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Abstract

Leveraging auxiliary textual data can help with
user profiling and item characterization in rec-
ommender systems (RSs). However, incom-
plete user and item descriptions limit the poten-
tial of textual information in RSs. To this end,
we propose a graph-aware convolutional LLM
method, eliciting LLMs to summarize from a
high-order interaction graph to generate fine-
grained descriptions for users and items. We
focus on two challenges in this paper: 1) the in-
compatibility between structural graph and text-
aware LLMs; and 2) the limitation of LLMs’
capability for long context. To bridge the gap
between graph structures and LLMs, we em-
ploy the LLM as an aggregator for graph con-
volution process, eliciting it to infer the graph-
based knowledge iteratively. To mitigate the in-
formation overload associated with large-scale
graphs, we segment the graph processing into
manageable steps, progressively incorporating
multi-hop information in a least-to-most man-
ner. Experiments on three real-world datasets
demonstrate that our method consistently out-
performs state-of-the-art approaches.

1 Introduction

Recommender systems (RSs) are pivotal in deliver-
ing personalized services to users for their satisfac-
tion and platform profitability. Traditionally, RSs
heavily rely on user-item interaction records (Ko-
ren et al., 2009) but face challenges with data spar-
sity (Sun et al., 2019). Recently, there has been
a trend towards utilizing auxiliary textual infor-
mation for recommendation (Torbati et al., 2023).
However, texts with users and items often suffer
from incompleteness and bias, with users offering
vague self-descriptions and providers giving sparse
or strategically biased item descriptions. Such texts
negatively impact user profiling and item character-
ization, hindering accurate recommendations.

To enhance the reliability and completeness of
textual descriptions, recent approaches have em-

ployed large language models (LLMs) to gener-
ate LLM-driven descriptions based on raw con-
tents and task-specific prompt instructions (Zheng
et al., 2023; Wu et al.; Liu et al., 2023; Wang et al.,
2024b), such as incorporating users’ behaviors as
supplemental knowledge for retrieval-augmented
generation (Du et al., 2024; Liu et al., 2024b). Nev-
ertheless, these methods still suffer from unreliable
and inaccurate textual generation due to the lack
of collaborative user-item insights and the limited
scope of information observed by LLMs.

To this end, inspired by the success of graph con-
volutional networks (GCNs) (Kipf and Welling,
2016), we propose Graph-aware Convolutional
LLM (GaCLLM) to integrate high-order collab-
orative information from user-item graph to pro-
vide more evidence for LLM inference, generat-
ing fine-grained descriptions of users and items
for recommendation. We focus on two main chal-
lenges: 1) the incompatibility between structural
graph and text-aware LLMs; and 2) the limitation
of LLMs’ capability for long context. Firstly, text-
based LLMs are inherently ill-suited for process-
ing structured graph data. Existing methods con-
vert graph data into textual form using templates
and sampling strategies (Wang et al., 2023; Wu
et al., 2024). However, these methods limit the
LLMs’ ability to maintain a global perspective on
graphs, thereby hindering their full potential in uti-
lizing reasoning skills for graph-based knowledge.
Secondly, large-scale user-item graphs pose con-
text length limitations for LLM inputs by simply
describing them in a textual format. Specifically,
LLMs often struggle to robustly comprehend in-
formation from lengthy contextual inputs, particu-
larly when critical information (e.g., key entities in
graphs) is located in the middle (Liu et al., 2024a).

To tackle these challenges, we develop a convo-
lutional inference strategy to integrate high-order
relations from the user-item interaction graph into
LLMs. To align LLMs with graph structures, we



employ the LLM as an aggregator function and
maintain a global perspective on graphs. Specifi-
cally, the LLM assimilates information from neigh-
boring nodes and ensures layer-by-layer propaga-
tion throughout the graph. By leveraging high-
order relations in the user-item interaction graph,
our method enhances reasoning capabilities for bet-
ter LLM-driven descriptions. To mitigate the infor-
mation overload associated with large-scale graphs,
we segment the graph processing into manageable
steps in a least-to-most (Zhou et al., 2022) man-
ner, iteratively incorporating multi-hop neighbor
information to refine each node’s (i.e., user or item)
description. Therefore, the overload of describ-
ing the graph can be segmented into several steps
with a drastic reduction of context length for LLMs,
alleviating the limitations of lengthy inputs to cap-
ture critical information for LLM-driven reasoning.
Finally, we fuse these LLM-driven descriptions
into behavioral graph embeddings to bridge the
gap between text information and structural data in
the user-item graph for recommendation. We con-
duct extensive experiments on multiple real-world
datasets to show that our method consistently out-
performs state-of-the-art approaches and validate
the effectiveness of our proposed strategy.

