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Abstract

Pre-trained interatomic potentials have become
a new paradigm for atomistic materials simula-
tions, enabling accurate and efficient predictions
across diverse chemical systems. Despite their
promise, fine-tuning is often required for com-
plex tasks to achieve high accuracy. Traditional
parameter-efficient fine-tuning approaches are ef-
fective in NLP and CV. However, when applied to
SO(3) equivariant pre-trained interatomic poten-
tials, these methods will inevitably break equivari-
ance—a critical property for preserving physical
symmetries. In this paper, we introduce ELoRA
(Equivariant Low-Rank Adaptation), a novel fine-
tuning method designed specifically for SO(3)
equivariant Graph Neural Networks (GNNs), the
backbones in multiple pre-trained interatomic po-
tentials. ELoRA adopts a path-dependent decom-
position for weights updating which offers two
key advantages: (1) it preserves SO(3) equivari-
ance throughout the fine-tuning process, ensur-
ing physically consistent predictions, and (2) it
leverages low-rank adaptations to significantly
improve data efficiency. We prove that ELoRA
maintains equivariance and demonstrate its effec-
tiveness through comprehensive experiments. On
the rMD17 organic dataset, ELoRA achieves a
25.5% improvement in energy prediction accu-
racy and a 23.7% improvement in force predic-
tion accuracy compared to full-parameter fine-
tuning. Similarly, across 10 inorganic datasets,
ELoRA achieves average improvements of 12.3%
and 14.4% in energy and force predictions, re-
spectively. Code will be made publicly available
at https://github.com/hyjwpk/ELoRA.
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1. Introduction
Deep learning-based potentials hold significant promise in
addressing the accuracy-efficiency trade-off in DFT calcu-
lations and can expand the spatial and temporal scales of
molecular dynamics simulations (Gong et al., 2023). A vari-
ety of deep learning potentials (Behler & Parrinello, 2007;
Smith et al., 2017; Schütt et al., 2017; Gilmer et al., 2017;
Zhang et al., 2018; Unke & Meuwly, 2019; Unke et al.,
2021; Klicpera et al., 2021) have demonstrated the ability
to predict total energies and atomic forces for given mate-
rial structures. Recently, with the continuous generation of
ab initio datasets and a deeper understanding of symmetry,
pre-trained potentials have emerged in large numbers, such
as MACE (Batatia et al., 2022b), M3GNet (Chen & Ong,
2022), Equiformerv2 (Liao et al., 2023), Uni-Mol (Zhou
et al., 2023), CHGNet (Deng et al., 2023), SevenNet (Park
et al., 2024), GPTFF (Xie et al., 2024), and Orb (Neumann
et al., 2024). Among these, equivariant Graph Neural Net-
works (GNNs) stand out as particularly effective for mod-
eling physical systems. By leveraging equivariance, these
models achieve high performance, even with limited first-
principles data (Satorras et al., 2021; Batzner et al., 2022;
Batatia et al., 2022b; Pelaez et al., 2024). This is particularly
valuable because generating first-principles training data is
often extremely resource intensive. Equivariant pre-trained
models have been increasingly employed in research in
finding symmetry-breaking order parameters (Smidt et al.,
2021) and predicting molecular properties (Miller et al.,
2020), phonon density of states (Chen et al., 2021), etc.

However, due to the diversity of material structures and the
significant variations of atomic interactions across different
materials, pre-trained interatomic potentials may not achieve
the desired accuracy when dealing with material structures
that are not well learned during training. Moreover, obtain-
ing accurate labels for such configurations typically requires
costly first-principles calculations, which further limits the
diversity of data available for training. These potentials can
only be applied to general downstream tasks without fine-
tuning. For example, the accuracy of pre-trained MACE-
MP (Batatia et al., 2023) is insufficient to study molecular
crystal polymorphs (Kaur et al., 2025).

Fine-tuning the pre-trained model with downstream data
helps refine the interatomic potential to better predictions.
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Fine-tuning approaches can be broadly categorized into full-
parameter fine-tuning and parameter-efficient fine-tuning
(PEFT) (Lialin et al., 2023). Full-parameter fine-tuning
has been explored in pre-trained interatomic potentials like
MACE (Kaur et al., 2025). However, as pre-trained mod-
els continue to grow in size, full-parameter fine-tuning be-
comes increasingly computationally expensive and memory
intensive. Moreover, it may cause catastrophic forgetting
of pre-trained knowledge during fine-tuning (Kirkpatrick
et al., 2017). In contrast, PEFT methods are designed to
modify only a small subset of the model’s parameters and
keep most parameters fixed. This approach reduces com-
putational overhead and memory usage compared to full-
parameter fine-tuning. Furthermore, PEFT methods help
mitigate catastrophic forgetting, improving model transfer-
ability and generalization (Ding et al., 2023). PEFT meth-
ods, such as adapter-based fine-tuning (Houlsby et al., 2019)
and low-rank adaptation (LoRA) (Hu et al., 2022), have been
developed and demonstrated superior advantages in terms
of resource efficiency and scalability. However, these meth-
ods are developed primarily for transformer-based models.
For GNNs, specialized methods such as AdapterGNN (Li
et al., 2024) have been introduced to adapt pre-trained GNN
models to downstream tasks. Unfortunately, these methods
cannot be directly applied to SO(3) equivariant GNNs, as
they will destroy the equivariance during fine-tuning. To
the best of our knowledge, no PEFT methods have been
specifically designed for SO(3) equivariant GNNs.

This highlights the need for SO(3) equivariant GNN-based
PEFT methods, as SO(3) equivariant GNN pre-trained mod-
els present a promising path for modeling universal inter-
atomic potentials and play a crucial role in material and
chemistry simulations.

Our contributions can be summarized as follows:

• We explore the difference between two domi-
nant interatomic potential training paradigms (From-
Scratch-Training Paradigm and Pre-training-Fine-
tuning Paradigm) from the perspective of chemical
space. We point out that Pre-training-Fine-tuning
Paradigm exhibits stronger generalization capabilities.

• We develop a PEFT strategy tailored for SO(3) equiv-
ariant GNN models, called ELoRA (Equivariant Low-
Rank Adaptation). We prove that ELoRA can preserve
the equivariance during fine-tuning.

• The experiments show that ELoRA works both on or-
ganic and inorganic pre-trained models. For example,
on the rMD17 organic dataset, ELoRA achieves 25.5%
and 23.7% improvement in energy and force predic-
tions compared to full-parameter fine-tuning. On 10
inorganic real cases, the average improvements are
12.3% and 14.4%.

2. Preliminary
LoRA (Low-Rank Adaptation): Low-Rank Adaptation
(LoRA) (Hu et al., 2022) is a PEFT technique for Large
Language Model (LLM). The core idea behind LoRA is
that the updates to the pre-trained model weights, denoted
as W0 ∈ Rd×k, during fine-tuning exhibit a low intrinsic
rank. As a result, the update ∆W can be approximated
as the product of two low-rank matrices B ∈ Rd×r and
A ∈ Rr×k, where r is the rank and r ≪ min(d, k). The
forward pass h =W0x then be modified as:

h =W0x+∆Wx =W0x+
α

r
BAx, (1)

where α is a scaling constant, A is initialized with a random
Gaussian distribution and B is zero-initialized, so ∆W is
zero at the beginning of training. LoRA reduces the weights
that need to be updated during training. During inference,
∆W can be merged into W0, ensuring there is no additional
latency compared to a full-parameter fine-tuned model.

SO(3) EMPNNs (Equivariant Message Passing Neu-
ral Networks): Equivariance is introduced by (Cohen &
Welling, 2016) to maintain physical symmetries of the in-
put data. They use geometric tensors as node embeddings
and ensure equivariance by imposing constraints on the
operations that can be performed (Kondor et al., 2018). For-
mally, a mapping f : X → Y is equivariant for vector
spaces X and Y to a group G, if f ◦DX(g) = DY (g) ◦ f
is satisfied for any g in G, where DX and DY represent
the transformation of group G on vector spaces X and Y ,
respectively. More detailed information on group theory
and equivariance is displayed in Appendix A. SO(3) equiv-
ariant GNNs leverage the inherent symmetry of their do-
mains with respect to SO(3), the group of 3D rotations.
They transmit equivariant messages between nodes (repre-
senting atoms) through edges (representing bonds or in-
teractions between atoms) in the graph. This approach
is commonly referred to as SO(3) Equivariant Message
Passing Neural Networks (EMPNNs). Tensor field net-
works (Thomas et al., 2018), NequIP (Batzner et al., 2022),
MACE (Batatia et al., 2022b), Allegro (Musaelian et al.,
2023) and Equiformerv2 (Liao et al., 2023) belong to
EMPNNs. Among them, MACE (Batatia et al., 2022b)
is a representative SO(3) EMPNN model that uses higher
body order messages.

