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ABSTRACT

Adversarial Propagation (AdvProp) is an effective way to improve recognition
models, leveraging adversarial examples. Nonetheless, AdvProp suffers from the
extremely slow training speed, mainly because: a) extra forward and backward
passes are required for generating adversarial examples; b) both original samples
and their adversarial counterparts are used for training (i.e., 2× data). In this
paper, we introduce Fast AdvProp, which aggressively revamps AdvProp’s costly
training components, rendering the method nearly as cheap as the vanilla training.
Specifically, our modifications in Fast AdvProp are guided by the hypothesis
that disentangled learning with adversarial examples is the key for performance
improvements, while other training recipes (e.g., paired clean and adversarial
training samples, multi-step adversarial attackers) could be largely simplified.
Our empirical results show that, compared to the vanilla training baseline, Fast
AdvProp is able to further model performance on a spectrum of visual bench-
marks, without incurring extra training cost. Additionally, our ablations find
Fast AdvProp scales better if larger models are used, is compatible with exist-
ing data augmentation methods (i.e., Mixup and CutMix), and can be easily
adapted to other recognition tasks like object detection. The code is available
here: https://github.com/meijieru/fast_advprop.

1 INTRODUCTION

Deep neural networks are highly successful for visual recognition. As fueled by powerful computa-
tional resources and massive amounts of data, deep networks achieve compelling, sometimes even
superhuman, performance on a wide range of visual benchmarks. However, when testing out of the
box, these exemplary models are usually get criticized for lacking generalization/robustness—an
increasing amount of works point out that deep neural networks are brittle at handling out-of-domain
situations like natural image corruptions (Hendrycks & Dietterich, 2018), images with shifted styles
(Geirhos et al., 2018; Hendrycks et al., 2020), etc.

Adversarial propagation (AdvProp) (Xie et al., 2020), which additionally feeds networks with
adversarial examples during training, emerged as one of the most effective ways to train not only
accurate but also robust deep neural networks. The key in AdvProp is to apply separate batch
normalization (BN) layers (Ioffe & Szegedy, 2015) to clean training samples and adversarial training
samples, as they come from different underlying distributions. Later works further explore the
potential of AdvProp on other learning tasks, including object detection (Chen et al., 2021b; Xu
et al., 2021), contrastive learning (Jiang et al., 2020; Ho & Vasconcelos, 2020; Xu & Yang, 2020) and
large-batch training (Liu et al., 2022).

However, the benefits brought by AdvProp do not come for “free”—AdvProp introduces a significant
amount of additional training cost, which is mainly incurred by generating and augmenting adversarial
training samples. For instance, compared to the vanilla training baseline (where only clean images are
involved), the default setting in AdvProp (Xie et al., 2020) increase the total computational cost by
factor of 7, i.e., 5/7 from generating adversarial examples, 1/7 from training adversarial examples, 1/7
from training clean images. This extremely high training cost not only limits the further explorations
of AdvProp on larger networks (Xie et al., 2019; Brock et al., 2021; Dosovitskiy et al., 2020), with
larger datasets (Sun et al., 2017; Kuznetsova et al., 2020), and for different learning tasks, but also
makes the direct comparisons against other low-cost learning algorithms (Zhang et al., 2018; DeVries
& Taylor, 2017; Yun et al., 2019; Cubuk et al., 2019b;a) seemingly unfair.
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Figure 1: Comparison between AdvProp and Fast AdvProp. (a) AdvProp generates a paired adversar-
ial image (with color orange) for each clean image (with color blue) in the sampled batch, therefore
incurring heavy training cost. Moreover, in addition to clean images, adversarial images are also fed
into networks for training, therefore further increasing the total training cost, i.e., 2x data is used
here compared to the vanilla training. (b) Different from AdvProp, Fast AdvProp only uses a small
portion of the sampled batch to generate adversarial examples. Moreover, during the generation of
adversarial images, the gradient calculation of input images and the gradient calculation of network
parameters are merged into the same forward and backward pass as in (Shafahi et al., 2019; Zhang
et al., 2019), therefore making generating adversarial examples for “free”.

