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Abstract

Learning a new concept from one example is a superior function of the human1

brain and it is drawing attention in the field of machine learning as a one-shot2

learning task. In this paper, we propose one of the simplest methods for this task3

with a nonparametric weight imprinting, named Direct ONE-shot learning (DONE).4

DONE adds new classes to a pretrained deep neural network (DNN) classifier with5

neither training optimization nor pretrained-DNN modification. DONE is inspired6

by Hebbian theory and directly uses the neural activity input of the final dense7

layer obtained from data that belongs to the new additional class as the synaptic8

weight with a newly-provided-output neuron for the new class, by transforming all9

statistical properties of the neural activity into those of synaptic weight. DONE10

requires just one inference for learning a new concept and its procedure is sim-11

ple, deterministic, not requiring parameter tuning and hyperparameters. DONE12

overcomes a problem of existing weight imprinting methods that interfere with the13

classification of original-class images. The performance of DONE depends entirely14

on the pretrained DNN model used as a backbone model, and we confirmed that15

DONE with current well-trained backbone models perform at a decent accuracy.16

1 Introduction17

As is well known, artificial neural networks are initially inspired by the biological neural network in18

the animal brain. Subsequently, Deep Neural Networks (DNNs) achieved great success in computer19

vision [9, 14, 20] and other machine learning fields. However, there are lots of tasks that are easy20

for humans but difficult for current DNNs. One-shot learning is considered as one of those kinds21

of tasks [5, 17, 19, 22, 27]. Humans can add a new class to their large knowledge from only one22

input image but it is difficult for DNNs unless another specific optimization is added. Usually,23

additional optimizations require extra user skills and calculation costs for tuning parameters and24

hyperparameters. Thus, for example, if an ImageNet model [6, 16] that learned 1000 classes can25

learn a new class “baby” from one image of a baby with neither additional training optimization nor26

pretrained-DNN modification, it will be useful in actual machine learning uses.27

For a DNN model trained with a sufficiently rich set of images, a reasonable representation of28

unknown images must exist somewhere in the hidden multi-dimensional space. Indeed, weight29

imprinting, proposed by Qi et al. [26], can add novel classes to Convolutional Neural Networks30

(CNNs) by using final-dense-layer input of a new-class image without extra training. Qi’s weight31

imprinting method needs just a few CNN-architecture modifications and can provide decent accuracy32

in a one-shot image classification task (e.g., accuracy for novel-class images was 21% when novel33
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Figure 1: Scheme of DONE. (a) The neural activity input of final dense layer (orange x vector
in original model) obtained from a new-class data (an image of a cat) is directly used for the
transformation to the new-class vector (orange wcat) in the new weight matrix (W ) without any
modification to the backbone model. (b) An example case of transformation from x to wcat, with
actual distribution data when the backbone DNN is EfficientNet-B0.

100 classes were added to the original 100 classes in CUB-200-2011 dataset). Moreover, some studies34

[21, 36] show that the capabilities of DNN itself have the potential to enable Out-of-Distribution35

Detection (OOD). For the relationship between the brain and artificial computation, not only some of36

the features of the lower [4] and higher visual cortex [11] are explained by filtering or DNN, but also37

the embedding of such new-concept-learning functions into the hidden space has been analyzed [39].38

In this paper, we introduce a very simple method, Direct ONE-shot learning (DONE) with a nonpara-39

metric weight imprinting. As shown in Figure 1(a), DONE directly transform the input of the final40

dense layer (x vector in the figure) obtained by one input image belonging to a new class (e.g., a cat41

in the figure) into the weight vector for the new additional class (wcat, a row vector of the weight42

matrix W ). Then, it is done. DONE uses weight imprinting but never modifies backbone DNN43

including original weight matrix Wori unlike Qi’s method. Qi’s method was inspired by the context44

of metric learning, but DONE was inspired by Hebbian theory [2]. This difference in inspiration45

source makes a small but important difference in method procedures, and this study proposes a new46

formulation of Hebbian theory for weight imprinting.47

In weight imprinting, we can assume that the new weight vector wcat is born out of nothing and thus48

is equal to its change, i.e., wcat = 0⃗ + ∆wcat = ∆wcat. Hebbian theory is about this ∆wcat and49

states that a synaptic weight is strengthened when both its presynaptic and postsynaptic neurons are50

active simultaneously. When a single image of a new class (cat) is presented as visual input, some51

of the presynaptic neurons x become active. Simultaneously, a postsynaptic neuron corresponding52

to cat is active (e.g., ycat = 1), while postsynaptic neurons for all the i-th original classes are not53