2 RELATED WORK

2.1 Graph-based Recommendation

Graph-based recommender systems (Kipf and
Welling, 2016; Huang et al., 2024; Yan et al., 2024)
employ deep neural networks to model user-item in-
teractions within graph structures. LightGCN (He
et al., 2020) streamlines GCNs for collaborative
filtering with simplicity and effectiveness. Then,
many studies use contrastive learning (Yu et al.,
2022; Chen et al., 2023), transformer (Wei et al.,
2023), neighborhood-structure (Lin et al., 2022),
and self-supervised learning (Wu et al., 2021) as en-
hancement. However, they mainly focus on aggre-
gating node embeddings and fail to extract insights
from textual descriptions for recommendation.

2.2 LLM for Recommendation

There is increasing interest in leveraging LLMs
in recommender systems (Lyu et al., 2024; Bao
et al.). Non-tuning methods (Kuo and Chen, 2023;
Senel et al., 2024) assume that LL.Ms possess rec-
ommendation capabilities and use them to produce
results directly through prompts (Kang et al., 2023;
Zhang et al., 2023) and in-context learning (Hou

et al., 2024; Wang and Lim, 2024). The tuning
paradigm (Lu et al., 2024) employs LLM as feature
extractors for downstream tasks, aiming to capture
contextual information for a precise understand-
ing of user profiles (Zheng et al., 2023; Du et al.,
2024; Ren et al., 2024), user attributes (Wang et al.,
2024a), and item descriptions (Liu et al., 2024b).
However, relying only on raw text and ignoring
graph knowledge leads to hallucinations.

2.3 LLM with Graph Data

Integrating LLMs with graph data (Li et al., 2024;
Tang et al., 2024) effectively leverages the rich
structure and relationships. Supervised methods
use LLMs for graph-aware tasks via encoding text
into node embeddings (Chen et al., 2024; Zhang
et al., 2021) and incorporating graph elements into
training (Sun et al., 2021; Yasunaga et al., 2022;
Xie et al., 2023; Zhang et al., 2024b), but they
mainly compress graph knowledge into model pa-
rameters, overlooking the LLMs’ reasoning mech-
anism. Unsupervised methods (Wang et al., 2023;
Andrus et al., 2022; Wu et al., 2024; Zhang et al.,
2024a) convert graph information into text via tem-
plates or sampling strategies for LLMs to process.
However, they lack a global view of the graph and
still fail to fully exploit LLMs’ reasoning potential.

3 Methodology

3.1 Problem Definition

We denote U = {ui,---,un} and T =
{41, ,in} as the sets of users and items, where
N and M are sizes. The interaction records be-
tween users and items can be denoted as an inter-
action matrix R € RV*M where Rui = 1if user
u interacted with item 7, and O otherwise. We also
possess the textual information (e.g., user resumes
and job descriptions in online recruitment scenar-
ios) of both users, denoted as T, = [wy, -+ ,wy, ]
with length [,, for user u, and items, denoted as
Ti = [w1,--- ,w;,] with length [; for item 4, and
wy, represents the k-th word. In this paper, our
goal is to learn a matching function g(u,7) using
the interaction records R and the textual descrip-
tions. Our task is to recommend K items that a
user prefers, as known as top- K recommendation.

3.2 Overview

The overall architecture of GaCLLM is shown in
Figure 1. First, we perform supervised fine-tuning
(SFT) for LLM to strengthen its effectiveness in
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Figure 1: The overall architecture of the proposed method GaCLLM.

the task-related domain. Second, we propose an
LLM-based graph-aware convolutional inference
strategy to enhance user and item descriptions pro-
gressively. Third, we align and integrate the gen-
erated text with behavioral information captured
through graph-based embeddings. Last, we present
the objective function and model learning process.

