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Abstract

Leveraging auxiliary textual data can help with001
user profiling and item characterization in rec-002
ommender systems (RSs). However, incom-003
plete user and item descriptions limit the poten-004
tial of textual information in RSs. To this end,005
we propose a graph-aware convolutional LLM006
method, eliciting LLMs to summarize from a007
high-order interaction graph to generate fine-008
grained descriptions for users and items. We009
focus on two challenges in this paper: 1) the in-010
compatibility between structural graph and text-011
aware LLMs; and 2) the limitation of LLMs’012
capability for long context. To bridge the gap013
between graph structures and LLMs, we em-014
ploy the LLM as an aggregator for graph con-015
volution process, eliciting it to infer the graph-016
based knowledge iteratively. To mitigate the in-017
formation overload associated with large-scale018
graphs, we segment the graph processing into019
manageable steps, progressively incorporating020
multi-hop information in a least-to-most man-021
ner. Experiments on three real-world datasets022
demonstrate that our method consistently out-023
performs state-of-the-art approaches.024

1 Introduction025

Recommender systems (RSs) are pivotal in deliver-026

ing personalized services to users for their satisfac-027

tion and platform profitability. Traditionally, RSs028

heavily rely on user-item interaction records (Ko-029

ren et al., 2009) but face challenges with data spar-030

sity (Sun et al., 2019). Recently, there has been031

a trend towards utilizing auxiliary textual infor-032

mation for recommendation (Torbati et al., 2023).033

However, texts with users and items often suffer034

from incompleteness and bias, with users offering035

vague self-descriptions and providers giving sparse036

or strategically biased item descriptions. Such texts037

negatively impact user profiling and item character-038

ization, hindering accurate recommendations.039

To enhance the reliability and completeness of040

textual descriptions, recent approaches have em-041

ployed large language models (LLMs) to gener- 042

ate LLM-driven descriptions based on raw con- 043

tents and task-specific prompt instructions (Zheng 044

et al., 2023; Wu et al.; Liu et al., 2023; Wang et al., 045

2024b), such as incorporating users’ behaviors as 046

supplemental knowledge for retrieval-augmented 047

generation (Du et al., 2024; Liu et al., 2024b). Nev- 048

ertheless, these methods still suffer from unreliable 049

and inaccurate textual generation due to the lack 050

of collaborative user-item insights and the limited 051

scope of information observed by LLMs. 052

To this end, inspired by the success of graph con- 053

volutional networks (GCNs) (Kipf and Welling, 054

2016), we propose Graph-aware Convolutional 055

LLM (GaCLLM) to integrate high-order collab- 056

orative information from user-item graph to pro- 057

vide more evidence for LLM inference, generat- 058

ing fine-grained descriptions of users and items 059

for recommendation. We focus on two main chal- 060

lenges: 1) the incompatibility between structural 061

graph and text-aware LLMs; and 2) the limitation 062

of LLMs’ capability for long context. Firstly, text- 063

based LLMs are inherently ill-suited for process- 064

ing structured graph data. Existing methods con- 065

vert graph data into textual form using templates 066

and sampling strategies (Wang et al., 2023; Wu 067

et al., 2024). However, these methods limit the 068

LLMs’ ability to maintain a global perspective on 069

graphs, thereby hindering their full potential in uti- 070

lizing reasoning skills for graph-based knowledge. 071

Secondly, large-scale user-item graphs pose con- 072

text length limitations for LLM inputs by simply 073

describing them in a textual format. Specifically, 074

LLMs often struggle to robustly comprehend in- 075

formation from lengthy contextual inputs, particu- 076

larly when critical information (e.g., key entities in 077

graphs) is located in the middle (Liu et al., 2024a). 078

To tackle these challenges, we develop a convo- 079

lutional inference strategy to integrate high-order 080

relations from the user-item interaction graph into 081

LLMs. To align LLMs with graph structures, we 082
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employ the LLM as an aggregator function and083

