
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZATION AND
DISTRIBUTED LEARNING OF GFLOWNETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional wisdom attributes the success of Generative Flow Networks
(GFlowNets) to their ability to exploit the compositional structure of the sam-
ple space for learning generalizable flow functions (Bengio et al., 2021). Despite
the abundance of empirical evidence, formalizing this belief with verifiable non-
vacuous statistical guarantees has remained elusive. We address this issue with the
first data-dependent generalization bounds for GFlowNets. We also elucidate the
negative impact of the state space size on the generalization performance of these
models via Azuma-Hoeffding-type oracle PAC-Bayesian inequalities. We lever-
age our theoretical insights to design a novel distributed learning algorithm for
GFlowNets, which we call Subgraph Asynchronous Learning (SAL). In a nutshell,
SAL utilizes a divide-and-conquer strategy: multiple GFlowNets are trained in
parallel on smaller subnetworks of the flow network, and then aggregated with an
additional GFlowNet that allocates appropriate flow to each subnetwork. Our ex-
periments with synthetic and real-world problems demonstrate the benefits of SAL
over centralized training in terms of mode coverage and distribution matching.

1 INTRODUCTION

Generalization is a long-standing problem in the machine learning literature, asking whether a
learning algorithm can reliably make predictions beyond the data it was trained on (Valiant, 1984;
Vapnik, 2000; Catoni, 2007; Alquier & Guedj, 2017; Dziugaite et al., 2020; Lotfi et al., 2024a).
In an age of rapid deployment of AI models to end-users, there has been an emerging interest in
the design of theoretically robust algorithms, with remarkable results for GANs (Mbacke et al.,
2023), diffusion models (Li et al., 2024), transformers (Lotfi et al., 2024a;b), and graph neural
networks (Ju et al., 2023; Tang & Liu, 2023). In this pursuit for developing models with proven
generalizability, a rich set of tools has been created (Vapnik & Chervonenkis, 2015; Shalev-Shwartz
& Ben-David, 2014), with McAllester (1998; 1999)’s PAC-Bayesian theorems often providing
the tightest statistical guarantees (Dziugaite & Roy, 2017; 2018; Lotfi et al., 2024b;a). Notably,
however, there is no one-size-fits-all solution for understanding generalization: the diverse nature
of data and learning algorithms demands a distinctly unique approach to each problem.

In the realm of probabilistic methods, for example, it has been widely hypothesized that the
outstanding performance of Generative Flow Networks (GFlowNets) (Bengio et al., 2021; 2023;
Lahlou, 2023), which have demonstrated exceptional results in problems such as design of biolog-
ical sequences (Jain et al., 2022; Malkin et al., 2022) and combinatorial optimization (Zhang et al.,
2023a;b), to name a few, emerges from their potential to exploit the compositional structure of the
underlying state space to learn a generalizable flow assignment function in a flow network by only
observing a fraction of the network’s nodes (Bengio et al., 2021; Nica et al., 2022; Shen et al., 2023;
Atanackovic & Bengio, 2024; Krichel et al., 2024). Nonetheless, in spite of the wealth of empirical
evidence indicating that generalization occurs in GFlowNet learning (Nica et al., 2022; Atanackovic
& Bengio, 2024), no work so far has provided non-vacuous high-probability empirical bounds on
the population risk of GFlowNets, which might serve as statistical certificates for generalization.

Given the described scenario, in this paper we develop the first non-vacuous generalization bounds
for GFlowNets in the literature in Section 5. In doing so, the core questions we want to address in this
work are when GFlowNets (provably) generalize and which factors potentially contribute to dimin-
ish their generalization performance. To kickstart our analysis, we present in Section 4 an example in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

which a GFlowNet catastrophically fails to generalize even after learning a compatible flow assign-
ment for over 90% of the flow network. This example demonstrates that, to properly understand the
generalization of GFlowNets, we must consider not only the extension of the observed flow network
but also the specific parts that we have encountered during training, a fact that is also implicit in pop-
ular techniques such as the replay buffer (Vemgal et al., 2023) and local search (Kim et al., 2024b).
From a technical perspective, this implies that the development of meaningful statistical guarantees
for GFlowNets must be based not on data-agnostic theoretical results, but on data-dependent pri-
ors, in the fashion of Dziugaite & Roy (2018); Dziugaite et al. (2020). This observation guides the
establishment of the non-vacuous high-probability bounds for the population risk of GFlowNets in
Section 5.1 and distinguishes our approach from past investigations (Krichel et al., 2024).

These empirical results (Section 5.1), however, do not provide a fine understanding of which charac-
teristics of the flow network tend to hinder the generalization of GFlowNets. What effect do larger
trajectory lengths, for instance, have on the provable learnability of generalizable flow assignments?
Intuitively, generalization is harder in larger state spaces as, borrowing the terminology from the
reinforcement learning (RL) literature (Bengio et al., 2021), the visited portion of an environment
by an agent constrained by a fixed time budget decreases with increasing environment’s size and,
therefore, the agent would have to rely on increasingly sparse information for learning from larger
trajectories. In Section 5.2, we show how this intuition can be formalized through the lens of PAC-
Bayesian bounds, revealing the increasing difficult in obtaining tight statistical certificates for larger
state spaces. To achieve this, our technical contributions are two-fold: First, an oracle concentration
inequality for the forward Kullback-Leibler (KL) divergence between the learned and targeted flow
assignments (Theorem 5.2) inspired by Malkin et al. (2023)’s interpretation of GFlowNets as vari-
ational inference. Second, an Azuma-Hoeffding-type inequality (Seldin et al., 2012b) for indepen-
dently sampled martingales representing the extent to which the learned flow assignment violates the
so-called detailed balance condition (Bengio et al., 2023) in the observed trajectories (Theorem 5.4).

Motivated by these results, we pose the following question: what can we do to mitigate the issues
raised by an inadequate coverage of the state space, as illustrated in Section 4, and larger trajec-
tory sizes, as analyzed in Section 5? As we show in Section 6, the answer lies in breaking up the
flow network into multi-source subnetworks grouped together by a small root network (Figure 3).
In this new paradigm, finding a compatible flow assignment becomes a two-stage process. Firstly,
a different GFlowNet is trained on each subnetwork in a distributed fashion. Secondly, an addi-
tional GFlowNet trained on the root network learns to assign the correct amount of flow to each
subnetwork, as estimated in the previous step. The resulting algorithm, which we call Subgraph
Asynchronous Learning (SAL), has several advantages over the standard approach (Section 6.2). In
particular, each GFlowNet within this framework needs to solve a problem that is relatively simpler
than that of a unique, centralized model. Similarly, the asynchronous nature of the algorithm im-
plies that we are able to visit a considerably larger fraction of the original flow network within a
fixed time window and, therefore, that we get a significantly better coverage of the state space. As
a consequence of this, we are also able to drastically improve the discovery of high-valued states
within the flow network, which is a metric of great interest in the GFlowNet literature (Bengio et al.,
2021; Shen et al., 2023; Zhang et al., 2023a; Pan et al., 2023a; Jang et al., 2024; Kim et al., 2024b).

In summary, our contributions are:

1. We construct a family of examples in which a GFlowNet does not generalize even after learn-
ing a compatible flow assignment on arbitrarily large fractions of the flow network (Section 4);

2. We provide the first non-vacuous generalization bounds for GFlowNets (Section 5.1);
3. We derive oracle PAC-Bayesian inequalities for the population risk of GFlowNets, emphasiz-

ing the impact of the flow network’s topology on generalization performance (Section 5.2);
4. We design the first distributed algorithm for learning GFlowNets with network-level paral-

lelization, and evaluate its performance in common benchmarks in the literature (Section 6);

The first part of the paper establishes the notation and terminology adopted throughout the text and
reviews relevant results in the GFlowNet and PAC-Bayes literature, alongside an overview of our
main contributions (Sections 2 and 3). The second part provides a formal treatment of GFlowNets
from the viewpoint of the PAC-Bayesian theory (Section 5). The third and final part outlines the
foundations of SAL and conducts an empirical evaluation of the algorithm in common benchmark
problems (Section 6). We defer the proofs and details of the experiments to the supplement.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

Notations and terminology. Let G = (V,E) by a directed acyclic graph (DAG). A forward policy
over G is a Markov transition kernel pF : V × V → [0, 1] supported on G’s edges, i.e., such that
pF (v, ·) is a distribution over {u : (v, u) ∈ E}, for each vertex v. We interchangeably use pF (·|v)
and pF (v, ·) for representing pF . A backward policy pB over G is a forward policy on the transpose
graph G⊤ = (V,E⊤) with E⊤ = {(u, v) : (v, u) ∈ E}. The uniform policy assigns the same prob-
ability mass to a state’s children, i.e., pU (s′|s) = 1{s′∈Ch(s)}/|Ch(s)| with Ch(s) = {s′ : (s, s′) ∈ E}.
We say that G is pointed if there are nodes so and sf , respectively called initial (source) and final
(sink) nodes, s.t. so (resp. sf) is the only node without incoming (resp. outgoing) edges and, for each
s ∈ V , there is a trajectory (directed path) between so and sf containing s. In this case, a trajectory
τ inG is complete if it starts at so and finishes at sf , which we denote by τ : so ⇝ sf . Clearly, a for-
ward policy induces a distribution over trajectories starting at s via pF (τ |s) =

∏
(s′,s′′)∈τ pF (s

′′|s′);
when τ is unambiguously complete, we will often omit so from this notation. Lastly, for probability
measures P and Q on the same space, we let KL(P ||Q), χ2(P ||Q) and TV (P,Q) respectively
denote their Kullback-Leibler (KL) divergence, χ2 divergence, and total variation distance.

GFlowNets. We represent a GFlowNet (Bengio et al., 2021; 2023; Lahlou, 2023) G as a tuple
(S,X , G,A, T , pF , pB , R, F) consisting of a set of states S, a set of terminal states X ⊆ S, a
pointed DAGG = (S, E), which is called a state graph, an action mappingA : S → 2A associating
each state s with an abstract action space A(s) ⊆ A that is isomorphic to the children of s in G,
a transition function T : ∪s∈S ({s} × A(s)) → S defining how a state s is affected by an action
a ∈ A(s), forward pF and backward pB policies on G, a reward function R : X → R+ attributing
a positive value to each terminal state, and a flow function F : S → R+ such that F |X = R.
Importantly, only the elements of X are connected to the sink node sf ofG. When there is no risk of
ambiguity, we will simply write G = (pF , pB , F). The objective of a GFlowNet is to find a pF s.t.
the marginal distribution pT (x) := pF (x|so) =

∑
τ : so⇝x pF (τ) over X matchesR up to a normal-

izing factor (Bengio et al., 2021). In Appendix A, we illustrate how this abstract representation can
be instantiated to accommodate three frequently considered use-cases (Malkin et al., 2022; 2023).

Learning GFlowNets. In this context, S, X , G, A, T , andR are problem-dependent, while pF , pB ,
and F are unknowns that should be estimated. Remarkably, however, pB is often fixed as uniform
(Shen et al., 2023; Liu & et al., 2023; Zhang et al., 2023a), an assumption that we make throghout
the paper, albeit most of our theoretical results and all our methods can be extended to the case of
learnable pB . Under these circumstances, many learning objectives have been proposed for learning
pF and F . Two popular choices, which we adopt here, are the trajectory balance (TB, LTB(pF , F),
(Malkin et al., 2022)) and detailed balance (DB, LDB(pF , F), (Bengio et al., 2023)) losses,

E
τ∼pE

[(
log

F (so)pF (τ)

R(x)pB(τ |x)

)2
]

and E
τ∼pE

 1

|τ |
∑

(s,s′)∈τ

(
log

pF (s
′|s)F (s)

pB(s|s′)F (s′)

)2
 , (1)

in which |τ | represents τ ’s length, x is τ ’s (unique) terminal state, and pE is an exploratory policy.
Intuitively, pE has the role of the data-generating distribution in a standard supervised learning
context and is often defined as pE = (ϵ)pU + (1 − ϵ)pF , an ϵ-greedy version of pF , with pU
denoting an uniform policy; although more sophisticated techniques have been developed (Kim
et al., 2024b; Rector-Brooks et al., 2023; Vemgal et al., 2023). In Appendix A we provide a more
thorough overview of GFlowNet learning, including the subtrajectory balance loss (SubTB, (Madan
et al., 2022)) and divergence-based objectives (Malkin et al., 2023; Lahlou, 2023).

Generalization bounds for neural networks. The field of statistical learning theory (Vapnik,
1998; 2000) seeks to develop statistical certificates for the generalization of a learned model by
providing high-probability upper bounds of the population error of an estimator as a function of
the observed empirical risk. In the context of GFlowNets, we ask whether an empirically measured
imbalance based on the observed trajectories, such as the losses in Equation 1 or other locally
computed metrics (see Sections 4 and 5), are appropriate surrogates for the GFlowNet’s overall
distributional accuracy. In particular, we are interested in inductive statistical guarantees, namely,
those based on the training set (as opposed to the transductive setting, in which a test set is used).
To address this issue, the PAC-Bayes framework of McAllester (1998; 1999; 2013) often provides
the tighest bounds (Lotfi et al., 2024b;a; Dziugaite & Roy, 2017; 2018). In a nutshell, consider data

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

X = {Xi}mi=1 drawn from some data distribution, a significance level δ, an empirical loss L̂(θ,X)

and a population loss L(θ) = EX[L̂(θ,X)] associated to the model’s parameters θ. Given a ‘prior’
(independent of X) distribution Q over θ, a PAC-Bayes bound typically assumes the form

Eθ∼P [L(θ)] ≤ Eθ∼P [L̂(θ,X)] + ϕ(δ, P,Q,m). (2)
The inequality holds with probability 1 − δ over draws of X, simultaneously for all ‘posterior’
distributions P over θ; and ϕ is a term penalizing the model’s complexity (McAllester, 1999). We
direct the reader to Alquier (2024) for a comprehensive introduction to PAC-Bayesian analysis. For
bounded L, the right-hand side of Equation 2 is termed vacuous if it is larger than an upper bound
of L. Although McAllester’s original works posited that the data were independent and identically
distributed (i.i.d.) and that the risk function was uniformly bounded (McAllester, 1998; 1999),
recent advances relaxed these assumptions by deriving generalization bounds for non-i.i.d. data
(Seldin et al., 2012b; Barnes et al., 2022), with applications to multi-armed bandits and RL (Fard &
Pineau, 2010; Beygelzimer et al., 2011; Tasdighi et al., 2024), and for unbounded losses limited by
high-probability bounds (Alquier & Guedj, 2017; Haddouche & Guedj, 2022b; Casado et al., 2024;
Mbacke et al., 2023). To the best of our knowledge, however, this is the first work promoting the
development of PAC-Bayesian bounds for understanding the generalization of GFlowNets.

3 OVERVIEW OF OUR RESULTS

Before delving into the details of our work in Sections 4, 5, 6 (and further details in the appendices
in the supplement), we provide below a brief discussion around our technical results under the light
of the formalism presented in Section 2, alongside the main ideas they were built upon.

Non-vacuous generalization bounds for GFlowNets. The learning objectives in Equation 1, due
to the unboundedness of the logarithm, cannot be directly incorporated into standard PAC-Bayesian
theorems (McAllester, 2013), which assume that the risk function has at least bounded exponential
moments (Casado et al., 2024; Rodrı́guez-Gálvez et al., 2024). To circumvent this issue, our
empirical analysis in Section 5.1 adopts the recently proposed FCS metric (Silva et al., 2024) as the
risk functional measuring the accuracy of a trained GFlowNet, which may be written as

LFCS(pF) = E(τ1,x1),...,(τB ,xB) [TV (px1:B

T , Rx1:B)] ∈ [0, 1], (3)

with px1:B

T and Rx1:B as the respective restrictions of pT and R to the B-sized multiset
{{x1, . . . , xB}} ⊆ X of terminal states, and TV as the total variation distance. However, in spite of
easily computable, LFCS is not an appropriate learning objective for GFlowNets due to the potential
numerical instability of the non-log-domain. Instead, we minimize LTB as a surrogate objective
for LFCS during training and evaluate the generalization bound on LFCS in the inductive fashion
mentioned in Section 2. Importantly, Figure 2 shows that the resulting bounds are remarkably tight.

Oracle generalization bounds for GFlowNets. As a complement, we also establish non-empirical
high-probability upper bounds on the population risk of GFlowNets by assuming that a potentially
intractable quantity bounds the corresponding loss function. In Section 5.2, we follow this rationale
and demonstrate that there always is an α > 0 for which the set of policy networks of the form
αpU + (1 − α)pF contains the solution to the flow assignment problem. Armed with such a fam-
ily of models, which guarantee log probabilities uniformly bounded away from zero, we consider
the reverse KL divergence risk (Malkin et al., 2023) to avoid explicitly bounding the flow func-
tion F . Although informative, the resulting Theorem 5.2 only considers the trajectories—and not
transitions—as data points. As the number of observed transitions is significantly larger than that of
trajectories, we enrich our results by constructing a martingale difference sequence based on the DB
loss and adapting Azuma’s inequality (Azuma, 1967; Seldin et al., 2012b) to the context of indepen-
dent martingales to derive a transition-level generalization bound for GFlowNets. Both approaches,
which are respectively encapsulated in Theorems 5.2 and 5.4, show that the population risk can be
bounded with high-probability as, apart from technical nuances,

Eθ∼P [L(θ)] ≲ Eθ∼P [L̂(θ)] +O
(
log tm
nα

)
(4)

in which L̂ is an empirical measure of risk, tm is the maximum trajectory length of the state graph,
and n is the number of observed data points—either trajectories (Theorem 5.2, α = 0.5) or transi-
tions (Theorem 5.4, α = 1). From an analytical perspective, these results suggest that learning prov-
able generalizable flow assignments is increasingly harder for state spaces having longer trajectories.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 WHEN DO GFLOWNETS NOT GENERALIZE?