3.3 Supervised Fine-tuning

To fully exploit the potential of the LLM in un-
derstanding the task-related domain, we begin
with fine-tuning it on domain-specific data. This
involves the training of the LLM using descrip-
tions from matched user-item pairs, enabling it to
learn the alignment between user and item descrip-
tions. Specifically, we employ the prompt template:
"Query: Given an item’s description, generate a
user’s description that fits it. The item’s descrip-
tion is [[/tem Desc]. Answer: ", where [Item Desc]
represents the actual description of the item. The
prompt for inferring item descriptions with the pro-
vided user description is designed symmetrically.
The optimization process involves minimizing the
negative log-likelihood loss for these templates,
i.e., ﬁsft = — Z'gﬁ;swerl log Pr(wk ‘ w<k7TQuery)a
where wy, denotes the k-th word in Answer sen-
tence Tanswer, and Pr(TAnswer]TQuery) denotes the
generation probability for the produced answer
with a given query. This process uses parameter-
efficient fine-tuning techniques.

3.4 Convolutional Inference Strategy

Graph Construction. To explore the structured
graph with high-order descriptive texts for LLMs,
we organize the descriptions of users and items into
a unified graph G = (V, £) using the collaborative
information among users and items. Specifically,
the nodes V in the graph represent users and items,
e,V ={uluelU}U{ili € Z}. The edges & are

constructed by the interactions between users and
items R € RVM je, & = {(u,i)|Ru; = 1}
Each node in the graph has a textual description,
such as a user profile in a social network or a re-
sume of a job seeker.

Least-to-Most Text Enhancement. Recognizing
the extensive knowledge, advanced text compre-
hension, and reasoning capabilities of LLMs, we
propose an LLM-based convolutional inference
strategy to summarize from a high-order interac-
tion graph to generate fine-grained descriptions for
users and items. To make user descriptions more
representative, we leverage the LLM to rewrite
a user’s raw description 7, by the descriptions
of items that the user has interacted with, i.e.,
T) = LLM(Pyger(Tu, {7 : (u,i) € E})), where
Pyser denotes the prompt template for generat-
ing user descriptions. Similarly, to enhance item
description 7;, we use the LLM to produce the
enhanced version considering the descriptions of
users by interaction, i.e., 7 = LLM(Piten(7i, { 7w :
(u,i) € £})), where Pjten denotes the prompt tem-
plate for generating item descriptions. The design
of a prompt template varies with the tasks. In this
paper, we focus on job and social recommenda-
tion tasks. The details of the prompts are shown in
Figure 2.

To enable LLMs to effectively explore the struc-
tured graph, we iteratively use them to refine the
descriptions of nodes (users and items) step by step.
Specifically, we set the first-layer descriptions of
users {Eq(}) |u € U} by raw texts provided by users,
ie., £§}) = 7., and we set the first-layer descrip-
tions of items {EEI) |i € T} by raw texts given by
item providers, i.e., Lgl) = 7;. We employ the
LLM as an "aggregator" in the graph convolutional
process, enhancing its ability to infer graph-based
knowledge through iterative steps. The updated



/{ Job Recommendation }

| Please make appropriate improvements and revisions to the {user's resume /
Job description} by inferring from {user's resume and user’s interested job
descriptions / the original description and resumes of users who are interested
in the job} to generate a more concise {resume / job description}.

The {user's resume / job description} is: [content]. The {job descriptions that
interest the user / suer resumes of the users who are interested in the job} are:
\[{Job Description / User Resume 1},...,{Job Description / User Resume K}]. J

/{ Social Recommendation “ \
| Please make appropriate improvements and revisions to theuser's introduction
based on commonalities of user's self-description and friends' descriptions.

The user's self-description is: [content]. The user's friends' descriptions are are:
‘\[Friend Description 1,..., Friend Description K]. Y

Figure 2: The prompt design for job recommendation
(top) and social recommendation (bottom).