maintain a global perspective on graphs. Specifi-084

cally, the LLM assimilates information from neigh-085

boring nodes and ensures layer-by-layer propaga-086

tion throughout the graph. By leveraging high-087

order relations in the user-item interaction graph,088

our method enhances reasoning capabilities for bet-089

ter LLM-driven descriptions. To mitigate the infor-090

mation overload associated with large-scale graphs,091

we segment the graph processing into manageable092

steps in a least-to-most (Zhou et al., 2022) man-093

ner, iteratively incorporating multi-hop neighbor094

information to refine each node’s (i.e., user or item)095

description. Therefore, the overload of describ-096

ing the graph can be segmented into several steps097

with a drastic reduction of context length for LLMs,098

alleviating the limitations of lengthy inputs to cap-099

ture critical information for LLM-driven reasoning.100

Finally, we fuse these LLM-driven descriptions101

into behavioral graph embeddings to bridge the102

gap between text information and structural data in103

the user-item graph for recommendation. We con-104

duct extensive experiments on multiple real-world105

datasets to show that our method consistently out-106

performs state-of-the-art approaches and validate107

the effectiveness of our proposed strategy.108

2 RELATED WORK109

2.1 Graph-based Recommendation110

Graph-based recommender systems (Kipf and111

Welling, 2016; Huang et al., 2024; Yan et al., 2024)112

employ deep neural networks to model user-item in-113

teractions within graph structures. LightGCN (He114

et al., 2020) streamlines GCNs for collaborative115

filtering with simplicity and effectiveness. Then,116

many studies use contrastive learning (Yu et al.,117

2022; Chen et al., 2023), transformer (Wei et al.,118

2023), neighborhood-structure (Lin et al., 2022),119

and self-supervised learning (Wu et al., 2021) as en-120

hancement. However, they mainly focus on aggre-121

gating node embeddings and fail to extract insights122

from textual descriptions for recommendation.123

2.2 LLM for Recommendation124

There is increasing interest in leveraging LLMs125

in recommender systems (Lyu et al., 2024; Bao126

et al.). Non-tuning methods (Kuo and Chen, 2023;127

Senel et al., 2024) assume that LLMs possess rec-128

ommendation capabilities and use them to produce129

results directly through prompts (Kang et al., 2023;130

Zhang et al., 2023) and in-context learning (Hou131

et al., 2024; Wang and Lim, 2024). The tuning 132

paradigm (Lu et al., 2024) employs LLM as feature 133

extractors for downstream tasks, aiming to capture 134

contextual information for a precise understand- 135

ing of user profiles (Zheng et al., 2023; Du et al., 136

2024; Ren et al., 2024), user attributes (Wang et al., 137

2024a), and item descriptions (Liu et al., 2024b). 138

However, relying only on raw text and ignoring 139

graph knowledge leads to hallucinations. 140

2.3 LLM with Graph Data 141

Integrating LLMs with graph data (Li et al., 2024; 142

Tang et al., 2024) effectively leverages the rich 143

structure and relationships. Supervised methods 144

use LLMs for graph-aware tasks via encoding text 145

into node embeddings (Chen et al., 2024; Zhang 146

et al., 2021) and incorporating graph elements into 147

training (Sun et al., 2021; Yasunaga et al., 2022; 148

Xie et al., 2023; Zhang et al., 2024b), but they 149

mainly compress graph knowledge into model pa- 150

rameters, overlooking the LLMs’ reasoning mech- 151

anism. Unsupervised methods (Wang et al., 2023; 152

Andrus et al., 2022; Wu et al., 2024; Zhang et al., 153

2024a) convert graph information into text via tem- 154

plates or sampling strategies for LLMs to process. 155

However, they lack a global view of the graph and 156

still fail to fully exploit LLMs’ reasoning potential. 157

3 Methodology 158

3.1 Problem Definition 159

We denote U = {u1, · · · , uN} and I = 160

{i1, · · · , iM} as the sets of users and items, where 161

N and M are sizes. The interaction records be- 162

tween users and items can be denoted as an inter- 163

action matrix R ∈ RN×M where Ru,i = 1 if user 164

u interacted with item i, and 0 otherwise. We also 165

possess the textual information (e.g., user resumes 166

and job descriptions in online recruitment scenar- 167

ios) of both users, denoted as Tu = [w1, · · · , wlu ] 168

with length lu for user u, and items, denoted as 169

Ti = [w1, · · · , wli ] with length li for item i, and 170

wk represents the k-th word. In this paper, our 171

goal is to learn a matching function g(u, i) using 172

the interaction records R and the textual descrip- 173

tions. Our task is to recommend K items that a 174

user prefers, as known as top-K recommendation. 175

3.2 Overview 176

The overall architecture of GaCLLM is shown in 177

Figure 1. First, we perform supervised fine-tuning 178

(SFT) for LLM to strengthen its effectiveness in 179
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Figure 1: The overall architecture of the proposed method GaCLLM.