SH (Spherical Harmonics) and TP (Tensor Product): In
SO(3) EMPNNs, node features are represented using the
coefficients of spherical harmonics, ensuring SO(3) equiv-
ariance. Spherical harmonics, denoted as Y l

m, are functions
that map points on the sphere to real or complex numbers,
where l is a non-negative integer andm is an integer ranging
from −l to l. The features of a node i are represented as
hi,klm, where l is the rotation order with 0 ≤ l ≤ L, m
ranges from −l to l, and k indicates the channel index with
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Figure 1. Comparison of chemical space covered by pre-trained
(a), from scratch (b), and fine-tuned (c) model. The dark blue
part of the figure represents the chemical space covered by the
model. The fine-tuned model covers more chemical space than the
model trained from scratch, as it retains knowledge inherited from
the pre-trained model.

1 ≤ k ≤ Kl. The generalized tensor product is an equiv-
ariant operation defined using Clebsch-Gordan coefficients
C (Griffiths & Schroeter, 2019) as:

(u⊗ v)l3m3
=

∑
l1m1,l2m2

Cl3m3

l1m1,l2m2
ul1m1

vl2m2
. (2)

This tensor product produces non-zero values only for |l1 −
l2| ≤ l3 ≤ (l1+ l2) (m3 ranges from −l3 to l3). Due to this
restriction, the tensor product can be divided into multiple
different paths by (l1, l2, l3), only the path (l1, l2, l3) that
satisfies |l1 − l2| ≤ l3 ≤ (l1 + l2) is non-zero.

3. Fine-tuning Covers a Larger Chemical
Space

Pre-trained models tend to achieve better generalization than
task-specific models because they are trained on larger and
more diverse datasets. For pre-trained interatomic poten-
tials, their generalization ability is reflected in covering a
wider range of chemical space, as Figure 1(a) shows. In
contrast, task-specific models trained from scratch tend to
have limited generalization capabilities and cover a smaller
range of chemical space, as shown in Figure 1(b). These
models learn exclusively from the dedicated training set of
the downstream task.

Even though the pre-trained models demonstrate superior
generalization capabilities, they may not be sufficiently ac-
curate to make predictions on certain out of domain (OOD)
data in complex downstream tasks. Pre-training datasets
at first-principles accuracy are often sparse across the full
chemical space. This is primarily due to the high computa-
tional cost of generating such data using density functional
theory (DFT), as well as the combinatorial complexity of
chemical systems. This inherent sparsity presents a chal-
lenge to the accuracy of pre-trained interatomic potentials.

Fine-tuning is a commonly used technique to improve the
performance of pre-trained models on specific tasks. Fine-
tuning transfers knowledge from a large pre-trained model to
a more specific task. Through fine-tuning, the performance
of the model in specific tasks or compounds is enhanced,
while its ability to generalize across a broader chemical
space is also retained (depicted in Figure 1(c)). As ob-
served in Section 5, when trained on the same task-specific
dataset, the fine-tuned pre-trained model often achieves bet-
ter performance on the test set compared to a model trained
from scratch, indicating improved generalization and data
efficiency. Moreover, generating training data with ab ini-
tio accuracy is computationally costly due to the need for
density functional theory (DFT) calculations, which makes
the data efficiency of fine-tuning particularly valuable in
practical applications.

4. Equivariant PEFT
EMPNNs can be broken into three main modules: input em-
bedding, interaction blocks, and readout layer. Interaction
blocks update the node features iteratively which are the
main part of EMPNNs. Notably, the majority of the train-
able parameters in EMPNNs are concentrated in the interac-
tion blocks. For example, in the pre-trained model, MACE-
MP (Batatia et al., 2023), approximately 99.7% of the model
weights reside in the interaction blocks. Each interaction
block is composed of three fundamental operations: point
convolution (Thomas et al., 2018), self-interaction (Thomas
et al., 2018), and residual connection (He et al., 2016). We
prove that these key operations can be induced into a uni-
fied tensor-product (TP) formalism, which enables a consis-
tent PEFT method for implementing equivariance. The TP
transformation is introduced in 4.1. The implementation of
ELoRA is described in 4.2.

4.1. TP transformation

We first make a statement about the three key operations and
prove that they can be induced into a unified TP formalism.

Point Convolution: Message passing between adjacent
nodes is performed using point convolution. This operation
is applied to each node based on its neighboring nodes. To
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ensure that the point convolution remains equivariant, the
edges are embedded in the following form to derive the
rotation equivariant filter: F l2l3

kl1m1
(r⃗) = Rkl1l2l3(r)Y

l1
m1

(r⃗),
where Rk1l1l2l3(r) is a learnable function and Y l1

m1
(r⃗) is the

spherical harmonic. When computing the point convolution
centered at node i, the contribution of node j is:

mij,kl3m3
=

∑
l1m1,l2m2

F l2l3
kl1m1

(r⃗ji)⊗ hj,kl2m2
, (3)

where F l2l3
kl1m1

(r⃗ji) and hj,kl2m2
are considered as tensors

and ⊗ denotes the tensor product. mij,kl3m3
is the message

passing between nodes i and j. By summingmij,kl3m3
over

all the neighboring nodes N (i), we can obtain the messages
of node i:

mi,kl3m3 =
∑

j∈N (i)

mij,kl3m3 . (4)

Self-interaction: The self-interaction layer mixes the chan-
nels of features at each point which is analogous to 1 × 1
convolutions: ∑

k̃

Wkk̃lhk̃lm, (5)

where Wkk̃l is the learnable weight.

Residual connection: The residual connection layer per-
forms point convolution on the initial feature of the node
(chemical species zi) and the current node feature hi:∑

k̃

Wzikl,k̃
hi,k̃lm, (6)

whereWzikl,k̃
is the learnable weight, and the result is added

to the residual of the current layer as the feature update.

Fully Connected Tensor Product: For tensors u and v
with multiple channels, the fully connected tensor product
is defined to mix different channels. Specifically, (u ⊗
v)k3l3m3 is defined as:∑
k1l1m1,k2l2m2

Wk3k2k1,l3l2l1C
l3m3

l1m1,l2m2
uk1l1m1

vk2l2m2
,

(7)
where Wk3k2k1,l3l2l1 is the learnable weight corresponding
to the path (l1, l2, l3).

Proposition 4.1. The self-interaction of the tensor h is
equivalent to the fully connected tensor product of h and 1.

Proposition 4.2. The residual connection of the tensor hi
is equivalent to the fully connected tensor product of hi and
ẑi, where ẑi is the one-hot encoding of the chemical species
zi.

The proofs of the propositions are given in Appendix C.
Proposition 4.1 and Proposition 4.2 point out that the for-
malization of the self-interaction and residual connection are

special cases of the fully connected tensor product. There-
fore, the three key operations can be induced into a unified
TP formalism. In Section 4.2, we focus on introducing
ELoRA for the fully connected tensor product.

4.2. ELoRA: Equivariant LoRA

We propose a novel path-dependent low-rank adaptation
in SO(3) EMPNNs’ fine-tuning process. Then we prove
that ELoRA can project equivariant messages into low-
dimensional space while preserving the inherent equivari-
ance.

A path-dependent decomposition: The equivariance of
the tensor product stems from its constraints on paths. To
preserve equivariance, we employ a path-dependent decom-
position for weight updates, as opposed to the global de-
composition used in LoRA. This approach assumes that the
weights along each path exhibit a lower intrinsic dimension
during adaptation. Formally, for a pre-trained weight matrix
W 0 utilized in a fully connected tensor product, we con-
strain its updates by decomposing the updates along each
path into a low-rank representation:

W 0
l3l2l1 +∆W 0

l3l2l1 =W 0
l3l2l1 +Bl3l2l1Al3l2l1 , (8)

where W 0
l3l2l1

∈ RK3
l3
×(K2

l2
·K1

l1
), Bl3l2l1 ∈ RK3

l3
×R,

Al3l2l1 ∈ RR×(K2
l2
·K1

l1
) and the rank R ≪ min(K3

l3
,K2

l2
·

K1
l1
). K is the number of channels, and the superscript ofK

indicates whether it is associated with the first (1) or second
(2) input tensor or the output tensor (3).