Convolutional inference strategy Plain description strategy

Figure 3: The comparison of token usage of convo-
lutional inference strategy (left) and plain description
strategy (right) in text enhancement.

user and item descriptions after each iteration are
generated as follows:

LU+

= LLM(Puser (L, {L + (u,4) € €})), (1)

L8 = LIMPiren (L, {LD - (w,3) € ED)), @)

where Eq(f ) and EEHI) denote the descriptions of
users and items at ({+1)-th layer after [ iterations of
generation, capturing /-hop descriptive information
within the graph. After L iterations of this LLM-
based convolutional inference strategy, we obtain
progressively refined descriptions across multiple
layers for both users and items.
Token Effectiveness and Efficiency. Compared
with organizing all hierarchical node descriptions
in the graph structure into a single, plain paragraph
of prompt (e.g., listing each node and its multi-hop
neighbors along with their descriptions), the pro-
posed convolutional inference strategy improves
both effectiveness and efficiency in token usage.
First, it optimizes the capture of graph-related
information within the limited context length of
LLMs. Specifically, the proposed strategy decom-
poses the ultimate task of description enhancement
into multiple steps, where each step (layer) only in-
tegrates the descriptions of direct (one-hop) neigh-
bors for the target node. This step-by-step approach
effectively alleviates the issues of hallucination and

distraction with long inputs, significantly reducing
the number of tokens required for each inference.
Second, our convolutional inference strategy ef-
ficiently reduces the redundancy in describing the
graph for target nodes. Specifically, when com-
paring the number of nodes required to capture L-
hop graph-based information for each node, the
proposed method incorporates O(|G| - [N] - L)
nodes into LLMs, where |G| denotes the number
of nodes in the graph and |NV/| denotes the average
number of neighbors of each node. In contrast,
the plain description strategy needs to incorporate
O(IG|- (1+---+|N|¥)) nodes into LLMs, leading
to a significant increase in token usage. Therefore,
by minimizing the overlap in node descriptions
(the redundant description of common neighbors
in Figure 3), our method enhances token efficiency.

3.5 Text-graph Alignment

To bridge the gap between LLM-driven text infor-
mation and behavioral-based structural data in the
user-item graph for recommendation, we propose
to align the user and item descriptions with their
corresponding graph embeddings in a unified man-
ner. Specifically, the GCN-based embeddin(g)s for
l

users and items at the [-th layer, denoted as e,

ez(»l). They can be iteratively updated as follows:

and

(l)

| (u,i)eg V IN ||

Ut . FLO)

3

(l)

_(u i)e€E Vv |N ||

where N, denotes the set of items that are inter-
acted by user u, and V; denotes the set of users that
interact with item ¢. |-| indicates their sizes. We use
d to represent the dimension of latent embedding
space and & for the fusing function such as con-
catenation. The matrix W; € R24*? denotes the
transformation mapping matrix for the /-th layer.
In the first layer, each user and item is initialized
with a graph embedding based on its ID, repre-
sented as eq(J ) € R and e( ) e R% To incorporate
the textual descriptions associated with users and
items, we encode these descriptions into constant
text-based embeddings by f(-). In practice, we add
a unique token [C'LS] before the original text and
feed the combined sequence into the simbert-base-
chinese model. The output of the [C'LS] token is
used as the semantic embedding for alignment.

e =W, FEN] . @




To leverage the descriptions of users and items
across all layers, we further combine their embed-
dings from each layer to produce the final embed-
dings of users and items through mean-pooling:

s _ It o s It o
e, = 7 2121 e ; e = I lel e,’. (5)
3.6 Objective Function

To measure the matching scores between users and
items for final predictions, we propose to compute
the inner product of their representations for recom-
mendation prediction scores by RM =< €,,€; >,
where < -, - > denotes the inner product operation
for similarity. It produces a score or probability
of item ¢ that user v will engage. For the model
training process, we use the pairwise loss to define
the recommendation objective function as follows:

max Z logo(Rui — Ru,;) — MO, (6)

(u,%,j)€D

where the train set D = {(u,4,7)} consists of
triplets with a user u, an item ¢ with positive feed-
back from user u, and an item j with negative feed-
back from user u. © denotes all trainable param-
eters, and ) is the regularization coefficient of L2
norm || - ||2.