In this paper, we present Fast AdvProp, which can run as cheaply as the vanilla training baseline in
practice. In particular, noting the most costly training components in AdvProp are (1) generating
adversarial examples where multiple forward passes and backward passes are additionally required,
and (2) training with both clean samples and their adversarial counterparts therefore the size of
training data gets doubled, Fast AdvProp revamps the original training pipeline as the following:

• Firstly, though both clean training samples and their adversarial counterparts are default
components in traditional adversarial training (Goodfellow et al., 2015; Kurakin et al., 2017),
we argue such pairing behavior is not a fundamental request by AdvProp. Specifically,
in Fast AdvProp, we reposition adversarial examples solely as a bonus part for network
training, i.e., networks now are expected to train with a mixture of a large portion of clean
images and a small portion of adversarial examples. This adjustment on training data helps
lower down training cost. Though the total number of adversarial training examples is
reduced, our empirical results verify this strategy is sufficient to let networks gain robust
feature representations.

• Secondly, we integrate the recent techniques on accelerating adversarial training (Wong
et al., 2020; Zhang et al., 2019; Shafahi et al., 2019) into AdvProp, mainly for reducing
the complexity of generating adversarial examples. However, this is non-trivial—naively
adopting these fast adversarial training techniques will collapse the training, resulting in
suboptimal model performance. We identify such failure is caused by the “label leaking”
effect (Kurakin et al., 2017), which largely weakens the regularization power imposed
by adversarial training samples. We further note this leakage comes from the intra-batch
communication among training samples in the same mini-batch, and resolve it via shuffling
BN (He et al., 2020). Additionally, we find a) re-balancing the importance between clean
training samples and adversarial training samples and b) synchronizing parameter updating
speed are the other two key ingredients for ensuring Fast AdvProp’s improvements.

Our empirical results demonstrate that Fast AdvProp can successfully improve recognition models
for “free”. For instance, without incurring any extra training cost, Fast AdvProp helps ResNet-50 (He
et al., 2016) outperforms its vanilla counterpart by 0.3% on ImageNet, 2.1% on ImageNet-C, 1.9%
on ImageNet-R and 0.5% on Stylized-ImageNet. Furthermore, such “free lunch” can consistently
be observed when Fast AdvProp is applied to networks at different scales, combined with various
data augmentation strategies, and adapted to other recognition tasks. By easing the computational
barriers, we hope this work can encourage the community to further explore the potential of AdvProp
(or adversarial learning in general) on developing better deep learning models.
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2 RELATED WORK

Adversarial training. Adversarial training (Szegedy et al., 2014; Goodfellow et al., 2015), which
trains networks with adversarial examples that are generated on the fly, is one of the most effective
ways for defending against adversarial attacks. Nonetheless, compared to vanilla training, adversarial
training significantly increases the computational overhead, mainly due to the high complexity of
generating adversarial examples.

To this end, many efforts have been devoted to accelerating adversarial training. Both (Shafahi et al.,
2019) and (Zhang et al., 2019) propose to merge the gradient for adversarial attacks and the gradient
for network parameter updates into a single forward and backward pass to reduce computations.
Wong et al. (Wong et al., 2020) alternatively argue that the cheapest adversarial attacker, Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2015), actually can train robust classifiers, if combined
with random initialization. This work is further enhanced by (Andriushchenko & Flammarion, 2020)
to explicitly maximizing the gradient alignment inside the perturbation set for enhancing the quality
of the FGSM solution. In this work, we aim to integrate these fast adversarial training techniques into
AdvProp, for reducing the overhead of generating adversarial training samples.

Adversarial propagation. It is generally believed that adversarial training hurts generalization
(Raghunathan et al., 2019). Adversarial propagation (AdvProp) (Xie et al., 2020), a special form of
adversarial training, challenges this belief by showing training with adversarial examples actually
can improve recognition models. The key is to utilize an additional set of batch normalization layers
exclusively for the adversarial images (or more importantly, as suggested in (Chen et al., 2021a), by
applying a different set of rescaling parameters in batch normalization layers), as they have different
underlying distributions to clean examples. Later works further explore the potential of AdvProp
on other recognition tasks (Chen et al., 2021b; Xu et al., 2021; Shu et al., 2020; Chen et al., 2021a;
Xie & Yuille, 2020; Wang et al., 2020; Gong et al., 2021), under different learning paradigms (Jiang
et al., 2020; Ho & Vasconcelos, 2020; Xu & Yang, 2020), with different adversarial data (Merchant
et al., 2020; Li et al., 2020; Herrmann et al., 2021), enabling extremely large-batch training (Liu et al.,
2022), etc. In this paper, rather than furthering performance, we aim to make AdvProp “free”.