To start our discussion on the generalization of GFlowNets, we introduce simple, but non-trivial,
examples in which a GFlowNet does not learn a generalizable policy network even after minimizing
the loss on an arbitrarily large portion of the state space, raising the questions of when do GFlowNets
generalize and how to measure such generalization, which we investigate in Sections 5.1 and 5.2.

A non-generalizable data distribution. To concretize our arguments, we recall the task of set
generation for GFlowNets (Pan et al., 2023a;b; Bengio et al., 2023; Jang et al., 2024). Each state
corresponds to a subset of a set W = {1, . . . ,W} for a given W ; the generative process starts
at an empty set so = ∅ and iterativey adds elements from W to so until a prescribed size T is
achieved. For our purposes, we fix a function u : W → [0, 1], representing the log-utility of each
w ∈ A(so) := W and define the reward R associated to S as R(S) = 1{#S=T} exp{

∑
w∈s u(w)}.

Also, let pE be a forward policy s.t. pE(·|s) is supported on A(s) \ {1} := W \ ({1} ∪ s) for every
s, i.e., the support of the marginal pE,T of pE on X is the set X ′ of subsets of {2, . . . ,W}. We next
show that X ′ covers an arbitrarily large portion of X for specific choices of T and W .

Lemma 4.1. For each ξ ∈ (0, 1), there exist T and W such that |X ′| ≥ ξ|X |.

0 200000
0.00

0.25

0.50

0.75

L
1

81.25% visited

0 200000

90.62% visited

ε-greedy
pE

Training epoch

Figure 1: Convergence speed when
actions are masked (blue) or not (or-
ange) for different state space sizes.

The (straightforward) proof of Lemma 4.1 can be found in
Appendix D. Obviously, we cannot hope that a GFlowNet
trained by minimizing an empirical risk defined on trajec-
tories sampled from pE would generalize to unseen states,
as no information regarding u(1) would be available during
training. To empirically validate our reasoning, we show in
Figure 1 that a GFlowNet trained on samples from pE fails to
learn the right distribution, whereas a standard ϵ-greedy strat-
egy succeeds. It is remarkable, however, that a GFlowNet
is unable to successfuly sample from the target distribution
even after minimizing the empirical risk on samples covering
over 90% of the state space. From a statistical viewpoint, this
behavior can be explained via a change of measure inequality: preference over states is not properly
captured by the sampling distribution (pE). We formalize this intuition in the proposition below.

Proposition 4.2 (Generalization depends on the sampling distribution). Let (pF , pB , R) be a
GFlowNet and pE,T be (any) distribution over X . Also, recall π(x) represents the normalized target
and pT the learned marginal. Define qE,T as an uniform PMF on X , i.e., qE,T (x) = 1/|X |. Then,

TV (pT , π) ≲

√√√√(1 + χ2(qE,T ||pE,T))Ex∼pE,T

[
Eτ∼pB(τ |x)

[(
log

pF (τ)

π(x)pB(τ |x)

)2
]]
, (5)

in which χ2(P ||Q) represents the χ2 divergence between P and Q.

We interpret Equation 5 in the following way: If the sampling policy (pE,T) greatly deviates
from the uniform (qE,T), then a small empirical risk does not necessarily ensure an accurate
distributional approximation. In contrast, Equation 5 does not entail that the uniform distribution
is the optimal choice for sampling trajectories, as it does not address the algorithmic difficulty
of minimizing the empirical risk via SGD. Illustratively, we show in Table 1 in Appendix B the
values of χ2(qE,T ||pE,T) when pE,T is far away from qE,T and of χ2(qE,T ||pϵ,T) for the ϵ-greedy
policy considered in Figure 1. On a fundamental level, these examples underline the importance of
taking into account the data distribution for understanding generalization performance. Section 5
elaborates on this problem through the lens of McAllester (1998; 1999)’s PAC-Bayes framework,
albeit with data-dependent priors (Dziugaite & Roy, 2017; 2018; Dziugaite et al., 2020).

5 PAC-BAYESIAN GENERALIZATION BOUNDS FOR GFLOWNETS

Towards the objective of understanding GFlowNet generalization, we construct high-probability
upper bounds on different risk functions. In Section 5.1, we build upon McAllester’s empirical
bound and Dziugaite’s data-dependent priors to derive the first non-vacuous generalization bounds

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for GFlowNets. Then, to gain a clearer understanding of the factors hindering the generalizability of
these models, we provide both trajectory- and transition-level oracle bounds in Section 5.2 by draw-
ing upon the martingale-based PAC-Bayesian theory for non-i.i.d. data (Beygelzimer et al., 2011).

5.1 NON-VACUOUS EMPIRICAL GENERALIZATION BOUNDS

GFlowNet learning as supervised learning. To rigorously address the generalization of
GFlowNets, we firstly frame the training of these models as a supervised learning problem
(Shalev-Shwartz & Ben-David, 2014; Atanackovic & Bengio, 2024). For this, we assume that
a set of independently sampled complete trajectories, Tn = {τ1, . . . , τn}, is drawn from a fixed
distribution and that each trajectory τi is annotated with a noise-free target, yi = pB(τi|xi)R(xi),
with xi representing τi’s unique terminal state. Importantly, the only supervision during training
comes from the reward function; we do not make assumptions on the distribution over Tn. In
this context, minimizing LTB corresponds to finding the least-squares solution to the equation
logZ + log pF (τ) = log pB(τ |x)R(x) in pF . Importantly, this setting differs from conventional
GFlowNet training algorithms, for which the sampling policy depends on the trajectories observed
so far, that is, the trajectories are not independently sampled. Nonetheless, the question of whether
GFlowNets generalize remains relevant even under our relatively simplified conditions, which may
be seen as a single-iteration of an ϵ-greedy strategy (Krichel et al., 2024).

A bounded risk functional for GFlowNets. As we mentioned, PAC-Bayesian theory was originally
based on the assumption of bounded risk functions (McAllester, 1998). Despite the recent advances
in extending these results to the unbounded case (Casado et al., 2024; Haddouche et al., 2021; Had-
douche & Guedj, 2022b), most generalization bounds still depend on technical and hard-to-verify as-
sumptions, e.g., bounded exponential moments. For this reason, we use the FCS metric as a measure
of risk (Silva et al., 2024); see Appendix B for an unbiased estimator L̂FCS(pF , Tn) of LFCS(pF).

Data-dependent priors for PAC-Bayes. For this, we first recall the techniques originally developed
by Dziugaite & Roy (2017; 2018); Dziugaite et al. (2020) in a striking series of papers for probing
the generalization of overparameterized neural networks in the supervised learning context. To start
with, we state below Dziugaite et al. (2020)’s empirical PAC-Bayes bound, which combines results
from McAllester (2013), Rivasplata et al. (2019), and Boucheron et al. (2013). For completeness,
we also provide a self-contained proof of Proposition 5.1 in Appendix D in the supplement.
Proposition 5.1 (Empirical PAC-Bayesian bounds). For any distribution ζ on parameters θ of pF ,
let LFCS(ζ) = Eθ∼ζ [LFCS(R, pT)] and define L̂FCS(ζ, Tn) similarly. Also, let α ∈ (0, 1) and let P
be a distribution on θ learned on an uniformly random ⌊(1− α)n⌋-sized subset T1−α of Tn. Then,

LFCS(P) ≤ L̂FCS(P, T1−α) + min

{
η +

√
η(η + 2L̂FCS(P, T1−α)),√

η
2 ,

(6)

with probability at least 1 − δ over T1−α, in which η := KL(P ||Q)+log 2
√

⌊(1−α)n⌋/δ
⌊(1−α)n⌋ and Q is a

distribution that does not depend on T1−α but may depend on Tα := Tn \ Tα.

When the prior distribution Q is naively chosen (e.g., as a standard Gaussian dis-
tribution), the KL divergence in Equation 6 often dominates the right-hand side

Sets Bags Seq. SIX60.0

0.2

0.4

0.6

0.8

FC
S

Risk (LFCS)
Bound

Figure 2: Non-vacuous gener-
alization bounds for the FCS
risk functional in Eq. 10.

of the equation and results in vacuous bounds, i.e., LFCS(P) ≤ a
for some a > 1. To address this issue, the influential work of
Dziugaite & Roy (2017) proposed the use of a data-dependent Q
learned by minimizing the empirical risk functional on a fraction
α of the data and, after learning P by minimizing Equation 6,
evaluating the generalization bound on the remaining (1 − α)
portion of the data, as presented in Proposition 5.1.

Empirical results. We follow a similar approach to derive the
first non-vacuous generalization bounds for GFlowNets in the
literature. For this, we disjointly partition the dataset Tn with
n = 3 · 104 into sets Tα and T1−α with α = 0.6. We learn an
isotropic Gaussian prior Q on Tα and then a diagonal Gaussian
posterior P on Tα ∪ T1−α by minimizing the bound in Equation 6.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Finally, the bound is evaluated on T1−α to obtain the statistical certificate (Pérez-Ortiz et al., 2021).
Results in Figure 2 for the tasks of set generation (Pan et al., 2023a; Bengio et al., 2023), bag
generation (Shen et al., 2023; Jang et al., 2024), sequence design (Malkin et al., 2022; 2023; Madan
et al., 2022) with additive rewards, and SIX6 (Jain et al., 2022; Malkin et al., 2022; Shen et al.,
2023) highlight the non-vacuousness of Equation 6 and the generalizability of the trained models.
Please refer to Section 6 and to Appendix B for a detailed description of the experimental setup.
Appendix A describes the design of the GFlowNet for each of these generative tasks.

5.2 ORACLE GENERALIZATION BOUNDS

Although the previous section’s empirical results certify the generalization of the learned policy
network to novel trajectories, they do not necessarily shed light on which characteristics of the
generative task are hindering the model’s generalization capability. In the remaining of this section,
we thus derive generalization bounds that, despite not being directly computable, provide a finer
understanding of which factors play a role when the goal is to learn a generalizable policy. In
particular, we observe that larger trajectories and peakier target distributions tend to make general-
ization harder when a fixed sampling budget is available. In Section 6, we will see how a distributed
algorithm may alleviate these issues (Yagli et al., 2020; Barnes et al., 2022; Sefidgaran et al., 2022).

Trajectory-level bounds. We start by deriving generalization bounds for GFlowNets when the
trajectories are independently sampled (see Section 5.1) and the risk functional is the KL divergence
between the forward and backward policies, i.e., KL(pB ||pF), in which pB(τ) ∝ pB(τ |x)R(x).
This choice is motivated by Malkin et al. (2023)’s interpretation of GFlowNets as a hierarchical
variational inference algorithms and by the ability of KL(pB ||pF) to focus the model on high-
probability regions of the target, which is a desirable trait of GFlowNets. Remarkably, we show
in Lemma B.1 that KL(pB ||pF) can be bounded by sensibly reparameterizing pF as a mixture
policy. Then, as shown in Theorem 5.2 below, this reparametrization enables developing oracle
generalization bounds in the fashion of the tight results we derived in Section 5.1.
Theorem 5.2. Let G = (pF , pB , F) be a GFlowNet with policy network pF parameterized as in
Lemma B.1. Also, let Q be a probability distribution over the parameters θ of pF . Denote H[pB] =
−Eτ∼pB

[log pB(τ)] for pB’s entropy and MT = maxτ (|τ | log(α−1 maxs∈τ |Ch(s)|)). Then,

Eθ∼P [KL(π||pT)] ≤ Eθ∼P

 1

m

∑
1≤i≤m

log
pB(τi)

pF (τi)

+ (−H[pB] +MT) η(P,Q, n), (7)

in which we recall that η(P,Q, n) =
√

KL(P ||Q)+log 2
√

n/δ
n and π(x) ∝ R(x) is the target.

A few remarks on the excess risk upper bound of Theorem 5.2. Firstly, the assumption that
trajectories are sampled according to pB(τ) ∝ pB(τ |x)R(x) is consistent with popular strategies
for learning GFlowNets that focus on sampling trajectories leading to high-reward states more often
than those leading to low-reward states, e.g., using a replay buffer (Deleu et al., 2022). Secondly, in
alignment with well-established practical knowledge, the result in Equation 7 shows it is harder to
achieve tighter generalization bounds when the target distribution is spiky with a small entropy term
H[pB], and when the generative task is composed of longer trajectories or larger action spaces.

Transition-level bounds. For many applications, the number of observed complete trajectories
when training GFlowNets can be orders of magnitude smaller than the number of collected
state transitions. In this context, one may obtain significantly tighter generalization bounds by
interpreting the transitions, and not the complete trajectories, as data samples (Lotfi et al., 2024a;b).
Indeed, it is assumed that GFlowNets’ outstanding potential emerges from its capacity to exploit the
compositional structure of the space characterized by the state graph (Bengio et al., 2021; Nica et al.,
2022; Shen et al., 2023; Atanackovic & Bengio, 2024). To incorporate this structure into our theo-
retical bounds, we shift our focus to the design of Azuma-Hoeffding-type concentration inequalities
(Azuma, 1967; McDiarmid, 1998; Boucheron et al., 2013) applied to the stochastic process induced
by the Markov Decision Process (MDP) governing the data-generating process. For this, we start
defining a martingale difference sequence based on the DB loss (Bengio et al., 2023, Example 5).
Definition 5.3 (A martingale difference sequence for the DB loss). Recall the detailed balance loss
LDB(s, s

′) = (logF (s)pF (s
′|s)− logF (s′)pB(s|s′))2. For a fixed sampling policy pE , we let

M(Si, S<i) = LDB(Si, Si−1)− Esi∼pE(·|Si−1) [LDB(si, Si−1)|Si−1] , (8)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: A fixed-horizon DAG partition with
three leaves (S1, S2, S3) and one root (So).
For inference, the sampling policy is chosen
based on the current state.

Algorithm 1 Subgraph Asynchronous Learning

1: S = So ∪
⋃m

j=1 Sj ▷ Fixed-horizon partition
2: Ij = Sj ∩ So for j ∈ {1, . . . ,m}
3: ▷ Local training
4: parfor j ∈ {1, . . . ,m} do
5: ▷ Minimize Lj

ATB in Sj with SGD
6: (pjF , Fj) = argminpF ,F Lj

ATB(pF , F)
7: end parfor
8: Ro : x 7→1{x∈X}R(x)+

∑m
j=1 1{x∈Ij}Fj(x)

9: (poF , Fo) = argminpF ,F LTB(pF , F,R
o)

10: return {(poF , Fo)} ∪
⋃

1≤j≤m{(pjF , Fj)}

where S<i = {S1, . . . , Si−1}. Also, we define the natural filtration Ft = σ(S1, . . . , St) generated
by the first t states of the Markov process {Si}i≥1. Clearly, each M(Si, S<i) is Fi-measurable and
ESi

[M(Si, S<i)|F<i] = 0, i.e., {M(Si, S<i)}i≥1 is a martingale difference sequence.

From this definition, it is immediate that Mt :=
∑

1≤i≤tM(Si, S<i) is a martingale w.r.t. the filtra-
tion {Ft}t≥1. We defer to Appendix B the discussion regarding its properties and the assumptions
imposed on it for proving Theorem 5.4 below. Additionally, we define

L(θ) = E
τ∼pE

1

|τ |
∑

1≤i≤|τ |
E [LDB(Si, Si−1)|Si−1] and L̂(θ) = 1

n

∑
1≤j≤n

1

tj

∑
1≤i≤tj

LDB(S
(j)
i , S

(j)
i−1)

as the population and empirical DB-based risk functionals for GFlowNets. Under these conditions,
Theorem 5.4 complements Theorem 5.2 with a generalization bound based on the DB loss.

Theorem 5.4 (Transition-level generalization bounds for GFlowNets). LetMt(θ) be the martingale
arising from Definition 5.3, with θ representing the parameters of the forward policy. Also, letQ be a
distribution on θ. Assume that LDB(Si, Si−1) ≤ U uniformly on (Si, Si−1) and thatMtm(θ)2 ≤ K,
in which tm is the maximum trajectory length. Similarly, define λ ≤ 1/2U and β ∈ (0, 1), and let P
be a data-dependent posterior distribution on θ. Then, with probability at least 1− δ over the set of
independent martingales {So, S

(j)
1 , . . . , S

(j)
tj }1≤j≤n such that So = so almost surely,

Eθ∼P [L(θ)] ≤ 1

β
Eθ∼P

[
L̂(θ)

]
+ αT,n

(
KL(P ||Q) + log

2

δ

)
+

log tm
βTλ

+ γ
λK

βT
,

in which T is the number of observed transitions, αT,n =
(

U
2β(1−β)n + 1

βTλ

)
, and γ = e− 2.

Similarly to Theorem 5.2, Theorem 5.4 implies that obtaining tighter generalization guarantees is
harder for larger state spaces with longer trajectories when the sampling process is limited by a
maximum number of observable transitions (or states) T , which is an often imposed constraint for
comparing the sample-efficiency of different learning objectives for GFlowNets in the literature
(Pan et al., 2023b;a; Madan et al., 2022; Malkin et al., 2022; 2023). In the next section, we show how
these issues can be addressed via a distributed learning scheme with network-level parallelization.

