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Abstract
The field of Autonomous Driving (AD) has
witnessed significant progress in recent years.
Among the various challenges faced, the safety
evaluation of autonomous vehicles (AVs) stands
out as a critical concern. Traditional evaluation
methods are both costly and inefficient, often re-
quiring extensive driving mileage in order to en-
counter rare safety-critical scenarios, which are
distributed on the long tail of the complex real-
world driving landscape. In this paper, we pro-
pose a unified approach, Diffusion-Based Safety-
Critical Scenario Generation (DiffScene), to
generate high-quality safety-critical scenarios
which are both realistic and safety-critical for ef-
ficient AV evaluation. In particular, we propose
a diffusion-based generation framework, leverag-
ing the power of approximating the distribution
of low-density spaces for diffusion models. We
design several adversarial optimization objectives
to guide the diffusion generation under predefined
adversarial budgets. These objectives, such as
safety-based objective, functionality-based objec-
tive, and constraint-based objective, ensure the
generation of safety-critical scenarios while ad-
hering to specific constraints. Extensive experi-
mentation has been conducted to validate the ef-
ficacy of our approach. Compared with 6 SOTA
baselines, DiffScene generates scenarios that
are (1) more safety-critical under 3 metrics, (2)
more realistic under 5 distance functions, and (3)
more transferable to different AV algorithms. In
addition, we demonstrate that training AV algo-
rithms with scenarios generated by DiffScene
leads to significantly higher performance in terms
of the safety-critical metrics compared to base-
lines. These findings highlight the potential of
DiffScene in addressing the challenges of AV
safety evaluation, paving the way for more effi-
cient and effective AV development.
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1. Introduction
Innovations driven by recent progress in machine learning
(ML) have demonstrated human-competitive performance in
various fields (Silver et al., 2018; He et al., 2015; Agostinelli
et al., 2019). However, the safety evaluation and guarantees
of these ML-based models are still challenging, especially
in real-world safety-critical applications such as AV.
To evaluate the safety and robustness of AV systems, the
prevailing approaches deploy them in the real world and
test them with various traffic scenarios. AV companies also
reconstruct safety-critical scenarios collected during their
on-road testing in the simulators (Webb et al., 2020) to test.
Deviation theories such as importance sampling (IS) and
cross-entropy (CE) have been introduced to measure the
risk of AVs (Zhao, 2016; O’Kelly et al., 2018; Bucklew &
Bucklew, 2004). However, due to the high dimensionality,
complexity, and rareness of safety-critical driving scenarios
in the real world, it is very challenging and inefficient to test
AV safety (CDMV, 2022; Arief et al., 2020).
Recently, with the successes of deep generative models, a
promising way is to directly generate such safety-critical
scenarios rather than sampling from real-world data (Yang
et al., 2020; Chen et al., 2021b; Ehrhardt et al., 2020). The
advantages of the generation approaches include improved
evaluation efficiency and scenario diversity (Ding et al.,
2020b). For example, RELATE (Ehrhardt et al., 2020) use
a GAN framework to generate realistic traffic videos with
multi-object scene synthesis. STRIVE (Rempe et al., 2022)
generates adversarial trajectory by optimizing the latent
space of a VAE model. However, most methods focus on
only modeling the existing data distribution or applying
scenario-specific rules. They fail to generate controllable
rare events such as safety-critical scenarios efficiently.
In this work, to solve these challenges, we propose
a diffusion-enabled generation framework DiffScene,
which is able to generate safety-critical scenarios effectively
while preserving its realism, satisfying real-world physical
constraints, and can be used to further evaluate and improve
the safety and robustness of various AV algorithms. Specif-
ically, we first leverage the powerful diffusion model to
capture the low-density spaces in the distribution to gener-
ate realistic safety-critical scenarios efficiently. Then we
propose a guided adversarial optimization process to modify
the generation results. During each diffusion step, we opti-
mize and constrain the generated scenarios using 3 differ-
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ent objectives: safety-based objective, functionality-based
objective, and constraint-based objective. Extensive experi-
ments on different scenario settings and AV algorithms show
that DiffScene is able to generate scenarios that are more
safety-critical, realistic, and transferable than baselines. We
also demonstrate that DiffScene scenarios achieve higher
downstream utility: training AV algorithms with the gener-
ated scenarios leads to significantly higher performance in
terms of the safety-critical metrics compared to baselines.
Our contributions are summarized as follows: 1) We pro-
pose DiffScene, a unified safety-critical scenario genera-
tion framework that leverages diffusion models to generate
realistic safety-critical traffic scenarios by introducing di-
verse safety-critical objectives. 2) We propose three differ-
ent safety-critical objectives, focusing on safety, functional-
ity, and (safe) constraints, respectively, to ensure the effec-
tiveness and naturalness of the generated scenarios. 3) We
conduct extensive experiments using Carla under different
traffic settings (e.g., different routes and maps) with 3 differ-
ent reinforcement learning-based (RL) AV algorithms. We
show that DiffScene scenarios achieve higher risk scores
(i.e., more safety-critical) in terms of 3 safety-critical met-
rics and smaller distances to benign data distributions (i.e.,
more realistic) in terms of 5 distance functions compared
to existing safety-critical scenario generation algorithms.
4) We also provide comprehensive evaluations under di-
verse settings to show that existing RL-based AV algorithms
are vulnerable to DiffScene scenarios. AV algorithms
trained with DiffScene scenarios achieve significantly
higher performance in terms of the safety-critical metrics,
demonstrating the potential utilities of DiffScene.