We illustrate our approach in Figure 2. Taking tensors u
and v with rotation order 0 ≤ l ≤ 1 as an example, Figure
2(a) demonstrates the fully connected tensor product of u
and v using pre-trained weights W 0. In this process, u
and v first perform a generalized tensor product, but only
compute the results for each path without calculating the
output tensor, after which W 0 combines the results from
different paths into the output tensor. Figure 2(b) shows the
corresponding computation process using ELoRA weights
A and B. In contrast to the fully connected tensor product,
this approach replaces the fully connected operation with a
two-step process: first, project along the paths using A, and
then fully connect the results to the output tensor using B.
The result of the fully connected tensor product of u and v
using ELoRA fine-tuned weights is the sum of the results
from Figure 2(a) and Figure 2(b).

We give the following propositions to explain how ELoRA
projects equivariant messages into low-dimensional space
while preserving the inherent equivariance. The proofs are
detailed in Appendix C.

Proposition 4.3. For the pre-trained weight matrix W 0 of
the fully connected tensor product and its corresponding
ELoRA matrices A and B, the fully connected tensor prod-
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Figure 2. An overview of ELoRA. (a) the fully connected tensor product of tensors u and v using pre-trained weights W 0. (b) the
corresponding computation process using ELoRA weights A and B. The final result is the sum of the results of (a) and (b).

uct of the tensors u and v with ELoRA is SO(3) equivariant.

Proposition 4.3 demonstrates that the overall rotational
equivariance is preserved even after incorporating ELoRA.
We then present the following proposition to illustrate how
the path-dependent decomposition employed by ELoRA
projects the equivariant messages, as depicted in Figure 2.

Proposition 4.4. For the pre-trained weight matrix W 0

of the fully connected tensor product and its correspond-
ing ELoRA matrices A and B, the fully connected tensor
product of the tensors u and v with ELoRA satisfies (u ⊗
v)k3l3m3

= (u ⊗ v)0k3l3m3
+
∑

l1,l2

∑
r Bk3r,l3l2l1(ul1 ⊗

vl2)rl3m3
, where (u⊗v)0k3l3m3

is the fully connected tensor
product of tensors u and v using W 0 without ELoRA and
(ul1 ⊗ vl2)rl3m3

is the fully connected tensor product of
tensors ul1 and vl2 using ELoRA matrix A.

Proposition 4.4 states that, after applying ELoRA, the fully
connected tensor product of the tensors u and v can be
decomposed into two components. The first component
is the fully connected tensor product computed using W 0.
The second component involves using Al3l2l1 to project
the message along the path (l1, l2, l3) onto (ul1 ⊗ vl2)rl3m3

,
where the projected (ul1⊗vl2)rl3m3

has its channels reduced
to R. This projection is then followed by a fully connected
operation applied to the projected message using Bl3l2l1 ,
which produces the output tensor. Therefore, we have the
following corollary.

Corollary 4.5. For the pre-trained weight matrix W 0 of the
fully connected tensor product and its corresponding ELoRA

matrices A and B, Al3l2l1 projects the equivariant message
on the path (l1, l2, l3) in the fully connected tensor product
of the tensors u and v with ELoRA into a low-dimensional
space of dimension R.

5. Experiments
5.1. Experimental Setup

5.1.1. PRE-TRAINED MODELS

MACE (Batatia et al., 2022b) is a fundamental EMPNN
that utilizes high body order messages and achieves state-
of-the-art prediction performance. We adopt the MACE
architecture as the backbone to evaluate the effectiveness
of ELoRA. Details of the MACE architecture are provided
in Appendix B. Due to the distinct properties of organic
and inorganic systems, the pre-trained models are divided
into two classes, the organic pre-trained model, MACE-
OFF (Kovács et al., 2023) and the inorganic pre-trained
model, MACE-MP (Batatia et al., 2023). MACE-OFF is pre-
trained on SPICE (Eastman et al., 2023), while MACE-MP
is pre-trained on MPTrj (Deng et al., 2023). More details
about the pre-trained datasets can be found in Appendix E.1.

5.1.2. DATASETS

For organic downstream tasks, we use the revised
MD17 (rMD17) (Christensen & Von Lilienfeld, 2020),
3BPA (Kovács et al., 2021), and AcAc (Batatia et al., 2022a)
datasets, which are representative benchmarks for organic
systems. For inorganic downstream tasks, we employ 10
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datasets that reflect a variety of real-world scenarios. These
datasets are based on simulations of diverse inorganic com-
pounds under complex temperature and pressure conditions,
encompassing a wide range of chemical and configura-
tional spaces. They include datasets for metal elements
(Cu (Zhang et al., 2020), Sn (Chen et al., 2023), Ti (Wen
et al., 2021), V (Wang et al., 2022a), W (Wang et al., 2022b),
AgAu (Wang et al., 2021), AlMgCu (Jiang et al., 2021)),
water/ice systems (Zhang et al., 2021), oxides (HfO2 (Wu
et al., 2021)), and solid-state electrolytes (SSE-PBE (Huang
et al., 2021)). These datasets are generated using the DP-
GEN method (Zhang et al., 2020). Details of these datasets
are given in Appendix E.2.

5.1.3. BASELINE

We compare the accuracy of models trained from scratch,
pre-trained models, pre-trained models with full-parameter
fine-tuning, and pre-trained models with ELoRA fine-tuning.
The baseline for models trained from scratch includes
ACE (Kovács et al., 2021), NequIP (Batzner et al., 2022),
BOTNet (Batatia et al., 2022a), Allegro (Musaelian et al.,
2023), DPA2 (Zhang et al., 2023), PACE (Xu et al., 2024),
and MACE (Batatia et al., 2022b), all of which have demon-
strated strong performance across various downstream tasks.
The baseline for pre-trained models consists of the open-
source organic MACE-OFF and inorganic MACE-MP. Both
full-parameter fine-tuning and ELoRA fine-tuning are ap-
plied to these same pre-trained models (MACE-OFF and
MACE-MP) under identical hyperparameter settings. More
details of these models are provided in Appendix E.3.

5.2. Main Experimental Results

5.2.1. RESULTS ON THE ORGANIC DATASETS

Revised MD17: To verify whether fine-tuning pre-trained
models offers an advantage on downstream tasks with lim-
ited data, we follow the previous setting (Batatia et al.,
2022b), using only 50 configurations for each organic
molecule in the rMD17 dataset for training. As shown
in Table 1, fine-tuning on MACE-OFF achieves higher accu-
racy than training from scratch. This is consistent with the
analysis in Section 3, which indicates that fine-tuning will
cover a broader chemical space in real cases. Furthermore,
ELoRA fine-tuning outperforms full-parameter fine-tuning
across all organic molecules listed in Table 1, achieving
new state-of-the-art results. Compared to full-parameter
fine-tuning, ELoRA improves energy prediction accuracy
by 25.5% and force prediction accuracy by 23.7%.

3BPA: Compared to the rMD17 task with limited data, the
3BPA dataset is used to evaluate the model’s extrapolation
capabilities under varying temperatures and dihedral slices.
The models are trained using datasets collected at 300 K,
and the temperatures of the test set range from 300 K to 1200

Table 1. MAE of energy (E, meV) and force (F, meV/Å) on the
rMD17 dataset. Each model is trained using only 50 molecules.
The best results are in bold.