the task-related domain. Second, we propose an180

LLM-based graph-aware convolutional inference181

strategy to enhance user and item descriptions pro-182

gressively. Third, we align and integrate the gen-183

erated text with behavioral information captured184

through graph-based embeddings. Last, we present185

the objective function and model learning process.186

3.3 Supervised Fine-tuning187

To fully exploit the potential of the LLM in un-188

derstanding the task-related domain, we begin189

with fine-tuning it on domain-specific data. This190

involves the training of the LLM using descrip-191

tions from matched user-item pairs, enabling it to192

learn the alignment between user and item descrip-193

tions. Specifically, we employ the prompt template:194

"Query: Given an item’s description, generate a195

user’s description that fits it. The item’s descrip-196

tion is [Item Desc]. Answer: ", where [Item Desc]197

represents the actual description of the item. The198

prompt for inferring item descriptions with the pro-199

vided user description is designed symmetrically.200

The optimization process involves minimizing the201

negative log-likelihood loss for these templates,202

i.e., Lsft = −
∑|TAnswer|

k=1 log Pr(wk | w<k, TQuery),203

where wk denotes the k-th word in Answer sen-204

tence TAnswer, and Pr(TAnswer|TQuery) denotes the205

generation probability for the produced answer206

with a given query. This process uses parameter-207

efficient fine-tuning techniques.208

3.4 Convolutional Inference Strategy209

Graph Construction. To explore the structured210

graph with high-order descriptive texts for LLMs,211

we organize the descriptions of users and items into212

a unified graph G = (V, E) using the collaborative213

information among users and items. Specifically,214

the nodes V in the graph represent users and items,215

i.e., V = {u|u ∈ U} ∪ {i|i ∈ I}. The edges E are216

constructed by the interactions between users and 217

items R ∈ RN×M , i.e., E = {(u, i)|Ru,i = 1}. 218

Each node in the graph has a textual description, 219

such as a user profile in a social network or a re- 220

sume of a job seeker. 221

Least-to-Most Text Enhancement. Recognizing 222

the extensive knowledge, advanced text compre- 223

hension, and reasoning capabilities of LLMs, we 224

propose an LLM-based convolutional inference 225

strategy to summarize from a high-order interac- 226

tion graph to generate fine-grained descriptions for 227

users and items. To make user descriptions more 228

representative, we leverage the LLM to rewrite 229

a user’s raw description Tu by the descriptions 230

of items that the user has interacted with, i.e., 231

T ′
u = LLM(Puser(Tu, {Ti : (u, i) ∈ E})), where 232

Puser denotes the prompt template for generat- 233

ing user descriptions. Similarly, to enhance item 234

description Ti, we use the LLM to produce the 235

enhanced version considering the descriptions of 236

users by interaction, i.e., T ′
i = LLM(Pitem(Ti, {Tu : 237

(u, i) ∈ E})), where Pitem denotes the prompt tem- 238

plate for generating item descriptions. The design 239

of a prompt template varies with the tasks. In this 240

paper, we focus on job and social recommenda- 241

tion tasks. The details of the prompts are shown in 242

Figure 2. 243

To enable LLMs to effectively explore the struc- 244

tured graph, we iteratively use them to refine the 245

descriptions of nodes (users and items) step by step. 246

Specifically, we set the first-layer descriptions of 247

users {L(1)
u |u ∈ U} by raw texts provided by users, 248

i.e., L(1)
u = Tu, and we set the first-layer descrip- 249

tions of items {L(1)
i |i ∈ I} by raw texts given by 250

item providers, i.e., L(1)
i = Ti. We employ the 251

LLM as an "aggregator" in the graph convolutional 252

process, enhancing its ability to infer graph-based 253

knowledge through iterative steps. The updated 254
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Figure 2: The prompt design for job recommendation
(top) and social recommendation (bottom).