2. Related Work
Deep Generative Models. Different generative models
have been proposed to advance the ML development. VAE
(Kingma & Welling, 2013) is a popular generative model
based on autoencoder, which maximizes the variational
lower bound of the training samples. GAN (Goodfellow
et al., 2020) adopts a generator-discriminator framework
to optimize the generated data quality. Recently, diffusion
models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Ho et al., 2020) have achieved state-of-the-art performance
on various generation tasks, which define a Markov chain
of diffusion steps to gradually add Gaussian noises to data
and then learn to reverse the diffusion process to reconstruct
data samples from the noise. Many follow-up works further
improve the diffusion models in various aspects. DDPM
(Ho et al., 2020) improves the sample quality and proposes a
closed form to solve the training objective. An efficient sam-
pling schedule is proposed to improve the generation speed
(Nichol & Dhariwal, 2021). By performing the diffusion
process in the latent space instead of pixel space, LDMs
(Rombach et al., 2022) reduce the training and inference
costs. However, it is challenging for DGMs to generate
structured data such as dynamic trajectories, and it is even

more challenging to control the generated data to satisfy
certain safety-critical objectives. In this paper, we design
specific trajectory representations and leverage the powerful
generation capability of diffusion models to construct realis-
tic and safety-critical scenarios. We also guide the diffusion
generation and further optimize and constrain the generated
scenarios through guided adversarial optimization.

Safety-critical Scenario Generation. Existing scenario
generation algorithms can be divided into three categories.
First, data-driven algorithms (Scanlon et al., 2021; Knies &
Diermeyer, 2020; Ding et al., 2018; 2020b) generate testing
scenarios based on real-world data collected by on-track
testing. However, the collected data is highly unbalanced re-
garding safe and risky scenarios, which makes it challenging
to train generative models to generate safety-critical scenar-
ios. The second category uses adversary-based approaches
(Ding et al., 2021a; Zhang et al., 2022; Feng et al., 2021)
to generate safety-critical scenarios, which contain safety-
critical objects such as adversarial vehicles and traffic signs.
These methods fully explore the weakness of AV algorithms,
but the scenarios are often less realistic and have limited
diversity. Finally, knowledge-based scenario generation
(Zhong et al., 2022; Ding et al., 2021b; Wang et al., 2021b;
Bagschik et al., 2018) integrates knowledge rules, such as
safety-critical constraints or traffic rules to guide the gener-
ation. However, it is usually hard to represent knowledge
rules formally or integrate them with generative models
directly. In this paper, we propose a diffusion-guided gen-
eration framework with flexible adversarial optimizations
designed based on knowledge, which is able to generate
diverse safety-critical scenarios and ensure the naturalness.

3. DiffScene
In this section, we first define the problem of safety-critical
scenario generation in Section 3.1. Then we describe our
scenario generation method based on diffusion models in
Section 3.2. Finally, in Section 3.3, we introduce the guided
safety-critical adversarial optimization.

3.1. Problem Statement
Formally, we define a traffic scenario as z ∈ Z :=
{U , I,A}. U represents the participating agents. I denotes
the initial condition and properties of each agent. A repre-
sents the sequential actions. Each action sequence a ∈ A is
defined for certain agent u ∈ U as

a(u) := [a0, a1, · · · , aT ], (1)

where at is the action taken at timestep t, and T is the maxi-
mum horizon length. Consider a model M maps the initial
condition I to an initial system state s0 and derives the
whole sequence of system states based on action sequences
A: st = M(s0,A, t) (2)

Similarly, we define the state sequence for each agent as

s(u) := [s0, s1, · · · , sT ], (3)



DiffScene: Diffusion-Based Safety-Critical Scenario Generation for Autonomous Vehicles

where st is the state of agent u at timestep t. The trajectory
of u consists of its state and action sequences:

τu := {s(u),a(u)}. (4)
In a safety-critical scenario, we consider the participating
agents U := {uego, usv}, where uego is the ego vehicle con-
trolled by certain AV algorithm f : a(uego) = f(z), and usv

is a safety-critical surrounding vehicle (SV) controlled by
an adversary. Radv(τsv, f) is an adversarial risk function
measuring the risk of the current scenario, e.g., collision
rate, where the ego vehicle is controlled by f and the safety-
critical SV takes trajectory τsv. C(τsv) is a cost function
over the SV trajectory evaluating the naturalness (cost) of
the safety-critical trajectory. Given the AV algorithm f , the
goal of the safety-critical scenario generator is to create a
safety-critical trajectory τsv for the safety-critical SV such
that the risk of the scenario is maximized while the gener-
ated safety-critical trajectory maintains a low naturalness
cost:

argmax
τsv

Radv(τsv, f), s.t. C(τsv) < c, (5)

where c is a threshold for the naturalness cost budget.
Due to the high dimensionality and rareness of the safety-
critical scenarios, we consider a diffusion-based, adversari-
ally guided generation framework to sample and optimize
realistic safety-critical traffic scenarios. Specifically, we
first leverage a goal-agnostic diffusion model trained on
large-scale benign driving data to generate realistic benign
traffic scenarios with low naturalness cost C(τsv). Then we
optimize the generated scenario based on different adver-
sarial objectives at each diffusion step to maximize the risk
Radv(τsv, f) and maintain low cost. The detailed pipeline
of our method is shown in Figure 1.