ACE NequIP PACE MACE MACE MACE

Method From scratch Full-parameter ELoRA

Aspirin E 26.2 19.5 15.7 17.0 10.3 7.3
F 63.8 52.0 37.4 43.9 23.6 17.6

Azobenzene E 9.0 6.0 6.7 5.4 4.7 4.0
F 28.8 20.0 17.5 17.7 15.1 12.4

Benzene E 0.2 0.6 0.6 0.7 0.4 0.2
F 2.7 2.9 3.3 2.7 2.4 1.6

Ethanol E 8.6 8.7 6.3 6.7 2.7 2.1
F 43.0 40.2 25.4 32.6 13.9 10.7

Malonaldehyde E 12.8 12.7 11.5 10.0 7.3 6.5
F 63.5 52.5 57.3 43.3 25.3 21.7

Naphthalene E 3.8 2.1 2.1 2.1 1.8 1.4
F 19.7 10.0 9.7 9.2 7.8 6.0

Paracetamol E 13.6 14.3 10.1 9.7 6.9 4.8
F 45.7 39.7 29.3 31.5 20.4 14.8

Salicylic acid E 8.9 8.0 7.0 6.5 4.2 3.2
F 41.7 35.0 29.2 28.4 17.8 14.2

Toluene E 5.3 3.3 2.7 3.1 1.9 1.3
F 27.1 15.1 12.0 12.1 8.6 5.9

Uracil E 6.5 7.3 5.9 4.4 2.6 2.1
F 36.2 40.1 26.8 25.9 14.7 11.6

K. The results (in Table 2) of MACE without fine-tuning
are significantly less accurate than those obtained with fine-
tuning, highlighting the necessity of fine-tuning pre-trained
models. Furthermore, ELoRA fine-tuning outperforms train-
ing from scratch and achieves a new state-of-the-art. As the
test set temperature increases from 300 K to 1200 K, the
accuracy gap between the ELoRA fine-tuned model and the
full-parameter fine-tuned model grows from 0.3 (meV) to
2.7 (meV) for energy and from 0.3 (meV/Å) to 6.7 (meV/Å)
for forces. This demonstrates that the ELoRA fine-tuned
model exhibits superior out-of-domain generalization capa-
bilities.

In Figure 3, we compare the predictions of models trained
on the 3BPA dataset for three dihedral slices. Overall, the
results show that the ELoRA fine-tuned model aligns more
closely with the ground truth. Notably, in the middle panel,
which includes geometries farthest from the training set,
the ELoRA fine-tuned model significantly outperforms the
model trained from scratch, demonstrating remarkable ex-
trapolation capabilities.

AcAc: The AcAc dataset is designed to evaluate a model’s
ability to extrapolate on the acetylacetone molecule under
high temperatures, bond breaking, and bond torsion. As
shown in Table 3, the pre-trained model MACE-OFF, when
used without fine-tuning, performs significantly worse than
the model trained from scratch. ELoRA fine-tuning outper-
forms training from scratch and full-parameter fine-tuning
in all cases, achieving improvements of 26.4% and 14.4%
in energy and force accuracy, respectively. After fine-tuning
with ELoRA, the fine-tuned parameters can be merged into
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Table 2. RMSE of energy (E, meV) and force (F, meV/Å) on the 3BPA dataset. The training set is collected at 300 K. Standard
deviations are computed over three runs and shown in brackets. The best results are in bold.

Allegro NequIP BOTNet PACE MACE MACE MACE MACE

Method From scratch Full-parameter ELoRA MACE-OFF

300 K E 3.84 (0.08) 3.3 (0.1) 3.1 (0.13) 2.4 (0.1) 3.0 (0.2) 3.3 (0.03) 3.0 (0.05) 17340.0
F 12.98 (0.17) 10.8 (0.2) 11.0 (0.14) 9.1 (0.1) 8.8 (0.3) 7.8 (0.01) 7.5 (0.05) 124.7

600 K E 12.07 (0.45) 11.2 (0.1) 11.5 (0.6) 7.9 (0.2) 9.7 (0.5) 7.3 (0.04) 6.5 (0.10) 17369.8
F 29.17 (0.22) 26.4 (0.1) 26.7 (0.29) 21.4 (0.3) 21.8 (0.6) 16.6 (0.05) 15.5 (0.12) 136.1

1200 K E 42.57 (1.46) 38.5 (1.6) 39.1 (1.1) 29.6 (0.4) 29.8 (1.0) 20.3 (0.17) 17.6 (0.11) 17412.8
F 82.96 (1.77) 76.2 (1.1) 81.1 (1.5) 60.7 (2.0) 62.0 (0.7) 48.7 (0.56) 42.0 (0.51) 157.3

Dihedral Slices E - - 16.3 (1.5) 7.6 (0.4) 7.8 (0.6) 7.3 (0.28) 5.9 (0.28) 17309.4
F - - 20.0 (1.2) 16.0 (0.5) 16.5 (1.7) 12.3 (0.10) 11.4 (0.17) 116.2
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Figure 3. Energy predictions for the three cuts of the potential energy surface of the 3BPA molecule by models trained from scratch
and fine-tuned with ELoRA. The true energy (DFT) is shown in black. For each cut, the curves have been vertically shifted so that the
minimum true energy is zero. The shaded area represents the standard deviation.

the original model parameters during inference, adding no
additional computational overhead. The reduction in the
number of parameters in the fine-tuned model results from
removing the weights associated with those elements of the
pre-trained model that are absent from the downstream task.

5.2.2. RESULTS ON INORGANIC DATASETS

In this section, we evaluate the performance of ELoRA
fine-tuning on inorganic datasets. Inorganic crystals are
much more diverse than small organic molecules, and the
10 datasets used in this section are generated under com-
plex temperature and pressure conditions, requiring models
to demonstrate strong generalization capabilities. Model
performance is evaluated using RMSE, with the results sum-
marized in Table 4.

The results show that pre-trained models MACE-MP, when
used without fine-tuning, significantly underperform mod-
els trained from scratch in inorganic datasets. However,

ELoRA fine-tuned pre-trained models outperform other
models in force prediction on 9 out of 10 datasets. For
energy prediction, the fine-tuned pre-trained models exceed
the performance of the models trained from scratch using
the same backbone, but are slightly behind state-of-the-art,
likely due to differences in model architecture. Compared
to full-parameter fine-tuning, ELoRA achieves an average
improvement of 12.3% in energy prediction and 14.4% in
force prediction across the 10 inorganic datasets.

5.3. Other Experimental Results

5.3.1. DATA EFFICIENCY

Data efficiency can be measured by the size of the required
training data. Taking rMD17-aspirin as an example, Figure
4 describes the comparison of full-parameter fine-tuning and
ELoRA on the pre-trained model. ELoRA obtains a lower
error than full-parameter fine-tuning when the training data
size varies from 50 to 1000. ELoRA shows lower error than
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Table 3. RMSE of energy (E, meV) and force (F, meV/Å) on the acetylacetone dataset. The training set is collected at 300 K. Standard
deviations are computed over three runs and shown in brackets. The best results are in bold.

BOTNet NequIP MACE MACE MACE MACE

Method From scratch Full-parameter ELoRA MACE-OFF

300 K E 0.89 (0.0) 0.81 (0.04) 0.9 (0.03) 1.0 (0.02) 0.8 (0.03) 24183.8
F 6.3 (0.0) 5.90 (0.38) 5.1 (0.10) 5.1 (0.07) 4.5 (0.06) 463.8

600 K E 6.2 (1.1) 6.04 (1.26) 4.6 (0.3) 5.8 (0.28) 3.9 (0.33) 24160.1
F 29.8 (1.0) 27.8 (3.29) 22.4 (0.9) 16.4 (0.70) 13.6 (0.26) 474.2

N° Parameters 2,756,416 3,190,488 2,803,984 751,896 751,896 1,428,368

full-parameter fine-tuning when the size of the downstream
data is smaller. In cases of small data size, the amount
of data required for fine-tuning can be reduced by 42%
and 44% in reaching similar errors, thereby enhancing data
efficiency. As the training data increases, the difference
in error between full-parameter fine-tuning and ELoRA
gradually decreases. Theoretically, their accuracy gap will
diminish as the dataset size approaches infinity. Detailed
theoretical analysis can be found in Appendix D.
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Figure 4. Comparison of energy and force MAE trends between
Full-parameter fine-tuning and ELoRA across different train-
ing data sizes. The results are obtained from experiments con-
ducted on the rMD17-aspirin dataset.

5.3.2. RANK SETTING

The hyperparameter rank in ELoRA directly influences the
number of trainable parameters. To evaluate its impact on
model performance, we conduct experiments using rMD17-
aspirin and inorganic-Cu datasets. As shown in Figure 5, the
results indicate that as rank increases, the validation loss ini-
tially decreases but then starts to rise. When the rank is too
small, the model tends to underfit the data, whereas a larger
rank may lead to overfitting. This aligns with theoretical
analysis: as the number of trainable parameters increases,
the model transitions from underfitting to overfitting. Spe-
cific theoretical analyses can be found in Appendix D. Our
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Figure 5. The validation set loss and ELoRA parameter propor-
tion across different ranks. The results are obtained from tests
conducted on the rMD17-aspirin and inorganic-Cu datasets. The
shaded area represents the standard deviation.

findings suggest that setting rank = 16 achieves a favorable
balance, with the ELoRA parameters accounting for 22.5%
and 24.0% of the original model parameters in the respective
datasets.