Figure 3: The comparison of token usage of convo-
lutional inference strategy (left) and plain description
strategy (right) in text enhancement.

user and item descriptions after each iteration are255

generated as follows:256

L(l+1)
u = LLM(Puser(L(l)

u , {L(l)
i : (u, i) ∈ E})), (1)257

258
L(l+1)

i = LLM(Pitem(L(l)
i , {L(l)

u : (u, i) ∈ E})), (2)259

where L(l+1)
u and L(l+1)

i denote the descriptions of260

users and items at (l+1)-th layer after l iterations of261

generation, capturing l-hop descriptive information262

within the graph. After L iterations of this LLM-263

based convolutional inference strategy, we obtain264

progressively refined descriptions across multiple265

layers for both users and items.266

Token Effectiveness and Efficiency. Compared267

with organizing all hierarchical node descriptions268

in the graph structure into a single, plain paragraph269

of prompt (e.g., listing each node and its multi-hop270

neighbors along with their descriptions), the pro-271

posed convolutional inference strategy improves272

both effectiveness and efficiency in token usage.273

First, it optimizes the capture of graph-related274

information within the limited context length of275

LLMs. Specifically, the proposed strategy decom-276

poses the ultimate task of description enhancement277

into multiple steps, where each step (layer) only in-278

tegrates the descriptions of direct (one-hop) neigh-279

bors for the target node. This step-by-step approach280

effectively alleviates the issues of hallucination and281

distraction with long inputs, significantly reducing 282

the number of tokens required for each inference. 283

Second, our convolutional inference strategy ef- 284

ficiently reduces the redundancy in describing the 285

graph for target nodes. Specifically, when com- 286

paring the number of nodes required to capture L- 287

hop graph-based information for each node, the 288

proposed method incorporates O(|G| · |N | · L) 289

nodes into LLMs, where |G| denotes the number 290

of nodes in the graph and |N | denotes the average 291

number of neighbors of each node. In contrast, 292

the plain description strategy needs to incorporate 293

O(|G| ·(1+ · · ·+ |N |L)) nodes into LLMs, leading 294

to a significant increase in token usage. Therefore, 295

by minimizing the overlap in node descriptions 296

(the redundant description of common neighbors 297

in Figure 3), our method enhances token efficiency. 298

3.5 Text-graph Alignment 299

To bridge the gap between LLM-driven text infor- 300

mation and behavioral-based structural data in the 301

user-item graph for recommendation, we propose 302

to align the user and item descriptions with their 303

corresponding graph embeddings in a unified man- 304

ner. Specifically, the GCN-based embeddings for 305

users and items at the l-th layer, denoted as e(l)u and 306

e
(l)
i . They can be iteratively updated as follows: 307

e(l+1)
u = Wl ·

 ∑
(u,i)∈E

e
(l)
i√

|Nu||Ni|
⊕ f(L(l)

u )

 , (3) 308

309

e
(l+1)
i = Wl ·

 ∑
(u,i)∈E

e
(l)
u√

|Nu||Ni|
⊕ f(L(l)

i )

 . (4) 310

where Nu denotes the set of items that are inter- 311

acted by user u, and Ni denotes the set of users that 312

interact with item i. |·| indicates their sizes. We use 313

d to represent the dimension of latent embedding 314

space and ⊕ for the fusing function such as con- 315

catenation. The matrix Wl ∈ R2d×d denotes the 316

transformation mapping matrix for the l-th layer. 317

In the first layer, each user and item is initialized 318

with a graph embedding based on its ID, repre- 319

sented as e(1)u ∈ Rd and e
(1)
i ∈ Rd. To incorporate 320

the textual descriptions associated with users and 321

items, we encode these descriptions into constant 322

text-based embeddings by f(·). In practice, we add 323

a unique token [CLS] before the original text and 324

feed the combined sequence into the simbert-base- 325

chinese model. The output of the [CLS] token is 326

used as the semantic embedding for alignment. 327
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To leverage the descriptions of users and items328