(yi = 0), because the training image is known to be a cat. In a simple and conventional formulation54

of Hebbian theory, the change in the weight vector can be described as ∆wcat ∝ x · ycat, thus55

wcat = ∆wcat ∝ x, while ∆wi = 0 because yi = 0. Therefore, the mechanism of weight56

imprinting without modification of Wori can be explained by Hebbian theory.57

Here, a problem arises with this simple formulation alone, because neural activity and synaptic weight58

are different in scale and those relationships would not be linear. For example, Figure 1(b)-(i) and59

(b)-(ii) show frequency distributions of neural activity in x and weight in wi, which are different in60

shape, in an actual DNN. If only the new wcat had far different statistical properties compared to the61

other wi, the comparison between classes would be unequal, and the additional wcat could inhibit the62

classification of the original classes (shown later). Therefore, the implementation of Hebbian theory63

here must include a function for the nonlinear scale transformation, i.e., ∆wcat ∝ Fx→w(x · ycat).64

DONE takes into account this transformation by quantile normalization [1, 3], so that the frequency65

distribution of wcat becomes equal to that of wave (the average vector of original wi vectors), i.e.,66

∆wcat = F (x,wave) (Figure 1(b)-(iii)). Quantile normalization is an easy and standard technique in67

Bioinformatics [1, 3], and it is suitable for implementing Hebbian theory. The statistical properties of68

wcat that result from the transformation from neural activity to synaptic weight should be similar to the69

statistical properties of original synaptic weights. For example, we could apply linear transformation70
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so that the mean and variance (i.e., 1st and 2nd central moments) of the elements of wcat are the same71

as those of wave. However, it is not clear if such adjustment for only 1st and 2nd central moments is72

enough in this situation where the 3rd or higher central moments could be different (such as shown in73

Figure 1(b)). One of the simplest solutions for every situation is to make all the statistical properties74

identical. As above, DONE can simply add a new class by wcat = F (x,wave) nonparametrically,75

and we call this transformation Hebbian weight imprinting (see Methodology section for details).76

Our method’s basis and procedure are very simple, but it achieves similar accuracy to Qi’s method77

and does not interfere with the original classification compared to Qi’s method. DONE achieved over78

50% accuracy (approximately 80% of classification of well-trained original classes) in a one-shot79

image classification task that adds eight new classes to a model pretrained for the ImageNet 100080

classes (ViT (Vision Transformer) [34] or EfficientNet [29]) as a backbone model (note that the81

chance level is less than 0.1%). In a typical five-way one-shot classification task, DONE with ViT82

achieved over 80% accuracy.83

The advantages of DONE over other weight imprinting methods are (i) Hebbian-inspired simpler basis84

and procedure, (ii) no modification to backbone models, and (iii) nonparametric procedure for a wide85

range of backbone models including future models. The advantages of DONE as a weight imprinting86

are (iv) no optimization thus little calculation cost and (v) no parameters or hyperparameters thus87

reproducible for anyone. In addition to proposing the new methods, this paper contains the following88

useful information: a generic task to add new classes to 1000-class ImageNet models, and the89

difference in backbone DNNs, specifically, between a Transfomer (ViT) and a CNN (EfficientNet).90