3.7 Complexity and Applicability

The model parameter of GaCLLM is approximately
O(M+N)-d+2-L-d?*)=0O(M+N)-d)
as (M + N) > 2- L -d. The complexity is similar
to the efficient Light GCN (He et al., 2020). As for
model training, the time cost is slightly higher than
LightGCN due to the additional text embeddings.
For the training phase, LLM-based recommen-
dation methods inevitably require more complexity
and training cost than deep learning-based methods.
Our method shares similar training and inference
costs compared to existing LLM-based methods,
e.g., (Zheng et al., 2024; Wu et al., 2024). Notably,
the supervised finetuning (Section 3.3) and con-
volutional inference strategy (Section 3.4) can be
done offline and independently with different users,
which is not necessary to require more GPU mem-
ory for large-scale applications. For text-graph
alignment (Section 3.5), the time cost is slightly
higher than LightGCN due to the additional text
embeddings. The detailed comparisons of com-
plexity and time consumption between GacLLM
and LightGCN are summarized in Table 1. For the
serving phase, our complexity computation is the
same as most of the recommendation methods, e.g.,

Model Parameter Number Time Efficiency

Generation Train Generation  Train
LightGCN OM-d) 2.27s
Ours ChatGLM2-6B  O(M-d) 12.28s 3.76s

Table 1: Comparison of Model Performance

Job # User Resumes ~ # Job Descriptions  # Interactions
Designs 12,290 9,143 166,270
Sales 15,854 12,772 145,066

Social # Group A # Group B # Connections
Pokec 6,240 6,213 104,152

Table 2: Statistics of datasets.

LightGCN. Therefore, the LLM in our method does
not change the latency in the serving phase, thus
our method is applicable in real-time deployment.

4 Experiment

4.1 Experimental Setup

Datasets. We investigate two recommendation sce-
narios. For job recommendation, we use two
real-world datasets sourced from an online recruit-
ing platform within the Design and Sales profes-
sions with extensive user-job interactions. The user
resumes and job descriptions are available as tex-
tual document information. For social recommen-
dation, we use a public dataset Pokec Slovakian
Social Network (Pokec) collected from an online
social platform. It contains the friendship relations
among users and their self-descriptions. We aim
to suggest connections between users based on di-
verse preferences and attributes. The dataset is
divided into subsets Pokec-A and Pokec-B by dif-
ferent user groups. The statistics are in Table 2.

Evaluation. We randomly split the dataset equally
into training, validation, and test sets. We utilize
two well-recognized top- K recommendation met-
rics, mean average precision (M APQK) and nor-
malized discounted cumulative gain (N DCGQK),
where K is set to 5 empirically. We run five times
and take the average performance as experimental
results with different random initializations.

Baselines. We compare our GaCLLM with the fol-
lowing baselines. Content-based and collabora-
tive filtering RS: SGPT-BE (Muennighoff, 2022),
MF (Koren et al., 2009), and NCF (He et al., 2017).
Graph-based RS: LightGCN (He et al., 2020),
SimGCL (Yu et al., 2022), UltraGCN (Mao et al.,
2021), and SGL (Wu et al., 2021). For a fair com-