3.2. Diffusion-based Scenario Generation

Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021)
approximate the data distribution by a Markov chain starting
from a Gaussian distribution. The model learns to reverse
a forward diffusion process and generate data by incremen-
tally denoising the sequence from Gaussian noise. We lever-
age the reverse diffusion process to generate traffic scenarios
with high naturalness, since the model is trained to approxi-
mate natural traffic distributions.
Trajectory representation A trajectory τ is composed of
a state sequence s and an action sequence a. We formulate
each trajectory as a matrix:

τ =

[
s
a

]
=

[
s0 s1 ... sT
a0 a1 ... aT

]
, (6)

where each column consists of a state-action pair at a certain
timestep along the horizon of the trajectory.
Trajectory generation with diffusion models We first
use a diffusion model to generate the benign trajectory
τ for the SV. The generation process is an iterative de-
noising procedure starting from the initial data distribution

pθ(τ
K) ≈ N (0, I), where K is the total number of diffu-

sion steps. Each denoising transition τ k → τ k−1 from step
k to step k − 1 is parameterized by the diffusion model:

pθ(τ
k−1|τ k) = N (τ k−1;µθ(τ

k, k),Σθ(τ
k, k)), (7)

where θ denotes the parameters of the diffusion model. The
covariances in the reverse diffusion process are often fixed
and depend on the diffusion step: Σθ(τ

k, k) = Σk, where
we adopt a cosine schedule following previous work (Nichol
& Dhariwal, 2021; Janner et al., 2022). The distribution of
the final generated clean data (i.e., k = 0) is represented as

pθ(τ
0) = pθ(τ

K)

K∏
k=1

pθ(τ
k−1|τ k). (8)

To train the diffusion model, we adopt a forward diffusion
process starting from the clean trajectory τ 0. We gradually
add Gaussian noise to the original trajectory until step K
where τK is approximately Gaussian. The forward diffu-
sion process from step k − 1 to step k is defined as

q(τ k|τ k−1) = N (τ k;
√
1− βkτ

k−1, βkI) (9)

where β1, β2, · · ·βK are fixed noise added to the trajectory
data at each forward diffusion step. This forward process q
contains no trainable parameters, which allows us to con-
struct noisy trajectories from original data. At each training
iteration, we train the diffusion model to approximate and
reconstruct the natural clean data τ 0 through the denoising
process. We use a simplified objective to train the diffusion
model (Ho et al., 2020), given by

L(θ) = Eϵ,k,τ0 [∥τ 0 − τ̂∥2] (10)
where ϵ is the noise added to the clean trajectory and τ̂ =
µθ(τ

k, k) is the reconstructed trajectory.

3.3. Guided Adversarial Optimization
The diffusion model is trained to generate realistic trajecto-
ries for SV. To ensure the generated trajectories achieve high
risk while maintaining low naturalness cost, we introduce an
efficient adversarial optimization process with different op-
timization objectives. We define an objective function J (τ )
to characterize the risk and the naturalness of a generated
trajectory. At each reverse diffusion step k, we modify the
denoising process by adding the gradient of J as guidance:

pθ(τ
k−1|τ k) ≈ N (τ k−1;µ+Σg,Σ), (11)

where g = ∇J (τ ) specifies the optimization direction.
By iteratively optimizing the trajectory towards the desired
direction provided by J , the diffusion model will finally
generate an SV trajectory satisfying the optimization goals.
This adversarial optimization process enables flexible con-
trol over the generated scenarios. We introduce the fol-
lowing three types of objectives: safety-based objective
Jsafe(τ ) provides a safety-critical guarantee for the gen-
erated scenarios, functionality-based objective Jfun(τ ) fo-
cuses on interfering the regular operations of ego vehicles,
and constraint-based objective Jcon(τ ) controls the gener-
ated scenarios to satisfy specific rules or constraints. The
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Figure 1: Overview of DiffScene. Given an initial noisy trajectory τK , we iteratively perform denoising steps and adversarial optimization steps to obtain the final adversarial
SV trajectory τ0. In each iteration, we first perform a denoising step to calculate the denoised trajectory following Equation (7). Then we perform multiple adversarial
optimization steps using different adversarial objectives. The final output maximizes the risk of the generated safety-critical scenarios and maintains a low naturalness cost.

final safety-critical objective J (τ ) is a combination of the
three objectives mentioned above:

J (τ ) = ωsJsafe(τ ) + ωfJfun(τ ) + ωcJcon(τ ) (12)
where ωs, ωf , and ωc are three hyper-parameters controlling
the weights of three different objectives.
Safety-based objective targets on the safety of the ego
vehicle, which tries to maximize the driving risk of the ego
vehicle. Specifically, we define safety-based objective as

Jsafe(τ ) = −D(τ ) + λ1collision(τ ), (13)

where D(τ ) represents the minimal distance between the
ego vehicle and the safety-critical SV in a scenario where SV
follows trajectory τ , 1collision(τ ) is an indicator function
to represent if the trajectory will cause collision between
the ego vehicle and the safety-critical SV, and λ is a hyper-
parameter. This safety-based objective encourages the SV
to stay close to the ego vehicle so that the probability of
collisions will increase.
Functionality-based objective targets on the functional
ability of the ego vehicle to finish a given driving task.
Specifically, in each testing scenario, the ego vehicle is
expected to follow and complete a specific pre-defined route
and reach the destination. The functionality-based objec-
tive controls a safety-critical SV to prevent the ego vehicle
from completing its driving task. For example, the SV can
stop the ego vehicle by trying to block the road. We define
functionality-based objective as

Jfun(τ ) = r(τ ), (14)
where r(τ ) denotes the percentage of the route not com-
pleted by the ego vehicle in a scenario with safety-critical
SV following trajectory τ .
Constraint-based objective targets on the desired rules
and constraints applied on the safety-critical SV in order to
keep it realistic. In a real-world scenario, a trajectory must
satisfy certain traffic rules or physical constraints. Here, we
consider the speed-related constraint focusing on controlling
the speed of the SV. We formulate the objective as

Jcon(τ ) =
T∑

t=0

−|vt − v∗|, (15)

where v∗ is the common driving speed of a vehicle and vt
is the speed of the SV at t. By maximizing this objective,
the SV speed will be close to the normal speed v∗.
Appendix A shows more detailed process of DiffScene.