Moreover, DONE may provide a useful insight when exploring the learning principles of the brain91

because DONE is inspired by the Hebbian theory.92

2 Related work93

2.1 One-shot and few-shot image classification94

Typical learning approaches for one- or few-shot image classification are metric learning, data95

augmentation, and meta learning. Weight imprinting has come out from metric learning. Each of96

these approaches has its own advantages and purposes, and they are not contradictory but can be used97

in a mixed manner.98

Metric learning uses a classification at a feature space as a metric space [8, 22, 30]. Roughly speaking,99

metric learning aims to decrease the distances between training data belonging to the same class100

and increase the distance between the data belonging to different classes. Metric learning such as101

using Siamese network [13] is useful for tasks that require one-shot learning, e.g., face recognition. A102

Data-augmentation approach generatively increases the number of training inputs [19, 27, 45]. This103

approach includes various types such as semi-supervised approaches and example generation using104

Generative adversarial networks [10]. Meta learning approaches train the abilities of learning systems105

to learn [18, 23, 43]. The purpose of meta learning is to aim to increase the learning efficiency itself,106

and this is a powerful approach for learning from a small amount of training data, typically one-shot107

learning task [41].108

2.2 Weight imprinting109

Weight imprinting is a learning method that initially arose from an innovative idea "learning without110

optimization" [26], and DONE is a type of weight imprinting. Weight imprinting does not contain111

any optimization algorithm and is basically inferior to other optimization methods by themselves in112

accuracy. However, comparisons of DONE with other optimization methods are useful in evaluating113

those optimization methods, because the performance of weight imprinting methods is uniquely114

determined by the backbone DNN without any randomness. Thus, weight imprinting does not aim115

for the highest accuracy but for practical convenience and reference role as a baseline method.116
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We here explain the basis of weight imprinting and then specific procedure of Qi’s method. Let us117

consider the classification at the final dense layer of DNN models in general. In most cases, the output118

vector y = (y1, · · · , yN ) of the final dense layer denotes the degree to which an image belongs to each119

class and is calculated from the input vector of the final dense layer x = (x1, · · · , xM ), weight matrix120

W (N ×M ), and bias vector b = (b1, · · · , bN ). Here, for i-th class in N classes (i = 1, 2, · · · , N ),121

a scalar yi is calculated from the corresponding weight vector wi = (wi1, · · · , wiM ) (i-th row vector122

of W matrix) and bias scalar bi as the following equation:123

yi = x ·wi + bi = ||x||2 ||wi||2 cos θ + bi, (1)

where the cosine similarity is a metric that represents how similar the two vectors x and wi are124

irrespective of their size. Thus, this type of model contains cosine similarity as a part of its objective125

function. It is also possible to use the cosine similarity alone instead of the dot product [25].126

Weight imprinting uses this basis of the cosine similarity. The cosine similarity will have the127

maximum value 1 if x and wi are directly proportional. Thus, if a certain x is directly used for the128

weight of a new j-th class wj (j = N + 1, · · ·), the cosine similarity for j-th class becomes large129

when another x with a similar value comes.130

In Qi’s method, to focus only on the cosine similarity as a metric for the objective function, the131

backbone DNN models are modified in the following three parts:132

• Modification1 : Adding L2 normalization layer before the final dense layer so that x133

becomes unit vector, i.e., ||x||2 = 1134

• Modification2 : Normalizing all wi to become unit vectors, i.e., ||wi||2 = 1 for all i.135

• Modification3 : Ignoring all bias values bi, i.e., b vector.136

Then, the final-dense-layer input obtained from a new-class image xnew (L2-normalized, in Qi’s137

method) is used as the weight vector for the new class wj , i.e.,138

wj = xnew. (2)

Qi’s method is already simple and elegant, but it still requires some modifications to the backbone139