Data augmentation. Data augmentation, which effectively increases the size and the diversity of
the training dataset, is crucial for the success of deep neural networks (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016). Popular ways for augmenting
data include geometric transformations (e.g., translation, rotation), color jittering (e.g., brightness,
contrast), mixing images (Zhang et al., 2018; Yun et al., 2019; DeVries & Taylor, 2017), etc.

Training with adversarial examples (Goodfellow et al., 2015; Xie et al., 2020; Chen et al., 2021b) can
be regarded as a special way to augment data—different from traditional data augmentation strategies
which are usually fixed and model agnostic, the policy of generating adversarial examples is jointly
evolved with the model updating throughout the whole training process. This behavior ensures the
augmentation policy of adversarial examples stays current and relevant. Nonetheless, a significant
drawback of augmenting adversarial examples is that the introduced computational overhead is much
more expensive than that of traditional augmentation strategies. We hereby aim to make training with
adversarial examples as cheap as other data augmentation strategies.

3 FAST ADVPROP

We hereby present Fast AdvProp, which aggressively revamps the costly components in AdvProp.
Particularly, our modifications mainly focus on reducing the computational overheads stemmed from
adversarial examples, meanwhile (empirically) still attempt to retain the benefits brought by AdvProp.

3.1 REVISITING ADVPROP

AdvProp (Xie et al., 2020) demonstrates adversarial examples can improve recognition models.
By noticing adversarial images and clean images have different underlying distributions, AdvProp
bridges such distribution mismatch by using two BN scheme—the original BN layers are applied
exclusively for clean images, and the auxiliary BN layers are applied exclusively for adversarial
images. This scheme ensures each BN layer is executed on a single data source (i.e., either clean
images or adversarial images). More concretely, in each iteration,
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Table 1: The performance of vanilla training, AdvProp, same-budget AdvProp, and Fast AdvProp on
various datasets. ↑/↓ indicate the higher/lower the better.

IMAGENET ↑ IMAGENET-C ↓ IMAGENET-R ↑ S-IMAGENET ↑ TRAINING BUDGET

Vanilla Training 76.2 58.5 36.3 7.8 1×
PGD-5 AdvProp 77.0 52.0 42.3 12.0 7×
15-epoch PGD-5 AdvProp 66.8 66.2 31.7 8.6 1×
PGD-1 AdvProp 77.5 54.3 39.5 8.6 3×
35-epoch PGD-1 AdvProp 73.9 59.6 36.5 9.3 1×
Fast-AdvProp (ours) 76.5 56.4 38.2 8.3 1×

• Step 1: After randomly sampling a subset of the training data, AdvProp applies the ad-
versarial attack to these clean images for generating the corresponding adversarial images,
using the auxiliary BN layers.

• Step 2: The clean images and their adversarial counterparts are then fed into the network as
a pair. Specifically, the original BN layers are applied exclusively on the clean images, and
the auxiliary BN layers are applied exclusively on the adversarial images.

• Step 3: The loss from adversarial images and clean images are jointly optimized for updating
network parameters.

As shown in (Xie et al., 2020), AdvProp substantially improves both the clean images accuracy, as
well as the model robustness. We confirm it in our re-implementation—as shown in the second row
of Table 1, AdvProp, using PGD-5 attacker, helps ResNet-50 beats its vanilla counterpart by 0.8% on
ImageNet (Russakovsky et al., 2015), 6.5% on ImageNet-C (Hendrycks & Dietterich, 2018), 6.0%
on ImageNet-R (Hendrycks et al., 2020) and 4.2% on Stylized-ImageNet (Geirhos et al., 2018).

But meanwhile, we note AdvProp significantly increases the training cost. For example, our AdvProp
re-implementation requires 7× more forward and backward passes than the vanilla baseline. Such
heavy training cost not only limits the broader exploration with AdvProp, but also makes the
comparisons to other learning strategies (which are usually “free”, e.g., (Yun et al., 2019; Zhang et al.,
2018; Cubuk et al., 2019a)) seemly unfair.

