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Abstract: The goal of image-to-image translation (I2I) is to translate images from one domain to 1

another while maintaining the content representations. A popular method for I2I translation involves 2

the use of a reference image to guide the transformation process. However, most of the architectures 3

fail to maintain the input main characteristics and produce images too close to the reference during 4

style transfer. In order to avoid this problem, we propose a novel architecture which is able to perform 5

source-coherent translation between multiple domains. Our goal is to preserve input details during 6

I2I translation by weighting the style code obtained from the reference images before applying it 7

to the source image. Therefore, we choose to mask the reference images in an unsupervised way, 8

before extracting the style from them. By doing so, the input characteristics while performing style 9

transfer are better maintained. As a result, we also increase the diversity in images generated by 10

extracting style from the same reference. Additionally, the adaptive normalization layers, commonly 11

used to inject styles into the model, are substituted with an attention mechanism for the purpose of 12

increasing the quality in generated images. Several experiments are performed on CelebA-HQ and 13

AFHQ datasets in order to prove the efficacy of the proposed system. Quantitative results, measured 14

with LPIPS and FID metrics, demonstrate the superiority the proposed architecture compared to the 15

state of art. 16

Keywords: deep learning; style transfer; image-to-image translation; generative adversarial networks 17

1. Introduction 18

Image-to-image translation (I2I) aims to generate an output image with a different 19

style while preserving the content information of the input [1]. More specifically, the 20

goal of I2I is to convert an image xA, belonging to a source domain A, into an image yB, 21

belonging to a target domain B, by preserving its intrinsic contents belonging to the source 22

domain and modifying its extrinsic contents by making them as similar as possible to those 23

characterizing the target domain. 24

A lot of frameworks that use generative models to perform I2I translation are emerging 25

in a variety of areas: from face editing [2], to style transfer [3] and automotive field [4]. 26

Focusing on style transfer, StarGANv2 [5] introduced an innovative approach. Specifically, 27

StarGANv2 incorporates a Style Encoder, designed to extract the style characteristics of 28

an image referred to as the reference image. Subsequently, the extracted style is applied to 29

the input image using a single Generator that is able to perform image translation across 30

multiple domains. StarGANv2 also has a Mapping Network in charge of generating styles 31

for the Generator from random noise. In their work, authors of StarGANv2 introduce 32

diversity as the characteristic of each image within a domain to be different despite coming 33

from the same domain. By this definition, the authors show how the output changes as 34

the reference changes, even if picked from the same domain. However, this architecture 35

design tends to apply global changes to the entire input image without preserving its 36

intrinsic content representation. This can be described as a heavy form of reference-based 37

style transfer, which can be seen in the output images generated by extracting the style from 38
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the same reference. In such cases, the output images tend to closely mirror the reference 39

image and the generated images collapse to the reference image as it can be seen in Fig. 1. 40

To address this limitation, we present a novel architecture which is able to perform 41

source-coherent I2I translation across multiple domains. Our solution involves adding a 42

segmentation layer before the Style Encoder: this layer computes segmentation masks 43

which will be used to separate the subjects within the reference image and to select only the 44

desired part of the image. In this way, we can remove all of the unnecessary content in the 45

reference, like background or out-of-domain parts. Ultimately, the Style Encoder extracts 46

the style only from the relevant part of the reference image and the Generator produces 47

images with the style of the reference image without collapsing to it. 48

Our network architecture takes inspiration from StarGANv2 [5], though with some 49

fundamental changes; in particular, we change the style application by using Cross Atten- 50

tion layers [6] and not Adaptive Instance Normalization (AdaIN) [7]; then, we adapted the 51