DNN, which involves changes in the objective function. Whether a modification is good or bad140

depends on the situation, but if not necessary, it would be better without modification in order to141

avoid unnecessary complications and unexpected interference with the original classification because142

the backbone DNN would be already well optimized for a certain function. Also, Qi’s method uses143

linear transformation for conversion of x into wj as a result of focusing on the cosine similarity,144

without considering the difference in statistical properties between x and wj , which limits the range145

of backbone DNNs used. There have been various researches that make Qi’s method more complex146

and applicable [32, 38, 40, 44, 46], but to the best of our knowledge, none that make it simpler or147

solve the transformation problem.148

3 Methodology149

3.1 Procedure and basis of DONE150

DONE does not modify backbone DNN and just directly applies xnew to wj (j = N + 1, · · ·), as151

shown in Figure 1, as152

wj = F (xnew,wave), (3)

bj = b̃ori, (4)

where F (xnew,wave) is a quantile normalization of xnew, using the information of the average153

weight vector for original classes (wave) as the reference distribution, and b̃ori is the median of the154

original bias vector bori. Then, it is done.155
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In the quantile normalization, the elements value of resultant wj become the same as that of the156

reference wave. Specifically, for example, first we change the value of the most (1st) active neuron in157

xnew vector into the highest (1st) weight value in wave. We then apply the same procedure for the158

2nd, 3rd, · · · ,M -th highest neurons. Then, the ranking of each neuron in xnew remains the same, and159

the value of each ranking is all identical to wave. This resultant vector is wj . Namely, all statistical160

properties of the elements of wj and wave are identical (the frequency distributions are the same).161

For wave, to implement the concept of Hebbian theory, we used all the N ×M elements of flattened162

Wori, divided these elements into M parts in ranking order, and obtained the M median values163

in each N element as M -dimensional wave. For example, in the case of ViT-B/32 (N = 1000,164

M = 768), the highest value of wave is the median of 1st to 1000th highest elements in 768,000165

elements of Wori, and the lowest value is the median of 767,001th to 768,000th elements.166

3.2 Limitations, applications, and potential negative societal impacts167

As limitations, DONE requires a neural network model that has dense layer for classification as168

above. DONE can be used for a wide range of applications with DNN classifiers, including OOD169

applications[42]. There can be various potential negative societal impacts associated with these broad170

applications. One example is immoral classification or discrimination when classifying human-related171

data, such as facial images, voices, and personal feature data.172

3.3 Implementation and Dataset173

As backbone models, we employed ViT-B/32 [34] and EfficientNet-B0 [29] as two representative174

DNNs with different characteristics, using “vit-keras” [48] and “EfficientNet Keras (and TensorFlow175

Keras)” [47], respectively. Also, for transfer learning, we employed InceptionV1 [15] (employed in176

the paper by Qi et al. [26]) and ResNet-12 [20], using “Trained image classification models for Keras”177

[49] and Tensorflow [12], respectively. All models used in this study were pretrained with ImageNet.178

We used CIFAR-100 and CIFAR-10 [7] for additional classes, using Tensorflow [12]. Also, for179

transfer learning, we used CIFAR-FS [28] by Torchmeta [31]. We used ImageNet (ILSVRC2012)180

images [6, 16] for testing the performance of the models. We used information of 67 categorization181

[33] of ImageNet 1000 classes, for a coarse 10 categorization in Figure 4(a). All images were resized182

to (224× 224) by OpenCV [50] or the preprocessing resizing layer of Tensorflow [12].183

4 Results and Discussion184

4.1 One-class addition by one-shot learning185

First, according to our motivation, we investigated the performance of DONE when a new class186

from one image was added to a DNN model pretrained with ImageNet (1000 classes). As new187

additional classes, we chose eight classes, “baby”, “woman”, “man”, “caterpillar”, “cloud”, “forest”,188

“maple_tree”, and “sunflower” from CIFAR-100, which were not in ImageNet (shown in Figure 2(a)).189

The weight parameters for the additional one class wj is generated from one image, thus the model190

had 1001 classes. To conduct stochastic evaluations, 100 different models were built by using 100191

different training images for each additional class.192

Figure 2(b) shows letter-value plots of the accuracy for each additional class (chance level 1/1001).193

The mean of the median top-1 accuracy of 8 classes by DONE were 56.5% and 92.1% for ViT and194

EfficinetNet, respectively (black line). When the mean accuracy was compared with the accuracy of195