To reduce the computational cost, we first give a naive attempt to simplify AdvProp’s training pipeline.
Specifically, given PGD-5 AdvProp here is 7× more expensive than the vanilla baseline, we directly
cut its total training epochs by a factor of 7 (i.e., from 105 epochs to 15 epochs). As shown in
the third row of Table 1, this 15-epoch PGD-5 AdvProp severely degrades the original AdvProp’s
performance (i.e., 66.8% vs. 77.0% on ImageNet), even making the resulted model attains much
lower performance than the vanilla training baseline. Moreover, we verify that applying the cheapest
PGD-1 training (i.e., FGSM + random initialization as in (Wong et al., 2020)) to AdvProp still leads
to inferior performance. These results demonstrate that the task of accelerating AdvProp is non-trivial,
therefore motivate us to explore more sophisticated solutions next.

3.2 LIGHTENING ADVPROP

We hereby carefully diagnose the design choices of AdvProp, aiming to simplify/purge its costly
training components. Note that in our ablations, we always keep the disentangled learning behavior
with adversarial training samples unchanged (i.e., keep separate BN layers for adversarial samples and
clean samples), as we assume this is the key for gaining robust features from adversarial examples.

3.2.1 UNPAIRING TRAINING SAMPLES IN ADVPROP

Let’s consider the training cost of one epoch. We denote the cost of a single forward and backward
pass for one image as 1 1, and the dataset size as N . Then the cost of vanilla training for one epoch is

cost(Vanilla) = N. (1)

1During a standard training step, we compute the gradient for all parameters used in the forward process;
while for attacking the network, we only compute the gradient with respect to the input images (therefore less
computations). Nonetheless, we ignore such differences for simplification in cost calculation.
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Table 2: The performance of AdvProp with different settings. +ADVPROP denotes the original
AdvProp. +1 ITER denotes the AdvProp with PGD-1 attacker. +DECOUPLED denotes the decoupled
training where only a small portion (e.g., 20% here) of training images are used for generating
adversarial examples. The last column reports the corresponding training budget in one epoch.

+ADVPROP +1 ITER +DECOUPLED IMAGENET ↑ IMAGENET-C ↓ TRAINING BUDGET

76.2 58.5 N
X 77.0 51.9 7N
X X 77.5 54.3 3N
X X X 76.6 56.8 1.2N

Similarly, the cost of AdvProp using PGD-K attack (Madry et al., 2018) for one epoch is:

cost(AdvProp) = N +K ∗N +N = (K + 2)×N, (2)

where the first part (i.e., N ) refers to the training cost of clean samples, the second part (i.e., K ∗N )
refers to the cost of generating adversarial examples, and the third part (i.e., N ) refers to the training
cost of adversarial examples. Note AdvProp by default use K = 5 (Xie et al., 2020), therefore
increasing the training cost by a factor of 7 compared to the vanilla training baseline. This high
training cost makes further scaling AdvProp to the large-computing settings (Xie et al., 2019; Mahajan
et al., 2018; Dosovitskiy et al., 2020) challenging.

PGD-1 attack. Firstly, rather than using K = 5, we use K = 1 as the default setting to reduce the
training cost from 7N to 3N . Note this change simplify the PGD attacker to the FGSM attacker
(Goodfellow et al., 2015) with random noise initialization. As shown in Table 2, compared to the
default AdvProp, this simplification increases the top-1 accuracy by 0.5% on ImageNet, but at the
cost of sacrificing the robustness on ImageNet-C (i.e., 2.4 higher mCE).