Job Recommendation

Social Recommendation

\
Models | Design \ Sales \ Pokec-A \ Pokec-B
| MAP@5 NDCG@5 MAP@5 NDCG@5 MAP@5 NDCG@5 MAP@5 NDCG@5
SGPT-BE 0.0651 0.1042 0.0491 0.0861 0.0724 0.1013 0.0710 0.0980
MF 0.2081 0.3182 0.0957 0.1751 0.2639 0.3838 0.2616 0.3876
NCF 0.2100 0.3258 0.1468 0.2678 0.2969 0.4270 0.2930 0.4273
LightGCN 0.2940 0.4697 0.1658 0.3001 0.3293 0.4664 0.3294 0.4676
SimGCL 0.1471 0.2277 0.0921 0.1658 0.2940 0.4235 0.3093 0.4459
UltraGCN 0.2639 0.4258 0.1469 0.2725 0.3263 0.4691 0.3204 0.4623
SGL 0.2769 0.4418 0.1431 0.2567 0.3047 0.4385 0.3012 0.4394
LLM-CS 0.2669 0.2190 0.1530 0.2803 0.2569 0.3478 0.2527 0.3468
LLM-TES 0.2208 0.3478 0.1520 0.2797 0.2593 0.3517 0.2571 0.3512
LGIR 0.2898 0.4616 0.1694 0.3103 0.3245 0.4390 0.3081 0.4183
RLMRec 0.2816 0.4377 0.1502 0.2641 0.3326 0.4617 0.3238 0.4498
GaCLLM 0.3060* 0.4925% 0.1750% 0.3234* 0.3461* 0.4798* 0.3446% 0.4797*
Improvement 4.06% 4.85% 3.32% 4.21% 4.06% 2.28% 4.60% 2.60%

Table 3: Performance of GaCLLM and baseline methods. The best results are in bold and the runner-up results are
underscored. * indicates significant improvements at the level of 0.05 with a paired t-test.

parison, we enhance graph-based methods with text \

information to ensure the same utilization of infor-
mation. LLM-based RS: LLM-CS (Chen et al.,
2024), LLM-TES (Chen et al., 2024), LGIR (Du
et al., 2024), and RLMRec (Ren et al., 2024).
Implementation Details. For the LLM backbone,
we use ChatGLM?2-6B (Du et al., 2022) for its pro-
ficiency in handling multilingual tasks including
Chinese, as datasets Design and Sales are in Chi-
nese. For the SFT stage, we use LoORA (Hu et al.,
2022) with a learning rate of 1075, LoRA dimen-
sion of 128, batch size of 2, 10* training steps, and
gradient accumulation of 1. To ensure a fair com-
parison, we fix the embedding size of all methods
to 768, batch size to 1024, and regularization coeffi-
cient to 10~* with AdamW (Loshchilov and Hutter,
2019) optimizer. Following (Yang et al., 2022; Du
et al., 2024), we use 20 negative instances for every
target item during evaluation'.

4.2 Comparison with Baselines

Table 3 shows the overall comparison between
GaCLLM and baselines. From the experimental
results, we demonstrate that GaCLLM consistently
outperforms all baseline methods across all job rec-
ommendation and social recommendation scenar-
i0s, with average improvements of 4.46%, 3.77%,
3.69%, and 3.60%. Besides, interaction-only (i.e.,
MF and NCF) and text-only (SGPT-BE) methods
show inferior performance compared to the other
hybrid approaches, indicating the necessity of uti-
lizing both text and interaction information. In ad-
dition, the improvements in GCN-based methods

'Our code is at https: //anonymous . 4open. science/r/
GaCLLM_code-C326.

| Design | Sales |
Models

\ | MAP@5 NDCG@5 MAP@5 NDCG@S5 |
RAW 0.2951 0.4717 0.1692 0.3082
PLAIN 0.2908 0.4655 0.1677 0.3080
wlo-ALIGN | 0.2901 0.4654 0.1753 0.3212
GaCLLM 0.3060 0.4925 0.1750 0.3234

| | Pokec-A | Pokec-B |

| Medels  TNAP@s  NDCG@S  MAP@S  NDCG@S |
RAW 0.3402 0.4678 0.3326 0.4655
PLAIN 0.3362 0.4672 0.3287 0.4612
wlo-ALIGN | 0.3435 0.4780 0.3331 0.4687
GaCLLM 0.3461 0.4798 0.3446 0.4797

Table 4: Performance of ablation variants.

prove the value of extracting both graph and text
information for better recommendation outcomes.
This supports our motivation to combine LLMs
with graph structural information to improve the
quality of textual descriptions in recommendation
systems. SimGCL shows underwhelming results,
likely due to the graphical framework’s incompati-
bility with incorporating text-aware information ef-
fectively. Finally, simply adopting the LLM as the
encoder (LLM-CS) or zero-shot reasoner (LLM-
TES) produces suboptimal performance. LGIR and
RLMRec show stronger performance by inferring
from direct neighbors but still overlook the more
complex, high-order relationships within the graph.
As aresult, by aligning LLM and high-order graph
relations, GaCLLM achieves the best performance,
validating its effectiveness.