4. Experiments
In this section, we conduct comprehensive experiments to
evaluate DiffScene in diverse settings. We find that:
1) DiffScene is much more effective in terms of gen-
erating safety-critical scenarios compared with baselines.
DiffScene scenarios achieve higher scores on safety-
critical metrics and better performance on constraint sat-
isfaction. 2) DiffScene achieves lower naturalness cost.
DiffScene scenarios are more similar to benign scenar-
ios in terms of both trajectory similarity and action sim-
ilarity. 3) DiffScene demonstrates better downstream
utility. AV algorithms fine-tuned with our safety-critical
scenarios achieve lower risk scores than those fine-tuned
on scenarios generated by baselines. 4) The transferability
of DiffScene is higher than existing scenario generation
algorithms. DiffScene scenarios are able to cause higher
risks across different AV algorithms. 5) There is a trade-off
for the generated scenarios in terms of their safety-critical
and naturalness properties, balanced by the number of ad-
versarial optimization steps during each denoising step.

4.1. Experimental Design and Setting
Scenario settings and platform We consider the follow-
ing 3 scenario settings: Crossing Negotiation (S1), Red-light
Running (S2), and Right-turn (S3). We show the detailed ex-
plainations and illustrations for all settings in Appendix B.1.
We use Carla (Dosovitskiy et al., 2017; Xu et al., 2022) as
our simulator. More details can be found in Appendix B.2.
Baselines We mainly consider the following 6 SOTA sce-
nario generation baselines. Adversarial RL (AR), Carla Sce-
nario Generator (CS) (Dosovitskiy et al., 2017), Learning-
to-collide (LC) (Ding et al., 2020a), AdvSim (AS) (Wang
et al., 2021a), Adversarial Trajectory Optimization (AT)
(Zhang et al., 2022), and STRIVE (ST) (Rempe et al., 2022).
We provide more details of the baselines in Appendix B.3.
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Table 1: Effectiveness evaluation. We report Collision Rate (CR), Incomplete Route (IR), and Speed Satisfaction (SS) to measure the effectiveness of the generated safety-critical
scenarios in terms of safety-level, functionality-level, and constraint-level in 3 different scenario settings. We show the averaged score and standard deviation of the results on 3
different AV algorithms. (All scores are the higher the better).

Scenario Metric AR CS LC AS AT ST DiffScene

S1
Collision Rate 0.19 ± 0.03 0.60 ± 0.14 0.58 ± 0.52 0.57 ± 0.33 0.62 ± 0.49 0.72 ± 0.11 0.85 ± 0.08

Incomplete Route 0.14 ± 0.10 0.27 ± 0.05 0.27 ± 0.24 0.26 ± 0.16 0.28 ± 0.22 0.32 ± 0.04 0.39 ± 0.05
Speed Satisfaction 0.09 ± 0.01 0.26 ± 0.01 0.33 ± 0.02 0.14 ± 0.01 0.30 ± 0.04 0.31 ± 0.05 0.43 ± 0.01

S2
Collision Rate 0.38 ± 0.09 0.63 ± 0.15 0.71 ± 0.43 0.57 ± 0.14 0.71 ± 0.50 0.73 ± 0.08 0.87 ± 0.10

Incomplete Route 0.18 ± 0.03 0.29 ± 0.06 0.33 ± 0.20 0.25 ± 0.07 0.33 ± 0.23 0.34 ± 0.04 0.40 ± 0.05
Speed Satisfaction 0.12 ± 0.00 0.26 ± 0.01 0.27 ± 0.02 0.24 ± 0.01 0.30 ± 0.05 0.32 ± 0.06 0.47 ± 0.01

S3
Collision Rate 0.34 ± 0.22 0.68 ± 0.16 0.59 ± 0.27 0.29 ± 0.30 0.59 ± 0.50 0.53 ± 0.40 0.79 ± 0.15

Incomplete Route 0.13 ± 0.09 0.22 ± 0.04 0.21 ± 0.10 0.09 ± 0.09 0.19 ± 0.16 0.23 ± 0.18 0.27 ± 0.08
Speed Satisfaction 0.08 ± 0.00 0.19 ± 0.01 0.21 ± 0.01 0.20 ± 0.02 0.34 ± 0.00 0.34 ± 0.01 0.38 ± 0.00

AV algorithms and models To evaluate the effectiveness
and transferability of the scenario generation algorithms, we
test the generated scenarios against different AV algorithms:
SAC, PPO, and TD3. We train 3 target RL models using
the 3 different RL algorithms in benign driving scenarios
and evaluate them in the generated safety-critical scenarios.
More model details can be found in Appendix B.4. We also
show more training details in Appendix B.5.
4.2. Evaluation Metrics
In terms of effectiveness, we calculate 3 different metrics:
Collision Rate (CR), Incomplete Route (IR), and Speed
Satisfaction (SS). For naturalness, we calculate 5 distance
functions. We report Symmetric Segment-Path Distance
(SSPD), Fréchet Distance (Fréchet), and Dynamic Time
Warping (DTW) to measure trajectory similarity, and we
report Wasserstein Distance (WD) and Kullback–Leibler Di-
vergence (KL) to measure action similarity. All definitions
of the evaluation metrics can be found in Appendix B.6.

4.3. Effectiveness of DiffScene
The quantitative results are shown in Table 1, and qualita-
tive comparisons are shown in Appendix D.2. From the
scenario generation algorithm perspective, we observe that
DiffScene achieves the best scores among all the meth-
ods, demonstrating its advantage of creating more safety-
critical scenarios while satisfying rules and constraints.
From the scenario setting perspective, Red-light Running
(S2) is the most safety-critical scenario setting, with the
highest collision rate of 87% achieved by DiffScene.
The Right-turn (S3) is the safest scenario setting, where
DiffScene achieves 79% collision rate. From the colli-
sion rate perspective, we notice that DiffScene achieves
over 75% average collision rate in all the 3 scenario settings,
showing that existing RL-based AV algorithms are vulner-
able to DiffScene scenarios. Finally, from the speed
satisfaction perspective, we find that the generated scenarios
are hard to achieve higher scores. This is due to the physical
constraints of the vehicles: the limited acceleration. It will
always take some time to increase the speed from 0 to v∗

even with the highest acceleration.