ImageNet validation test by the original 1000-class model (orange line; 65% and 69%), the mean196

with ViT had no significant difference and the mean of EfficinetNet was significantly greater (one197

sample t-test; two-sided with α=0.05, in all statistical tests in this study). The higher accuracy than198

the original classes in EfficientNet is strange, and it is considered that EfficientNet tends to recognize199

the new-class images as just OOD (see later, Figure 4).200
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Figure 2: One-class addition by one-shot learning. (a) Representative images of the newly-added
CIFAR-100 classes. Each image was chosen as a representative because the model that learned the
image showed the highest, median, and lowest accuracy in each class in (b)-(i). (b) Letter-value
plots of top-1 accuracy of the one-class-added models obtained by one-shot learning with DONE
in classification of new-class images. The median top-1 accuracy of the new-class classification
(black circles), top-1 accuracy in original-class classification (orange circles), and the fraction of the
interference with the original-class classification by the newly-added class (blue) are also plotted for
DONE (closed) and Qi’s method (open). Black and orange lines show the mean of the 8 closed circles.
(c) The relationship between x and w vectors when an image of “Ruddy turnstone” is input and it
is miss-classified as “Sunflower” only in the case of Qi’s method with EfficientNet. The frequency
distributions of elements of each vector are also shown outside the plot frames.

An obvious fact in one-shot learning is that a bad training image produces a bad performance, e.g.,201

the accuracy was 6% in ViT when the training image was a baby image shown at the bottom left in202

Figure 2(a). But in practical usage, a user is supposed to use a representative image for the training.203

We therefore think that the low performance due to a bad training image is not a significant issue.204

We investigated the interference of the class addition with the classification performance of the205

original 1000 classes. We evaluated the original 1000-class model and eight 1001-class models that206

showed the median accuracy, by using all 50,000 ImageNet validation images (Figure 2(b)). The207

difference between the accuracy of the original 1000-class model (orange line) and the mean accuracy208

of the eight 1001-class models (orange closed circles) was less than 1% (0.004% and 0.664% for ViT209

and EfficinetNet, respectively).210

Figure 2(b) also shows the fraction of ImageNet validation images in which the output top-1 answer211

of the added model was the new class (thus incorrect) in the 50,000 images (blue closed triangles;212

right axis). This interference fraction was low in ViT, and for example, only 2 images out of 50,000213

were classified as “baby”. When we checked the two images, both images indeed contained a baby214

though its class in ImageNet was “Bathtub”. Therefore, observed interference in ViT was not a215

mistake but just the result of another classification. EfficientNet shows a significantly greater fraction216

of interference than ViT (Wilcoxon signed-rank test), but we also confirmed that a similar thing217

happened, e.g., 198 of the 204 ImageNet-validation images classified as “baby” in EfficientNet218

contained human or doll.219

We also compared DONE with Qi’s method. Open circles and triangles show the results using220

Qi’s method instead of DONE in the same tests described above. When the backbone model221
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Figure 3: Multi-class addition and K-shot learning. (a), (b), and (c) show the results of the 1008-class
model constructed by 1, 10, and 100-shot learning, respectively. The horizontal and vertical axes
show the class of the input images, and the output class, respectively. The class numbers are those
shown in Figure 2(a). The class [im] contains 1000 classes of ImageNet. (d) Summary of the mean
accuracy and the interference fraction with original-class classification by DONE and Qi’s method.

was EfficientNet, the strangely-high accuracy (paired sample t-test) and the interference fraction222