6 DIVIDE AND CONQUER: DISTRIBUTED LEARNING OF GFLOWNETS

In light of the above analysis, the diverse exploration of state graphs (Section 4) with smaller
trajectory sizes (Section 5) is beneficial for the successful training of GFlowNets. In what follows,
we show how these features can be efficiently implemented by recasting the GFlowNet training as
an embarrassingly parallel divide-and-conquer algorithm, which we call subgraph asynchronous
learning (SAL). This is, to the best of our knowledge, the first method enabling the distributed
learning of GFlowNets with network-level parallelization. We remark that previous work on the
topic (da Silva et al., 2024) promoted only the partitioning of the reward function for parallel
Bayesian inference and that, in stark contrast to SAL, each client learned from the same state graph.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Centralized SAL Target

Cln 1 Cln 2 SAL Cent.
Model

0

20

40

60

80

100

Tr
ai

ni
ng

tim
e

(s
)

52.56 51.86
44.14

103.58

Figure 4: SAL leads to faster mode discovery and more accurate approximations given a fixed
training time budget (right-most plot). Results for a centralized GFlowNet, for our algorithm (SAL),
and the target reproduced from Malkin et al. (2022, Section 5.1) are shown from left to right. Run-
ning time for SAL equals the running time of the longest client plus that of the aggregation phase.

6.1 SUBGRAPH ASYNCHRONOUS LEARNING

Overview. There are two ingredients making up SAL: a fixed-horizon partition (FHP) and an assign-
ment function (AF). In short, a FHP defines the state graph split explicitly, while an AF indirectly
encodes it by assigning states to partitions. Here, we formally define the former concept. We intro-
duce the idea of an AF and provide a comprehensive theoretical analysis of SAL in Appendix B.4.

Convergence guarantees. We introduce the notion of a FHP of a pointed DAG below. In the flow
network perspective, such a partition can be viewed as a collection of possibly overlapping multi-
source subnetworks, termed leaves, which are grouped together by a single-source network, referred
to as root. We use the term fixed-horizon due to the fixed distance of the subnetworks’ sources to so.
Also, note that a FHP is only a partition in the set-theoretical sense when the state graph is a tree.

Definition 6.1 (Fixed-horizon DAG partition). We say that S = So ∪
(⋃

1≤j≤m Sj

)
is a FHP of

the state space S, with leaves {Sj}mj=1 and root So, when it satisfies the conditions below:

1. (Disjointness of sources) so ∈ So and the sets {Ij := So ∩ Sj}mj=1 are pairwise disjoint.

2. (Completeness) If s ∈ Sj for a j ≥ 1, then all descendants of s are in Sj .

3. (Regularity) If d denotes the shortest-path distance, d(so, Ij) = d(so, Ii) for all i, j.

Under Definition 6.1, we let Xj = Sj ∩ X be the set of terminal states reachable from Ij . For
conciseness, we denote {Sj}mj=0 = FHP(S,m) when {Sj}mj=0 is a FHP of S with m components.
We then illustrate a FHP of a tree in which m = 3 and the Ij , represented by the doubly-stroked
circles, are singletons for the blue and green leaves in Figure 3. We are now ready to define SAL.
Definition 6.2 (SAL). Let {Sj}mj=0 = FHP(S,m). For each 1 ≤ j ≤ m, let Gj = (pjF , p

j
B , Fj) be

a GFlowNet and pjE be any forward policy over the Sj-induced subgraph of the state graph. Finally,
let qj be any distribution with full support on Ij . Then, define

Lj
ATB(p

j
F , Fj) = Es∼qjEτ∼pj

E(·|s)

(log Fj(s)p
j
F (τ |s)

R(x)pjB(τ |x)

)2
 , (9)

in which x represents τ ’s terminal state, as the amortized trajectory balance (ATB) objective. For
the root, let poE be a policy in So and Go = (poF , p

o
B , R

o). For each x ∈ (X \⋃m
j=1 Xj) ∪ (

⋃m
j=1 Ij),

let Ro(x) = Rj(x) if x ∈ Ij for some j and Ro(x) = R(x) otherwise. In this context, SAL
follows a two-step procedure: first, m models are trained in parallel by minimizing Equation 9;
then, a global model is estimated by optimizing the TB loss with reward Ro, which we denote by
LTB(pF , F,R

o) for a GFlowNet (pF , pB , F). We summarize this approach in Algorithm 1.

Clearly, any flow-based learning objectives (e.g., SubTB (Madan et al., 2022), Munchausen DQN
(Tiapkin et al., 2024), GAFlowNets (Pan et al., 2023b)), parametrizations (e.g., forward-looking
(Pan et al., 2023a), LED (Jang et al., 2024), temperature-scaled (Kim et al., 2024a)), and off-
policy sampling strategies (e.g., replay buffer (Vemgal et al., 2023) and local search (Kim et al.,
2024b)) could be employed for estimating both the root and leaf GFlowNets in Definition 6.2. In
Appendix C, we demonstrate the soundness of SAL and conduct an extensive theoretical analysis
on the character of the local distributions and error propagation within this framework. Similarly,
Appendix E.1 discusses these issues from an empirical viewpoint.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Recursive SAL. As defined in Definition 6.2 and shown in Figure 3, SAL has a single layer:
each leaf is directly connected to the root in the underlying FHP. Nonetheless, there is no obstacle
preventing us from building SAL upon a multi-layered partition of the state graph, as illustrated
in Figure 11 in the supplement. For this, we must first define a hierarchy of partitions. Then, we
recursively learn a flow assignment for each partition by starting at the lowest levels of this hierarchy
and moving upwards — in the fashion of backward-induction algorithms. Each learning step is
based on minimizing the amortized trajectory balance loss in Equation 9 via SGD. We demonstrate
the correctness of the resulting algorithm, termed Recursive SAL, in Proposition C.6, which follows
from Theorem C.1 and an inductive argument. Although we do not provide an empirical assessment
of Recursive SAL in this work, Appendix C.2 considers its potential implications.

6.2 EMPIRICAL ILLUSTRATION

Experimental setup. We evaluate the performance of SAL in six different generative tasks
encompassing both synthetic and real-world problems. In Appendix C, we extensively discuss how
to implicitly define a FHP via an assignment function, which allows for an efficient implementation
of SAL. Also, please refer to Appendix B for a detailed account of the experimental setup.

1. Hypergrid (Bengio et al., 2021; Malkin et al., 2022; 2023; Pan et al., 2023b; Krichel et al.,
2024). We consider both a 8 x 8 and a 64 x 64 hypergrid environment (Section 2) with (Malkin
et al., 2022, Section 5.1)’s reward function, which is illustrated in Figure 4 for H = 8.

2. SIX6 (Jain et al., 2022; Malkin et al., 2022; Shen et al., 2023; Chen & Mauch, 2024; Kim et al.,
2024a). We generate 8-sized nucleotide strings. The reward represents wet-lab DNA binding
measurements to a human transcription factor (Barrera et al., 2016; Trabucco et al., 2022).

3. PHO4 (Jain et al., 2022; Malkin et al., 2022; Shen et al., 2023; Chen et al., 2023). Similarly,
we construct 10-sized nucleotide strings; the reward reflects wet-lab measurements of DNA
binding activities to a yeast transcription factor (Barrera et al., 2016; Trabucco et al., 2022).

4. Bit sequences (Malkin et al., 2022; Madan et al., 2022; Rector-Brooks et al., 2023; Tiapkin
et al., 2024). We produce 60-sized binary sequences. Given a subset M of such sequences,
we define R(x) = exp{−minm∈M dL(x,m)}, in which dL is the edit distance.

5. Sequence design (Jain et al., 2022; da Silva et al., 2024). We build 8-sized sequences of
{1, . . . , 6}. Also, R(x) =

∑8
i=1 g(i)f(xi), with f and g being [−1, 1]-valued functions.

6. Set generation (Bengio et al., 2023; Pan et al., 2023a). We assemble 16-sized subsets of a
fixed 32-sized set. We employ the same additive reward function described in Section 4.

Results. As expected, Figure 4 above, and Figures 7, 9, 10, and 13 in the supplement, show that
SAL drastically speeds up the discovery of high-valued states for all considered generative problems
under varying computational constraints. Complementarily, Figure 6 and Table 2 in Appendix C.1
underline that our distributed algorithm achieves more accurate distributional approximations than
its centralized counterpart. We discuss these promising results in more detail in Appendix C.1.

7 CONCLUSIONS

Discussion. We developed the first PAC-Bayesian bounds and non-vacuous statistical guarantees
for the generalization of GFlowNets in the literature. Additionally, our theoretical results provided
a deeper understanding of the negative effect of the trajectory length on the proven learnability of
a generalizable policy. Inspired by these conclusions, our distributed algorithm SAL, which is also
the first of its kind, exhibited promising performance in both synthetic and real-world problems.

Future works and limitations. We discuss the limitations of our work at large in Appendix E. In
particular, we acknowledge that a deeper theoretical understanding of advanced sampling techniques
is still required. From a practitioner’s perspective, we believe that SAL can greatly improve the
performance of GFlowNets in specialized domains, e.g., NLP (Hu et al., 2023a) and drug discovery
(Bengio et al., 2021), which are beyond the scope of our work. Finally, it has not escaped our atten-
tion that SAL is related to Mankowitz et al. (2016)’s Adaptive Skills, Adaptive Partitions (ASAP)
framework for learning temporally extended actions in MDPs and may find fruitful applications in
multi-task RL by interpreting each leaf (resp. root) GFlowNet as an intra- (resp. inter-) skill policy.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pierre Alquier. User-friendly introduction to pac-bayes bounds. Foundations and Trends® in Ma-
chine Learning, 17(2):174–303, 2024. URL https://arxiv.org/abs/2110.11216.

Pierre Alquier and Benjamin Guedj. Simpler pac-bayesian bounds for hostile data. Machine Learn-
ing, 107(5):887–902, December 2017. ISSN 1573-0565. doi: 10.1007/s10994-017-5690-0. URL
http://dx.doi.org/10.1007/s10994-017-5690-0.

Pierre Alquier, Xiaoyin Li, and Olivier Wintenberger. Prediction of time series by statistical learn-
ing: general losses and fast rates, 2012. URL https://arxiv.org/abs/1211.1847.

Lazar Atanackovic and Emmanuel Bengio. Investigating generalization behaviours of generative
flow networks, 2024. URL https://arxiv.org/abs/2402.05309.

Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical
Journal, Second Series, 19(3):357–367, 1967.

Akshay Balsubramani. Pac-bayes iterated logarithm bounds for martingale mixtures, 2015. URL
https://arxiv.org/abs/1506.06573.

Leighton Pate Barnes, Alex Dytso, and Harold Vincent Poor. Improved information-theoretic gen-
eralization bounds for distributed, federated, and iterative learning. Entropy, 24(9):1178, August
2022. ISSN 1099-4300. doi: 10.3390/e24091178. URL http://dx.doi.org/10.3390/
e24091178.

Luis A Barrera, Anastasia Vedenko, Jesse V Kurland, Julia M Rogers, Stephen S Gisselbrecht,
Elizabeth J Rossin, Jaie Woodard, Luca Mariani, Kian Hong Kock, Sachi Inukai, et al. Survey
of variation in human transcription factors reveals prevalent dna binding changes. Science, 351
(6280):1450–1454, 2016.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Yoshua Bengio and Nikolay Malkin. Machine learning and information theory concepts towards an
ai mathematician. Bulletin of the American Mathematical Society, 61(3):457–469, 2024.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research (JMLR), 2023.

Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual
bandit algorithms with supervised learning guarantees, 2011. URL https://arxiv.org/
abs/1002.4058.

Felix Biggs and Benjamin Guedj. On margins and derandomisation in pac-bayes, 2022. URL
https://arxiv.org/abs/2107.03955.

Felix Biggs and Benjamin Guedj. Tighter pac-bayes generalisation bounds by leveraging example
difficulty. In International Conference on Artificial Intelligence and Statistics, pp. 8165–8182.
PMLR, 2023.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymp-
totic theory of independence. Oxford University Press, 2013.

Ioar Casado, Luis A. Ortega, Andrés R. Masegosa, and Aritz Pérez. Pac-bayes-chernoff bounds for
unbounded losses, 2024. URL https://arxiv.org/abs/2401.01148.

Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning.
arXiv preprint arXiv:0712.0248, 2007.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as
learning the score: theory for diffusion models with minimal data assumptions. In The Eleventh
International Conference on Learning Representations, 2023.

11

https://arxiv.org/abs/2110.11216
http://dx.doi.org/10.1007/s10994-017-5690-0
https://arxiv.org/abs/1211.1847
https://arxiv.org/abs/2402.05309
https://arxiv.org/abs/1506.06573
http://dx.doi.org/10.3390/e24091178
http://dx.doi.org/10.3390/e24091178
https://arxiv.org/abs/1002.4058
https://arxiv.org/abs/1002.4058
https://arxiv.org/abs/2107.03955
https://arxiv.org/abs/2401.01148

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yihang Chen and Lukas Mauch. Order-preserving GFlownets. In The Twelfth International Confer-
ence on Learning Representations, 2024.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Machine
learning, 15:201–221, 1994.

Tiago da Silva, Eliezer Silva, Adèle Ribeiro, António Góis, Dominik Heider, Samuel Kaski, and
Diego Mesquita. Human-in-the-loop causal discovery under latent confounding using ancestral
gflownets. arXiv preprint:2309.12032, 2023.

Tiago da Silva, Luiz Max Carvalho, Amauri Souza, Samuel Kaski, and Diego Mesquita. Embar-
rassingly parallel gflownets, 2024. URL https://arxiv.org/abs/2406.03288.

Tristan Deleu and Yoshua Bengio. Generative flow networks: a markov chain perspective, 2023.

Tristan Deleu, António Góis, Chris Chinenye Emezue, Mansi Rankawat, Simon Lacoste-Julien,
Stefan Bauer, and Yoshua Bengio. Bayesian structure learning with generative flow networks. In
Uncertainty in Artificial Intelligence (UAI), 2022.

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Char-
lin, and Yoshua Bengio. Joint Bayesian inference of graphical structure and parameters with a
single generative flow network. In Advances in Neural Processing Systems (NeurIPS), 2023.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete prob-
abilistic inference as control in multi-path environments, 2024. URL https://arxiv.org/
abs/2402.10309.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.

Yilun Du and Leslie Kaelbling. Compositional generative modeling: A single model is not all you
need, 2024. URL https://arxiv.org/abs/2402.01103.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent pac-bayes priors via differential
privacy. Advances in Neural Information Processing Systems, 31, 2018.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel M. Roy. On
the role of data in pac-bayes bounds, 2020. URL https://arxiv.org/abs/2006.10929.

M. Fard and Joelle Pineau. Pac-bayesian model selection for reinforcement learning.
In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.), Ad-
vances in Neural Information Processing Systems, volume 23. Curran Associates, Inc.,
2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/
file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf.

Ronald Aylmer Fisher, Frank Yates, et al. Statistical tables for biological, agricultural and medical
research, edited by ra fisher and f. yates. Edinburgh: Oliver and Boyd, 1963.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International Conference on Machine Learning, pp. 1183–1192. PMLR, 2017.

Timur Garipov, Sebastiaan De Peuter, Ge Yang, Vikas Garg, Samuel Kaski, and Tommi S. Jaakkola.
Compositional sculpting of iterative generative processes. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Pascal Germain, Francis Bach, Alexandre Lacoste, and Simon Lacoste-Julien. Pac-bayesian theory
meets bayesian inference, 2017. URL https://arxiv.org/abs/1605.08636.

Benjamin Guedj. A primer on pac-bayesian learning, 2019. URL https://arxiv.org/abs/
1901.05353.

12

https://arxiv.org/abs/2406.03288
https://arxiv.org/abs/2402.10309
https://arxiv.org/abs/2402.10309
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2402.01103
https://arxiv.org/abs/2006.10929
https://proceedings.neurips.cc/paper_files/paper/2010/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://arxiv.org/abs/1605.08636
https://arxiv.org/abs/1901.05353
https://arxiv.org/abs/1901.05353

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Maxime Haddouche and Benjamin Guedj. Online pac-bayes learning, 2022a. URL https://
arxiv.org/abs/2206.00024.

Maxime Haddouche and Benjamin Guedj. Pac-bayes generalisation bounds for heavy-tailed losses
through supermartingales. arXiv preprint arXiv:2210.00928, 2022b.

Maxime Haddouche, Benjamin Guedj, Omar Rivasplata, and John Shawe-Taylor. Pac-bayes
unleashed: Generalisation bounds with unbounded losses. Entropy, 23(10):1330, October
2021. ISSN 1099-4300. doi: 10.3390/e23101330. URL http://dx.doi.org/10.3390/
e23101330.

Maxime Haddouche, Paul Viallard, Umut Simsekli, and Benjamin Guedj. A pac-bayesian link
between generalisation and flat minima, 2024. URL https://arxiv.org/abs/2402.
08508.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Matthew Holland. Pac-bayes under potentially heavy tails. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows:
Learning categorical distributions with normalizing flows. In Third Symposium on Advances in
Approximate Bayesian Inference, 2021.

Edward J. Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, and et al. Amortizing intractable
inference in large language models, 2023a.