across all layers, we further combine their embed-329

dings from each layer to produce the final embed-330

dings of users and items through mean-pooling:331

ẽu =
1

L

∑L

l=1
e(l)
u ; ẽi =

1

L

∑L

l=1
e
(l)
i . (5)332

3.6 Objective Function333

To measure the matching scores between users and334

items for final predictions, we propose to compute335

the inner product of their representations for recom-336

mendation prediction scores by R̂u,i =< ẽu, ẽi >,337

where < ·, · > denotes the inner product operation338

for similarity. It produces a score or probability339

of item i that user u will engage. For the model340

training process, we use the pairwise loss to define341

the recommendation objective function as follows:342

max
Θ

∑
(u,i,j)∈D

log σ(R̂u,i − R̂u,j)− λ||Θ||2, (6)343

where the train set D = {(u, i, j)} consists of344

triplets with a user u, an item i with positive feed-345

back from user u, and an item j with negative feed-346

back from user u. Θ denotes all trainable param-347

eters, and λ is the regularization coefficient of L2348

norm || · ||2.349

3.7 Complexity and Applicability350

The model parameter of GaCLLM is approximately351

O((M +N) · d + 2 · L · d2) = O((M +N) · d)352

as (M +N) ≫ 2 ·L · d. The complexity is similar353

to the efficient LightGCN (He et al., 2020). As for354

model training, the time cost is slightly higher than355

LightGCN due to the additional text embeddings.356

For the training phase, LLM-based recommen-357

dation methods inevitably require more complexity358

and training cost than deep learning-based methods.359

Our method shares similar training and inference360

costs compared to existing LLM-based methods,361

e.g., (Zheng et al., 2024; Wu et al., 2024). Notably,362

the supervised finetuning (Section 3.3) and con-363

volutional inference strategy (Section 3.4) can be364

done offline and independently with different users,365

which is not necessary to require more GPU mem-366

ory for large-scale applications. For text-graph367

alignment (Section 3.5), the time cost is slightly368

higher than LightGCN due to the additional text369

embeddings. The detailed comparisons of com-370

plexity and time consumption between GacLLM371

and LightGCN are summarized in Table 1. For the372

serving phase, our complexity computation is the373

same as most of the recommendation methods, e.g.,374

Model Parameter Number Time Efficiency
Generation Train Generation Train

LightGCN - O(M·d) - 2.27s
Ours ChatGLM2-6B O(M·d) 12.28s 3.76s

Table 1: Comparison of Model Performance

Job # User Resumes # Job Descriptions # Interactions

Designs 12,290 9,143 166,270

Sales 15,854 12,772 145,066
Social # Group A # Group B # Connections

Pokec 6,240 6,213 104,152

Table 2: Statistics of datasets.

LightGCN. Therefore, the LLM in our method does 375

not change the latency in the serving phase, thus 376

our method is applicable in real-time deployment. 377

4 Experiment 378

4.1 Experimental Setup 379

Datasets. We investigate two recommendation sce- 380

narios. For job recommendation, we use two 381

real-world datasets sourced from an online recruit- 382

ing platform within the Design and Sales profes- 383

sions with extensive user-job interactions. The user 384

resumes and job descriptions are available as tex- 385

tual document information. For social recommen- 386

dation, we use a public dataset Pokec Slovakian 387

Social Network (Pokec) collected from an online 388

social platform. It contains the friendship relations 389

among users and their self-descriptions. We aim 390

to suggest connections between users based on di- 391

verse preferences and attributes. The dataset is 392

divided into subsets Pokec-A and Pokec-B by dif- 393

ferent user groups. The statistics are in Table 2. 394

395

Evaluation. We randomly split the dataset equally 396

into training, validation, and test sets. We utilize 397

two well-recognized top-K recommendation met- 398

rics, mean average precision (MAP@K) and nor- 399

malized discounted cumulative gain (NDCG@K), 400

where K is set to 5 empirically. We run five times 401

and take the average performance as experimental 402

results with different random initializations. 403

Baselines. We compare our GaCLLM with the fol- 404

lowing baselines. Content-based and collabora- 405

tive filtering RS: SGPT-BE (Muennighoff, 2022), 406

MF (Koren et al., 2009), and NCF (He et al., 2017). 407

Graph-based RS: LightGCN (He et al., 2020), 408

SimGCL (Yu et al., 2022), UltraGCN (Mao et al., 409

2021), and SGL (Wu et al., 2021). For a fair com- 410
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Models