Style Encoder by feeding it with both image and its correspondent mask. 52

Moreover, a crucial aspect lies in the utilization of an unsupervised architecture for 53

extracting masks from reference images. Specifically, we choose to use STEGO [8] model, an 54

architecture which can perform unsupervised semantic segmentation, in order to produce 55

masks. With STEGO we produce binary images, which will be used in order to separate 56

information on where to extract the style code inside the Style Encoder. 57

To summarize, the main contributions of the proposed work are the followings: 58

• Innovative architecture for style transfer. Introduction of a novel architecture which 59

is able to perform source-coherent I2I translation between multiple domains by pre- 60

serving input details and increasing diversity during generation. 61

• Semantic style separation. The model utilizes unsupervised segmentation architec- 62

ture to produce masks in order to localize the style only on specific subjects of the 63

images and removing useless areas like background or out-of-domain details. By 64

this weighing of the reference images, the model is able to focus only on the relevant 65

parts and better understand the characteristics of the style images, resulting in more 66

accurate style code compared to the ones generated by state-of-art architectures. 67

• Transferring style using Cross Attention. The proposed architecture also shows 68

how attention mechanisms, more in details Cross-Attention layers, are able to im- 69

prove the quality of style transfer, with respect to commonly used Adaptive Instance 70

Normalization layers. 71

2. Related work 72

Image-to-image translation. Image-to-image translation was first introduced by [9] as 73

the task of translating one possible representation of a scene into another, given sufficient 74

training data. Pix2Pix [10] was the first attempt to use GANs, in particular Conditional 75

GANs (CGANs), in order to translate an image from source domain to target domain and 76

viceversa with paired datasets. Later, CycleGAN [3] improved Pix2Pix performance by 77

removing the requirement of paired datasets and suggested a method for I2I translation 78

on unpaired datasets by employing a cycle consistency loss that guarantees that an image 79

should accurately replicate the source image when it is translated to the target domain 80

and then reversed. MUNIT [11] was one of the first attempt to enhance diversity of the 81

generated images by feeding the generator with a style code that is randomly sampled 82

from Gaussian noise. Later, MSGAN [12], tried to improve diversity of generated images 83

by maximizing the ratio of the distance of two images in the image space with respect to 84

the distance of their correspondent latent code in the latent space. StarGAN [13] reached 85

better performance both on diversity and quality terms by using only a single generator to 86

train between multiple domains. StarGANv2 [5] later improved StarGAN architecture by 87

introducing a Style Encoder which is in charge to learn style from image and then use this 88

style code in order to condition the output. Nevertheless, all of the cited architectures tend 89

to share the same limitation of lack of diversity when using the same reference. 90
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Diffusion Probabilistic Models (DPM) [14] has recently showed impressive results 91

in the generative field. Despite this, DPMs are still not at the same level of GANs for I2I 92

translation problems. Architectures like ControlNet [15], BBDM [16] or Palette [17] show 93

good results for primitive form of I2I, but they lack of capacity to perform I2I from multiple 94

domains. For this reason, in this paper, we chose to adapt StarGANv2 architecture to 95

perform our task. 96

97

Style transfer. Style transfer is a way to perform I2I translation by generating a sample with 98

the same content of the input image but with another style. In this way, we can translate 99

images between multiple domains and preserving the input intrinsic characteristics. One of 100

the first application used conditional GAN [18] in order to perform style transfer, but was 101

based on a slow optimization process that iteratively updates the image to minimize content 102

and style losses. Later, Adaptive Instance Normalization (AdaIN) [7] became the state of 103

art for style transfer application. AdaIN enables fast arbitrary style transfer in real-time 104

without being limited to a specific set of styles as in previous works. Recently, Transformers 105

[19] exhibited impressive results in NLP and a lot of Transformer-based architecture have 106

been used across a multitude of vision-related tasks. In particular, StyTr2 [20] and Latent 107

Diffusion [6] model highlighted the power of Transformers and Cross-Attention layers 108

when used to transfer style from multimodal reference like text, class labels or images. 109

For this reason, we selected Cross Attention layers in order to apply domain style to 110

the generated input. Additionally, recent approaches leveraged the capability of Latent 111