4.4. Naturalness of DiffScene
Trajectory similarity We show the results in Table 2a,
where we only report the scores for AR, LC, AT, ST, and

Table 2: Naturalness evaluation. For trajectory similarity evaluation, we report
the SSPD, Fréchet, and DTW to measure the similarity between the SV paths in the
generated and real collected scenarios. For action similarity evaluation, we report the
WD and KL scores to measure the similarity between the behaviors of the SV in the
generated and real collected scenarios. We evaluate the scenarios on 3 different target
AD algorithms and report the averaged scores. (All scores are the lower the better).

(a) Trajectory similarity evaluation

Scenario Metric AR LC AT ST DiffScene

S1
SSPD 1.07 0.36 0.35 94.78 0.19

Fréchet 6.51 1.45 1.12 >100 1.04
DTW 69.10 57.80 21.16 >100 12.96

S2
SSPD 0.54 0.48 0.29 >100 0.17

Fréchet 3.38 1.64 1.11 >100 1.04
DTW 34.74 81.85 18.62 >100 11.96

S3
SSPD 0.38 0.33 0.40 >100 0.25

Fréchet 2.80 2.40 2.14 >100 1.99
DTW 30.65 65.55 35.44 >100 24.58

(b) Action similarity evaluation

Scenario Metric AR CS LC AS AT ST DiffScene

S1 WD 1.74 0.53 0.62 0.47 0.96 0.95 0.37
KL >10 >10 >10 >10 2.17 1.77 1.43

S2 WD 1.78 0.55 0.56 0.59 0.92 0.88 0.38
KL >10 >10 >10 >10 2.39 2.17 1.34

S3 WD 1.24 0.59 0.63 0.59 1.03 1.07 0.48
KL >10 >10 >10 >10 0.99 1.38 1.41

DiffScene since the paths generated by CS and AS
are pre-defined as a fixed straight line. We note that our
method achieves the lowest scores among the baselines,
which shows that the DiffScene trajectories are the clos-
est to the benign ones. Among the 3 scenario settings,
DiffScene has the lowest similarity score in S2, which
again demonstrates that S2 is more safety-critical: easier
to achieve high collision rate with a low cost. ST has the
highest similarity scores since it has weak restrictions on the
trajectory similarity of the generated scenarios to the benign
ones. We omit scores greater than 100 caused by ST.
Action similarity We present the results in Table 2b.
The action similarity scores of the scenarios generated by
DiffScene are almost the lowest, meaning that the action
distribution of the SV is more similar to the benign distribu-
tion. Since KL can be very large when the two distributions
are extremely different, we omit the scores greater than 10.

4.5. Downstream Utility of DiffScene
We evaluate the downstream utility of the generated safety-
critical scenarios by measuring the safety improvements
of AV algorithms after being finetuned on these scenarios.
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Table 3: Downstream utility evaluation. We report Collision Rate (CR) and Incom-
plete Route (IR) after training with generated scenarios to measure the downstream
utility of corresponding generation algorithms. We finetune the target SAC model
in the generated S1 scenarios using 3 different random seeds and show the averaged
testing results. (All scores are the lower the better).

Metric SAC AR CS LC AS AT ST DiffScene

CR 0.90 0.82 0.37 0.32 0.75 0.33 0.76 0.26
IR 0.36 0.27 0.15 0.32 0.30 0.13 0.29 0.11

We use the Crossing Negotiation (S1) scenario setting as an
example. For the scenarios generated by each generation
algorithm, we use 80% of them as the training set. The
remaining 20% scenarios from all algorithms together form
a standard test set. We finetune the target SAC model in
the different training sets using 3 different random seeds,
each for 500 episodes, and report the averaged testing result
on the standard test set. The results are shown in Table 3,
where we report the Collision Rate and Incomplete Route
scores of the ego vehicle after finetuning. We also show
the performance of the target SAC model on the standard
testing dataset before finetuning it as a reference.

According to Table 3, SAC finetuned on the DiffScene
scenarios achieves the lowest collision rate and incomplete
route, which also means that the DiffScene is more use-
ful in terms of improving the robustness of the AV algo-
rithms. Among the baselines, LC is the most helpful al-
gorithm in terms of reducing the collision rate, while AT
is the most helpful algorithm to improve route completion.
However, they are still not as effective as DiffScene.

4.6. Ablation Studies
Transferability In our experiments, we perform a
transferability-based black-box attack, where we generate
and optimize safety-critical scenarios against a surrogate
SAC model and evaluate the generated scenarios using 3
different RL-based AV algorithms. We show the standard
deviation of the testing results on 3 different algorithms in
Table 1. We also show the heatmap of collision rate for each
AV algorithm achieved by each generation algorithm in 3
different scenario settings in Figure 2.

The numbers in Table 1 show that in many cases,
DiffScene has the lowest standard deviation across 3
different algorithms, meaning that the scenarios generated
by DiffScene can be easily transferred to other AV al-
gorithms. Baselines with low standard deviations usually
suffer from limited effectiveness, e.g., AR and CS. The de-
tailed results in Figure 2 also verify our conclusions. In the
heatmap, our DiffScene shows little difference across 3
different AV algorithms. In practice, safety-critical scenar-
ios with higher transferability can be used to detect vulner-
abilities of other AV algorithms and help to improve their
robustness, which is more useful in real-world applications.

Impact of the number of adversarial optimization steps
We generate the safety-critical scenarios with different num-
bers of adversarial optimization steps N , ranging from

Figure 2: Transferability. We report the CR for each AV algorithm in 3 scenarios.
DiffScene demonstrates the highest transferability across AV algorithms.
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Figure 3: Effects of adversarial optimization. We show Collision Rate, SSPD, and
Fréchet of scenarios generated by DiffScene under different numbers of adversarial
optimization steps, indicating the tradeoff between safety-critical and naturalness.
(Higher Collision Rate means more safety-critical, and lower SSPD and Fréchet indicate
higher naturalness).