Job Recommendation Social Recommendation

Design Sales Pokec-A Pokec-B

MAP@5 NDCG@5 MAP@5 NDCG@5 MAP@5 NDCG@5 MAP@5 NDCG@5

SGPT-BE 0.0651 0.1042 0.0491 0.0861 0.0724 0.1013 0.0710 0.0980
MF 0.2081 0.3182 0.0957 0.1751 0.2639 0.3838 0.2616 0.3876
NCF 0.2100 0.3258 0.1468 0.2678 0.2969 0.4270 0.2930 0.4273

LightGCN 0.2940 0.4697 0.1658 0.3001 0.3293 0.4664 0.3294 0.4676
SimGCL 0.1471 0.2277 0.0921 0.1658 0.2940 0.4235 0.3093 0.4459

UltraGCN 0.2639 0.4258 0.1469 0.2725 0.3263 0.4691 0.3204 0.4623
SGL 0.2769 0.4418 0.1431 0.2567 0.3047 0.4385 0.3012 0.4394

LLM-CS 0.2669 0.2190 0.1530 0.2803 0.2569 0.3478 0.2527 0.3468
LLM-TES 0.2208 0.3478 0.1520 0.2797 0.2593 0.3517 0.2571 0.3512

LGIR 0.2898 0.4616 0.1694 0.3103 0.3245 0.4390 0.3081 0.4183
RLMRec 0.2816 0.4377 0.1502 0.2641 0.3326 0.4617 0.3238 0.4498

GaCLLM 0.3060* 0.4925* 0.1750* 0.3234* 0.3461* 0.4798* 0.3446* 0.4797*
Improvement 4.06% 4.85% 3.32% 4.21% 4.06% 2.28% 4.60% 2.60%

Table 3: Performance of GaCLLM and baseline methods. The best results are in bold and the runner-up results are
underscored. ∗ indicates significant improvements at the level of 0.05 with a paired t-test.

parison, we enhance graph-based methods with text411

information to ensure the same utilization of infor-412

mation. LLM-based RS: LLM-CS (Chen et al.,413

2024), LLM-TES (Chen et al., 2024), LGIR (Du414

et al., 2024), and RLMRec (Ren et al., 2024).415

Implementation Details. For the LLM backbone,416

we use ChatGLM2-6B (Du et al., 2022) for its pro-417

ficiency in handling multilingual tasks including418

Chinese, as datasets Design and Sales are in Chi-419

nese. For the SFT stage, we use LoRA (Hu et al.,420

2022) with a learning rate of 10−5, LoRA dimen-421

sion of 128, batch size of 2, 104 training steps, and422

gradient accumulation of 1. To ensure a fair com-423

parison, we fix the embedding size of all methods424

to 768, batch size to 1024, and regularization coeffi-425

cient to 10−4 with AdamW (Loshchilov and Hutter,426

2019) optimizer. Following (Yang et al., 2022; Du427

et al., 2024), we use 20 negative instances for every428

target item during evaluation1.429

4.2 Comparison with Baselines430

Table 3 shows the overall comparison between431

GaCLLM and baselines. From the experimental432

results, we demonstrate that GaCLLM consistently433

outperforms all baseline methods across all job rec-434

ommendation and social recommendation scenar-435

ios, with average improvements of 4.46%, 3.77%,436

3.69%, and 3.60%. Besides, interaction-only (i.e.,437

MF and NCF) and text-only (SGPT-BE) methods438

show inferior performance compared to the other439

hybrid approaches, indicating the necessity of uti-440

lizing both text and interaction information. In ad-441

dition, the improvements in GCN-based methods442

1Our code is at https://anonymous.4open.science/r/
GaCLLM_code-C326.