Edward J Hu, Nikolay Malkin, Moksh Jain, Katie E Everett, Alexandros Graikos, and Yoshua Ben-
gio. Gflownet-em for learning compositional latent variable models. In International Conference
on Machine Learning (ICML), 2023b.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure F. P.
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with GFlowNets. In Interna-
tional Conference on Machine Learning (ICML), 2022.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua Ben-
gio, Santiago Miret, and Emmanuel Bengio. Multi-objective GFlowNets. In International Con-
ference on Machine Learning (ICML), 2023.

Hyosoon Jang, Minsu Kim, and Sungsoo Ahn. Learning energy decompositions for partial inference
in GFlownets. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=P15CHILQlg.

Marco Jiralerspong, Bilun Sun, Danilo Vucetic, Tianyu Zhang, Yoshua Bengio, Gauthier Gidel, and
Nikolay Malkin. Expected flow networks in stochastic environments and two-player zero-sum
games, 2023.

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural
networks: Improved pac-bayesian bounds on graph diffusion. In International Conference on
Artificial Intelligence and Statistics, pp. 6314–6341. PMLR, 2023.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima, 2017.
URL https://arxiv.org/abs/1609.04836.

Minsu Kim, Joohwan Ko, Taeyoung Yun, Dinghuai Zhang, Ling Pan, Woochang Kim, Jinkyoo Park,
Emmanuel Bengio, and Yoshua Bengio. Learning to scale logits for temperature-conditional
gflownets, 2024a. URL https://arxiv.org/abs/2310.02823.

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn,
and Jinkyoo Park. Local search gflownets, 2024b. URL https://arxiv.org/abs/2310.
02710.

13

https://arxiv.org/abs/2206.00024
https://arxiv.org/abs/2206.00024
http://dx.doi.org/10.3390/e23101330
http://dx.doi.org/10.3390/e23101330
https://arxiv.org/abs/2402.08508
https://arxiv.org/abs/2402.08508
https://openreview.net/forum?id=P15CHILQlg
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/2310.02823
https://arxiv.org/abs/2310.02710
https://arxiv.org/abs/2310.02710

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Anas Krichel, Nikolay Malkin, Salem Lahlou, and Yoshua Bengio. On generalization for generative
flow networks, 2024. URL https://arxiv.org/abs/2407.03105.

Salem et al. Lahlou. A theory of continuous generative flow networks. In International Conference
on Machine Learning (ICML), 2023.

Elaine Lau, Nikhil Murali Vemgal, Doina Precup, and Emmanuel Bengio. DGFN: Double genera-
tive flow networks. In NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023.

Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of diffusion
models. Advances in Neural Information Processing Systems, 36, 2024.

Jens Liebehenschel. Ranking and unranking of lexicographically ordered words: An average-case
analysis. Journal of Automata, Languages and Combinatorics, 2(4):227–268, 1997.

Dianbo Liu and et al. Gflowout: Dropout with generative flow networks. In International Conference
on Machine Learning, ICML’23. JMLR.org, 2023.

Ben London, Bert Huang, Ben Taskar, and Lise Getoor. PAC-Bayesian Collective Stability. In
Samuel Kaski and Jukka Corander (eds.), Proceedings of the Seventeenth International Confer-
ence on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning
Research, pp. 585–594, Reykjavik, Iceland, 22–25 Apr 2014. PMLR.

Sanae Lotfi, Marc Finzi, Yilun Kuang, Tim G. J. Rudner, Micah Goldblum, and Andrew Gordon
Wilson. Non-vacuous generalization bounds for large language models, 2024a. URL https:
//arxiv.org/abs/2312.17173.

Sanae Lotfi, Yilun Kuang, Brandon Amos, Micah Goldblum, Marc Finzi, and Andrew Gordon
Wilson. Unlocking tokens as data points for generalization bounds on larger language models,
2024b. URL https://arxiv.org/abs/2407.18158.

Jianzhu Ma, Jian Peng, Sheng Wang, and Jinbo Xu. Estimating the partition function of graphi-
cal models using langevin importance sampling. In Carlos M. Carvalho and Pradeep Ravikumar
(eds.), Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statis-
tics, volume 31 of Proceedings of Machine Learning Research, pp. 433–441, Scottsdale, Arizona,
USA, 29 Apr–01 May 2013. PMLR.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, 2022.

Eran Malach. Auto-regressive next-token predictors are universal learners, 2024. URL https:
//arxiv.org/abs/2309.06979.

Shreshth A. Malik, Salem Lahlou, Andrew Jesson, Moksh Jain, Nikolay Malkin, Tristan Deleu,
Yoshua Bengio, and Yarin Gal. Batchgfn: Generative flow networks for batch active learning,
2023. URL https://arxiv.org/abs/2306.15058.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlownets. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. GFlowNets and variational inference. International Conference on Learning
Representations (ICLR), 2023.

Daniel J. Mankowitz, Timothy A. Mann, and Shie Mannor. Adaptive skills, adaptive partitions
(asap), 2016. URL https://arxiv.org/abs/1602.03351.

14

https://arxiv.org/abs/2407.03105
https://arxiv.org/abs/2312.17173
https://arxiv.org/abs/2312.17173
https://arxiv.org/abs/2407.18158
https://arxiv.org/abs/2309.06979
https://arxiv.org/abs/2309.06979
https://arxiv.org/abs/2306.15058
https://arxiv.org/abs/1602.03351

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Andreas Maurer. A note on the pac bayesian theorem, 2004. URL https://arxiv.org/abs/
cs/0411099.

Sokhna Diarra Mbacke, Florence Clerc, and Pascal Germain. Pac-bayesian generalization bounds
for adversarial generative models, 2023. URL https://arxiv.org/abs/2302.08942.

David McAllester. A pac-bayesian tutorial with a dropout bound, 2013. URL https://arxiv.
org/abs/1307.2118.

David A McAllester. Some pac-bayesian theorems. In Proceedings of the eleventh annual confer-
ence on Computational Learning Theory, pp. 230–234, 1998.

David A McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth annual confer-
ence on Computational Learning Theory, pp. 164–170, 1999.

Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics,
pp. 195–248. Springer, 1998.

Kohei Miyaguchi. Pac-bayesian transportation bound, 2019. URL https://arxiv.org/abs/
1905.13435.

Wendy Myrvold and Frank Ruskey. Ranking and unranking permutations in linear time. Information
Processing Letters, 79(6):281–284, 2001.

Andrei Cristian Nica, Moksh Jain, Emmanuel Bengio, Cheng-Hao Liu, Maksym Korablyov,
Michael M Bronstein, and Yoshua Bengio. Evaluating generalization in gflownets for molecule
design. In ICLR2022 Machine Learning for Drug Discovery, 2022.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of GFlowNets
with local credit and incomplete trajectories. In International Conference on Machine Learning
(ICML), 2023a.

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative aug-
mented flow networks. In International Conference on Learning Representations (ICLR), 2023b.

Mohit Pandey, Gopeshh Subbaraj, and Emmanuel Bengio. Gflownet pretraining with inexpensive
rewards. arXiv preprint arXiv:2409.09702, 2024.

Marı́a Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk cer-
tificates for neural networks. Journal of Machine Learning Research, 22(227):1–40, 2021. URL
http://jmlr.org/papers/v22/20-879.html.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
gflownets, 2023. URL https://arxiv.org/abs/2306.17693.

Omar Rivasplata, Vikram M Tankasali, and Csaba Szepesvari. Pac-bayes with backprop. arXiv
preprint arXiv:1908.07380, 2019.

Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvari, and John Shawe-Taylor. Pac-bayes analysis
beyond the usual bounds, 2020. URL https://arxiv.org/abs/2006.13057.

Borja Rodrı́guez-Gálvez, Ragnar Thobaben, and Mikael Skoglund. More pac-bayes bounds: From
bounded losses, to losses with general tail behaviors, to anytime validity, 2024. URL https:
//arxiv.org/abs/2306.12214.

Julien Roy, Pierre-Luc Bacon, Christopher Pal, and Emmanuel Bengio. Goal-conditioned gflownets
for controllable multi-objective molecular design. arXiv preprint arXiv:2306.04620, 2023.

Otmane Sakhi, Pierre Alquier, and Nicolas Chopin. Pac-bayesian offline contextual bandits with
guarantees. In International Conference on Machine Learning, pp. 29777–29799. PMLR, 2023.

Milad Sefidgaran, Romain Chor, and Abdellatif Zaidi. Rate-distortion theoretic bounds on gener-
alization error for distributed learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

15

https://arxiv.org/abs/cs/0411099
https://arxiv.org/abs/cs/0411099
https://arxiv.org/abs/2302.08942
https://arxiv.org/abs/1307.2118
https://arxiv.org/abs/1307.2118
https://arxiv.org/abs/1905.13435
https://arxiv.org/abs/1905.13435
http://jmlr.org/papers/v22/20-879.html
https://arxiv.org/abs/2306.17693
https://arxiv.org/abs/2006.13057
https://arxiv.org/abs/2306.12214
https://arxiv.org/abs/2306.12214

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Yevgeny Seldin, Nicolò Cesa-Bianchi, Peter Auer, François Laviolette, and John Shawe-Taylor.
Pac-bayes-bernstein inequality for martingales and its application to multiarmed bandits. In Pro-
ceedings of the Workshop on On-line Trading of Exploration and Exploitation 2, pp. 98–111.
JMLR Workshop and Conference Proceedings, 2012a.

Yevgeny Seldin, François Laviolette, Nicolò Cesa-Bianchi, John Shawe-Taylor, and Peter Auer.
Pac-bayesian inequalities for martingales, 2012b. URL https://arxiv.org/abs/1110.
6886.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers, 2024. URL https://arxiv.org/abs/2402.05098.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

John Shawe-Taylor and Robert C Williamson. A pac analysis of a bayesian estimator. In Proceedings
of the tenth annual conference on Computational Learning Theory, pp. 2–9, 1997.

Max W. Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In International
Conference on Machine Learning, 2023.

Tiago Silva, Eliezer de Souza da Silva, Rodrigo Barreto Alves, Luiz Max Carvalho, Amauri H
Souza, Samuel Kaski, Vikas Garg, and Diego Mesquita. Analyzing GFlownets: Stability, expres-
siveness, and assessment. In ICML 2024 Workshop on Structured Probabilistic Inference & Gen-
erative Modeling, 2024. URL https://openreview.net/forum?id=B8KXmXFiFj.

Huayi Tang and Yong Liu. Towards understanding generalization of graph neural networks. In
International Conference on Machine Learning, pp. 33674–33719. PMLR, 2023.

Bahareh Tasdighi, Abdullah Akgül, Manuel Haussmann, Kenny Kazimirzak Brink, and Melih Kan-
demir. Pac-bayesian soft actor-critic learning, 2024. URL https://arxiv.org/abs/
2301.12776.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry Vetrov. Generative flow networks as
entropy-regularized rl, 2024. URL https://arxiv.org/abs/2310.12934.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization, 2022. URL https://arxiv.org/abs/
2202.08450.

Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, and Ben Poole. Discrete flows:
Invertible generative models of discrete data, 2019.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Vladimir Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer New York, 2000. ISBN
9781475732641. doi: 10.1007/978-1-4757-3264-1. URL http://dx.doi.org/10.1007/
978-1-4757-3264-1.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. In Measures of complexity: festschrift for alexey chervonenkis, pp.
11–30. Springer, 2015.

Nikhil Vemgal, Elaine Lau, and Doina Precup. An empirical study of the effectiveness of using
a replay buffer on mode discovery in gflownets, 2023. URL https://arxiv.org/abs/
2307.07674.

16

https://arxiv.org/abs/1110.6886
https://arxiv.org/abs/1110.6886
https://arxiv.org/abs/2402.05098
https://openreview.net/forum?id=B8KXmXFiFj
https://arxiv.org/abs/2301.12776
https://arxiv.org/abs/2301.12776
https://arxiv.org/abs/2310.12934
https://arxiv.org/abs/2202.08450
https://arxiv.org/abs/2202.08450
http://dx.doi.org/10.1007/978-1-4757-3264-1
http://dx.doi.org/10.1007/978-1-4757-3264-1
https://arxiv.org/abs/2307.07674
https://arxiv.org/abs/2307.07674

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan,
Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-
Brooks, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable inference in
diffusion models for vision, language, and control, 2024. URL https://arxiv.org/abs/
2405.20971.

Yi-Shan Wu, Andres Masegosa, Stephan Lorenzen, Christian Igel, and Yevgeny Seldin. Chebyshev-
cantelli pac-bayes-bennett inequality for the weighted majority vote. In Advances in Neural In-
formation Processing Systems, 2021.

Semih Yagli, Alex Dytso, and H. Vincent Poor. Information-theoretic bounds on the generalization
error and privacy leakage in federated learning, 2020. URL https://arxiv.org/abs/
2005.02503.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
gflownets. In International Conference on Learning Representations (ICLR), 2023a.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. In Advances
in Neural Information Processing Systems (NeurIPS), 2023b.

Ming Yang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Math-
ieu Blanchette, and Yoshua Bengio. PhyloGFN: Phylogenetic inference with generative flow
networks. In The Twelfth International Conference on Learning Representations, 2024.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and Weinan E. Towards theoretically
understanding why sgd generalizes better than adam in deep learning, 2021. URL https:
//arxiv.org/abs/2010.05627.

17

https://arxiv.org/abs/2405.20971
https://arxiv.org/abs/2405.20971
https://arxiv.org/abs/2005.02503
https://arxiv.org/abs/2005.02503
https://arxiv.org/abs/2010.05627
https://arxiv.org/abs/2010.05627

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL FOR
“GENERALIZATION AND DISTRIBUTED LEARNING OF

GFLOWNETS”

A Background and related works 19

A.1 Directed Acyclic Graphs . 19

A.2 Generative Flow Networks . 19

A.3 Learning GFlowNets . 20

A.4 Related works . 20

A.5 Additional review of PAC-Bayes bounds . 21

B Experimental details and additional discussions 23

B.1 A non-generalizable distribution . 23

B.2 Non-vacuous generalization bounds . 23

B.3 Oracle generalization bounds: Lemmata . 24

B.4 Subgraph Asynchronous Learning . 25

C SAL: Implementation and Theoretical Analysis 26

C.1 An efficient implementation of SAL . 26

C.2 Theoretical analysis and extensions . 29

C.3 Conditional SAL . 31

C.4 SAL and EP-GFlowNets . 32

D Proofs 34

D.1 Proof of Lemma 4.1 . 34

D.2 Proof of Proposition 4.2 . 34

D.3 Proof of Proposition 5.1 . 35

D.4 Proof of Lemma B.1 . 36

D.5 Proof of Theorem 5.2 . 36

D.6 Proof of Lemma B.2 . 36

D.7 Proof of Theorem 5.4 . 36

D.8 Proof of Theorem C.1 . 38

D.9 Proof of Lemma C.3 . 39

D.10 Proof of Proposition C.5 . 39

D.11 Proof of Proposition C.6 . 40

E Limitations and future works 41

E.1 Additional experiments . 41

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A BACKGROUND AND RELATED WORKS

For probability measures P and Q on the same space X , we recall for convenience that the
Kullback-Leibler (KL) divergence is KL(P ||Q) = Ex∼P [log (dP/dQ) (x)], the chi-squared
divergence is χ2(Q||P) = Ex∼P

[
((dQ/dP) (x))

2 − 1
]
; and the total variation distance is given by

TV (P,Q) = supA⊆X |P (A)−Q(A)|. When X is finite, TV (P,Q) = 1/2
∑

x∈X |P (x)−Q(x)|.
There are other notions of ‘divergence’ for probability measures; we have mentioned here the ones
used in our paper. Readers are refereed to Boucheron et al. (2013) for further details on the topic.

A.1 DIRECTED ACYCLIC GRAPHS

We briefly recall the definition of a pointed directed acycliy graph. For this, we firstly define the
concept of a finitely absorbing Markov transition kernel (Lahlou, 2023) in a topological space.
Henceforth, we let ({so}∪S ∪{sf},V) be a topological space endowed with a topology V and two
special elements, so and sf . We denote S̄ = {so}∪S∪{sf} the state space; so and sf are the initial
and final states, respectively. We also assume that both {so} and {sf} are open sets with respect to V .
Definition A.1 (Finitely absorbing Markov transition kernel (MTK)). Consider the measure space
(S̄,Σ, µ) with measure µ and a Borel σ-algerba Σ. Let κ : S̄ × Σ → R+ be a reference kernel, i.e.,
κ(s, ·) : Σ → R+ is a measure absolutely continuous with respect to µ for all s, and we recursively
define κ⊗t(s,A) =

∫
κ⊗t−1(s,ds′)κ(s′, A) for measurable A ∈ Σ. We say that ρF : S̄ ×Σ → R+

is a finitely absorbing Markov transition kernel if the following conditions are satisfied.
1. ρF (s, ·) : Σ → R+ is an absolutely continuous probability measure with respect to κ(s, ·);

2. there is a tm <∞ such that ρ⊗tm
F (s, {sf}) = 1 for every s ∈ {so}∪S and ρF (sf , {sf}) = 1;

3. s 7→ ρF (·, B) is continuous for every measurable B ∈ Σ;

4. if ρF (s, {sf}) > 0, then ρF (s, {sf}) = 1;

5. for every A ∈ Σ, there is a t < tm such that ρ⊗t
F (so, A) > 0.