Diffusion to perform style transfer between pictures and paintings [21,22]. 112

One of the main challenges during style transfer is to identify only the regions where 113

to extrapolate the style and remove unnecessary regions like background or other parts 114

of the image. [23] introduced an attention layer in order to select the area on where to 115

apply style during I2I translation. [24] proposed a cycle consistent attention loss in order to 116

train the model to apply changes on the same area during translation and reconstruction 117

by using residual block activation map. Recently, SEAN [25] demonstrated that using a 118

mask that represents only the relevant area of the image is possible to perform an average 119

pooling operation on the extracted features inside the style encoder and to produce more 120

accurate style codes. Following a similar idea, we propose to modify StarGANv2 style 121

encoder by introducing the mask multiplication and pooling. 122

123

Unsupervised semantic segmentation. Semantic segmentation aims to discover and local- 124

ize semantically meaningful categories present in an image. Tipically, Mask R-CNN [26] 125

or YOLO [27] are used in order to produce segmentation from an image, but they require 126

labelled datasets and this is not always feasible and, in any case, not scalable. Recently, sev- 127

eral works introduced semantic segmentation systems that could learn from weaker forms 128

of labels, such as classes, tags, bounding boxes, scribbles, or point annotations. IIC system 129

[28] focuses on maximizing the mutual information of patch-level cluster assignments 130

between an image and its augmentations. It operates as an implicit clustering method, with 131

the network directly predicting the (soft) clustering assignment for each pixel-level feature 132

vector [8,28,29]. PiCIE [29] enhances the semantic segmentation outcomes achieved by IIC 133

by leveraging invariance to photometric effects and equivariance to geometric transforma- 134

tions as an inductive bias. In PiCIE, the network aims to minimize the distance between 135

features subjected to different transformations. The distance metric is determined through 136

an in-the-loop k-means clustering process [8,29]. Conversely, STEGO [8] gains impressive 137

results in semantic segmentation without any kind of labelled dataset. STEGO shows that 138

unsupervised deep network features have correlation patterns that are largely consistent 139

with true semantic labels and uses these patterns to categorize every pixel of the image. 140

Based on its valuable characteristics, STEGO is a perfect candidate for our purposes and it 141

represents the state of art in unsupervised semantic segmentation. 142
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Figure 1. Results generated using StarGANv2. It can be seen how the generated images lose input
intrinsic characteristics like hair length or coat color and end up looking too similar to the reference,
resulting in a lack of diversity.

3. Proposed system 143

In the next sections, the proposed model, which is able to perform source-coherent 144

translation by preventing results to collapse to the references, will be described. 145

3.1. Network Architecture 146

As stated above, the network architecture of our system follows that of StarGANv2 147

and is composed by a Generator G, a Discriminator D, a Style Encoder E and a Mapping 148

Network M (see Fig. 2). Style code strg can be generated both from images by using the 149

Style Encoder or from random noise z by using the Mapping Network. During generation, 150

the Generator G takes both source image xsrc and style code strg and generates the output 151

xtrg = G(xsrc, strg). In finer details, G is designed as an encoder-decoder architecture 152

featuring four downsampling residual blocks and four upsampling residual blocks, but 153

uses Cross-attention layers (instead of Adaptive Instance Normalization layers) to apply 154

style. The discriminator D serves the role of evaluating which domain the generated 155

samples belong to. D follows StarGANv2 implementation, and is a multitask discriminator, 156

which consists of multiple output branches. Finally, the style encoder E is a CNN with two 157

residual blocks as features extractor and an average pooling layer on the area covered by 158

the mask, while M is an MLP in charge of generating style codes from noise. 159

3.1.1. Generating Style from Reference 160

As previously stated, the Style Encoder is heavily modified w.r.t. the one introduced 161

by StarGANv2. In fact, we took inspiration from SEAN Style Encoder [25] and adapted 162

it to our goal. First, only two, instead of six, downsampling layers are used, following 163

the implementation reported in [30], because we do not need shape information inside 164

our style code. Then, we multiply the extracted features with the precomputed mask, 165

computed from segmentation map obtained with STEGO (see section 3.3). This allows us 166

to delete information irrelevant for the style computation, such as the background. Finally, 167

an average pooling followed by a fully connected layer for each domain is applied (see Fig. 168