Models
Design Sales

MAP@5 NDCG@5 MAP@5 NDCG@5

RAW 0.2951 0.4717 0.1692 0.3082
PLAIN 0.2908 0.4655 0.1677 0.3080

w/o-ALIGN 0.2901 0.4654 0.1753 0.3212
GaCLLM 0.3060 0.4925 0.1750 0.3234

Models
Pokec-A Pokec-B

MAP@5 NDCG@5 MAP@5 NDCG@5

RAW 0.3402 0.4678 0.3326 0.4655
PLAIN 0.3362 0.4672 0.3287 0.4612

w/o-ALIGN 0.3435 0.4780 0.3331 0.4687
GaCLLM 0.3461 0.4798 0.3446 0.4797

Table 4: Performance of ablation variants.

prove the value of extracting both graph and text 443

information for better recommendation outcomes. 444

This supports our motivation to combine LLMs 445

with graph structural information to improve the 446

quality of textual descriptions in recommendation 447

systems. SimGCL shows underwhelming results, 448

likely due to the graphical framework’s incompati- 449

bility with incorporating text-aware information ef- 450

fectively. Finally, simply adopting the LLM as the 451

encoder (LLM-CS) or zero-shot reasoner (LLM- 452

TES) produces suboptimal performance. LGIR and 453

RLMRec show stronger performance by inferring 454

from direct neighbors but still overlook the more 455

complex, high-order relationships within the graph. 456

As a result, by aligning LLM and high-order graph 457

relations, GaCLLM achieves the best performance, 458

validating its effectiveness. 459

4.3 Ablation Study 460

To verify the efficacy of the key components of 461

GaCLLM, we test the following variants. RAW 462

adopts raw descriptions instead of LLM-driven de- 463

scriptions by the user-item graph. PLAIN removes 464

the convolutional inference strategy, adopting a 465
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template to describe all node descriptions related466

to the target node in a plain way as the inputs of467

LLMs. w/o-ALIGN excludes the alignment with468

graph embeddings and simply adopts the enhanced469

descriptions by L-hop neighbors for node embed-470

dings of the L-th layer. Table 4 shows the per-471

formance of variants and original GaCLLM. First,472

the proposed GaCLLM consistently outperforms473

RAW across all scenarios, indicating that utiliz-474

ing high-order relations in the interaction graph475

can improve the textual content and thus lead to476

more accurate recommendation predictions. Sec-477

ond, GaCLLM significantly outperforms PLAIN.478

While PLAIN struggles to effectively capture the479

structured graph by describing high-order relations480

in a single prompt, GaCLLM elicits the reason-481

ing capacity of LLMs more effectively through a482

step-by-step, graph-based convolutional inference483

process. This allows GaCLLM to better utilize484

the graph structure for improved recommendations485

and avoids context length limits. Third, GaCLLM486

outperforms w/o-ALIGN as the alignment of tex-487

tual and graphical representations bridges the gap488

between LLM-driven information and behavioral489

patterns. Thus, we can fully leverage the layered490

descriptions generated by the LLM for recommen-491

dation. As such, the ablation study supports the492

efficacy of GaCLLM and the underlying motiva-493

tions presented in this paper.494

4.4 In-depth Analysis495

In this subsection, we further conduct experiments496

to analyze the impact of hyper-parameters, the su-497

pervised fine-tuning step, and the LLM model se-498

lection. We also illustrate the effectiveness of our499

GaCLLM by both quantitative subgroup analysis500

and qualitative case study.501

Number of Layers. In Figure 4, we observe that502

the best performance is produced by (4, 3, 2, 2) lay-503

ers for datasets. For real-world applications, we504

suggest using the grid search on optimal layer num-505

bers for GaCLLM implementation empirically. In506

addition, Figure 7 shows that deeper layers can cap-507

ture or generate richer textual information, which508

is detailed in the Subgroup Analysis.509

Supervised Fine-tuning Study. In Figure 5 (left),510

we evaluate the variant without supervised fine-511

tuning in Section 3.3. Using Designs dataset as an512

example, we notice a limited improvement, which513

indicates that the overall performance boost by514

GaCLLM is not obtained directly from the SFT, but515

from the LLM-based convolutional inference strat-516

Figure 4: GaCLLM with varying numbers of layers.