4.3 Ablation Study

To verify the efficacy of the key components of
GaCLLM, we test the following variants. RAW
adopts raw descriptions instead of LLM-driven de-
scriptions by the user-item graph. PLAIN removes
the convolutional inference strategy, adopting a
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template to describe all node descriptions related
to the target node in a plain way as the inputs of
LLMs. w/o-ALIGN excludes the alignment with
graph embeddings and simply adopts the enhanced
descriptions by L-hop neighbors for node embed-
dings of the L-th layer. Table 4 shows the per-
formance of variants and original GaCLLM. First,
the proposed GaCLLM consistently outperforms
RAW across all scenarios, indicating that utiliz-
ing high-order relations in the interaction graph
can improve the textual content and thus lead to
more accurate recommendation predictions. Sec-
ond, GaCLLM significantly outperforms PLAIN.
While PLAIN struggles to eftectively capture the
structured graph by describing high-order relations
in a single prompt, GaCLLM elicits the reason-
ing capacity of LLMs more effectively through a
step-by-step, graph-based convolutional inference
process. This allows GaCLLM to better utilize
the graph structure for improved recommendations
and avoids context length limits. Third, GaCLLM
outperforms w/0o-ALIGN as the alignment of tex-
tual and graphical representations bridges the gap
between LLM-driven information and behavioral
patterns. Thus, we can fully leverage the layered
descriptions generated by the LLM for recommen-
dation. As such, the ablation study supports the
efficacy of GaCLLM and the underlying motiva-
tions presented in this paper.

4.4 In-depth Analysis

In this subsection, we further conduct experiments
to analyze the impact of hyper-parameters, the su-
pervised fine-tuning step, and the LLM model se-
lection. We also illustrate the effectiveness of our
GaCLLM by both quantitative subgroup analysis
and qualitative case study.

Number of Layers. In Figure 4, we observe that
the best performance is produced by (4, 3, 2, 2) lay-
ers for datasets. For real-world applications, we
suggest using the grid search on optimal layer num-
bers for GaCLLM implementation empirically. In
addition, Figure 7 shows that deeper layers can cap-
ture or generate richer textual information, which
is detailed in the Subgroup Analysis.

Supervised Fine-tuning Study. In Figure 5 (left),
we evaluate the variant without supervised fine-
tuning in Section 3.3. Using Designs dataset as an
example, we notice a limited improvement, which
indicates that the overall performance boost by
GaCLLM is not obtained directly from the SFT, but
from the LLM-based convolutional inference strat-
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Figure 4: GaCLLM with varying numbers of layers.
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Figure 5: Impact of SFT stage (left) and varying LLM
backbones (right) in Designs dataset.

egy and embedding alignment. Though the impact
of SFT is not significant, some recommendation
scenarios may contain extra domain-specific infor-
mation beyond pre-trained knowledge. Thus, SFT
step contributes to the adaptability of GaCLLM.
LLM Backbone. In Figure 5 (right), we assess
GaCLLM using Llama-2-7B as the backbone re-
placement of the original ChatGLM2-6B with a
similar scale. The result shows comparable perfor-
mance, validating the robustness of our method and
the stability of our convolutional inference strategy
in description enhancement for recommendation.
Text Encoder. To bridge the gap between LLM-
driven text information and behavioral-based graph
embeddings, we employ simbert-base-chinese to
encode user and item text information into latent
space. In Table 5, we also explore using other
LLM’s backbone as text encoder. The results show

| Encoder | MAP@5 | NDCG@S5 |
| simbert-base-chinese | 0.3060 | 0.4925 |
| ChatGLM2-transformer | 0.2722 | 0.4291 |

Table 5: Performance of the proposed method with
varying text encoders in Designs dataset.
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that ChatGLM?2 yields suboptimal results as a text
encoder, likely due to its decoder-only structure
optimized for text generation rather than under-
standing. For better performance and parameter
efficiency, the encoder-only simbert-base-chinese
is a more suitable choice.