In this work, S̄ is always finite, V is the discrete topology, and µ is the counting measure. The state
graph G is induced by ρF , i.e., (u, v) is an edge in G if and only if ρF (u, {v}) > 0. Acyclicity is
ensured by the finitely absorbing property of ρF (item 2 of Definition A.1). Notably, the finite S̄
assumption covers the vast majority of use-cases for GFlowNets. Under these conditions, we say
κ⊤ is a backward reference kernel in S̄ with respect to κ if κ(u, {v}) = κ⊤(v, {u}) for all (u, v) ∈
S̄ × S̄. We refer the reader to (Lahlou, 2023) for an overview of GFlowNets in infinite spaces.

A.2 GENERATIVE FLOW NETWORKS

A GFlowNet can be seen as a tuple ({so} ∪ S ∪ {sf}, PF , PB , ρF , ρB , κ, κ
⊤, µ,R) for which

1. κ is a forward reference kernel on S̄;
2. κ⊤ is a backward reference kernel in S̄ with respect to κ;
3. ρF (resp. ρB) is a finitely aborsbing MTK with respect to κ (resp. κ⊤);
4. R : Σ → R+ is a measure such that R≪ µ;
5. PF : S̄ × Σ → R+ is a MTK, called the forward policy, such that PF (s, ·) ≪ ρF (s, ·);
6. PB : S̄ × Σ → R+ is a MTK, called the backward policy, such that PB(s, ·) ≪ ρB(s, ·).

We denote by pF and pB the densities of PF and PB with respect to their respective reference
kernels. For simplicity, we interchangeably let R(x) be the density of R with respect to µ. In
this scenario, the set of terminal states X is defined by X = {x ∈ S : PF (s, {sf}) > 0}. In
practice, pF is parameterized by a neural network and its parameters are estimated to ensure that
the marginal of PF (so, ·) over X matches R up to a normalizing constant. In the terminology of
Section 2, the abstract actions space A would correspond to A =

⋃
s∈S̄{(s, u) : PF (s, {u}) > 0}

andA(s) = {(s, u) : PF (s, {u}) > 0}. For most problems, we identify the edge (s, u) with an entity
representing the difference between u and s, e.g., a nucleotide base when S is the space of nucleotide
strings. We complement the discussion in Section 2 on how to learn a GFlowNet in the next section.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.3 LEARNING GFLOWNETS

Below, we illustrate our definition of GFlowNets for three common generative tasks. These tasks
encompass a large number of applications, e.g., Jain et al. (2022); Shen et al. (2023); Hu et al.
(2023a;b); Liu & et al. (2023); Malkin et al. (2022); Pan et al. (2023b); Madan et al. (2022).

1. Autoregressive generation. Each object in S is a string of length up to a L, and G is a tree
rooted at so. Also, action sets A(s) represent an alphabet and a transition T (s, a) appends the
character a to the string s. Here, pB(s|(s, a)) = 1 for every s ∈ S and a ∈ A(s).

2. Set generation. Each s ∈ S is a subset of W = {1, . . . ,W}, with X containing those s of size
T . Action sets are A(s) = W \ s and transitions T (s, a) add the element a to s; see Figure 5.

3. Hypergrid environment. Each s ∈ S is a point within {0, . . . ,H − 1}d ×{0, 1} for given H
(size) and d (dimension); so = 0d+1 and the last coordinate indicates whether s ∈ X . Also,
A(s) = {ei : si < H−1}∪{⊤}, with ei denoting the i-th canonical vector in Rd and ⊤ a stop
action. Transitions T (s, a) either add a to s, if a = ei for some i; or set sd+1 = 1, if a = ⊤.

Figure 5: State graph
for the set generation
task (W = 3, T = 2).

Notably, T (x, ·) ∈ {sf} for every terminal state x ∈ X . We provided
examples of R, F , and pF throughout the main text; in particular, see
Sections 4 and 6.2 and Appendix B. Figure 5 illustrates the state graph for
the set generation task (omitting sf). To learn a forward policy pF , we
minimize a stochastic objective based on the observed trajectories. Besides
the ones shown in Equation 1, many loss functions has been recently
proposed. The SubTB loss (Madan et al., 2022), for instance, is defined by

Eτ∼pE

 ∑
1≤n<m≤|τ |

λm−n∑
1≤n<m≤|τ | λ

m−n

(
log

F (τn)pF (τn:m)

pB(τn:m)F (τm)

)2


with the constraint that F (x) = R(x) for x ∈ X and τn representing the nth element within the
trajectory τ . Correspondingly, the VarGrad (Zhang et al., 2023a) and contrastive balance (da Silva
et al., 2024) objectives avoid the estimation of F by minimizing

Eτ,τ ′∼pE

[
(log pF (τ)− log pF (τ

′)− log pB(τ |x) + log pB(τ
′|x′)− logR(x) + logR(x′))2

]
,

which led to faster training convergence in some cases. On the same page, Malkin et al. (2023)
considered a series of divergence-based loss functions for training GFlowNets, showing that
the on-policy version of the TB loss (Equation 1) corresponds to the reverse KL between the
forward and backward policies in terms of the gradients. In particular, we note that these learning
objectives can only be used for estimating the parameters of the root network in SAL. For the
leaf networks, which must provide an estimate of the flow function F for the aggregation step,
these loss functions cannot be used. Nonetheless, flow-based learning objetctives such as TB and
SubTB often exhibit a convergence speed comparable to that of variational alternatives and are
frequently implemented for large-scale applications (Nica et al., 2022; Jain et al., 2022; Hu et al.,
2023a; Zhou et al., 2024). Learning objectives aside, there is a growing interest in the literature
in the development of more effective parametrizations for GFlowNets, with remarkable results
for the forward-looking GFlowNets (Pan et al., 2023a) and LED-GFlowNets (Jang et al., 2024),
which residually reparameterize F as logF (s) = log ϕ(s) + log F̃ (s) for a (given or learnable)
ϕ, temperature-scaled-GFlowNets (Kim et al., 2024a), in which pF (s′|s) ∝ exp{ϕ(β) · ψ(s′|s)}
for neural networks ϕ and ψ and an inverse-temperature parameter β > 0, and QGFN (Lau et al.,
2023), which learns a Q-function concomitantly to F and pF and prune the values of pF based on
Q during inference time for controlable greediness.

A.4 RELATED WORKS

GFlowNets (Bengio et al., 2021; 2023; Lahlou, 2023) were canonically proposed as a reinforcement
learning algorithm for sampling compositional objects (e.g., graphs) proportionally to a prespec-
ified reward function. From a theoretical perspective, the relationship between GFlowNets and
variational inference (Malkin et al., 2023), entropy-regularized Q-learning (Tiapkin et al., 2024;
Deleu et al., 2024), and diffusion models (Lahlou, 2023; Sendera et al., 2024; Venkatraman et al.,
2024) has been thoroughly established. From a practitioner’s viewpoint, GFlowNets have been

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

successfuly applied to many problems including, but not restricted to, causal discovery (Deleu et al.,
2022; 2023; da Silva et al., 2023), Bayesian phylogenetic inference (Zhou et al., 2024; da Silva
et al., 2024), language and image modelling (Hu et al., 2023a; Liu & et al., 2023; Hu et al., 2023b;
Venkatraman et al., 2024), combinatorial optimization (Zhang et al., 2023a;b), and drug discovery
(Bengio et al., 2021; Nica et al., 2022; Vemgal et al., 2023; Pan et al., 2023a). Indeed, we are
confident that problems such as language modelling and drug discovery could greatly benefit from
SAL if appropriate policy networks and fixed-horizon partitionings are designed. Nonetheless,
given the open-endedness and specialized nature of these applications, we believe that they would be
more suited for future, dedicated works and are, hence, not addressed in this text. Correspondingly,
recent work by Jiralerspong et al. (2023) highlighted the competitive performance of stochastic
GFlowNets in two-player zero-sum games, specifically, Tic-Tac-Toe and Connect-4, and we are
optimistic that an extension of SAL to stochastic environments would exhibit promising results for
games having larger trajectories, e.g., Chess and Go. Orthogonal to these advances, the issue of
generalization in GFlowNets has also received significant attention in the literature (Atanackovic
& Bengio, 2024; Krichel et al., 2024). In sharp contrast to previous works, ours is the first one
that derives PAC-Bayesian bounds and provides non-vacuous statistical guarantees for GFlowNets,
along with a theoretical analysis that highlights which factors are potentially harmful to the model’s
generalization performance. Notably, a recent discussion by Bengio & Malkin (2024) provides an
interesting perspective on generalization, active learning, and GFlowNets in the context of abstract
reasoning for machine-learning-based theorem proving and conjecture formation. Concomitantly,
we note that there is a well-established interest in the community towards the development of more
sample-efficient learning objectives for speeding up training convergence (Malkin et al., 2022;
Deleu et al., 2022; Madan et al., 2022; Zhang et al., 2023a; da Silva et al., 2024; Tiapkin et al., 2024).

A.5 ADDITIONAL REVIEW OF PAC-BAYES BOUNDS

Historically, McAllester (1998; 1999)’s PAC-Bayesian theorems, which were inspired by the work
of Shawe-Taylor & Williamson (1997), were developed towards the objective of providing Probably
Approximately Correct (PAC) guarantees to Bayesian algorithms with potentially misspecified prior
distributions. Recently, the relationship between PAC-Bayesian theory and (approximate) Bayesian
algorithms has been made explicit by Germain et al. (2017). From this perspective, Alquier (2024)
provides an informative and comprehensive account of the literature on PAC-Bayes bounds, both
theory and applications. In what are now well-established references, Catoni (2007) gives a rigorous
foundation of PAC-Bayes bounds in supervised classification, including results on the form of the
distributions that optimise the bounds; and Guedj (2019) provides a nice concise exposition of the
essential form of PAC-Bayesian inequalities. In the context of contemporary machine learning,
PAC-Bayesian theory has found enormous success in the development of numerical generalization
bounds for overparameterized neural network classifiers, achieving non-vacuous results (Dziugaite
& Roy, 2017; 2018) and tight certificates (Pérez-Ortiz et al., 2021), which subsequent works have
applied even for large language models (Lotfi et al., 2024a;b) with billions of parameters through
appropriate compression techniques (Dettmers et al., 2023). In a recent work, Malach (2024) intro-
duced the notion of length complexity for next-token autoregressive learning on Chain-of-Thought
data, referring to the minimum number of iterations required by an AR learner to compute a target
function, which is (vaguely) connected to our results regarding the harmful effects of the maximum
trajectory size on GFlowNet learning. Importantly, the advantegeousness of distributed approaches
for the generalization performance of learning algorithms was already pointed out by Yagli et al.
(2020); Barnes et al. (2022); Sefidgaran et al. (2022); similarly to SAL, these authors consider the
problem of training a set of models in parallel and subsequently aggregating them with a (possibly
randomized) estimator in a central server. In spite of these advances, the development of tighter
PAC-Bayes bounds with weaker assumptions on the risk functional, e.g., heavy tailedness instead
of boundedness, is still an active research field (Holland, 2019; Wu et al., 2021; Balsubramani,
2015; London et al., 2014; Biggs & Guedj, 2023; Rivasplata et al., 2020). Also, the development
of PAC-Bayesian theory in the setting of non-i.i.d. data is still relatively underdeveloped when
compared against other branches of machine learning, albeit there are interesting results in online
learning (Haddouche & Guedj, 2022a), reinforcement learning (Fard & Pineau, 2010; Beygelzimer
et al., 2011; Sakhi et al., 2023), and time series (Alquier et al., 2012). Finally, PAC-Bayesian
theorems provide statistical guarantees for stochastic predictors, which are arguably not frequently
used in practice, and the problem of derandomizing the resulting bounds is still mostly open.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Notably, the derandomization of PAC-Bayes bounds has a non-negligible cost, and we refer the
reader to Miyaguchi (2019); Biggs & Guedj (2022) for further details on this topic.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS AND ADDITIONAL DISCUSSIONS

All experiments were conducted on a single Linux machine with 128 GB of RAM and featuring
a NVIDIA RTX 3090 GPU and 12th Gen Intel(R) Core(TM) i9-12900K CPU. Unless specified
otherwise, the code for reproducing the experiments below was executed on this GPU.

B.1 A NON-GENERALIZABLE DISTRIBUTION
(W,T) χ2(qE,T ||pT,E) χ2(qϵ,T ||pT,E)
(32, 6) 1.20 · 103 1.32
(64, 6) 4.56 · 102 1.24

Table 1: χ2 divergence between the ex-
ploratory (pruned, pE,T , and ϵ-greedy, pϵ,T)
and uniform (qE,T) distributions.

For the experiments in Figure 1, we considered
the set generation task (see Appendix A) with
W ∈ {32, 64} elements to choose from and set size
S = 6, and the forward policy was parameterized
by an MLP with 2 64-dimensional layers. The
elements’ log-utilities u were sampled from [−1, 1]
prior to training and the resulting values were normalized so that the largest reward of a set was
5. For both settings in Figure 1, the models were trained for 1500 epochs with a batch size of 128.
To compute the quantities in Table 1, we compared the uniform policy of an untrained GFlowNet
against a policy pE such that the (unnormalized) logit corresponding to the addition the element 1 is
set to log pE(1|s) = −11.5 ≈ log 10−5. Table 1 shows the large discrepancy between the resulting
pE and an uniform policy, providing a taste for the upper bound in Proposition 4.2.

B.2 NON-VACUOUS GENERALIZATION BOUNDS

A bounded risk functional for GFlowNets. We start recalling the definition of the flow-consistency
in subgraphs (FCS) metric (Silva et al., 2024). Given a policy pE , the FCS is defined as

LFCS(R, pT) = Eτ1,...,τB∼pE

1
2

∑
1≤i≤B

∣∣∣∣∣ pT (xi)∑
1≤j≤B pT (xj)

− R(xi)∑
1≤j≤B R(xj)

∣∣∣∣∣
 , (10)

in which B ≥ 2 is a (typically small) given integer. Equivalently, FCS may be seen the expected
total variation distance between the learned pT and target R distributions over random subsets of
X . It was shown by Silva et al. (2024) that LFCS(R, pT) = 0 if and only if pT (x) ∝ R(x), i.e.,
the model samples correctly from the distribution proportional to R in X . Then, equipped with the
dataset Tn described in Section 4, an unbiased estimate of LFCS is

L̂FCS(Tn, R, pT) =
1

2N

∑
k1,...,kB∼U{1,...,n}

∑
1≤i≤B

∣∣∣∣∣ pT (xki
)∑B

j=1 pT (xkj)
− R(xki

)∑B
j=1R(xkj)

∣∣∣∣∣ , (11)

in which the outer summation covers N uniformly random B-sized subsets of {1, . . . , n} and xki

represents the kith observed terminal state in Tn. Importantly, LFCS ∈ [0, 1] for any R and pT ,
which enables the implementation of well-known algorithms for tightening PAC-Bayesian general-
ization bounds through the adoption of data-dependent priors (Dziugaite et al., 2020; Maurer, 2004).

Experimental details for computing non-vacuous bounds. To achieve the results illustrated in
Figure 2, we use Tα to learn an isotropic Gaussian prior Q with variance 10−6 over the parameters θ
of an MLP with 3 × 128-dimensional layers defining the forward policy by minimizing the expected
TB loss on Tα under Q. For each problem, we used the same architecture of the neural network,
changing only the input and output dimensions, and the resulting models were trained for 64 epochs
on their respective datasets. Then, we freeze θ and learn both the mean and the diagonal covariance
of a Gaussian posterior P over the parameters of a policy network by minimizing the upper bound
in Equation 6 with L̂FCS substituted by an unbiased estimate of the TB loss on Tα ∪ T1−α. Finally,
we evaluate the upper bound in Equation 6 on T1−α to certify its tightness. We closely followed
the experimental setup of Dziugaite et al. (2020); Pérez-Ortiz et al. (2021) for conducting these ex-
periments. In particular, the data-splitting protocol for learning the prior, learning the posterior, and
evaluating the bound is analogous to the one used by Pérez-Ortiz et al. (2021). Similarly, in contrast
to the other experiments, which rely on the Adam optimizer (Kingma & Ba, 2014), we use SGD with
a fixed learning rate of 10−3 that presumably achieves a flat minimum (Keskar et al., 2017) with
potentially better generalization properties (Hochreiter & Schmidhuber, 1997; Zhou et al., 2021;
Haddouche et al., 2024). Finally, we acknowledge Dziugaite et al. (2020) for making their code
publicly available and adhering to the best current practices of scientific reproducibility.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.3 ORACLE GENERALIZATION BOUNDS: LEMMATA

Trajectory-level bounds. The technical lemma below ensures that KL(pB ||pF) can be directly
bounded by adopting a mixture transition policy, sometimes called an α-uniform policy (Hu et al.,
2023b), that keeps the trajectory-level probabilities away from zero and ensures the boundedness
of the log-probabilities (Dziugaite et al., 2020; Lotfi et al., 2024a) without limiting the GFlowNet’s
ability to learn the correct solution that samples from X proportionally to the reward.
Lemma B.1 (Realizability of mixture policies). Let pU (·|s) denote the uniform policy on the state
space S with reward R, i.e., pU (s′|s) = 1

|Ch(s)| . Then, there is a α ∈ (0, 1] s.t. the family
{p̃F : p̃F (·|s) = αpU (·|s) + (1− α)pF (·|s)} contains a policy sampling from X in proportion toR.