N = 0 to N = 30. Due to the space limit, we plot the
lines for collision rate, SSPD, and Fréchet in Figure 3 and
leave the DTW results in Appendix D.3.

We find that as N increases, the collision rate will also
increase, meaning that the adversarial optimization steps do
help to generate more safety-critical scenarios. However,
when applying a larger N , SSPD and Fréchet will also be
larger, showing that more adversarial optimization steps
will lead to more naturalness cost. From this result, we
can clearly see a trade-off between the effectiveness and
naturalness of the generated scenarios. We can easily control
and balance them by choosing a proper number of guided
adversarial optimization steps in DiffScene.

5. Conclusion
In this paper, we propose DiffScene, a diffusion-based,
safety-critical guided generation framework to generate re-
alistic and safety-critical scenarios. Extensive experiments
in Carla show that our framework is able to generate safety-
critical scenarios against different AV algorithms under vari-
ous settings. We show that our generated scenarios are more
effective, natural, and transferable, and have higher down-
stream utilities. We also show that current RL-based AV
algorithms are vulnerable to the generated safety-critical sce-
narios. In the meantime, we need to control DiffScene
to make sure that the generated safety-critical scenarios are
not used for adversarial purposes (see Appendix E for more
discussion). We hope this study will shed light on future
research on identifying weaknesses in existing AVs, thus
facilitating more efficient and effective AV development.
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Figure 4: Details of each scenario setting.

A. DiffScene Details
The detailed process of DiffScene is shown in Algorithm 1. We first use the benign driving data to train a diffusion model
µθ approximating the real trajectory distribution and a separate model Jϕ predicting the safety-critical objective J (τ ). At
each reverse diffusion step, the diffusion model first predicts the denoised clean trajectory τ̂ following Equation (7). Then
we perform a multi-step optimization using the gradient of safety-critical objective Jϕ(τ ). The multi-step optimization
process provides flexible control over the trade-off between the goal of being safety-critical and staying close to the real data
distribution. At the end of each denoising step, we calibrate the generated trajectory using the ground truth initial system
state calculated by model M . We align the initial state s0 in the generated SV trajectory with the real initial SV state to
make sure every trajectory starts from the same true state. After the initial state calibration, the generated trajectory is then
used as the noisy input for the next denoising step until we get the final safety-critical trajectory τsv = τ 0. Different from
CTG (Zhong et al., 2022) and Diffuser (Janner et al., 2022), Algorithm 1 generates the whole safety-critical trajectory using
only one reverse diffusion process. Since the reverse process is time-consuming, our DiffScene is much more efficient
and enables real-time scenario generation in practice.

Algorithm 1 Guided Adversarial Trajectory Generation

Input: Model M , initial condition I, diffusion model µθ, adversarial objective model Jϕ, scale α, number of diffusion
steps K, number of guided steps N , covariances Σk

Output: Adversarial SV trajectory τsv
s0 = M(I) ▷ observe initial state
τK ∼ N (0, I) ▷ sample initial trajectory
τK
s0 ← s0 ▷ initial state calibration

for k = K to 1 do
τ̂ ← µθ(τ

k) ▷ reverse diffusion
for j = 1 to N do
τ̂ = τ̂ + α∇Jϕ(τ̂ ) ▷ adversarial optimization

end for
τ k−1 ∼ N (τ̂ ,Σk) ▷ sampling
τ k−1
s0 ← s0 ▷ initial state calibration

end for
Return: τsv ← τ 0

B. Experimental Design and Setting
B.1. Scenario settings

We consider the three most representative and challenging scenario settings of pre-crash traffic (Najm et al., 2007)
summarized by NHTSA. Crossing Negotiation (S1): the ego vehicle meets a crossing SV when passing an intersection with
no traffic lights. The ego vehicle should negotiate with the SV to cross the unsignalized intersection. Red-light Running
(S2): a crossing SV runs a red light while the ego vehicle is going straight at an intersection. Collision avoidance actions
must be taken to keep safe. Right-turn (S3): the ego vehicle is performing a right turn at an intersection, with a crossing SV
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in front. The ego vehicle should take action to avoid collisions. In addition, we also consider a multi-agent scenario setting.

We show the details of each scenario setting in Figure 4. In each scenario, the ego vehicle is supposed to drive along a
pre-defined route and react to emergencies that occur on the road while driving. In a safety-critical scenario, the SV tries to
attack the ego vehicle while behaving like a benign vehicle. The ego vehicle should avoid potential car accidents and reach
its destination. In addition to the single-SV settings, we also consider a multi-agent setting where multiple SVs are involved
in the scenario, including vehicles and pedestrians/cyclists. We calculate the effectiveness metrics and naturalness metrics
according to the testing results on the 100 testing scenarios under each scenario setting.

B.2. Simulation platform

We use Carla (Dosovitskiy et al., 2017; Xu et al., 2022) as our simulator, which provides realistic simulations of traffic
scenarios. We consider 10 different routes in each scenario setting and use 10 different seeds to generate different testing
scenarios in each route, obtaining 100 testing scenarios in total for each scenario generation algorithm.