Subgroup Analysis. To investigate how and to
what extent our method can enhance the descrip-
tions of users and items, we divided users into
five equally sized groups (Gl to G5) based on
the length of raw descriptions. The difference
between GaCLLM and RAW in Figure 6 shows
the significance of refining descriptions for all raw
text. Notably, GaCLLM achieves more substan-
tial improvements in groups with less comprehen-
sive descriptions, highlighting the effectiveness of
the LLM-based convolutional inference strategy by
leveraging the graph structure. In addition, we also
investigate the average lengths of LLM-generated
descriptions of each layer for each group as shown
in Figure 7. As the layer number increases, the aver-
age length rises across all groups, with G1 showing
the most significant relative increases. This sug-
gests that deeper layers can capture or generate
richer textual information, leveraging whose repre-
sentations can improve recommendation quality.
Case study. We qualitatively show the efficacy

User Resume Job description (JD)

1.Proficient in using tools such as Photoshop,
Axure, and with strong logical analysis skills.
2.With over three years of design experience,
having been responsible for multiple project
designs. Layer 1

1. Have knowledge of web front-end
development technologies, including HTML,
CSS, JavaScript, and other front-end
technologies.

2. Proficient in using design software such as
Photoshop, lllustrator, Axure, and familiar
with UI/UX design standards and processes.
3.More than 3 years of experience in UI/UX
design or web front-end development, with
successful project cases.

Layer 2 4. Responsible for UI/UX design and front-end
development work for websites, apps, and
lother products. Complete interface design,
interaction design, and creative design
according to project requirements.

5. Possess excellent communication skills and
a spirit of teamwork, capable of effective
communication and collaboration with

¥\

3. Familiarity with designing for both mobile
and PC platforms, ensuring a great user
experience across various devices.

4. Familiarity with web and mobile design,
some k ledge of front-end technologit
like HTML, CSS, JavaScript.

5. Effective communication and collaboration
with product managers, developers, and other

to ensure the impls of development teams and clients.
design solutions. Layer 3 Layer 3
Layer 1 related
Layer 1 Layer 2 Layer 3 Layer 2 related
0032304 005017 g Layer 3 related

Resume and JDs.

@ Text similarity

Figure 8: Case study in Design dataset.

of the convolutional inference strategy in Figure
8. We highlight contents relevant to the target job
from a user’s resume across layers. The raw resume
contains some relevant information and some irrel-
evant words. As layers increase, our method pro-
gressively refines the resume, removing irrelevant
content and focusing on job-specific details. The
text similarity between the user’s resume and the
job description significantly increases by the third
layer, showing the LLM’s success in reasoning over
graph structure. By revising vague information and
inferring potential requirements for job matching,
we achieve better recommendation outcomes.

5 Conclusion

In this paper, we propose GaCLLM to enhance aux-
iliary textual information through user-item inter-
actions for recommendation. Our approach bridges
the gap between text-based LLMs and graph-based
multi-hop relations that contain collaborative infor-
mation. By employing an iterative convolutional
inference strategy, GaCLLM enables efficient prop-
agation of textual information across the graph
within constrained token limits to achieve quality
improvement. We further align the LLM-driven
texts and the behavioral graph embeddings to en-
hance recommendation performance. Extensive
experiments show that GaCLLM consistently out-
performs various baseline methods, with ablation
studies and in-depth analysis further validating our
model design. In future work, we aim to explore
using LL.Ms to handle multi-modality information
beyond text for more fine-grained RSs.



Limitation

The primary constraints of this paper are as fol-
lows: (1) The training phase requires substantial
computational resources for LLM inference. Since
some users and items may share similar collab-
orative information, it may not be necessary to
make exact inferences for all nodes in the graph.
(2) In real-world scenarios, users often exhibit dy-
namic preferences for items. However, GaCLLM
relies on a static graph, which fails to capture the
dynamic preferences underlying users’ sequential
behaviors. To this end, we leave the exploration of
more efficient and dynamic solutions for sequential
recommendation as future work.
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