In the classical statistical learning terminology, the result above states that the family of α-uniform
policy networks is realizable, meaning that a member of this family satisfies the desired balance
conditions. However, as we note in the proof of Lemma B.1, finding such α depends on the knowl-
edge of the minimum value of R(x) on X , which may be an NP-hard problem for some generative
instances (Zhang et al., 2023b; Ma et al., 2013) that cannot be swifitly solved. Since the resulting
generalization bound depends on hardly computable quantities, we call it a oracle bound, similarly to
the distribution-dependent PAC-Bayesian inequalities in, e.g., (Alquier et al., 2012; Alquier, 2024).

Transition-level bounds. From Definition 5.3, we can readily conclude that the stochastic process

Mt :=
∑

1≤i≤t

M(Si, S<i) =
∑

1≤i≤t

LDB(Si, Si−1)− Esi∼pE(·|Si−1) [LDB(si, Si−1)] (12)

is a martingale with respect to the filtration {Ft}t≥1. In Theorem 5.4, we developed concentration
inequalities for Mt to derive transition-level generalization bounds for GFlowNets. Complementar-
ily, the lemma bellow shows how the martingale Mt is connected to the traditionally implemented
trajectory-wide DB loss (see Equation 1). There, we assume that trajectories have fixed length, an
assumption that was also considered by Malkin et al. (2023) when showing that a GFlowNet can be
seen as an instantiation of a hierarchical variational inference model.
Lemma B.2. Let pE be the sampling distribution and pE,T be the corresponding marginal over
terminal states. Then, by denoting τ = (S1, . . . , Sl) with fixed l,

Eτ∼pE

 ∑
1≤i≤l

LDB(Si, S<i)

 =
∑

1≤i≤l

ESi−1∼pE,T

[
ESi∼pE(·|Si−1) [LDB(Si, Si−1)|Si−1]

]
.

(13)

In other words, the trajectory-wise objective in the left-hand side of Equation 13, which is often used
as a learning objective for GFlowNets (Pan et al., 2023a;b; Madan et al., 2022; Bengio et al., 2023;
Jang et al., 2024; Silva et al., 2024), corresponds to the transition-wise objective in Equation 8 when
the trajectories are sampled in a Markovian fashion. Under these circumstances, we defined the risk
functional associated to a specific parameterization θ of the policy network as

L(θ) = Eτ∼pE

1

|τ |
∑

1≤i≤|τ |
ESi∼pE(·|Si−1) [LDB(Si, Si−1)|Si−1] , (14)

in which LDB implicitly depends on θ via the forward policy pF . Importantly, we take the trajec-
tory’s length |τ | into account when defining L(θ), which is often done in practice (Zhang et al.,
2023b). Then, given a set {so, S(j)

1 , . . . , S
(j)
tj }nj=1 of independently sampled trajectories, we define

L̂(θ) = 1

n

∑
1≤j≤n

1

tj

∑
1≤i≤tj

LDB(S
(j)
i , S

(j)
i−1) (15)

as the empirical estimate of L(θ). Under these conditions, Theorem 5.4 established a high-
probability upper bound of L(θ) as a function of L̂(θ) and of some characteristics of the generative
process. We recall, however, that two assumptions were required to achieve this: that the DB loss
and thus the martingale difference sequence M are almost surely bounded and that the training is
constrained by a pre-specified transition budget. In practice, the boundedness can be achieved by

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

either clipping the loss function (McAllester, 1999; 2013) or, when more detailed information about
R is available, constraining the output of the neural networks in the fashion of Lemma B.1 with
the knowledge that the optimal flow F ⋆(s) satisfying the detailed balance is bounded by F ⋆(s) ∈[
minx∈X R(x),

∑
x∈X R(x)

]
for each state s (Bengio et al., 2023), or a more refined version of this

constraint (with upper and lower limits possibly depending on s). On the other hand, due to the CPU-
bounded nature of GFlowNet transition sampling (which cannot be easily parallellized in a GPU),
we assume that training is computationally limited by a fixed number of observed transitions. Hence,
to promote an equitable assessment of different generative tasks, we assume in Theorem 5.4 that the
number n of sampled trajectories for training depends on a fixed budget of sampleable transitions T .

B.4 SUBGRAPH ASYNCHRONOUS LEARNING

Please refer to Section C.1 for a detailed experimental evaluation of SAL. We would like to
emphasize that all experiments below are based on standard practices for GFloNet training, with tra-
jectories sampled from an ϵ-greedy sampling policy, and not on the simplified setting of Section B.2.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C SAL: IMPLEMENTATION AND THEORETICAL ANALYSIS

Sampling correctness. We first recall how to sample a x ∈ X in the context of SAL. For a given
collection {poF } ∪ {pjF }mj=1 of forward policies trained in the style of Definition 6.2, we do so
by starting at so and following the root policy until we reach either a terminal state x ∈ X or a
leaf partition Sj . In the former case, we interrupt the generation and return x as a sample. In the
latter, we proceed to X by following the leaf’s policy pjF , as shown in the highlighted trajectory
in Figure 3. In Theorem C.1, we demonstrate that this approach samples x ∈ X proportionally to
R(x) when both the leaf and root policies globally minimize their respective learning objectives.
Theorem C.1 (Sampling correctness of SAL). Let {Sj}mj=0 = FHP(S,m) and {Gj}mj=0 be the
corresponding GFlowNets. Let p⋆,oF and {p⋆,jF }mj=1 be global minimizers of their respective learning
objectives. Then, the marginal distribution over X induced by the learned policies {p⋆,jF }mj=0,

p⋆T (x) =
∑

1≤j≤m

∑
s∈Ij

∑
τ : so⇝s

p⋆,oF (τ |so)
∑

τ ′ : s⇝x

p⋆,jF (τ ′|s), (16)

matches the target distribution π(x) := R(x)/Z, with Z =
∑

x∈X R(x).

Remarkably, Theorem C.1 establishes SAL as the first asymptotically correct general-purpose
distributed learning algorithm for GFlowNets. On the other hand, a successful implementation of
SAL requires having an efficient mechanism concomitantly enabling to sample states from a given
partition (to minimize LATB) and to recover the partition of a state (for inference). This is the
reasoning behind what we name, and have long named, an assignment function. In Section C.1,
we develop such mechanisms for some commonly considered generative tasks in the GFlowNet
literature and provide an empirical analysis asserting the effectiveness of the resulting algorithm.

C.1 AN EFFICIENT IMPLEMENTATION OF SAL

We start defining an assignment function.
Definition C.2 (Assignment function). Let f : S → {0, 1, . . . ,m} := [m], in whichm is the number
of available computational units. Assume that f satisfies the following conditions.

1. (Completeness). f−1(j) ̸= ∅ for each j, i.e., f assigns at least one state to each available unit;

2. (Consistency). {Sj = f−1(j)}mj=0 is a fixed-horizon partition of S.

Then, f is called an assignment function and {Sj}mj=0 is the fixed-horizon partition associated to f .

Condition (1) above, which we call completeness, ensures that no computational unit is wasted,
whereas condition (2) – consistency – guarantees that the partition of S induced by f−1 is a FHP. In
this context, we denote by RV(S) the space of S-valued random variables (measurable functions).
Then, we say that a function g : [m] → RV(S) is a stochastic inverse of f if g(j) ∈ f−1(j) with
probability one for each j ∈ [m]; a similar concept exists in the literature of discrete normalizing
flows (Hoogeboom et al., 2021; Tran et al., 2019). Notably, the distribution qj over the subnetworks’
sources in the definition of SAL (see Eq. 9) corresponds to the PMF of the random variable g(j).

Importantly, to efficiently implement SAL, one only needs to develop an f that is both fast to
compute and easily stochastically invertible. In this section, we show how to design such an assign-
ment function for the problems of autoregressive design and set generation and for the hypergrid
environment. The reader is reminded to recall Appendix A for an overview of each generative task.

Sets Sequences
Centralized 0.092±0.001 0.126±0.012

SAL 0.072±0.008 0.094±0.005

Table 2: Total variation distance between
target and learned measures for the central-
ized model (top row) and SAL (bottom row).

SAL for autoregressive models. We first illustrate
the concept of an assignment function for autore-
gressively generated objects, which are very com-
mon in applications (Jain et al., 2022; Malkin et al.,
2022; Jiralerspong et al., 2023; Hu et al., 2023a). For
this problem, each state s is represented as an ele-
ment of the set [[0, k − 1]]L for fixed k (the vocab-
ulary size, e.g., k = 4 for nucleotide strings) and L (the sequence’s length). Then, to construct a

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

fixed-horizon partition, we choose a distance D from the initial state and define

h(s) =
∑

1≤i≤D

si · ki−1 (17)

as the k-ary representation of s. Then, f(s) = 1{#s≥D} (h(s) (modm) + 1) is our assignment
function. Importantly, both f(s) and f−1(j) add an negligible computational overhead to the train-
ing procedure. Indeed, to sample s from f−1(j) for j ≥ 1, we first define h(s) = m·ξ+(j−1) with
ξ randomly sampled from [[0, ⌈kD−1/m⌉]]. Thus, to recover s from h(s), we only need to solve a
(triangular) linear system; the details are provided next. Let hn(s) = m·ξ+(j−1) (mod kn). Also,

hn(s) =
∑

1≤i≤D

sik
i−1 (mod kn) =

∑
1≤i≤n

sik
i−1 ≤ kn − 1 (18)

when n ≤ D. Clearly, h1(s) = s1 and, recursively, hn(s) = kn−1sn + hn−1(s). Therefore,
s = (s1, . . . , sD) jointly satisfy the triangular system Ts = h, in which Ti,j = 1{i≥j} · kj−1 and
hi = h(s) (mod ki) for i, j ∈ {1, . . . , D}. This system can be efficiently solved via backward
substitution in parallel for a batch {h(s1), . . . , h(sB)} of B sequences.

1 2 3 4
×10−5

1

2

3

4

C
en

tr
al

iz
ed

×10−5 Sets

1 2 3 4
×10−5

1

2

3

4

SA
L

×10−5

0.25 0.50 0.75 1.00
×10−4

0.2

0.4

0.6

0.8

1.0

×10−4 Sequences

1 2 3
×10−4

1

2

3

×10−4Ta
rg

et

Learned

Figure 6: Target vs. learned distributions.

SAL for set generation. As in Section 4, we also
consider the problem of generating S-sized sets with
elements extracted from a source W = {1, . . . ,W}
of fixed size W . In this setting, each s ⊆ W can be
uniquely represented as a binary vector s ∈ {1, 0}W
with si = 1 indicating that i ∈ W is a member of
s. Notably, the elements s at distance D ≤ S to
the initial state can also be completely described by∑W

i=1 si = D. For these elements, the prefix s1:D ∈
{1, 0}D has at least max{0, 2D −W} components
equal to 1. Then, similarly to Equation 17, we de-
fine the assignment function f for each s ∈ {1, 0}W
with

∑W
i=1 si = D as the binary representation of s

modulo the number of computational units,

f(s) =
∑

1≤i≤D

2i−1si (modm) + 1. (19)

On the other hand, let νmin =
⌈
2max{0,2D−W}−1/m

⌉
and νmax =

⌊
2D−1/m

⌋
. To stochastically

reverse f , we define h(j) = m · ξ + (j − 1) with ξ ∼ P(νmin, νmax, λ) sampled from a
Poisson truncated at [νmin, νmax] and parameterized by λ. Then, we let [h(j)] ∈ {1, 0}D be the
corresponding bit-wise representation of h and yj ∈ {1, 0}W−D be a random binary vector with
exactly D −∑D

i=1[h(j)]i components equal to 1, obtained via Fisher-Yates’ shuffling algorithm
(Fisher et al., 1963). Finally, we construct a sample s = ([h(j)], yj) ∈ {1, 0}W by concatenating
[h(j)] and yj . Notably, an assignment function is closely related to the concept of ranking and
unraking functions in computational combinatorics (Myrvold & Ruskey, 2001). To see this, we
recall that a ranking r (resp. unranking u) function of a set S (resp. {0, . . . , |S| − 1}) injectively
maps each member of S to an element of {0, . . . , |S| − 1} (resp. S). A natural choice for r is based
on the lexicographic order on S (Liebehenschel, 1997); the corresponding u, however, may not be
efficiently computable. Given a ranking function r and a number m of computing nodes for training
a GFlowNet, we may defined an assignment function as f(s) = r(s) (modm)+1. We also provide
an implementation of a lexicographic-based ranking and unranking functions for the set generation
task to support future research on the development of more effective partioning schemes for SAL.

SAL for the hypergrid environment. In conclusion, we also consider the difficult-to-explore hy-
pergrid environment, which is defined by a distribution supported on [[0, H − 1]]d for fixed H
(the grid’s size) and d (the grid’s dimension) (Bengio et al., 2021). For this problem, we note the
states x at distance D to the initial state can be fully described by the equation

∑
1≤i≤d xi = D.

Equivalently, each x satisfying the above equation can be injectively mapped to a point within the
(k − 1)-simplex. Hence, we define the assignment function f over states at distance D from so as

f(x) = min
0≤j<m

{(
j

m

)1/d−1

≤ x1
D

<

(
j + 1

m

)1/d−1

+ [j = m− 1]

}
+ 1. (20)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
0

200

400

600

800

1000

#
m

od
es

Hypergrid 64 x 64

200 400 600 800 1000
0

100

200

300

400

500

600

SIX6

500 1000 1500 2000
0

1000

2000

3000

4000

5000

PHO4

1000 2000 3000 4000 5000
0

5000

10000

15000

20000

Bit sequences

500 1000 1500 2000
0

1000

2000

3000

4000

Set generation

Centralized
SAL

Total number of epochs

Figure 7: SAL enacts faster mode discovery under varying time budgets. The horizontal axis
represents the total number of epochs used by the centralized model, which is set to the sum of the
number of epochs for each leaf GFlowNet and the root GFlowNet to ensure the approaches are fairly
compared. We provide additional evidence for the enhance performance of SAL in Figure 13.

SAL Cent.0

200

400

600

800

1000

#
m

od
es

1024

256

Hypergrid 64 x 64

SAL Cent.0

100

200

300

400

500

600
612

420

SIX6

SAL Cent.0

1000

2000

3000

4000

4495

1843

PHO4

SAL Cent.0

5000

10000

15000

20000

25000
23164

5712

Bit sequences

SAL Cent.0

1000

2000

3000

4000

5000

6000 5683

3468

Set generation

Figure 9: SAL improves the discovery of high-valued states for all considered tasks. For a fair
comparison, the centralized model is allowed to explore for twice the number of epochs permitted
to each client, ensuring the training times are roughly the same for SAL and the standard GFlowNet.

The exponent 1/(d−1) is meant to ensure the workload is approximately homogeneously distributed
among the computational units. To sample from f−1(j) for j ≥ 1, we let

νmin =
⌈
D · (j−1/m)

1/d−1
⌉

and νmax =
⌊
D · (j/m)1/d−1

⌋
+ [j = m− 1] (21)

and pick x1 uniformly at random from [[νmin, νmax]]. Then, (x2, . . . , xd) is drawn from a Dirichlet-
multinomial with number of trials D − x1 and concentration parameter α set (arbitrarily) to 1.

Figure 8: FHP for the
hypergrid.

Remarkably, the hypergrid environment illustrates an approach differing
from the strategy of encoding-as-integer and computing-the-remainder
that was implemented for the other tasks. Figure 8 shows the partition
for d = 2, H = 8, and m = 2, which was the setup for Figure 4. We
represent in red and teal the sources of the subnetworks assigned to the
leaves j = 1 and j = 2, respectively, and in blue the remaining states.
Recall that, by definition, all descendants of a state s are members of s’s
partition. In this scenario, we hope that the development of sophisticated
and expert-driven partitioning techniques will greatly benefit the use of
GFlowNets in specialized domains, e.g., drug discovery.

SAL results in better distributional approximations. Figure 4 shows that, when compared against
a centralized approach, SAL achieves a better distributional approximation for the hypergrid envi-
ronment under a fixed time-budget (for SAL, the training time is the longest client’s training time
plus the time for aggregation). Figure 6 and Table 2 corroborate this claim for the set generation
and sequence design tasks, showcasing that SAL learns a distribution that matches the target more
closely than a standardly trained GFlowNet. For the other tasks, learning an accurate distributional
approximation is not as important as finding high-valued objects, and that is the reason we do not
consider them here. Notably, these results are consistent with Theorems 5.2 and 5.4: by reducing
the size of the state graph that each model needs to focus on, SAL potentially faciliates the learning
of a generalizable policy network and leads to a more accurate approximation to the target.

SAL greatly improves mode-discovery. In the GFlowNet literature, a mode is often defined as
a state x whose associated reward R(x) is larger than a predefined threshold t; see, e.g., (Bengio
et al., 2021; Pan et al., 2023a;b; Madan et al., 2022; Jang et al., 2024; Malkin et al., 2022). For
our experiments, we fix t = 0.1 for the hypergrid environment and, for the other generative tasks,
we sample an initial batch of 2 · 104 from the uniform policy and set t as the 0.99 quantile of
the observed rewards. Importantly, the same threshold is used for both the centralized, leaf, and

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Centralized SAL Target

Cln 1 Cln 2 SAL Cent.
Model

0

5

10

15

20

25

Tr
ai

ni
ng

tim
e

(m
in

)

23.33 23.30

0.80

24.50

Figure 10: SAL results in a more accurate approximation than a centralized approach for a similar
time budget on the 12×12 grid. Complementarily to Fig. 4, all models are trained by minimizing the
SubTB (instead of TB) objective with λ = 0.9. The running time for SAL is determined by the train-
ing time of the longest client (blue columns) plus the much faster aggregation step (green column).

root GFlowNets. Under these conditions, Figures 4, 9, 7, and 13 show that SAL enacts a drastic
improvement of the mode-discovery rate over a centralized approach for varying computational
budgets in all considered generative problems, leading to the discovery of up to 8x more modes.
There are two reasons for this. Firstly, the distributed nature of SAL ensures that a much larger
portion of the state space is explored in a significantly shorter amount of time. Secondly, each client
model focus on a subset of the state graph and may be regarded as a specialist in the corresponding
subtask. By collecting the samples fostered by these local specialists, we end up with a significantly
more diverse and valuable collection than the one that would be obtained by, e.g., independently
training multiple GFlowNets in parallel. Remarkably, this interpretation highlights the relevance of
appropriately defining a fixed-horizon partition of the state graph, an issue that defines a key future
direction for our work, as we discussed in Section 7 of the main text.