Decoupled training. Secondly, AdvProp implicitly introduces a constraint that, for each clean image,
we should generate a paired adversarial image for jointly training. Though such paired training
behavior is popular and standard in adversarial training (Goodfellow et al., 2015), interestingly, we
empirically find this is not necessarily needed, i.e., models can still be benefited from training with
non-paired clean images and adversarial images. Moreover, if we choose to break such pairing
behavior, the training cost will be reduced to:

cost(Fast AdvProp) = pclean ∗N + padv ∗ (K + 1) ∗N (3)

where pclean is the percentages of training images used as clean examples, and padv is the percentages
of training images used as adversarial examples. Note AdvProp by default sets pclean = padv = 1.
While for Fast AdvProp, we exclusively set padv of the training samples for generating adversarial
examples and keep the rest as clean examples. The training cost now is

cost(Fast AdvProp) = (1− padv) ∗N + padv ∗ (K + 1) ∗N = (padv ∗K + 1) ∗N (4)

As shown in Table 2, by setting padv = 0.2 and apply PGD-1 attacker, our Fast AdvProp not only
largely reduces the training cost to 1.2N , but also beats the vanilla training baseline by 0.4% top-1
accuracy on ImageNet and by 1.7 mCE on ImageNet-C.

3.2.2 INCORPORATING FREE ADVERSARIAL TRAINING TECHNIQUES

Though decoupled training (using Equation 4) enables AdvProp to use the same number of training
images as the vanilla setting, the resulted strategy still incurs extra training cost. This is because
additional forward-backward passes are exclusively reserved for generating adversarial examples.

Inspired by the recent works on accelerating adversarial training by recycling the gradient (Shafahi
et al., 2019; Zhang et al., 2019), we aim to improve the gradient utilization in generating adversarial
examples, i.e., such gradients will also be used for updating network parameters. In this way, we are
able to let networks additionally train with the samples that are in the intermediate state of generating
adversarial examples (e.g., clean image with random noise), and more importantly, for “free”. Note
that, following Shafahi et al. (2019), in order to re-using gradient, we need to switch the attack mode
from targeted attack to untargeted attack in Fast AdvProp.
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Algorithm 1: Pseudo code of Fast AdvProp for T epochs, given some radius ε, importance
re-weight parameter β, learning rate γ, and ratio of adversarial examples padv .
Data: A set of clean images with labels;
Result: Network parameter θ
for epoch = 1, . . . , T/(padv + 1) do

Sample a clean image mini-batch X with label Y
Split X into X1, X2 with the ratio 1− padv and padv , respectively
Generate the adversarial examples Xadv using X2

δ ∼ U(−ε, ε)
gδ ← ∇δl(x+ δ, y, θ)
δ′ ← δ + ε · sign(gδ)
Xadv = X2 + clip(δ′,−ε, ε)

Calculate gradients for X1, X2, Xadv , note gnoiseθ and gδ could be compute simultaneously
gcleanθ ← Ex∈X1 [∇θl(x, y, θ)]
gnoiseθ ← Ex∈X2 [∇θl(x+ δ, y, θ)]

gadvθ ← Ex∈Xadv
[∇θl(x, y, θ)]

Re-balance the gradients
gθ ← gcleanθ + β · gnoiseθ + β · gadvθ

Update θ using gradient descent
θ ← θ − γgθ

end

As analyzed by Equation 4, the training cost of Fast AdvProp now is (padv ∗K + 1) ∗N for one
epoch. To let the training cost of Fast AdvProp exactly match the training cost of the vanilla setting,
we further calibrate the training by reducing the total number of epochs by a factor of (padv ∗K + 1).

Following the design principles above, interestingly, we found naively recycling the gradients makes
the training of Fast AdvProp unstable. Next, as summarized in Algorithm 1, we stabilize the network
training using the following techniques:

Bridging the gap between the running/batch statistics in BN. Adversarial attackers by default
attack models using their testing mode, e.g., the running statistics is applied in BN. Nonetheless, we
observe unstable training with NaN loss if we reuse the gradient and using BN’s running statistics
at the same time. We conjecture this comes from the inconsistent gradient paths—we use the batch
statistics for training with the clean examples and adversarial examples, but use the running statistics
for generating adversarial examples. To remove that inconsistency, we now use the batch statistics for
generating adversarial examples.
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Figure 2: Illustration of the information leakage.