6. Related Work
Neural Network Interatomic Potentials: The traditional
approach to using machine learning for predicting molecu-
lar energy and force combines hand-crafted representations
of the atomic neighborhood with neural networks (Behler
& Parrinello, 2007). Recent advancements have shifted to-
wards end-to-end learnable models based on GNNs, which
learn representations directly from atom types and molec-
ular coordinates without requiring hand-crafted features.
Early GNN models, such as CGCNN (Xie & Grossman,
2018), DimeNet (Klicpera et al., 2020), SphereNet (Liu
et al., 2022), Ewald message passing (Kosmala et al., 2023),
PotNet (Lin et al., 2023), and TGT (Hussain et al., 2024) fo-
cused on scalar representations that achieve rotational equiv-
ariance using invariant features. More recently, equivariant
models like PaiNN (Schütt et al., 2021), SEGNN (Brandstet-
ter et al., 2021), NewtonNet (Haghighatlari et al., 2022), and
GeoMFormer (Chen et al., 2024) have been proposed, mark-
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Table 4. RMSE of 10 different inorganic datasets. The best results are in bold.

Energy RMSE [meV/atom] Force RMSE [meV/Å]

NequIP Allegro DPA2 MACE MACE MACE MACE NequIP Allegro DPA2 MACE MACE MACE MACE

Method From scratch Full-parameter ELoRA MACE-MP From scratch Full-parameter ELoRA MACE-MP

SSE-PBE 1.6 1.0 1.4 1.8 0.3 0.3 243.5 41.1 47.8 50.3 29.9 16.9 14.2 167.4
H2O-PD 0.9 / 0.5 79.9 0.6 0.8 213.1 27.1 / 24.7 29.7 19.9 16.1 1924.9
Ag∪Au-PBE 42.3 39.2 2.4 369.1 10.6 8.1 534.6 43.8 58.9 17.8 34.5 11.3 9.5 530.6
Al∪Mg∪Cu 38.0 18.3 2.1 7.7 3.0 2.2 919.1 48.3 40.6 19.1 42.9 9.9 8.8 227.9
Cu 6.2 1.3 1.2 38.8 0.6 0.4 381.1 16.7 8.9 8.9 13.6 5.4 4.4 190.3
Sn 18.2 5.6 4.1 / 4.9 4.6 595.6 62.2 40.2 54.4 / 31.7 29.2 164.9
Ti 27.6 6.9 5.0 8.3 5.9 5.8 2668.2 137.4 85.6 113.1 94.2 79.4 73.3 302.1
V 8.8 4.2 4.1 14.2 4.4 4.3 128.9 91.6 82.1 90.8 140.4 74.5 68.6 318.4
W 20.8 4.0 5.6 15.6 6.1 4.7 3025.2 160.4 101.6 108.1 181.2 87.2 78.7 893.6
HfO2 1.5 1.4 1.0 2.3 0.5 0.3 635.8 58.8 64.0 54.2 14.7 30.0 21.0 223.8

ing a significant advancement in leveraging equivariance for
modeling interatomic potentials.

Parameter-Efficient Fine-Tuning: Parameter-efficient fine-
tuning (PEFT) techniques aim to reduce the number of
parameters required for fine-tuning, addressing the inef-
ficiency of fully updating all model parameters as the model
size and task complexity grow (Ding et al., 2022). For
instance, adapter tuning (Chen et al., 2022) introduces
adapter modules with bottleneck architectures between lay-
ers. BitFit (Zaken et al., 2022) focuses on updating only the
bias terms while keeping the rest of the parameters fixed.
LoRA (Hu et al., 2022) reduces the number of trainable
parameters by decomposing weight matrices into low-rank
matrices. Some theoretical research (Hao et al., 2024; Jang
et al., 2024) and variants of LoRA (Berman & Peherstorfer,
2024; Feng et al., 2024; Hayou et al., 2024; Ostapenko et al.,
2024; Qin et al., 2024; Zhang & Pilanci, 2024; Zhou et al.,
2024) have also been proposed. In the field of GNNs, meth-
ods such as GPPT (Sun et al., 2022), MolCPT (Diao et al.,
2022), GPF (Fang et al., 2024), and GraphPrompt (Liu et al.,
2023) have been introduced. However, these parameter-
efficient fine-tuning methods are not applicable to equivari-
ant models, as they will destroy the fundamental equivari-
ance of the model during the fine-tuning process.

7. Conclusion
Fine-tuning pre-trained interatomic potentials is crucial to
enhancing model accuracy on downstream tasks. Equiv-
ariant pre-trained models play a pivotal role in machine
learning-based interatomic potentials, maintaining the phys-
ical symmetries, which is essential for accurate and reli-
able atomistic materials simulations. Although various
parameter-efficient fine-tuning methods have been made
successful in NLP and CV, they fall short when applied to
equivariant models because they will not preserve equivari-
ance. To address this challenge, we propose a novel PEFT
method called ELoRA. By leveraging path-dependent de-
composition for weight updates, ELoRA ensures that the

intrinsic equivariance can be preserved. ELoRA not only
guarantees physically consistent predictions, but also en-
hances data efficiency. Compared to full-parameter fine-
tuning, ELoRA achieves SOTA performance on the organic
rMD17, 3BPA, and AcAc datasets, as well as on 10 chal-
lenging inorganic real cases. ELoRA transforms fine-tuning
practices for equivariant models, paving the way for more
accurate and efficient atomistic simulations across a wide
range of chemical systems.

While our method shows promising results, the following
aspects still remain open for further works: (1) Identify-
ing other more effective weight decomposition strategies.
(2) Enhancing data efficiency and reducing the number of
samples needed for fine-tuning to achieve few-shot or even
one-shot learning. (3) Reducing the training epochs required
for fine-tuning. (4) Establishing more rigorous proofs for
the error generalization bounds of ELoRA.
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B. X., Lan, J., Csányi, G., Michaelides, A., and Kapil,
V. Data-efficient fine-tuning of foundational models for
first-principles quality sublimation enthalpies. Faraday
Discussions, 2025.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.
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Schütt, K., Kindermans, P.-J., Sauceda Felix, H. E., Chmiela,
S., Tkatchenko, A., and Müller, K.-R. Schnet: A
continuous-filter convolutional neural network for model-
ing quantum interactions. Advances in neural information
processing systems, 30, 2017.

12



ELoRA: Low-Rank Adaptation for Equivariant GNNs
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A. Group representations and Equivariance
Group theory provides a formal framework for defining symmetries axiomatically. A representation D of a group G is a
function from G to square matrices such that for all g, h ∈ G,

D(g)D(h) = D(gh). (9)

Formally, a mapping f : X → Y is equivariant for vector spaces X and Y to a group G, if f ◦DX(g) = DY (g) ◦ f is
satisfied for any g in G, where DX and DY represent the transformation of group G on vector spaces X and Y , respectively.
In this context, we focus on the group of symmetry operations that encompass both isometries of 3D space and permutations
of points. When using vectors (e.g., atomic coordinates) in R3 as input, both X and Y are in R3, and f can be written as:

y⃗ = f(x⃗). (10)

We specifically examine the following three types of input transformation and their equivariance properties:

Permutation: Let Pσ represents the permutation of vector subscripts, then the permutation equivariance is:

f ◦ Pσ = Pσ ◦ f. (11)

Translation: Let Tt⃗(x⃗) = x⃗+ t⃗ denote the translation, then the translation equivariance is:

f ◦ Tt⃗ = Tt⃗ ◦ f. (12)

Rotation: SO(3) is the group of 3D rotations. For g ∈ SO(3), let R(g) be the representation of g in R3, then the rotational
equivariance is:

f ◦ R(g) = R(g) ◦ f. (13)

The group elements of SO(3) are represented by Dl, called Wigner D-matrices (Gilmore, 2008), which map the elements
of SO(3) to (2l + 1)× (2l + 1)-dimensional matrices. For scalars and vectors in R3, the (real) Wigner D-matrices are

D0(g) = 1 and D1(g) = R(g). (14)

In Message Passing Neural Networks (MPNNs), since the ordering of nodes in the graph has no effect on the feature update
and the distance between nodes is used for message passing, permutation equivariance and translation equivariance are
naturally satisfied. Therefore, EMPNNs mainly focus on how to achieve rotational equivariance.

B. MACE Architecture
MACE (Batatia et al., 2022b) is an EMPNN model that uses higher body order messages. The expressiveness of the model
is improved by using efficient multi-body messages instead of two-body messages. Multi-body messages reduce the number
of network layers required to achieve the same expressiveness under two-body messages, resulting in a fast and highly
parallelizable model. The MACE architecture follows the general framework of MPNN and includes three parts: message
construction, update, and readout.