Alternative learning objectives for SAL. For simplicity of exposition, we outlined SAL in Def-
inition 6.2 as a collection of TB-minimizing GFlowNets. However, as previously discussed, one
can straightforwardly adapt alternative learning objectives (e.g., SubTB (Madan et al., 2022)) and
sampling techniques (e.g., replay buffer (Deleu et al., 2022)) to the context of SAL. We illustrate
these extensions here. Firstly, the SubTB objective for the jth partition would take the form

Lj
SubTB(pF , F) = E

s∼qj
E

τ∼pj
E(·|s)

 ∑
1≤m<n≤|τ |

λn−m∑
1≤s<t≤|τ | λ

t−s

(
log

F (τm)pF (τm:n|τm)

F (τn)pB(τn:m|τn)

)2
 ,

in which qj and pjE are a distribution over initial states of and a sampling policy for the jth partition,
respectively. Secondly, the replay buffer would store the trajectories τ leading to high-valued states
within the jth partition, as measured by either R (for leaf partitions) or Ro (for the root partition;
see Algorithm 1). Figure 10 compares the accuracy of SAL against a centralized GFlowNet, both of
which trained by SubTB minimization (λ = 0.9), for the 12× 12 hypergrid environment. Similarly
to Figure 4, SAL achieves a better distributional approximation in this case. Additionally, we
found that SubTB leads to faster convergence with respect to (A)TB (not reported) in this particular
problem, consistently with the evidence at Madan et al. (2022, Figure 1). On the other hand, our
experiments did not provide evidence in favor of using the replay buffer. However, we acknowledge
that a deeper empirical investigation, in the fashion of Vemgal et al. (2023)’s work, is required.

C.2 THEORETICAL ANALYSIS AND EXTENSIONS

This section aims to answer two core questions regarding the nature of SAL. From a sampling
perspective, we ask which distribution each client learns and suggest potential diagnostic techniques
to evaluate their distributional accuracy. From a distributed learning standpoint, we assess the extent
to which local errors are propagated to the global model. Additionally, we formally extend SAL to
accommodate the learning over multi-layered fixed-horizon partitions of the state graph.

Local sampling distributions. Each leaf GFlowNet in SAL learns a distribution over a subset Xj of
the set of terminal states X . The character of such distribution, however, was not considered in the
foregoing discussion, and one may wonder whether it just corresponds to the restriction of the target

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

to Xj . As we show below, this is not generally the case: the optimal leaf distribution, which we de-
note by pjT , depends on both Xj and on the specific structure of the state graph induced by the leaf Sj .
Proposition C.3 (Local sampling distributions). Let {Sj}mj=0 = FHP(S) and {Gj}mj=0 be the
corresponding GFlowNets. Also, denote by TDc(s) the set of terminal descendants of s on the
original state graph, i.e., x ∈ TDc(s) if x ∈ X and there is a directed path from s to x. Then, for
fixed backward policy pB , the solution that globally minimizes Equation 9 satisfies

Fj(s) =
∑

x∈TDc(s)

R(x)
∑

τ : s⇝x

pB(τ |x) and pjT (x|s) =
R(x)

Fj(s)

∑
τ : s⇝x

pB(τ |x) (22)

for each j ∈ {1, . . . ,m}, s ∈ Ij , and x ∈ Xj :=
⋃

s∈Ij
TDc(s).

When the sum over backward trajectories in Equation 22 does not depend on x, e.g., for autore-
gressively generated object (in which pB(τ |x) = 1 for the unique trajectory τ connecting s to x)
and sets (in which the sum depends only on the depth of s when pB is fixed to an uniform policy),
Proposition C.3 says that pjT can be nicely interpreted as the restriction of the original target R to
the induced terminal set Xj . We emphasize this fact in the corollary below.
Corollary C.4 (Local sampling distributions for autoregressive models). In the context of Proposi-
tion C.3, assume that the state graph is represented as a tree. Then, pB(τ |x) = 1 for every τ and

Fj(s) =
∑

x∈TDc(s)

R(x) and pjT (x|s) =
R(x)∑

x∈TDc(s)R(x)
. (23)

For the set generation task, it also holds that pjT (x|s) ∝ R(x) for each x ∈ TDc(s) and s ∈ Ij .

Interestingly, the result above suggests a straightforward procedure for assessing the goodness-of-fit
of the locally trained GFlowNets. When Xj is considerably smaller than X , we can compute the
normalized target in Equation 23 and directly compare it against the learned distribution in X .
Otherwise, any technique for diagnosing GFlowNets can be readily applied to probe the accuracy of
pjT , e.g., measuring the Spearman correlation between log pjT (·|s) and logR(x) for x ∈ Xj (Malkin
et al., 2022; Madan et al., 2022; Shen et al., 2023; Tiapkin et al., 2024; Chen & Mauch, 2024).

Sensibility to error propagation. Proposition C.3 raises an important question: how do the errors of
the leaf models {Gj}mj=1 affect the global goodness-of-fit? To address this issue, the next proposition
shows that the contribution of Gj to the overall distributional error is an increasing function of the
probability mass associated to the jth leaf by the root model, Go, and of how inaccurate Gj’s itself is.
Proposition C.5 (Sensibility to error propagation). Let {Sj}mj=0 = FHP(S,m) with GFlowNets
{Gj}mj=0. Assume that Go satisfies its balance condition. Also, define

ZR =
∑

x∈X∩So

R(x), ZF =
∑

x∈⋃
1≤j≤m Ij

Fj(x), and Z =
∑
x∈X

ZR, (24)

and note that ZR + ZF is the partition function associated to Go. Then, the TV distance between
the learned distribution pT in Equation 16 and the target π(x) ∝ R(x) for x ∈ X satisfies

TV (pT , π) ≤
ZR

2

∣∣∣∣ 1Z − 1

ZR + ZF

∣∣∣∣︸ ︷︷ ︸
Error in estimating ZF

+
1

2

∑
x∈X\So

∣∣∣∣Es∼po
T,\X

[
π(x)− ZF

ZR + ZF
p
f(s)
T (x|s)

]∣∣∣∣︸ ︷︷ ︸
Error of the local approximations

,

in which poT,\X is the restriction of poT to
⋃

1≤j≤m Ij and f is the assignment function.

Importantly, the bound above is tight in the sense that, when the root and leaf models satisfy
their balance conditions, Z = ZR + ZF and π(x) ∝ Es[p

f(s)
T (x|s)], as we show in the proof of

Proposition C.5 in Appendix D. There, we also provide an alternative, trajectory-based upper bound
on the TV distance that similarly highlights the relatively large impact of the distributional errors
associated with large-probability leaves to the overall accuracy. Heuristically, this suggests that SAL
may benefit from a FHP that approximately homogeneously distribute the probability mass among
the leaf partitions, ensuring that no client has a disproportionate role on shaping the accuracy of the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 11: Illustration of Recursive SAL. We show a two-level partition with m1 = 2 models
within the first level andm2 = 3 models within the second one. For training, we first train models at
the bottommost layer (represented in blue, red, and green) and recursively proceed upwards towards
the middle (magenta and yellow) and top (root partition, shown in pink) layers. For the non-root lay-
ers, learning is based on minimizing LATB with the reward defined as in Equation 25; for the root, we
minimize LTB instead. For inference, we start at so and iteratively select the policy based on the cur-
rent state, as illustrated in the highlighted trajectory and in the annotated text on the top-right corner.

aggregated model. To achieve this, however, one needs prior knowledge of the reward function; the
definition of a good fixed-horizon partition should be done in problem-by-problem basis. We also
believe that a human expert would have a remarkable impact on the effectiveness of SAL for the
highly-specialized, molecular-biology-based, tasks in which GFlowNet are often implemented.

Recursive SAL. In Section 6, we introduced an extension of SAL to recursively defined FHPs.
Proposition C.6 formalizes this procedure and demonstrates through an inductive argument that the
resulting model samples correctly from the target distribution.
Proposition C.6 (Recursive SAL). Let S be the vertices of a state graph with diameter D. Then,
for sequences 0 = do < d1 < d2 < · · · < dk ≤ D and {mo = 1,m1, . . . ,mk}, we define⋃

1≤j≤mi
Iij as a disjoint mi-partition of the states distanced di from so. Also, let Xk = {x ∈

X : d(x, so) ≥ dk} and, for i < k, let Xi = {s : s ∈ Ii+1,j ∨ (d(s, so) ≤ di ∧ s ∈ X)}. Finally,
we define Gi = {(pi,jF , pi,jB , Fij) : 1 ≤ j ≤ mi} as a set of GFlowNets trained on a state graph with
initial states

⋃
j Iij , terminal states Xi, and reward function Ri such that

Ri(s) =

{
Fi+1(s), if s ∈ Ii+1 and i < k,

R(s), if s ∈ X . (25)

Then, when the GFlowNets ∪k
i=0Gi satisfy their respective balance conditions, the generative

process starting at so and recursively following pi,bF until either reaching Ii+1,a, at which point the
guiding forward policy is changed to pi+1,a

F , for 0 ≤ i ≤ k, or reaching X , signaling to stop the
generation and return the sampled object, samples each x ∈ X proportionally to R(x).

Remarks on Recursive SAL. In plain English, the above proposition says that we can use the
learned flow function Fi+1 at the (i + 1)th layer as the reward function of the GFlowNets within
the ith layer to obtain a correct sampler when training the GFlowNets in a hierarchical fashion.
In computational terms, the number of trained models grows linearly with the depth k and width
maximi of the multi-layered partition. In the light of Theorems 5.2 and 5.4, however, each model
would have to solve a considerably simpler problem and we may be able to use a significantly
smaller neural network to parameterize the corresponding forward policies, with advantageous con-
sequences for both generalization—via the KL term in Theorems 5.2 and 5.4, which increases with
the number of estimable parameters—and storage. Albeit we do not provide an empirical evaluation
of Recursive SAL in this work, we believe its implementation could be beneficial for problems with
very large trajectory sizes and are optimistic about its potential applications in future endeavors.

C.3 CONDITIONAL SAL

SAL and state-conditional flows. Bengio et al. (2023, Section 4.3) introduce state-conditional
flows as a family {Fs}s∈S of flow functions defined on the subgraphs Gs induced by {s′ ∈ S : s ≥

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

s′}, in which s ≥ s′ means that there is a path from s to s′ on the original state graph. Remarkably, a
FHP(S,m) can be interpreted as a subset {Fs}s∈∪m

j=1Ij
of a state-conditional flow. In spite of these

similarities, which serve only to strengthen the foundations of our work, we emphasize the novelty
and demonstrated effectiveness of our distributed strategy for learning state-conditional flows.

Learning reward-conditioned GFlowNets with SAL. Recently, there has been growing interest
in reward-conditioned flows, in which we learn a family {Fc}c∈C of flow functions conditioned on
some information c ∈ C given as an additional input to the neural network. In most applications,
c corresponds to either a temperature parameter (Zhang et al., 2023a; Kim et al., 2024a) defining
the peakiness of the target distribution or pharmaceutical properties (Roy et al., 2023; Pandey
et al., 2024) guiding the drug discovery process. In view of this, we extend SAL to accommodate
the distributed learning of reward-conditioned GFlowNets on a conditioned FHP, i.e., a FHP that
depends on the conditioning information. This may be formally expressed as follows.

Remark C.7 (Reward-conditioned SAL). Let C be a set of conditioning information and {Rc : X →
R+ : c ∈ C} be the corresponding family of conditioned rewards. Also, let F : C × S → R+ and
pF : C × S × S → [0, 1] be a conditional flow function and a conditional forward policy, that is,
pF (c, ·, ·) is a forward policy for each c. Finally, let {Sc

j}mj=0 = FHP(S,m, c) be a conditioned FHP
and {Gj}mj=0 be a family of reward-conditional GFlowNets. Following the arguments for demon-
strating Theorem C.1, it is easy to see that SAL samples correctly in proportion to Rc when each Gj

satisfies its respective balance condition with respect to Rc for every c ∈ C and 0 ≤ j ≤ m.

Conditional GFlowNets are commonly implemented for controllable generation by setting the
conditioning information c at inference time (Roy et al., 2023); see also Lau et al. (2023)’s QGFN.
In fact, Pandey et al. (2024) recently explored this principle for the effective exploration of chemical
space at an atomic-level given some desirable pharmacological properties, e.g., synthetizability. In
this regard, Remark C.7 ensures that most of these approaches can ba adapted to the distributed set-
ting via SAL, and we believe that assessing the resulting methods is an important research direction.

C.4 SAL AND EP-GFLOWNETS

The reward function of GFlowNets can often be decomposed as R(x) =
∏K

i=1Ri(x) (Jain et al.,
2023; Deleu et al., 2023; Zhou et al., 2024; Pandey et al., 2024), e.g., in multi-objective problems in
which eachRi is an objective and our goal is finding samples that are concomintantly high-valued for
everyRi. In these cases, da Silva et al. (2024) proposed a divide-and-conquer algorithm for learning
K GFlowNets in parallel, each targeting a Ri, and then aggregating them with an extra GFlowNet.
The resulting model, termed EP-GFlowNet, trains (K + 1) GFlowNets on the same state graph —
in sharp contrast to SAL. To further highlight the distinction between SAL and EP-GFlowNets, we
show below that these approaches can be implemented in a complementar manner.
Proposition C.8 (EP-SAL). Let R(x) =

∏K
i=1Ri(x) be a multiplicative decomposition of R. For

each 1 ≤ i ≤ K, let {Si
j}mi

j=0 = FHPi(S,mi) be a fixed-horizon partition of the state space S.
Also, let Gi = {(pi,jF , pi,jB , Fi,j) : 0 ≤ j ≤ mi} be the root- and leaf-GFlowNets corresponding to
the i-th FHP and denote by piF and piB the induced distributions over trajectories. Assume that each
piF samples terminal objects in X proportionally to Ri. Finally, let pE be any positive probability
measure over trajectories. Then, if a GFlowNet (pF , pB ,G) globally minimizes

Varτ∼pE

(
log

∏K
i=1 p

i
F (τ)∏K

i=1 pB(τ |x)
+ log

pF (τ)

pB(τ)

)
, (26)

the marginal pT of pF over X matches R :=
∏K

i=1Ri up to a normalizing constant.

Proof. The result follows directly from Theorem C.1 and (da Silva et al., 2024, Theorem 3.1).

For the sake of completeness, let τ1:d denote the first d transitions of τ and τd: be its complementar.

Then, let di be the distance from the initial state of so to the sets Ii,j in the underlying state graph
for j ∈ {1, . . . ,mi} (recall Definition 6.1, and note that di does not depend on j). Under these
conditions, the sampling distribution piF in Proposition C.8 can be formally written as

piF (τ) =

{
poF (τ) if |τ | ≤ di,

poF (τ1:di)
∑mi

j=1

∑
s∈Ij

1{s∈τ}p
i,j
F (τdi:|s), otherwise.

(27)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Importantly, Equation 27 can be efficiently computed by keeping track of the partition associated to
each sampled state. In practice, the computational overhead wrt directly evaluating pF is negligible.

2 4
Learned ×10−4

2

3

4

Ta
rg

et

×10−4

Figure 12: SAL of
EP-GFlowNets.

Empirical illustration. From an empirical standpoint, Proposition C.8 says
that SAL can be used to learn a set Gi of GFlowNets jointly sampling x ∈ X
in proportion to Ri(x). Then, given Gi for 1 ≤ i ≤ K, a GFlowNet sampling
in proportion to

∏K
i=1Ri can be obtained by minimizing EP-GFlowNet’s

learning objective. Figure 12 empirically validates this result for the task of
set generation with the same hyperparameters considered in Figure 6 with
K = 2 and mi = 2 for each i ∈ {1, 2}. Each GFlowNet was trained for 512
epochs and the log-utilities defining Ri were independently sampled for each
client. Nonetheless, in spite of its soundness, the effectiveness of this mixed
approach in realistic problems remains to be assessed. Looking at the bigger
picture, these observations emphasize the composability of GFlowNets (Garipov et al., 2023),
which might be relevant for the design of more data-efficient algorithms (Du & Kaelbling, 2024).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

D PROOFS

D.1 PROOF OF LEMMA 4.1

We simply note that the space of T -sized subsets of {1, . . . ,W} has size
(
W
T

)
and the space of

T -sized subsets of {2, . . . ,W} has size
(
W−1
T

)
. Since(

W−1
T

)(
W
T

) =
W − T

W
→ 1 (28)

when W → ∞, we can always find for any ξ ∈ (0, 1) a W and a T , both of which potentially
depending on ξ, for which |X ′| ≥ ξ|X |. For the cases considered in Figure 1, in particular, we
compute the following proportions: (32−6)/32 = 81.25% and (64−6)/64 ≈ 90.63%.