3(a)). 169

3.2. Transferring Style with Cross Attention 170

In order to apply style to the image, we use Cross-Attention layers instead of AdaIN 171

during the decoding phase of the Generator. As shown in Fig. 3(b), we first extract features 172

from source image xsrc and style code strg extracted from xre f . Subsequently, the features 173
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STEGO

Figure 2. Overview of proposed system. The generator takes the input image xsrc and applies the
style code, computed using reference (xre f ) and its correspondent mask (mre f ) or using random noise
(z), with Cross Attention layers. Finally, the result xtrg passes through the Discriminator.

extracted from the source image are normalized with a Layer Normalization and then, for 174

every Cross-Attention, the style code is injected as follows: 175

Att(x, s) = So f tmax
(

Q·KT
√

d

)
· V 176

where Q is the projection of the features extracted from xsrc, K, V are projections of the style 177

code strg and d is the dimension of a single attention head. Finally, the resulting tensors are 178

normalized with Layer Normalization and linearly transformed with a Feed Forward layer. 179

3.3. Extracting Mask with STEGO 180

For the purpose of maintaining the network fully unsupervised, the unsupervised 181

semantic segmentation architecture STEGO is employed for extracting masks from the 182

reference image before extracting style from it. As described in [8], features f are first 183

extracted from the reference image using DiNo [31] feature extractor, then STEGO segmen- 184

tation head is devoted to extract a non-linear projection and to learn patterns inside the 185

image. Finally, results are clustered and refined with a Conditional Random Field (CRF) 186

layer [32]. 187

Only the semantic cluster of the style that needs to be transferred is selected and the 188

others are set to zero in the segmentation mask. More in detail, the selected semantic 189

cluster/class is the one corresponding to the main subject of the image (e.g., animals in 190

AFHQ dataset [5], person in CelebA-HQ dataset [33]). 191

3.4. Training and Losses 192

In order to train the proposed model, we choose to maintain the training phase of 193

StarGANv2 without any change. Therefore, the total loss is composed of four losses: 194

• Adversarial loss used to learn the generation of realistic results: 195

Ladv = Esrc[log Dsrc(xsrc)] +Etrg
[
log

(
1 − Dtrg

(
G
(
xsrc, strg

)))]
196

where xsrc ∈ X is the input image, G(·) is the generator that takes xsrc and strg, which 197

is the style code extracted from the reference image xre f . 198
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Figure 3. Overview of Style Encoder architecture. (a) Comparison between StarGANv2 Style Encoder
(left) and the proposed Style Encoder (right). Differently from StarGANv2, we utilize Mask for
computing the style code. (b) Overview of Cross Attention layers utilized for style transfer. We
compute Cross Attention using extracted features of the input image as Query vector and the style
code as Key and Value vector.

• Style Reconstruction loss introduced in order to avoid the generator G from ignoring 199

the style strg during the generation phase: 200

Lsty = Esrc,trg
[∥∥strg − E

(
xtrg

)∥∥] 201

where E
(

xtrg
)

is the style code extracted from the generated image. 202

• Style Diversification loss used to differentiate the style generated from two different 203

images: 204

Ldiv = Esrc,trg1,trg2

[∥∥xtrg1 − xtrg2

∥∥] 205

• Cycle Consistency loss to maintain the domain-invariant characteristics of the generated 206