Shuffling BN for dealing with informa-
tion leakage When attacking using batch
statistics, we observe the training accuracy
is unreasonably high, as shown in Figure
2. The network could classify images by
“cheating” since we use the same batch for
attacking and training, and the intra-batch
information exchange introduced by BN
leaks information. We use shuffling BN
(He et al., 2020) to resolve this problem.
Before feeding the adversarial images on
each GPU into the network, we shuffle
the generated adversarial examples across
the multiple GPUs. This ensures the batch
statistics for the images with random noise
and the adversarial images come from dif-
ferent subsets, therefore preventing information leakage.
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Re-balancing training samples. By reusing the gradient, the images used for adversarial attack
involve two forward and backward passes (i.e., one for generating adversarial examples, and one for
training with adversarial examples), while the clean images involve only one forward and backward
pass. With the intuition that each image within the batch should have the same importance, we
propose to halve the importance of the images used for adversarial attack. In another perspective,
the adversarial images and their intermediate products (i.e., the images with random noise) are two
kinds of augmentations on the original images. Based on the argument in (Hoffer et al., 2020) that
the overall importance of an image should be the same w/ or w/o the repeated augmentations, we
therefore need to adjust the importance of the images with random noise and the importance of the
adversarial examples accordingly (i.e., setting β = 0.5 in Algorithm 1).

Synchronizing parameter updating speed. The decoupled training strategy enables us to substan-
tially reduce the training cost. Nonetheless, it causes problems when combining with the auxiliary
BNs scheme. Specifically, the parameters of original BNs only receive the gradients from clean
images, the parameters of auxiliary BNs only receive the gradients from images with random noise
and adversarial examples, while the parameters of the shared layers receive gradients from all ex-
amples. The ratio between the gradient magnitude of shared layers/original BNs/auxiliary BNs is
1 : (1− padv) : padv . The inconsistent updating speed of network parameters harms the performance.
To solve this problem, we re-scale the gradient to ensure the similar parameter updating speed.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Dataset. We evaluate model performance on ImageNet classification, and the robustness on dif-
ferent specialized benchmarks including ImageNet-C, ImageNet-R, and Stylized ImageNet. Ima-
geNet dataset contains 1.2 million training images and 50000 images for validation of 1000 classes.
ImageNet-C measures the network robustness on 15 common corruption types, each with 5 severity.
ImageNet-R contains stylish renditions like cartoons, art, and sketches of 200 ImageNet classes
resulting in 30000 images. Stylized-ImageNet dataset keeps the global shape information while
removing the local texture information using the AdaIN style transfer (Huang & Belongie, 2017).

Implementation Details We use the renowned ResNet family (He et al., 2016) as our default
architectures. We use a SGD optimizer with momentum 0.9 and train for 105 epochs. The learning
rate starts from 0.1 and decays at 30, 60, 90, 100 epochs by 0.1. We use a batch size of 64 per GPU
for vanilla training. For decoupled training setting, we use a batch size of 64/(1− padv) per GPU,
keeping the same 64 batch size per GPU for the original BNs. padv is set to 0.2 if not specified.

For a strictly fair comparison, we scale the total epochs and decay epochs by the relative training cost
to vanilla training (i.e., padv ∗K +1 in Fast AdvProp, K +2 in AdvProp) in the same budget setting.
To generate adversarial images, we using the PGD attacker with random initialization. We attack
for one step (K = 1) and set the perturbation size to 1.0. As discussed in Section 3.2.2, to ensure
the same importance of each example within a batch, we set β = 0.5 for halving the importance of
the images with random noise and the adversarial images. Additionally, we re-scale the gradient to
achieve the 1 : 1 : 1 ratio for ensuring similar updating speed of all parameters.

4.2 MAIN RESULTS

Table 1 compares our method with AdvProp and the vanilla training using ResNet-50. Firstly, our
re-implementation of AdvProp achieves 77.0% top-1 accuracy on ImageNet, 0.8% higher than the
vanilla training baseline. We also evaluate robustness generalization on ImageNet-C, ImageNet-
R, Stylized-ImageNet; AdvProp also substantially outperforms the vanilla training baseline here.
However, the comparison is unfair as AdvProp using 7× training budget. In the fair comparison
setting, the performance of 15-epoch AdvProp (dividing the total epochs by 7) degrades significantly,
i.e., its ImageNet accuracy is only 66.8%, which is 9.4% lower than the vanilla training baseline.