Message passing: In message construction, MACE combines equivariant message passing with efficient many-body
messages. The edges are embedded using a learnable radial basis R(t)

kl1l2l3
and a set of spherical harmonics Y m1

l1
, and

the self-interaction is performed on the features h(t)
j,k̃l2m2

with learnable weights W (t)

kk̃l2
. A(t)

i,kl3m3
is the two-body feature

obtained by pooling neighbor atoms:

A
(t)
i,kl3m3

=
∑

l1m1,l2m2

Cl3m3

l1m1,l2m2

∑
j∈N (i)

R
(t)
kl1l2l3

(rji)Y
m1

l1
(r̂ji)

∑
k̃

W
(t)

kk̃l2
h
(t)

j,k̃l2m2
, (15)

where Cl3m3

l1m1,l2m2
are the standard Clebsch-Gordan coefficients (Griffiths & Schroeter, 2019). The key operation of MACE

is to construct a multi-body feature B
(t)
i,ηνkLM through the tensor product of the two-body features A(t)

i,kl3m3
:

B
(t)
i,ηνkLM =

∑
lm

CLM
ην ,lm

ν∏
ξ=1

∑
k̃

w
(t)

kk̃lξ
A

(t)

i,k̃lξmξ
, (16)
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where the coupling coefficients CLM
ην

corresponding to the generalised Clebsch-Gordan coefficients andw(t)

kk̃lξ
is the learnable

weight for the self-interaction of A(t)
i,kl3m3

. Finally, the message m
(t)
i can be written as a linear expansion:

m
(t)
i,kLM =

∑
ν

∑
ην

W
(t)
zikL,ην

B
(t)
i,ηνkLM . (17)

Update: The update is a linear function of the message and the residual connection (He et al., 2016):

h
(t+1)
i,kLM = UkL

t (σ
(t)
i ,m

(t)
i ) =

∑
k̃

W
(t)

kL,k̃
mi,k̃LM +

∑
k̃

W
(t)

zikL,k̃
h
(t)

i,k̃LM
. (18)

Readout: The readout is a mapping from the invariant part of the node features to a hierarchical decomposition of site
energies:

Ei = E
(0)
i + E

(1)
i + ...+ E

(T )
i , where

E
(t)
i = Rt

(
h
(t)
i

)
=


∑

k̃W
(t)

readout,k̃
h
(t)

i,k̃00
if t < T

MLP
(t)
readout

({
h
(t)
i,k00

}
k

)
if t = T

(19)

The readout only depends on the invariant features h(t)i,k00, making the site energy contribution E(t)
i invariant.

C. Proofs
Proposition C.1. The self-interaction of the tensor h is equivalent to the fully connected tensor product of h and 1.

Proof. Since 1 is a scalar, 1klm = 1 when k = l = m = 0, and 0 otherwise.

(h⊗ 1)k3l3m3
=

∑
k1l1m1,k2l2m2

Wk3k2k1,l3l2l1C
l3m3

l1m1,l2m2
hk1l1m1

1k2l2m2

=
∑

k1l1m1

Wk3k1,l3l1C
l3m3

l1m1,00
hk1l1m1

1000

=
∑

k1l1m1

Wk3k1,l3l1C
l3m3

l1m1,00
hk1l1m1

=
∑
k1

Wk3k1l3hk1l3m3

In the second equation, the subscripts k2 and l2 in W are omitted because a non-zero result is only possible when
k2 = l2 = m2 = 0. Similarly, in the last equation, the subscript l1 in W is omitted because Cl3m3

l1m1,00
= 1 when l1 = l3 and

m1 = m3, and it is zero otherwise. The final form is equivalent to Equation 5, with only a renaming of the subscripts.

Proposition C.2. The residual connection of the tensor hi is equivalent to the fully connected tensor product of hi and ẑi,
where ẑi is the one-hot encoding of the chemical species zi.

Proof. The tensor ẑi is the one-hot encoding of the chemical species zi, where ẑi,klm = 1 when k = zi, l = m = 0 and 0
otherwise.

(hi ⊗ ẑi)k3l3m3
=

∑
k1l1m1,k2l2m2

Wk3k2k1,l3l2l1C
l3m3

l1m1,l2m2
hi,k1l1m1

ẑi,k2l2m2

=
∑

k1l1m1

Wk3zik1,l3l1C
l3m3

l1m1,00
hi,k1l1m1

ẑi,zi00

=
∑

k1l1m1

Wk3zik1,l3l1C
l3m3

l1m1,00
hi,k1l1m1

=
∑
k1

Wk3zik1,l3hi,k1l3m3
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In the second equation, the subscript l2 in W is omitted because a non-zero result is only possible when k2 = zi and
l2 = m2 = 0. Similarly, in the last equation, the subscript l1 in W is omitted because Cl3m3

l1m1,00
= 1 when l1 = l3 and

m1 = m3, and it is zero otherwise. The final form is equivalent to Equation 6, with only renaming and rearranging of the
subscripts.

Proposition C.3. For the pre-trained weight matrix W 0 of the fully connected tensor product and its corresponding ELoRA
matrices A and B, the fully connected tensor product of the tensors u and v with ELoRA is SO(3) equivariant.

Proof. The Clebsch-Gordan coefficients and Wigner D-matrices satisfy the following properties. For any element g in the
SO(3) group: ∑

m′
1,m

′
2
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∑
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where the second equation rewrites m′
1 and m′

2 as m1 and m2. Therefore, the SO(3) equivariance of the fully connected
tensor product holds for any matrix W . For the pre-trained model, Wk3k2k1,l3l2l1 = W 0

k3k2k1,l3l2l1
. For the fine-tuned

model with ELoRA, Wk3k2k1,l3l2l1 =W 0
k3k2k1,l3l2l1

+ (Bl3l2l1Al3l2l1)k3k2k1
.

Proposition C.4. For the pre-trained weight matrix W 0 of the fully connected tensor product and its corresponding
ELoRA matrices A and B, the fully connected tensor product of the tensors u and v with ELoRA satisfies (u⊗ v)k3l3m3

=
(u⊗ v)0k3l3m3

+
∑

l1,l2

∑
r Bk3r,l3l2l1(ul1 ⊗ vl2)rl3m3

, where (u⊗ v)0k3l3m3
is the fully connected tensor product of tensors

u and v using W 0 without ELoRA and (ul1 ⊗ vl2)rl3m3
is the fully connected tensor product of tensors ul1 and vl2 using

ELoRA matrix A.

Proof.

(u⊗ v)k3l3m3
=

∑
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∑
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Corollary C.5. For the pre-trained weight matrix W 0 of the fully connected tensor product and its corresponding ELoRA
matrices A and B, Al3l2l1 projects the equivariant message on the path (l1, l2, l3) in the fully connected tensor product of
the tensors u and v with ELoRA into a low-dimensional space of dimension R.
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D. Generalization Theory
The PAC-Bayesian framework (Shawe-Taylor & Williamson, 1997; McAllester, 1998; 1999) is an analytical approach that
combines Probably Approximately Correct (PAC) theory with Bayesian theory to study the generalization performance of
randomized learning algorithms. By introducing Bayesian prior and posterior distributions into the analysis of generalization
error in PAC theory, it establishes generalization bounds for arbitrary priors and provides probabilistic guarantees for the
generalization error.

Let w represent the parameters of the neural network, and let fw(x) : X → Y denote the mapping from input x to output
y as computed by the neural network. Assume that the data points (x1, y1), (x2, y2), . . . , (xN , yN ) are independently
drawn from a distribution D. Define ℓ as the loss function, where the loss on a sample (x, y) is given by ℓ(fw(x), y). The
generalization error of the neural network on D is expressed as L(fw) = Ex,y∼D[ℓ(fw(x), y)], while the empirical error on
a dataset is L̂(fw) = 1

N

∑N
i=1[ℓ(fw(xi), yi)].

Since the underlying distribution D is typically unknown, the generalization error can only be approximated through the
empirical error computed on a test set. The PAC-Bayesian framework provides an estimation of the generalization bound
L(fw) − L̂(fw) for randomized predictors. Recent studies based on PAC-Bayesian theory have derived generalization
bounds for models such as Multi-Layer Perceptrons (MLPs) (Neyshabur et al., 2018) and Message Passing Neural Networks
(MPNNs) (Ju et al., 2023). These bounds are typically derived using the spectral norm of weight matrices, which is often
proportional to the stable rank ∥W∥2

F

∥W∥2
2

. Below, we present the propositions and their corollaries for MLPs and MPNNs.