image like pose and shape: 207

Lcyc = Esrc,trg
[∥∥xsrc − G

(
xtrg, s̃src

)∥∥] 208

where s̃src is the estimated style code extracted from the input. 209

The final loss is therefore as follows: 210

min
G,M,E

max
D

Ladv + λstyLsty − λdivLdiv + λcycLcyc 211

It is worth noticing that, during training, a reference image and random noise are used 212

alternatively for generating the style code through the mapping network. 213

4. Experimental Results 214

This section will report details on the experimental results, both qualitative and 215

quantitative. 216

4.1. Selected Baseline 217

Since our work is an extension of StarGANv2, we decided to not compare the results 218

that we produce with other architectures, following [30] comparison. In fact, our work can 219

be seen as an improved version of StarGANv2 with the objective to show how to leverage 220

the mistakes made by StarGANv2 and how to improve them by adding our masked style 221

encoder. As discussed, StarGANv2 style transfer is limited in terms of diversity and tends 222

to generate images with the same style applied, on the contrary we show a proper way 223
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to perform style transfer without losing diversity. Moreover, is quite difficult to compare 224

our architecture with others since, when considering diffusion models for example, the 225

style transfer is a totally different task and cannot be compared to our architecture. All 226

the hyperparameters and training strategies are the ones proposed in the original paper of 227

StarGANv2. 228

4.2. Datasets 229

We tested our model on two datasets: CelebA-HQ, composed by 30k images [33] and 230

AFHQ, composed by 16k images [5]. CelebA-HQ is organized in two domains (male and 231

female) and AFHQ in three (cat, dog and wildlife animals). Binary masks are extracted 232

using STEGO pretrained on COCOstuff [34] and selecting “person" and “animal" attributes 233

in order to identify the subject of the image for the two datasets. No other information is 234

employed during training or inference. We resized all images to 256 × 256 and all masks to 235

64 × 64 during training. 236

4.3. Implementation Details 237

During all the experiments, we trained the network for 100k iterations and we use 238

Adam [35] as optimizer. Learning rates of 10−4 for G, D, E and 10−6 for M are used. 239

Training took about 1 day on a single NVIDIA A100 GPU which is the same as the one 240

for StarGANv2 proving that our approach does not add complexity in the training. For 241

CelebA-HQ training, we weighed every loss equally; on the contrary, for AFHQ we set 242

λdiv to 2 while λcyc and λsty to 1, following [5] implementation, in order to make an equal 243

comparison with StarGANv2 and to show that the results obtained are better because of 244

the architecture and not because of these hyperparameters. 245

4.4. Evaluation metrics 246

In order to evaluate our model we used Frechét Inception Distance (FID) [36] for image 247

quality and Learned Perceptual Image Patch Similarity (LPIPS) [37] to measure diversity 248

in the generated results. More in detail, FID metric measures the distance between two 249

distribution and in our case is used in order to measure the distance between generated 250

images, e.g. cat generated images, and test set that contains real images, e.g. real cat images. 251

So, intuitively, a low value of FID means that two distributions are similar. Indeed, given 252

two Gaussian distribution (m, C) and (mw, Cw) the FID is computed as follow: 253

d2((m, C), (mw, Cw)) = ||m − mw||22 + Tr(C + Cw − 2(CCw)
1
2 ) 254

The Learned Perceptual Image Patch Similarity (LPIPS) calculates perceptual similarity 255

between two images. LPIPS essentially computes the similarity between the activations 256

of two image patches for some pre-defined and pre-trained network. This measure has 257

been shown to match human perception well. A low LPIPS score means that image patches 258

are perceptual similar. Indeed, given two patches x and x0 their distance is computed as 259

follow: 260

d(x, x0) = ∑
l

1
HlWl

∑
h,w

||wl ⊙ (ŷl
hw − ŷl

0hw)||
2
2 261

where ŷl
hw and ŷl

0hw are the stacked features extracted from the patches. These features are 262

normalized, and the distance between them is modulated by a learned weight vector wl 263