On the contrary, using exactly the same training budget as the vanilla setting, Fast AdvProp achieves
76.5% accuracy on ImageNet, which is 0.3% higher than the vanilla training baseline and significantly
higher than the 15-epoch AdvProp. As shown in Table 1, our Fast AdvProp also shows stronger
robustness than both the vanilla training baseline and the 15-epochs AdvProp.
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Table 3: The ImageNet accuracy and robustness generalization of vanilla training and Fast AdvProp.

IMAGENET ↑ IMAGENET-C ↓ IMAGENET-R ↑ S-IMAGENET ↑
ResNet-50 76.2 58.5 36.3 7.8
+ 15-epoch PGD-5 AdvProp 66.8 66.2 31.7 8.6
+ Fast AdvProp 76.5 56.4 38.2 8.3

ResNet-101 77.8 54.7 40.1 9.1
+ 15-epoch PGD-5 AdvProp 68.6 61.8 34.0 12.3
+ Fast AdvProp 77.8 51.7 41.0 10.8

ResNet-152 78.3 52.3 40.5 10.5
+ 15-epoch PGD-5 AdvProp 69.0 59.6 36.2 13.2
+ Fast AdvProp 78.6 49.8 42.0 12.4

Additionally, our method scales better with larger networks. As shown in Table 3, Fast AdvProp
helps the large ResNet-152 achieve 78.6% top-1 accuracy on ImageNet, 49.8 mCE on ImageNet-C,
42.0% top-1 accuracy on ImageNet-R and 12.4% top-1 accuracy on Stylized-ImageNet, beating its
vanilla counterpart by 0.3% on ImageNet, 2.5% on ImageNet-C, 1.5% on ImageNet-R and 1.9%
on Stylized-ImageNet, respectively. This observation also holds when comparing Fast AdvProp
to the 15-epoch AdvProp baseline (which has the same training cost as ours). Table 3 shows that,
for all ResNet models, Fast AdvProp attains much higher performance than the 15-epoch AdvProp
baseline on ImageNet, ImageNet-C and ImageNet-R. The only exception is Stylized-ImageNet,
where 15-epoch AdvProp always attains the best performance. We conjecture this is mainly due to
a larger percentage of adversarial data is used during training, therefore letting the learned feature
representation be biased towards shape cues (Geirhos et al., 2018; Zhang & Zhu, 2019).

4.3 ABLATION STUDY

The importance of decoupled training. In Table 4, we take a close look at the effect of padv. We
can draw a clear conclusion that the larger the padv, the more inferior top-1 accuracy we achieved.
Specifically, using 50% images as adversarial examples only gets 75.4% accuracy, which is 0.9%
lower than the vanilla training. This comes from the fact that as padv increases, the training cost
in one epoch increases (calculated using Equation 4), therefore the total training epoch needs to be
reduced for keeping the training cost unchanged. In addition, reducing padv from 0.20 to 0.11 does
not further decrease the model accuracy, suggesting its value is fairly robust in a certain range. If we
further decrease padv to 0, then our method degenerates to the vanilla training baseline.

The decoupled training strategy enables us to train the networks with a mixture of a large portion of
clean images and a small portion of adversarial examples, which helps the network go through the
dataset with enough epochs. Based on Table 4, we choose padv = 0.2 as our default setup.

Table 4: Ablation study on the influence of the percentage of the adversarial images.

padv IMAGENET ↑ EPOCHS

0.00 76.2 105
0.11 76.5 94
0.20 76.5 87
0.33 76.0 79
0.50 75.4 70

The importance of example re-balancing and updating speed synchronization. In the default
setting, the weight ratio between the clean/noise/adversarial examples is 1 : 1 : 1 without adjustment.
With padv = 0.2, the ratio of updating speed between the shared/clean only/adversarial only parame-
ters therefore is 1 : 0.8 : 0.2. We cannot observe any performance gain in this setting as shown in
Table 5, i.e., its ImageNet accuracy is 76.2%, almost the same as the vanilla training.

We find it is important to simultaneously adopt those two strategies, which achieves 76.53% ImageNet
accuracy. Ignoring the re-balancing for the examples hurts the accuracy by 0.18%; this may because
some examples now are more important than the others, therefore violating the assumption that the
overall importance for each example should be the same (Hoffer et al., 2020). Removing the updating
speed synchronization hurts the performance as well, leading to 76.27% ImageNet accuracy, which is
0.26% lower than the setting with consistent parameter updating speed.
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Table 5: Ablation study of the effects on re-balancing samples and synchronizing updating speed.