Lemma D.1. (Neyshabur et al., 2018) For any B, d, h > 0, let fw : XB,n → Rk be a d-layer feedforward network with
ReLU activations. Then, for any δ, γ > 0, with probability ≥ 1− δ over a training set of size m, for any w, we have:

L0(fw) ≤ L̂γ(fw) +O


√√√√B2d2h ln(dh)Πd

i=1 ∥Wi∥22
∑d

i=1
∥Wi∥2

F

∥Wi∥2
2

+ ln dm
δ
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 .

Corollary D.2. For a d-layer feed-forward network, the generalization bound is related to the stable rank of the weight
matrix as follows:

O


√√√√Πd

i=1 ∥Wi∥22
∑d

i=1
∥Wi∥2

F

∥Wi∥2
2

N

 ,

where N is the number of samples.

Lemma D.3. (Ju et al., 2023) Suppose all of the nonlinear activations in {ϕt, ρt, ψt : ∀ t} and the loss function ℓ(·, y) (for
any fixed label y ∈ Y) are twice-differentiable, Lipschitz-continuous and their first-order and second-order derivatives are
both Lipschitz-continuous. With probability at least 1− δ over the randomness of N independent samples from D, for any
δ > 0, and any ϵ > 0 close to zero, any model f with weight matrices in the set H satisfies:

L(f) ≤ (1 + ϵ)L̂(f) +O

(
log(δ−1)

N3/4

)
+

l∑
i=1

√√√√√√CBdi

(
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(X,G,y)∼D
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)(
r2i

l∏
j=1

s2j

)
N

,

where B is an upper bound on the value of the loss function ℓ(x, y) for any (x, y) ∼ D, C is a fixed constant depending on
the activation, and the loss function’s Lipschitz-continuity.

Corollary D.4. For a l-layer message-passing neural network, the generalization bound is related to the stable rank of the
weight matrix as follows:

O

 l∑
i=1

√√√√∥Wi∥22 Πl
j=1

∥Wj∥2
F

∥Wj∥2
2

N

 ,

where N is the number of samples.
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Corollaries D.2 and D.4 indicate that reducing the stable rank of the weight matrix leads to a tighter generalization bound.
Therefore, we focus on the upper bound of the stable rank. The upper bound of the stable rank of the fine-tuned weight
matrix can be determined using the following propositions.

Lemma D.5. For any matrix A ∈ Rn×m, its stable rank is defined as srank(A) = ∥A∥2
F

∥A∥2
2

, where ∥A∥F is the Frobenius
norm of A and ∥A∥2 is the spectral norm of A, then srank(A) ≤ rank(A).

Proof. Let σ1, σ2, . . . , σr be the non-zero singular values of A from large to small, then r = rank(A) is the rank of A,

∥A∥F =
√∑r

i=1 σ
2
i , ∥A∥2 = σ1. The definition of stable rank can be written as srank(A) =

∑r
i=1 σ2

i

σ2
1

. Note that σ2
1 ≥ σ2

i

holds for all i = 1, 2, . . . , r, so
∑r

i=1 σ
2
i ≤ r · σ2

1 . Then srank(A) =
∑r

i=1 σ2
i

σ2
1

≤ r = rank(A).

Proposition D.6. For the pre-trained weight matrix W 0 ∈ Rd×k and its update ∆W ∈ Rd×k, srank(W 0 + ∆W ) ≤
rank(W 0) + rank(∆W ).

Proof. srank(W 0 +∆W ) ≤ rank(W 0 +∆W ) ≤ rank(W 0) + rank(∆W ).

Proposition D.7. For the pre-trained weight matrix W 0 ∈ Rd×k and its update ∆W ∈ Rd×k, if ϵ = ∥∆W∥2
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srank(W 0 +∆W ) ≤ 1
1−ϵ (

√
srank(W 0) + ϵ ·

√
srank(∆W )).

Proof. √
srank(W 0 +∆W ) =

∥W 0 +∆W∥F
∥W 0 +∆W∥2

≤ ∥W 0∥F + ∥∆W∥F
∥W 0∥2 − ∥∆W∥2

=
∥W 0∥2

∥W 0∥2 − ∥∆W∥2

(∥W 0∥F
∥W 0∥2

+
∥∆W∥F
∥∆W∥2

∥∆W∥2
∥W 0∥2

)
=

1

1− ϵ
(
√

srank(W 0) + ϵ ·
√

srank(∆W ))

From Propositions D.6 and D.7, we observe that the upper bound of the stable rank of the fine-tuned weight matrix is
determined by the rank or stable rank of ∆W . Consequently, LoRA can achieve a tighter generalization bound compared
to full-parameter fine-tuning by reducing the rank of ∆W . When ∆W has a low rank, the empirical error of the LoRA
fine-tuned model is relatively high, resulting in underfitting. As the rank of ∆W increases, the empirical error decreases, but
the generalization performance worsens, causing the model to transition from underfitting to overfitting. At the balance
point, where the empirical errors of full-parameter fine-tuning and LoRA are equal, LoRA is expected to exhibit superior
generalization performance. This process is consistent with the description in Section 5.3.2.

Furthermore, Corollary D.4 shows that the generalization bound is inversely proportional to the number of samples. This
implies that as the number of samples increases, the difference between LoRA and full-parameter fine-tuning gradually
diminishes, aligning with the observations described in Section 5.3.1.

E. Experimental Details
E.1. Pre-trained Datasets

SPICE (Eastman et al., 2023): SPICE contains small molecules of up to 50 atoms and involves ten chemical elements: H, C,
N, O, F, P, S, Cl, Br, and I. To facilitate the learning of intramolecular non-bonded interactions, it also uses a few larger
molecules of 50-90 atoms randomly selected from the QMugs dataset (Isert et al., 2022).

MPTrj (Deng et al., 2023): MPTrj consists of a large collection of static calculations and structural optimization trajectories
from the Materials Project (MP) (Jain et al., 2013), including approximately 1.5M configurations of 150k unique inorganic
crystal structures.

E.2. Downstream Datasets

rMD17 (Christensen & Von Lilienfeld, 2020): The revised MD17 (rMD17) is a recomputed version of the original MD17
dataset (Chmiela et al., 2017) at higher numerical accuracy. This dataset contains long molecular dynamics trajectories of
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ten small organic molecules, with 100,000 structures each. It recomputes energies and forces at the PBE/def2-SVP level of
theory using very tight SCF convergence and a very dense DFT integration grid to reduce numerical noise.

3BPA (Kovács et al., 2021): The 3BPA dataset is sampled from molecular dynamics simulation of the large and flexible
drug-like molecule 3-(benzyloxy)pyridin-2-amine. It is used to test the extrapolation ability of a model. Its training set
contains 500 structures sampled at 300 K, and three test sets contain structures sampled at 300 K, 600 K, and 1200 K to
evaluate the accuracy both in and out of domain. The fourth test set consists of optimized dihedral slices by rotating the
dihedral angles to produce PES regions far away from the training data.

AcAc (Batatia et al., 2022a): The AcAc dataset is a dataset for evaluating the extrapolation ability of the model to higher
temperatures, bond breaking, and bond torsion for the acetylacetone molecule. The training set is sampled at 300 K, and the
test set is sampled independently at 300 K and 600 K.

Ag∪Au-PBE (Wang et al., 2021), Al∪Mg∪Cu (Jiang et al., 2021): The Ag∪Au-PBE dataset consists of Ag and Au
configurations generated using the DP-GEN scheme, while the Al∪Mg∪Cu dataset includes Al, Mg, and Cu configurations
produced by the same method. All DFT calculations are performed with the VASP (Kresse & Furthmüller, 1996a;b)
software, applying the PBE exchange-correlation functional.

H2O-PD (Zhang et al., 2021): The water/ice dataset is used to train the model to calculate the water phase diagram. This
dataset is labeled by the VASP software using the SCAN exchange-correlation functional.

SSE-PBE (Huang et al., 2021): This dataset contains the solid electrolytes Li10GeP2S12 and Li10SiP2S12 generated by the
DP-GEN method. All DFT calculations are performed with the VASP software, applying the PBE exchange-correlation
functional.

