploit domain knowledge w.r.t. data collection, architecture design and algorithm
design, with decision time planning and meta RL at both pre- and post-training stages. We also present case
studies. Iterative improvements based on ground truth helps an agent ground in the experience. Iterative
improvements are incremental by nature, and may be offline/batch or online learning (Sutton & Barto, 2018;
Laird et al., 2023). In practice, it can be more frequent than offline, yet not as frequent as online learning.
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