Figure 5: Impact of SFT stage (left) and varying LLM
backbones (right) in Designs dataset.

egy and embedding alignment. Though the impact 517

of SFT is not significant, some recommendation 518

scenarios may contain extra domain-specific infor- 519

mation beyond pre-trained knowledge. Thus, SFT 520

step contributes to the adaptability of GaCLLM. 521

LLM Backbone. In Figure 5 (right), we assess 522

GaCLLM using Llama-2-7B as the backbone re- 523

placement of the original ChatGLM2-6B with a 524

similar scale. The result shows comparable perfor- 525

mance, validating the robustness of our method and 526

the stability of our convolutional inference strategy 527

in description enhancement for recommendation. 528

Text Encoder. To bridge the gap between LLM- 529

driven text information and behavioral-based graph 530

embeddings, we employ simbert-base-chinese to 531

encode user and item text information into latent 532

space. In Table 5, we also explore using other 533

LLM’s backbone as text encoder. The results show 534

Encoder MAP@5 NDCG@5

simbert-base-chinese 0.3060 0.4925

ChatGLM2-transformer 0.2722 0.4291

Table 5: Performance of the proposed method with
varying text encoders in Designs dataset.
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Figure 6: Performance across user subgroups for de-
scription improvement analysis.

Figure 7: Length of descriptions across layer numbers.

that ChatGLM2 yields suboptimal results as a text535

encoder, likely due to its decoder-only structure536

optimized for text generation rather than under-537

standing. For better performance and parameter538

efficiency, the encoder-only simbert-base-chinese539

is a more suitable choice.540

Subgroup Analysis. To investigate how and to541

what extent our method can enhance the descrip-542

tions of users and items, we divided users into543

five equally sized groups (G1 to G5) based on544

the length of raw descriptions. The difference545

between GaCLLM and RAW in Figure 6 shows546

the significance of refining descriptions for all raw547

text. Notably, GaCLLM achieves more substan-548

tial improvements in groups with less comprehen-549

sive descriptions, highlighting the effectiveness of550

the LLM-based convolutional inference strategy by551

leveraging the graph structure. In addition, we also552

investigate the average lengths of LLM-generated553

descriptions of each layer for each group as shown554

in Figure 7. As the layer number increases, the aver-555

age length rises across all groups, with G1 showing556

the most significant relative increases. This sug-557

gests that deeper layers can capture or generate558

richer textual information, leveraging whose repre-559

sentations can improve recommendation quality.560

Case study. We qualitatively show the efficacy561

Figure 8: Case study in Design dataset.

of the convolutional inference strategy in Figure 562

8. We highlight contents relevant to the target job 563

from a user’s resume across layers. The raw resume 564

contains some relevant information and some irrel- 565

evant words. As layers increase, our method pro- 566

gressively refines the resume, removing irrelevant 567

content and focusing on job-specific details. The 568

text similarity between the user’s resume and the 569

job description significantly increases by the third 570

layer, showing the LLM’s success in reasoning over 571

graph structure. By revising vague information and 572

inferring potential requirements for job matching, 573

we achieve better recommendation outcomes. 574

5 Conclusion 575

In this paper, we propose GaCLLM to enhance aux- 576

iliary textual information through user-item inter- 577

actions for recommendation. Our approach bridges 578

the gap between text-based LLMs and graph-based 579

multi-hop relations that contain collaborative infor- 580

mation. By employing an iterative convolutional 581

inference strategy, GaCLLM enables efficient prop- 582

agation of textual information across the graph 583

within constrained token limits to achieve quality 584

improvement. We further align the LLM-driven 585

texts and the behavioral graph embeddings to en- 586

hance recommendation performance. Extensive 587

experiments show that GaCLLM consistently out- 588

performs various baseline methods, with ablation 589

studies and in-depth analysis further validating our 590

model design. In future work, we aim to explore 591

using LLMs to handle multi-modality information 592

beyond text for more fine-grained RSs. 593
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Limitation594

The primary constraints of this paper are as fol-595

lows: (1) The training phase requires substantial596

computational resources for LLM inference. Since597

some users and items may share similar collab-598

orative information, it may not be necessary to599

make exact inferences for all nodes in the graph.600

(2) In real-world scenarios, users often exhibit dy-601

namic preferences for items. However, GaCLLM602

relies on a static graph, which fails to capture the603

dynamic preferences underlying users’ sequential604

behaviors. To this end, we leave the exploration of605

more efficient and dynamic solutions for sequential606

recommendation as future work.607
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