(Wilcoxon signed-rank test) were significantly greater by Qi’s method than by DONE. Also, a223

significant outlier of decreased accuracy in the ImageNet validation test was observed (orange224

open circle for “Sunflower”; Smirnov-Grubbs test). On the other hand, those differences were not225

significant in the case of ViT.226

To investigate the cause of the difference between DONE and Qi’s method, especially about the227

greater interference by Qi’s method in EfficientNet, we plotted wSunflower and wRuddy_turnstone228

against x obtained from an image of “Ruddy turnstone” (Figure 2(c)). Note that all the vectors here229

are L2-normalized, and thus DONE and Qi’s method have common wRuddy_turnstone and x. In the230

case of ViT, the shape of the frequency distributions of all these vectors are similar, and wSunflower231

of DONE and Qi’s method are similar. On the other hand, in EfficientNet, the shape of frequency232

distributions are more different between wRuddy_turnstone and x than ViT, and thus the shape of233

frequency distributions are more different between wRuddy_turnstone and wSunflower by Qi’s method234

than by DONE. Then, by Qi’s method, x is more similar to wSunflower than wRuddy_turnstone because235

not neuronal match but statistical properties are similar. This is the basis of the problem by a linear236

transformation of neural activity to synaptic weight. Therefore, the difference between DONE and237

Qi’s method appears in the interference when the statistical properties of x and wi vectors in the238

backbone DNN are different (thus the results in ViT are similar between DONE and Qi’s method).239

4.2 Multi-class addition and K-shot learning240

DONE was able to add a new class as above, but it might just be because the models recognized the241

new-class images as OOD, i.e., something else. Therefore, it is necessary to add multiple new similar242

classes and check the classification among them. In addition, it is necessary to confirm whether the243

accuracy increase by increasing the number of training images, because in practical uses, users will244

prepare not just one training data but multiple training data for each class.245

Specifically, we used one image from each of the eight classes and added new eight classes to the246

original 1000 classes, using DONE as one-shot learning. We evaluated this 1008-class model by 100247

CIFAR test images for each of 8 classes and 10,000 ImageNet validation images. Figure 3(a) shows248

the results of the output of the representative model constructed by one-shot learning in which one249

image that showed median accuracy in Figure 2(b) was used as a standard training image of each250

class. In both backbone DNNs, the fraction of output of the correct class was the highest among the251

1008 classes, and mean top-1 accuracy of the 8 classes was 51.8% and 61.1% in ViT and EfficientNet,252
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Figure 4: Principal component analysis of weight vectors. PCA of each wi and wj vector in the one-
shot 1008-class models shown in Figure 3(a). Different colors for wi show a coarse 10 categorization
of the classes. Also, 100 wj vectors obtained by inputting 100 ImageNet images are shown.

respectively. That is, DONE was also able to classify newly added similar classes together with the253

original classes, in both DNNs.254

Next, we increased the number of training images as K-shot learning. In the case of 10-shot learning255

(Figure 3(b)), each of the ten images was input to obtain each x, and the mean vector of the ten x256

vectors was converted into wj , according to the Qi’s method. For this representative 10-shot model,257

we used 10 images whose index in CIFAR-100 was from the front to the 10th in each class. We also258

tested 100-shot learning in the same way (Figure 3(c)). As a result, we found that such a simple259

averaging operation steadily improved the accuracy (Figure 3(d) summaries the mean accuracy).260

When we used Qi’s method, compared to the case of DONE, ImageNet images were significantly261

more often categorized to the new classes as interference only when the backbone model was262

EfficientNet (paired sample t-test), while there was no significant difference in the mean accuracy of263

1, 10, 100-shot 1008-class models for the added 8 classes between DONE and Qi’s method with both264

backbone DNNs (Figure 3(d)). Thus, again the interference in the case of EfficientNet is significantly265

greater in Qi’s method than DONE.266

4.3 Principal component analysis of weight vectors267

Qi’s method showed greater interference in classification of the original-class images than DONE268

only when the backbone DNN is EfficientNet. Moreover, even by DONE, EfficientNet showed269

greater interference than ViT and strangely-high accuracy at 1001-class model, even though DONE270

did not change the weights for the original classes and transformed the new-class weights so that the271

statistical properties were the same as those of the original-class weights. Therefore, there should272

be at least two reasons for these results only shown in EfficientNet, and DONE cannot correct at273

least one of them. To investigate those reasons, we analyzed W matrix (wi and wj vectors) of the274

one-shot 1008-class models shown in Figure 3(a) (and corresponding models by Qi’s method) by275