which adjusts the contribution of different feature channels [37]. 264

Since the main contribution of our model is to perform source-coherent translation, which 265

aims at improving diversity for image generated with the same reference, the evaluation 266

was designed as follows: 267

• firstly, we randomly select one image for every domain as reference; 268

• secondly, given a set of source images, we generate samples with those reference 269

images; 270

• thirdly, we compute FID and LPIPS (with consecutive pair of images); 271



Version March 4, 2025 submitted to Appl. Sci. 8 of 14

• finally, we repeat this evaluation phase for 10 times in order to remove randomness in 272

the results. 273

It is worth emphasizing that we decided to not use StarGANv2 FID algorithm, which 274

calculates FID by using ten references for each domain, because we want to improve 275

diversity in the results generated from a single reference. Therefore, FID is computed with 276

only one reference per domain in order to evaluate the quality of images generated with 277

our method. 278

Source
Reference

Source
Reference

Source
Reference

Source
Reference

Figure 4. Main results obtained with our architecture. We can see how the results are indistinguible
from real images and how they maintain the input intrinsic characteristics like expression, age or fur
color.

4.5. Discussion 279

Depending on the dataset different styles are transferred. For CelebA-HQ the male2female 280

and female2male where chosen. While for the AFHQ dataset we transferred cat-dog2wildlife 281

and wildlife2cat-dog. As it can be seen from Fig. 4, the proposed architecture can perform 282

I2I translation between multiple domains like StarGANv2, but gaining the capability to 283

preserve input intrinsic characteristics during translation. Looking at the CelebA-HQ 284

results, the proposed architecture maintains the input facial attributes, but applies changes 285

to gender and hair color, which are taken from the reference images. In AFHQ results, our 286

method maintains the same expression and preserves better fur color during translation, 287

but changes the class of the animal. We introduced our work with the claim of increasing 288

diversity in results generated using the same reference. This is shown clearly in Figs. 5 289

and 6, where the results are compared with the ones obtained using StarGANv2. From 290

these examples, it is evident that StarGANv2 tends to collapse to the reference image and 291

looses the majority of intrinsic attributes from input, except for the pose in AFHQ and the 292

expression in CelebA-HQ. In contrast, our results maintain much more original details, 293

such as fur color in AFHQ or age and hair style in CelebA-HQ. This leeds to more diversity 294

and variety in generated images and in less reference-based generation. 295

More in details, StarGANv2 seems to capture attributes from reference, like hair 296

color and length in Fig. 5, and apply them to the input in a rigid scheme that does not 297

take care of the input attributes. On the contrary, the proposed method, in addition to 298

understanding which are the main details from the reference, also considers the details 299

from the input image before applying it. This leads, for instance, to a higher variety of 300

hair lengths and not in a prefixed hair length, like StarGANv2. This is also visible in Fig. 6, 301

where StarGANv2 produces the same animal with different poses. Our method, on the 302

contrary, better understands the input characteristics and generates different breeds of 303

dog/cats/wildlife animals based on the input breed. 304
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All the previous considerations are valid also when the style code strg is sampled from 305

random noise by using the Mapping Network M. This is presented in Fig. 7, where our 306

architecture produces various and more source-coherent results than the ones generated by 307

StarGANv2. 308

In order to support our claim we also show how our method produces similar results 309

when similar reference images are employed, as shown in Fig. 8. This can be seen as a 310

positive effect of our source-coherent method which does not ignore input attributes. 311

4.5.1. Quantitative results 312

Architecture AFHQ CelebA-HQ
FID ↓ LPIPS ↑ FID ↓ LPIPS ↑

StarGANv2 [2] 104.86 0.457 81.175 0.365
Ours (AdaIN) 76.15 0.523 57.67 0.420

Ours 67.72 0.517 54.12 0.425

Table 1. Quantitative comparison between StarGANv2 and our architecture. For our architecture we
also include the model with AdaIN instead of Cross Attention Layers.