B.3. Baselines

We mainly consider the following 6 state-of-the-art scenario generation baselines. Adversarial RL (AR) leverages an
RL-based SV to generate safety-critical scenarios. We train an SAC (Haarnoja et al., 2018) as our safety-critical vehicle.
Carla Scenario Generator (CS) (Dosovitskiy et al., 2017) uses rule-based methods to construct scenarios. Following
the standard process, we adopt the rules and use grid search to search for the optimal safety-critical testing scenarios
in 3 different scenario settings. Learning-to-collide (LC) (Ding et al., 2020a) uses a Bayesian network to describe the
relationship between traffic participants. Following the default setting, we generated scenarios by sampling from the joint
distribution of a series of auto-regressive building blocks. AdvSim (AS) (Wang et al., 2021a) manipulates the trajectory
of the SV to attack the ego vehicle using Bayesian optimization (Srinivas et al., 2009; Ru et al., 2019). They use the
kinematic bicycle model (Polack et al., 2017) to represent and calculate the entire trajectory of SV. Adversarial Trajectory
Optimization (AT) (Zhang et al., 2022) improves the scenario optimization process using explicit knowledge as constraints.
We adopt the same constraints and apply the default PSO-based (Poli et al., 2007) optimization to generate safety-critical
scenarios. STRIVE (ST) (Rempe et al., 2022) learns a traffic model for the trajectories first and then performs adversarial
optimization based on the given planners and the prediction of the traffic model. We adapt STRIVE to SafeBench following
the same hyper-parameter settings in the official codebase.

B.4. AV algorithms and models

To evaluate the effectiveness and transferability of the scenario generation algorithms, we test the generated scenarios against
different AV algorithms. We mainly focus on RL-based AV algorithms, since they require minimum domain knowledge of
the overall system and driving scenarios (Sallab et al., 2017; Chen et al., 2019; Kiran et al., 2021). Specifically, we control
the ego vehicle using 3 representative deep RL algorithms: SAC, PPO (Schulman et al., 2017), and TD3 (Fujimoto et al.,
2018). We train 3 target RL models using the 3 different RL algorithms in benign driving scenarios and evaluate them in the
generated safety-critical scenarios.

To better evaluate the performance of different scenario generation algorithms, we also consider the transferability-based
black-box attack in our experiments. Therefore, we additionally train a surrogate SAC model with the same configuration
but using a different initialization. When evaluating a scenario generation algorithm, we first use it to generate safety-critical
scenarios against the surrogate model. Then the generated scenarios are tested on the 3 target models.

Model input and output We design the state spaces for each RL algorithm based on previous works (Chen et al., 2019;
2021a) as a 4-dimensional observation: distance to the waypoint, longitude speed, angular speed, and a front-vehicle
detection signal. The reward function is given by a weighted sum of the route following bonus, the collision penalty, the
speeding penalty, and the energy consumption penalty. The action space is a 2-dimensional vector specifying the steering
and throttle of the vehicle.

Model architecture and hyperparameters We use MLPs as our deep RL-based AV models. The size of the hidden layer
is [256, 256]. The detailed hyperparameters for each algorithm are specified as follows.

• SAC hyperparameters. The policy learning rate and Q-value learning rate are both 0.001. The entropy regularization
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Figure 5: Qualitative Results. We show examples of the generated scenarios obtained by different baseline algorithms and
our DiffScene.

coefficient is 0.1. The discount factor is 0.99, and the number of models in the Q-ensemble critic is 2.

• PPO hyperparameters. The policy learning rate is 0.0003, and the Q-value learning rate is 0.001. The clipping ratio
of the policy object is 0.2. The target KL divergence is 0.01. The discount factor is 0.99, and the number of interaction
steps is 1000.

• TD3 hyperparameters. The policy learning rate and Q-value learning rate are both 0.001. The standard deviation for
Gaussian noise added during training is 0.1. The standard deviation for smoothing noise is 0.2. The discount factor is
0.99. The number of models in the Q-ensemble critic is 2.

Model training We train all RL algorithms in Carla town03, since the environment of town03 is complicated and diverse.
In each episode, we place the ego agent at a random starting point and create random benign surrounding traffic around it
where all the SVs are auto-piloted. The agent is trained to follow its route and avoid potential collisions.

We train our RL models on NVIDIA GeForce RTX 3090 GPUs, and the training usually takes 24 hours. For each trained
model, we achieve a stable reward value of around 1500 in one episode.

B.5. Data collection

To train the diffusion model µθ, we construct a benign trajectory dataset in Carla. Specifically, we adopt similar configurations
in RL training and train several RL models in benign scenarios from scratch. We collect the trajectories of all episodes
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during training. Finally, we collect 6, 995 trajectories as the benign driving dataset to train the diffusion model. Once the
diffusion model is trained, it can generate trajectories in all scenario settings. To train the safety-critical objective model Jϕ,
we collect 5, 000 trajectories under each scenario setting using the trained diffusion model and calculate the safety-critical
objective J (τ ) for each trajectory as ground truth. In each scenario setting, we use 4, 000 trajectories as the training set and
1, 000 trajectories as the testing set. We train 3 different Jϕ models separately using datasets collected from 3 different
scenario settings.

B.6. Evaluation Metrics

In this section, we introduce the evaluation metrics used in our experiments. Specifically, we evaluate the effectiveness
of the generated scenarios from 3 different levels: safety level, functionality level, and constraint level. We evaluate the
naturalness of the generation algorithm by measuring the similarity between the generated and benign scenarios.

Effectiveness In order to identify the weakness of the AV algorithms, a good safety-critical scenario generation algorithm
is supposed to cause more safety concerns to the ego vehicle, interfere with the regular operation of the ego vehicle, and
satisfy physical constraints in the meantime. We use the following 3 metrics to evaluate the effectiveness of a scenario
generation algorithm. Collision Rate (CR) calculates the average collision rate of the generated scenarios, which can
be calculated as Eτ∼P [1collision(τ )], where P is the generated trajectory distribution. Incomplete Route (IR) evaluates
the average percentage of the route not completed by the ego vehicle given the generated safety-critical SV trajectory τ :
Eτ∼P [r(τ )]. Speed Satisfaction (SS) measures the satisfaction of the generated scenario in terms of keeping the normal
driving speed. It can be calculated as Eτ∼P [Et[1(|vt − v∗| < δv)]], where 1 is an indicator function and δv is a velocity
threshold. In our experiments, we set the speed threshold δv = 1.