Principal component analysis (PCA; Figure 4).276

In ViT by DONE (Figure 4(a); Qi’s methods showed similar results, see Figure S1), newly added wj277

vectors (black circles, with the ID number of newly-added 8 classes) were comparable to those of the278

original classes wi (colored circles), e.g., wj vector of a new class “caterpillar (3 in Figure 4(a))” was279

near wi of original “invertebrate” classes. Also, even when we got wj by inputting ImageNet images280

(red crosses; validation ID from the front to the 100th), those ImageNet wj vectors distributed in281

similar range.282

On the other hand, in EfficientNet by DONE (Figure 4(b)), most of newly-added 8-class wj were283

out of the distribution (meaning out of minimal bounding ellipsoid) of wi of original 1000 classes,284

while most of the ImageNet wj (red crosses) were inside the distribution of wi. Therefore, in the285

case of DONE, the main reason for the observed greater interference and strangely-high accuracy286
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Figure 5: 5-way 1-shot (a) and 5-shot (b) classification accuracy on CIFAR-FS with various backbone
DNNs. Error bars show standard errors. Asterisks mean significant differences between DONE and
Qi’s method (Dwass-Steel-Critchlow-Fligner test).

in EfficientNet than ViT would be the difference between ImageNet and CIFAR. These results are287

consistent with known facts that ViT is considered to be better at predictive uncertainty estimation288

[24, 37], more robust to input perturbations [35], and more suitable at classifying OODs [36] than289

CNNs like EfficientNet.290

In EfficientNet by Qi’s method (Figure 4(c)), most of not only 8-class wj but also the ImageNet291

wj were out of the distribution of wi of original 1000 classes. The difference in the distributions292

between the original wi and the ImageNet wj is considered to indicate the difference in the statistical293

properties of x and wi vectors in EfficientNet.294

In the case of 100-shot learning (the terminal points of the gray arrows in Figure 4), wj went away295

from the cluster of original wi in all three cases, although their performance was better than one-shot296

learning. Therefore, 100-shot wj were considered to work somehow in a different way from the297

original wi.298

4.4 Transfer few-shot learning299

DONE is recommended for the easy addition of new classes, not for transfer learning. However,300

DONE can work for it (Figure S2) and is convenient for the evaluation of DNNs and other few-shot301

learning methods. We examined the 5-way (5 classes) 1-shot task of CIFAR-FS, which is a kind of302

standard task in one-shot classification. Specifically, we used each single image in 5 classes out of303

100 classes of CIFAR-100 for constructing a model, and evaluate the model by 15 images in each304

class. The combination of the 5 classes (and corresponding training images) was randomly changed305

in 100 times (Figure 5(a)). Also 5-way 5-shot task was tested in a similar way (Figure 5(b)).306

We found ViT significantly outperformed the other DNNs in all conditions (Dwass-Steel-Critchlow-307

Fligner test) by both DONE and Qi’s method. Compared to Qi’s method, DONE shows significantly308

greater accuracy with some CNN models, and never significantly worse, although it is not an expected309

advantage of DONE and there would be no particular reason for it.310

Figure 5 also clearly shows that how much other state-of-the-art one-shot learning methods with311

optimization (methods in [43] and [45]) outperform DONE as the baseline without optimization, at312

the same test with a common backbone DNN (ResNet-12).313

5 Conclusion and Future work314

This paper has proposed DONE, one of the simplest one-shot learning methods that allows us to add315

new classes to a pretrained DNN at a decent accuracy without optimization or modification of the316

DNN. DONE applies Hebbian weight imprinting, which is a new implementation of Hebbian theory317

by quantile normalization, to the final dense layer of a DNN model. Given the simplicity and wide318

applicability, not only DONE but also Hebbian weight imprinting alone are expected to be applied319

in a wide range of the field of neural networks. This study has just proposed the method, and its320

scalability (Figure S3) and expected applications are yet to be elucidated. Since the performance of321

DONE is completely dependent on backbone DNNs and further development of DNN is certain, the322

situation to obtain sufficient accuracy with DONE may soon come.323
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