Other datasets: The Cu (Zhang et al., 2020), Sn (Chen et al., 2023), Ti (Wen et al., 2021), V (Wang et al., 2022a), W (Wang
et al., 2022b), and HfO2 (Wu et al., 2021) datasets are generated by the DP-GEN method under complex temperature and
pressure conditions.

We list the sizes and links of these datasets in Table 5.

Table 5. Sizes and links of different datasets.

Dataset Size Link

rMD17 1,000,000 https://dx.doi.org/10.6084/m9.figshare.12672038
3BPA 13,997 https://github.com/davkovacs/BOTNet-datasets
AcAc 6,263 https://github.com/davkovacs/BOTNet-datasets
SSE-PBE 15,774 https://www.aissquare.com/datasets/detail?pageType=datasets&id=146
H2O-PD 48,419 https://www.aissquare.com/datasets/detail?pageType=datasets&id=137
Ag∪Au-PBE 17,508 https://www.aissquare.com/datasets/detail?pageType=datasets&id=152
Al∪Mg∪Cu 25,397 https://www.aissquare.com/datasets/detail?pageType=datasets&id=139
Cu 15,366 https://www.aissquare.com/datasets/detail?pageType=datasets&id=132
Sn 6,725 https://www.aissquare.com/datasets/detail?pageType=datasets&id=129
Ti 10,528 https://www.aissquare.com/datasets/detail?pageType=datasets&id=133
V 15,673 https://www.aissquare.com/datasets/detail?pageType=datasets&id=135
W 44,397 https://www.aissquare.com/datasets/detail?pageType=datasets&id=136
HfO2 28,577 https://www.aissquare.com/datasets/detail?pageType=datasets&id=145

E.3. Models

ACE (Kovács et al., 2021): The Atomic Cluster Expansion (ACE) is a framework that linearly parameterizes potential
energy surfaces using body-ordered symmetric polynomials. Its key innovation is the density trick, which projects atomic
neighborhoods onto invariant basis functions, allowing efficient computation of high-order interactions with costs scaling
linearly with neighboring atoms, combining accuracy with efficiency.

NequIP (Batzner et al., 2022): NequIP is an E(3)-equivariant graph neural network that leverages geometric tensor
representations, including scalars, vectors, and higher-order tensors, to model interatomic potentials. Its innovative use of
equivariant convolutions and tensor features ensures that internal operations preserve symmetry transformations, enabling
more accurate and data-efficient representations of atomic environments.
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BOTNet (Batatia et al., 2022a): BOTNet (Body Ordered Equivariant Network) simplifies NequIP’s design by adopting a
body-ordered structure, incrementally building interaction complexity through layers. It removes non-essential nonlinearities
while retaining NequIP’s equivariant framework, achieving similar accuracy with improved interpretability and efficiency.

Allegro (Musaelian et al., 2023): Allegro is an innovative deep learning architecture for molecular dynamics, which
combines strict locality and equivariance in its design. Unlike message-passing neural networks, it employs tensor product
layers to directly model many-body interactions without iterative propagation, enabling efficient parallel computation and
scalability to large systems.

DPA2 (Zhang et al., 2023): DPA-2 is an advanced large atomic model (LAM) that leverages a multi-task pre-training
framework to embed diverse chemical and configurational knowledge. It employs fine-tuning to adapt the pre-trained model
for specific downstream tasks, achieving high generalizability and efficiency across a wide range of molecular and material
systems.

PACE (Xu et al., 2024): PACE approximates a broader class of SE(3) × Sn equivariant polynomial functions with
higher degrees by combining spherical harmonics, tensor products, and an edge booster. It extends ACE with symmetric
contractions to capture many-body interactions, achieving strong accuracy and generalization in force field prediction.

E.4. Training Details

To facilitate reproducibility, Table 6 summarizes the training hyperparameters for different MACE models. The settings for
MACE-From-scratch (Batatia et al., 2022b), MACE-MP (Batatia et al., 2023), and MACE-OFF (Kovács et al., 2023) are
derived from previously published studies, while those for MACE-MP-Fine-tune and MACE-OFF-Fine-tune reflect the
fine-tuning hyperparameters used in this work. The MACE model code is modified from the main branch of the open source
GitHub repository at https://github.com/ACEsuit/mace (commit hash: 346a829f).

Table 6. Training hyperparameters for different MACE models.

MACE-From-scratch MACE-MP MACE-OFF MACE-MP-Fine-tune MACE-OFF-Fine-tune

model ScaleShiftMACE ScaleShiftMACE MACE ScaleShiftMACE MACE
rmax 5.0 6.0 5.0 6.0 5.0

num radial basis 8 10 8 10 8
num channels 256 128 128 128 128

max L 2 2 1 2 1
loss ef universal ef ef ef

forces weight 1000 10 1000 1000 1000
energy weight 1 1 40 1 1

lr 0.01 0.005 0.01 0.005 0.005
weight decay 5e-7 1e-8 5e-10 1e-8 1e-8

scheduler patience 50 5 20 5 5
ema decay 0.99 0.995 0.99 0.995 0.995
clip grad 10 100 1 100 100

F. Other Experimental Results
F.1. Comparison of Different Fine-tuning Methods

We compare two other popular fine-tuning methods: Readout fine-tuning (freezing the previous layers and only fine-tuning
the Readout layers) and Adapter fine-tuning. Table 7 depicts the RMSE results of these fine-tuning methods on Cu and Sn
datasets. Adapter fine-tuning performs worse because the equivariance is destroyed under the fine-tuning process. Readout
fine-tuning is not as accurate as full-parameter fine-tuning because only the last few layers are fine-tuned, which lacks
flexibility compared to full-parameter fine-tuning.

We also conduct experiments with ELoRA on SevenNet (Park et al., 2024), which is another representative SO(3)-equivariant
MPNN. As shown in Table 8, the results are consistent with those in Table 7.
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Table 7. RMSE of energy (E, meV/atom) and force (F, meV/Å) for different finetuning methods on MACE. The best results are in
bold.

MACE MACE MACE MACE

Method Full-parameter Adapter Readout ELoRA

Cu E 0.6 4.4 5.6 0.4
F 5.4 22.9 28.2 4.4

Sn E 4.9 27.6 30.8 4.6
F 31.7 67.5 74.8 29.2

Trainable parameters 723,866 169,296 2,192 176,666

Table 8. RMSE of energy (E, meV/atom) and force (F, meV/Å) for different finetuning methods on SevenNet. The best results are in
bold.

SevenNet SevenNet SevenNet SevenNet

Method Full-parameter Adapter Readout ELoRA

Cu E 0.9 2.5 10.2 0.8
F 12.8 32.1 153.2 12.2

Sn E 3.4 6.8 16.4 3.0
F 74.1 117.0 190.5 73.4

F.2. Stable Rank

In Appendix D, we analyze how low-rank adaptation reduces the stable rank of the update to the weight matrix, ∆W ,
during fine-tuning. Using the rMD17-aspirin dataset as an example, we assess the stable rank of ∆W for each layer of the
model under both full-parameter fine-tuning and ELoRA fine-tuning. The results, shown in Figure 6, indicate that ELoRA
fine-tuning generally leads to a lower stable rank for ∆W .
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Figure 6. Comparison of stable rank for ∆W between full-parameter fine-tuning and ELoRA fine-tuning across different layers.
Results are from models trained on the rMD17-aspirin dataset.

F.3. Hyperparameters

Since full-parameter fine-tuning and ELoRA update different numbers of parameters, they may require different learning
rates to achieve optimal performance. We test various learning rates, and the results are shown in the left panel of Figure 7.
Overall, ELoRA outperforms full-parameter fine-tuning, with the best ELoRA model surpassing the best full-parameter
fine-tuning model. This eliminates the potential influence of learning rate settings on the performance comparison between
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the two approaches.

ELoRA improves generalization by reducing the number of parameters being trained, which helps prevent overfitting. We
aim to test whether other regularization methods could achieve similar effects. Typically, weight decay and dropout are used
for regularization. However, in SO(3) equivariant GNNs, applying dropout directly could disrupt the network’s equivariance.
Therefore, we only test weight decay, and the results of using different weight decay hyperparameters in full-parameter
fine-tuning are shown in the right panel of Figure 7. As we can see, weight decay do not provide significant benefits in this
case.

10−3 10−2 10−1

learning rate

100

101

lo
ss

10−8 10−7 10−6 10−5 10−4 10−3

weight decay

Full-parameter ELoRA

Figure 7. The impact of learning rates and weight decay on model loss. Results are from models trained on the rMD17-aspirin dataset.
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