Naturalness Besides being effective and safety-critical, the generated scenarios are also supposed to be highly realistic
and naturalistic. We use 5 metrics in total to measure 2 different kinds of similarities between the generated scenarios
and the benign scenarios. Trajectory Similarity evaluates how similar the actual path traveled by the SV is to the benign
SV path, where the path is represented by a sequence of coordinates: (xi, yi), i ∈ [0, · · · , T ]. We consider 3 different
metrics measuring the trajectory similarity: Symmetric Segment-Path Distance (SSPD), Fréchet Distance (Fréchet), and
Dynamic Time Warping (DTW). Since trajectory similarity metrics are strongly affected by the length of the traveled path,
we preprocess the generated trajectories by cutting the end of the paths to so that they are longer than the benign path by a
maximum of δτ , where δτ is a length threshold. To accurately eliminate the effect of length on the similarity results, we set
δτ = 0.5 when calculating trajectory similarity. Action Similarity measures how similar the actual behavior taken by the
SV is to the benign SV behavior, where the behavior is represented by the distribution of the acceleration in the horizontal
plane: (accx, accy). We use 2 metrics to calculate the action similarity: Wasserstein Distance (WD) and Kullback–Leibler
Divergence (KL). Action similarity metrics evaluate the distance between the acceleration distribution of the generated
scenarios and the benign ones, which are barely affected by the path length. Therefore, we directly calculate the action
similarity without limiting the length threshold.

To evaluate naturalness, we calculate different kinds of similarity scores between the generated scenarios and benign
scenarios. Specifically, we first use the surrogate SAC model to control the SV in the 3 different scenario settings and collect
the output trajectories from the simulation results as benign trajectories since the SAC model is trained on normal traffic
data and represents the benign driving behavior. Then we calculate the similarities between these benign trajectories and the
generated trajectories.

Implementation We use public code repository1 to calculate the trajectory similarity scores (Symmetric Segment-Path
Distance (SSPD), Fréchet Distance (Fréchet), and Dynamic Time Warping (DTW)). For action similarities, since it’s hard to
calculate the distance between two-dimensional distributions efficiently, we adopt 2 different strategies when calculating
Wasserstein Distance (WD) and Kullback–Leibler Divergence (KL), respectively. For Wasserstein Distance, we decouple the
accelerations in the two directions {accx, accy}. We first calculate the WD scores in the two directions separately, then
take the average of the two scores as the final result. For Kullback–Leibler Divergence, we assume the distribution of the
accelerations is a multivariate Gaussian distribution. We then calculate the approximate result as the KL between two
multivariate Gaussian distributions.

1Publicly available at https://github.com/bguillouet/traj-dist

https://github.com/bguillouet/traj-dist
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Table 4: Evaluation in multi-agent scenarios. We use DiffScene to generate multi-agent scenarios and compared them with previous
results in Crossing Negotiation. We report the Collision Rate (CR), Incomplete Route (IR), and Speed Satisfaction (SS). We include the
averaged score and standard deviation of the evaluation results on 3 different target AV algorithms. (MA: multi-agent. All scores are the
higher the better).

Metric DiffScene DiffScene-MA

Collision Rate 0.85 ± 0.08 0.90 ± 0.08
Incomplete Route 0.39 ± 0.05 0.43 ± 0.07
Speed Satisfaction 0.43 ± 0.01 0.41 ± 0.02

C. DiffScene model details
We adopt a U-Net type architecture with one-dimensional temporal convolutions as our diffusion model which shows better
performance in sequence-based diffusion models (Janner et al., 2022; Zhong et al., 2022). The maximum length of each
trajectory is T = 32, and the total number of diffusion steps is K = 100.

For the adversarial objective model Jϕ, we adopt similar architecture but modify the output layer to output only one value.
In our experiments, we use the same weight for different objectives: ωs = ωf = ωc = 1. The weight λ to calculate the
safety-based objective is set to λ = 5. The common driving speed of a vehicle in SafeBench is v∗ = 8.

D. Additional experimental results
D.1. Quantitative results

We increase the scenario complexity and use DiffScene to generate safety-critical scenarios under the multi-agent setting.
Results are shown in Table 4. In the multi-agent setting, DiffScene achieves higher collision rate and incomplete route
than single-agent setting Crossing Negotiation, demonstrating that DiffScene can generalize well into the multi-agent
setting.

D.2. Qualitative results

We provide qualitative results in Figure 5. For each scenario generation algorithm, we show two examples of the generated
scenarios in two different scenario settings. Results show that DiffScene is more effective in optimizing the trajectory of
the surrounding vehicle and generating safety-critical scenarios. Due to the space limit, we provide more qualitative results
at this URL.

D.3. Impact of the number of adversarial optimization steps

We generated safety-critical scenarios using different number of adversarial optimization steps N , and evaluated the collision
rate and DTW of the generated scenarios. The results are shown in Figure 6. Similar to SSPD and Fréchet, we find that
when with larger N , the collision rate of the scenarios will be higher, and the DTW score will also be larger, which means
the generated scenarios will have larger naturalness cost.

E. Limitations and potential negative societal impacts
E.1. Limitations

Although simulation is a useful tool for evaluating the effectiveness of scenario generation algorithms, it cannot exactly
reflect real-world conditions. Real-world data and on-track testing are necessary before using DiffScene in real-world
applications.

E.2. Potential negative societal impacts

As we will open-source our framework, attackers may leverage our code and data to perform real-world adversarial attacks
against existing AV systems. We suggest evaluating the safety and robustness of AV systems in various scenarios before

https://anonymous.4open.science/r/DiffScene-qualitative-8F4C/
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Figure 6: Effects of adversarial optimization steps. We show Collision Rate and DTW of the scenarios generated by
DiffScene under different numbers of adversarial optimization steps. The Collision Rate is the higher the better. The
DTW is the lower the better.

deploying them to the real world. Our generated scenarios can also be used to finetune existing AV algorithms to further
improve safety and reliability.