The above considerations are reflected in the quantitative results reported in Table 1. 313

The proposed architecture significantly improves LPIPS results for both datasets. Further- 314

more, FID results highlight how our architecture produces much higher quality images. 315
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Figure 5. Comparison between StarGANv2 (first rows) and our architecture (second rows) on CelebA-
HQ dataset.
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Figure 6. Comparison between StarGANv2 (first rows) and our architecture (second rows) on AFHQ
dataset.

Architecture CelebA-HQ
FID ↓

StarGANv2 [2] 29.88
Ours (AdaIN) 32.94

Ours 30.99

Table 2. Quantitative comparison between StarGANv2 and our architecture using StarGANv2 FID
algorithm.

As shown in Table 2, we also compute FID using StarGANv2 algorithm on CelebA-HQ 316

and we obtained opposite results. This is due to how FID works (also explained in Section 317

4.4): given the alignment of StarGANv2 generated images with the reference image shown 318

in qualitative results, FID computed as in StarGANv2 original paper is natively lower. 319

Indeed, FID tends to measure the difference between two distribution and since the images 320

generated by StarGANv2 have less diversity than the ones generated by our architecture, 321

the FID score in this case is better for StarGANv2 results. Nevertheless, in section 4.4 we 322
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Figure 7. Comparison between StarGANv2 (first rows) and our architecture (second rows) on AFHQ
dataset in results generated using random noise as a reference.

Results

Source

Figure 8. Similar input generates similar output due to the fact that we preserve input characteristics
during translation.

justified how is not fair to compute FID in this way in order to consider the diversity in 323

generated images. However, this comes at the cost of more limitations for StarGANv2 324

w.r.t. to our architecture, such as loosing input characteristics, lack of diversity in generated 325

results and results collapsed to the reference images. 326

4.6. Ablation 327

Finally, we perform ablation studies to find the optimal configuration for our archi- 328

tecture. First, we try to transfer the style using AdaIN and not Cross Attention layers. 329

As shown in Table 1 and Fig. 9, using AdaIN leads to slightly better results compared 330

to StarGANv2 in terms of diversity, but the network still does not maintain the input 331

characteristics like our final configuration. Additionally, we also tested employing 2 and 332

3 downsampling layers inside our Style Encoder, as it can be seen from second and third 333

rows in Fig. 9. Indeed, the configuration with 3 downsampling layers tends to collapse 334

more to the reference than the ones with 2 downsampling layer, as it can be seen from the 335

fur style. Furthermore, by comparing these results with the ones produced by the final 336

architecture, it is evident how Cross Attention layers improve the quality in generated 337

results and better maintain input characteristics. Finally, results generated without masks 338

are reported in the fourth row, proving that masks are necessary to identify major input 339

information, like fur color or ear pose. 340
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Figure 9. Difference between results generated with different architectures: first row with StarGANv2,
second with our Style Encoder and AdaIN for style transfer, third with the same architecture as before
but with 3 downsampling layers inside the Style Encoder, fourth with Cross Attention layers for style
transfer but without masks and with 3 downsampling layers in the Style Encoder and finally with
the proposed architecture.

5. Conclusions 341

For the task of I2I translation, StarGANv2 has shown limitations in preserving input 342

details during translation. Additionally, StarGANv2 is not able to generate diverse samples 343

when using the same reference image. For these reasons, this paper proposes a novel 344

architecture for source-coherent image-to-image translation, which preserves input char- 345

acteristics and increases diversity in the generated results. More in detail, style extracted 346

from the reference images are masked in order for the model to focus only over the relevant 347

information and are injected in the model using cross attention layers. By doing so, we 348

managed to improve both quantitative and qualitative results. 349

Future works could focus on improving results generated using two different refer- 350

ences and only one source, since our method, by preserving input intrinsic characteristics, 351

tends to produce similar results when the same source image is utilized. 352
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