SYNCHRONIZING THE UPDATE SPEED SAME IMPORTANCE IMAGENET ↑
76.20

X 76.27
X 76.35
X X 76.53

Information leakage problem. We find that shuffling BN is important for gradient reusing. Without
shuffling BN, the training accuracy on the adversarial images reaches 88.0%, even higher than the
training accuracy on the clean images (73.3%). This observation is counter-intuitive, as the adversarial
images are much more difficult than the clean images. The shuffling BN technique resolves this
problem effectively—we observe a smooth and reasonable training curve in Figure 2. In addition, the
validation accuracy boosts from 74.5% to 75.1%.

Combining with other data augmentations. AdvProp could be viewed as a data augmentation
method from the perspective of increasing the size and diversity of the dataset using adversarial
examples. We next combine Fast AdvProp with common data augmentation methods including
Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019). Specifically, compared with the vanilla
training baseline, Mixup and CutMix require extra training epochs to fully cope with their strong
regularization. For Mixup, we train 180 epochs and decay the learning rate by 0.1 every 60 epochs.
For CutMix, we train for 210 epochs and decay the learning rate at 75, 150 and 180, respectively. To
properly integrate them with Fast AdvProp, we apply the extra data augmentations on clean images
only. Note that the training cost is the same w/ or w/o our method.

Fast AdvProp achieves comparable performance on ImageNet but much better robustness. As shown
in Table 6, when combining with CutMix, our method beats the baseline by 2.1% on ImageNet-C,
1.3% on ImageNet-R, 2.5% on Stylized-ImageNet. These results suggest Fast AdvProp is compatible
with existing data augmentations for furthering the network performance and robustness.
Table 6: Robustness when combining our Fast AdvProp with existing data augmentation methods.

IMAGENET-C ↓ IMAGENET-R ↑ S-IMAGENET ↑
CutMix 58.9 35.2 5.5
+ Fast AdvProp 55.0 36.5 7.0

MixUp 53.4 41.0 10.0
+ Fast AdvProp 52.2 41.7 10.9

Object detection results. We implement Fast AdvProp on object detection and evaluate it on COCO
dataset (Lin et al., 2014). We adopt RetinaNet (Lin et al., 2020) as the detection framework without
freezing the BN’s running statistics. We train 24 epochs for the baseline and 20 epochs for Fast
AdvProp. We benchmark both the standard performance on COCO and the robustness on COCO-C
with 15 common corruption types (Michaelis et al., 2019). As shown in Table 7, compared to
the baseline, our method achieves the similar performance on COCO detection, but much better
robustness (i.e., +1.4%) in COCO-C.

Table 7: Object detection mAP(%) and robustness measurements on COCO and COCO-C.

COCO (mAP clean) COCO-C (mAP corr.)

Vanilla Training 35.8 17.6
+ Fast-AdvProp 35.8 19.0

5 CONCLUSION

AdvProp is an effective method to get accurate and robust networks. However, it suffers from
extremely high training costs. We propose the decoupled training where networks are expected
to train with only a small portion of adversarial examples but a large portion of clean images,
therefore reducing the training cost significantly. In addition, we succeed in reusing the gradient
when generating adversarial examples. Empirically, our Fast AdvProp effectively and efficiently
helps network gain better performance without incurring extra training cost. We believe our method
will speed up the iteration of future works and accelerating the research on adversarial learning.
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A APPENDIX

A.1 DO WE NEED RANDOM INITIALIZATION IN PGD ATTACK?

Here we focus on ablating the effects of the random initialization in PGD attacker on Fast AdvProp.
Note that removing the random initialization simplifies the PGD-1 attacker to the FGSM attacker.
Though, as discussed in (Wong et al., 2020), the random initialization is the key step for enabling
successful adversarial training, we observe Fast AdvProp behaves robustly under such situation—it
achieves 76.46% top-1 ImageNet accuracy (using FGSM), which closely matches the situation when
random initialization is applied (i.e., 76.53% top-1 ImageNet accuracy, using PGD-1).
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