D.2 PROOF OF PROPOSITION 4.2

Our proof has three steps. Firstly, we use Hölder’s inequality to bound the expectation of |π(x) −
pT (x)|. Secondly, we rely on Jensen’s inequality to bound |π(x) − pT (x)| with an expectation of
|pF (τ)/pB(τ |x) − π(x)| over τ . Thirdly, we convert the probabilities to a log-scale with a simple
technical argument based on the Taylor expansion of log. For this, let ϕ(x) = |π(x)−pT (x)|. Then,

Ex∼qE,T
[ϕ(x)] =

∑
x∈X

ϕ(x)qE,T (x)

=
∑
x∈X

ϕ(x) · qE,T (x)

pE,T (x)
pE,T (x)

≤
(∑

x∈X
ϕ(x)qpE,T (x)

) 1
q
(∑

x∈X

(
qE,T (x)

pE,T (x)

)p

pE,T (x)

) 1
p

=
(
Ex∼pE,T

[ϕ(x)q]
)1/q (Ex∼pE,T

[(
qE,T (x)

pE,T (x)

)p]) 1
p

(29)

for any p, q > 1 such that 1/p + 1/q = 1. For p = q = 2, this bound becomes

Ex∼qE,T
[ϕ(x)] ≤

(
Ex∼pE,T

[ϕ(x)2]
(
χ2(qE,T ||pE,T) + 1

)) 1
2 . (30)

For GFlowNets, we may write pT (x) = Eτ∼pB
[pF (τ)/pB(τ |x)]. Hence, by Jensen’s inequality,

Ex∼pE,T

[
ϕ(x)2

]
= Ex∼pE,T

[(
Eτ∼pB

[
pF (τ)

pB(τ |x)
− π(x)

])2
]

≤ Ex∼pE,T

[
Eτ∼pB

[(
pF (τ)

pB(τ |x)
− π(x)

)2
]]

.

(31)

In conclusion, we show that(
pF (τ)

pB(τ |x)
− π(x)

)2

≲

(
log

pF (τ)

pB(τ |x)
− log π(x)

)2

. (32)

In fact, let M = maxτ,x
pF (τ)

pB(τ |x) , which always exists due to the finiteness of the state space. For
instance, M ≤ 1 for autoregressive generative tasks (i.e., when pB(τ |x) = 1). Thus,(

pF (τ)

pB(τ |x)
− π(x)

)2

≤M2

(
pF (τ)

MpB(τ |x)
− π(x)

M

)2

.

The lemma below, which is a direct consequence of the mean value theorem, ensures that the
quantity above is bounded above by the log-squared difference between pF (τ)/pB(τ |x) and π(x).
Lemma D.1 (Lipschitzness of x 7→ ex). For every x, y ∈ (0, 1], | log x− log y| ≥ |x− y|.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Proof. Consider f : (−∞, 0] → R, f : t 7→ et, and notice that |f ′(t)| = |et| ≤ 1. Consequently,
by the mean value theorem, f is 1-Lipstchitz and |et − es| ≤ |t − s| for every t, s ∈ (−∞, 0]. By
letting log x = t and log y = s, we conclude that |x− y| ≤ | log x− log y| for x, y ∈ (0, 1].

In summary, we have shown that

E
x∼qE,T

[ϕ(x)] ≲

(
Ex∼pE,T

Eτ∼pB

(
log

pF (τ)

pB(τ |x)
− log π(x)

)2 (
χ2(qE,T ||pE,T) + 1

))1/2

. (33)

The statement thereby follows by considering an uniform reference distribution, qE,T (x) =
1

|X | ,

TV (pT , π) =
|X |
2

Ex∼qE,T
[ϕ(x)]

≲

(
Ex∼pE,T

Eτ∼pB

(
log

pF (τ)

pB(τ |x)
− log π(x)

)2 (
χ2(qE,T ||pE,T) + 1

))1/2

.

D.3 PROOF OF PROPOSITION 5.1

For completeness, we provide a proof of Proposition 5.1. Clearly, it is enough to show that

LFCS(P) ≤ L̂FCS(P) +

√
η

2
and LFCS(P) ≤ L̂FCS(P) + η +

√
η(η + 2L̂FCS(P)), (34)

in which we omit the dependence of L̂FCS on the dataset Tn for conciseness. We recall that η =
KL(P ||Q)+log 2

√
nα/δ

nα
, with nα = ⌊(⌋1 − α)n⌋, is the complexity term that depends on the prior Q,

posterior P , confidence δ, and the number of data points nα. Notably, both inequalities directly
follow from Maurer (2004, Theorem 5) bound: with probability 1− δ over Tn,

kl(L̂FCS(P)||LFCS(P)) ≤ η, (35)

in which kl represents the binary KL divergence, i.e., kl(p||q) = p log p
q + (1− p) log 1−p

1−q . Below,
we show that kl(p||q) is greater than or equal to (p−q)2/2q when p < q.
Lemma D.2. (Boucheron et al., 2013, Exercise 2.8). Let h(t) = (1−t) log(1−t)+t and p : {1, 0} →
[0, 1] (resp. q) represent the PMF of a Bernoulli with parameter p ∈ [0, 1]. Then,

Ex∼Be(q)h

(
1− p(x)

q(x)

)
= kl(p||q) (36)

and h(t) ≥ t2

2 for t ∈ [0, 1]. In particular, kl(p||q) ≥ (p−q)2/2q when p ≤ q.

Proof. Equation 36 follows from a direct algebraic manipulation of the left-hand side. On the other
hand, define

g(t) = h(t)− t2

2
(37)

for t ∈ [0, 1]. Then, g is continuous, g(0) = 0, and g(t) → 1/2 when t → 1. Also, g′(t) =
− log(1− t)− t ≥ 0 for t ∈ [0, 1] since − log(1− t) = | log(1− t)| ≥ t. In conclusion,

Ex∼Be(q)h

(
1− p(x)

q(x)

)
≥ 1

2
Ex∼Be(q)

(
1− p(x)

q(x)

)2

≥ (q − p)2

2q
(38)

when p ≤ q.

By the symmetry of Equation 35 with respect to LFCS and L̂FCS, we conclude that

LFCS(P)− L̂FCS(P) ≤
√
2LFCS(P)η. (39)

Under these circumstances, the inequality LFCS(P) ≤ L̂FCS(P) + η +

√
η(η + 2L̂FCS(P)) is

obtained by solving the above quadratic inequality on
√
LFCS(P). Through a similar reasoning,

kl(p||q) ≥ 2(p − q)2 by Pinsker’s inequality and, consequently, LFCS(P) ≤ L̂FCS(P) +
√

η/2.
These results jointly entail Proposition 6.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

D.4 PROOF OF LEMMA B.1

Recall that p̃T (x) =
∑

τ→x p̃F (τ) for p̃α,pF

F = αpU+(1−α)pF , in which we make the dependence
of p̃F on α and on the (unconstrained) policy pF explicit. Let F(α, pF) be the family of such
policies and F(α) be the set of α-greedy policies. It is straightforward to see that F(α) is a convex
set. Clearly, it is enough to ensure that minα>0,pF

minx p̃
α,pF

T (x) ≤ minx π(x), namely, that the
rarest object can be sampled correctly by properly adjusting pF and a (non-zero) α. Indeed, Bengio
[ref, Theorem 8] showed that, for each given backward policy pB and positive reward R, there is
a unique forward policy pF for which the marginal pT (x) ∝ R(x) for each x ∈ X . Hence, since
p̃α,pF

T = αpU,T + (1− α)pT , with pU,T being the marginal of pU over X , the realizability of F(α)
is ensured when α satisfies minx∈X αpU,T (x) < minx∈X π(x), i.e., α < minx π(x)/minx pU,T (x), in
which case we may set a pF such that pT (x) = 1

1−α (π(x)− αpU,T (x)). As an example, consider
the set generation task, the details of which are provided in Section 4. There, pU induces an uniform
distribution over X and we may set α = N/2minx π(x) < minx π(x)/minx pT,U (x). Importantly, our
analysis is not considering the (limited) expressivity of the chosen parametric model for the policy
network, which touches on a mostly open problem in the deep learning literature. Rather, we are
concerned with the feasibility of finding a transition policy p̃F consistent and compatible with the
given target distribution R, in the sense of Bengio et al. (2023, Definition 4, Definition 20).

D.5 PROOF OF THEOREM 5.2

We first show that the risk function is bounded. Then, Equation 7 follows directly from Maurer
(2004, Theorem 5) and Jensen’s inequality. Under these conditions, notice that

KL(pB ||pF) = Eτ∼pB
[log pB(τ)]− Eτ∼pB

[log pF (τ)] = −H[pB]− Eτ∼pB
[log pF (τ)]. (40)

Also, by definition,

pF (τ) =
∏

(s,s′)∈τ

pF (s
′|s)

=
∏

(s,s′)∈τ

(αpU (s
′|s) + (1− α)pF (s

′|s))

≥ α|τ | ∏
(s,s′)∈τ

1

|Ch(s)| ≥
(

α

maxs∈τ |Ch(s)|

)|τ |
,

(41)

and, consequently,

−Eτ∼pB
[log pF (τ)] ≤ −min

τ
|τ | log

(
α

maxs∈τ |Ch(s)|

)
= max

τ
|τ | log

(
maxs∈τ |Ch(s)|

α

)
︸ ︷︷ ︸

=MT

,

i.e., KL(pB ||pF) ≤ −H[pB] +MT . In conclusion, the convexity of the KL divergence along with
the the fact that pT and π are respectively convex functions of pF and pB imply that KL(π||pT) ≤
KL(pB ||pF). The rest follows from Maurer (2004, Theorem 5) applied to KL(pB ||pF).

D.6 PROOF OF LEMMA B.2

The result follows directly from the Markov property of the MDP. Equivalently, we note that

ES1,...,St

 ∑
1≤i≤S

LDB(Si, S<i)

 =
∑

1≤i≤t

ES1,...,Si [LDB(Si, Si−1)]

=
∑

1≤i≤t

E
Si−1∼p

(e)
T

[
ESi∼pe(·|Si−1) [LDB(Si, Si−1)|Si−1]

]
.

(42)

D.7 PROOF OF THEOREM 5.4

Our proof has three main ingredients. Firstly, we build upon a Azuma-Hoeffding-type inequality
to bound the expected transition-level error with the observed empirical error. Secondly, we derive

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

a trajectory-level bound of the transition-level results by relying on McAllester’s linear PAC-Bayes
inequality. Thirdly, we combine these results with a standard union bound argument. To start with,
Beygelzimer et al. (2011, Theorem 1) shows that the martingaleMt =

∑
1≤i≤tM(Si, Si−1) defined

above, with Ai ≤M(Si, Si−1) ≤ Bi and Bi −Ai ≤ C, satisfies

E
[
exp

{
λMt − (e− 2)λ2Vt

}]
≤ 1, (43)

in which Vt =
∑

1≤i≤tM(Si, Si−1)
2 and λ ∈ [0, 1/C]. In our context, |M(Si, Si−1)| ≤ 2U by the

triangle inequality, and we can take C = 2U . By assumption, Vt ≤ K for all t ≤ tm.

Then, for the martingale Mt(θ) and corresponding Vt(θ), with θ representing the parameters of the
forward policy, by Donsker-Varadhan’s variational formula, we notice that

Eθ∼P

[
λMt(θ)− (e− 2)λ2Vt(θ)

]
≤ KL(P ||Q) + logEθ∼Q

[
exp

{
λMt(θ)− (e− 2)λ2Vt(θ)

}]
.

Similarly to (Seldin et al., 2012b, Theorem 1), let δt = δ/2tm, so that
∑

1≤t≤tm
δt = δ/2. Then, by

Markov’s inequality, with probability at least 1− δt,

Eθ∼Q

[
exp

{
λMt(θ)− (e− 2)λ2Vt(θ)

}]
≤ 1

δt
E
[
Eθ∼Q

[
exp

{
λMt(θ)− (e− 2)λ2Vt(θ)

}]]
;

where the outer expectation is with respect to the joint distribution of {S1, . . . , St}. By Tonelli’s
theorem and Equation 43, the right-hand side of the equation above satisfies

1

δt
E
[
Eθ∼Q

[
exp

{
λMt(θ)− (e− 2)λ2Vt(θ)

}]]
=

1

δt
Eθ∼QE

[
exp

{
λMt(θ)− (e− 2)λ2Vt(θ)

}]
≤ 1

δt
≤ 2tm

δ
.

Consequently, by Donsker-Varadhan’s formula applied to λMt(θ) − (e − 2)λ2Vt(θ), bounding its
exponential moment as above, and a union bound over t, yields with probability at least 1− δ

2 ,

Eθ∼P [Mt(θ)] ≤ (e− 2)λEθ∼P [Vt(θ)] +
KL(P ||Q) + log tm + log 2

δ

λ
. (44)

Hence, by the definition of Mt(θ) and the bounded-variance assumption,

Eθ∼P

1
t

∑
1≤i≤t

E[LDB(Si, Si−1)|S<i]

 ≤ 1

t

∑
1≤i≤t

LDB(Si, Si−1)

+ (e− 2)λ · K
t
+

KL(P ||Q) + log tm + log 2/δ

tλ
.

(45)

Nextly, let S(j)
1 be independent samples from a forward policy pF (·|so) for 1 ≤ j ≤ n and

{S(j)
1 , . . . , S

(j)
tj } be the correspondingly observed trajectories. Also, we recall that

L(θ) = ES1,S2,...,St

1
t

∑
1≤i≤t

E [LDB(Si, Si−1)|S<i]

 (46)

and define

L̂(θ) =
1

n

∑
1≤j≤n

1

tj

∑
1≤i≤tj

E
[
LDB(S

(j)
i , S

(j)
i−1)|S

(j)
<i

]
; (47)

the inner expectations are computed with respect to the Markovian data-generating process (recall
that the conditional expectation E[LDB(Si, Si−1)|S<i] is a random variable). By assumption,
L(θ) ≤ U . Hence, McAllester’s linear PAC-Bayes inequality (McAllester, 2013, Theorem 2)
entails, with probability at least 1− δ

2 over draws of {S1, . . . , St},

Eθ∼P [L(θ)] ≤ 1

β
Eθ∼P

[
L̂(θ)

]
+

U

2β(1− β)
· KL(P ||Q) + log 2/δ

n
. (48)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Under these conditions, equations 45 and 48 jointly imply that, by a standard union-bound argument,

Eθ∼P [L(θ)] ≤ 1

β
Eθ∼P

[
1

n

∑
1≤j≤n

(
1

tj

∑
1≤i≤t

LDB(S
(j)
i , S

(j)
i−1) +

(e− 2)λK

tj
+

KL(P ||Q) + log tm + log 2/δ

tjλ

)]
+

U

2β(1− β)
· KL(P ||Q) + log 2/δ

n

with probability 1 − δ over draws of (S1, . . . , St). Since ntj ≥ T for all tj , as we observe T
transitions (n is between ⌊T/tmin⌋ and ⌈T/tm⌉, with tmin being the minimum length of a complete
trajectory), and tj ≤ tm, as tm is the trajectory’s maximum lenght, the result above is equivalent to

Eθ∼P [L(θ)] ≤
1

β
Eθ∼P

[
1

n

∑
1≤j≤n

(
1

tj

∑
1≤i≤t

LDB(S
(j)
i , S

(j)
i−1)︸ ︷︷ ︸

=L̂(θ)

)]
+

(e− 2)λK

T
+

KL(P ||Q) + log tm + log 2/δ

Tλ
+

U

2β(1− β)
· KL(P ||Q) + log 2/δ

n
. (49)

By aggregating the terms corresponding to KL(P ||Q) and log 2/δ, we derive the desired upper
bound on the expected risk of the DB loss.

D.8 PROOF OF THEOREM C.1

Intuitively, when each balance condition is satisfied, each state s on Ij is sampled in proportion
to Fj(s) and, conditioned on s, each terminal state will be sampled in proportion to R(x)/Fj(s),
implying that, marginally, each x is sampled proportionally to R(x). In the following, we make
this argument rigorous. We first consider the case in which x ∈ X \ So. As we are assuming that
Fj(s)pF (τ |s) = pB(τ |x)R(x) for each trajectory τ starting at s ∈ Ij and finishing at x, we must
conclude that

pjT (x|s) =
∑

τ : s⇝x

pF (τ |s) =
R(x)

Fj(s)

∑
τ : s⇝x

pB(τ |x). (50)

On the other hand, since Fo(so)p
o
F (τ |s) = poB(τ |s)Fj(s) for s ∈ Ij ,

poT (s|so) =
∑

τ : so⇝s

pF (τ |so) =
Fj(s)

Fo(so)

∑
τ : so⇝s

pB(τ |s) =
Fj(s)

Fo(so)
, (51)

as the probability of reaching so by starting from s and following pB is equal to one since so is the
only sink state of the transposed state graph. In this context,

pT (x|so) =
∑

1≤j≤m

∑
s∈Ij

pjT (x|s)poT (s|so)

=
∑

1≤j≤m

∑
s∈Ij

Fj(s)

Fo(so)
· R(x)
Fj(s)

∑
τ : s⇝x

pjB(τ |x)

=
∑

1≤j≤m

R(x)

Fo(so)

∑
1≤j≤m

∑
s∈Ij

∑
τ : s⇝x

pjB(τ |x)

=
R(x)

Fo(so)

∑
s∈⋃

1≤j≤m Ij

pjB(τ |s) =
R(x)

Fo(so)
;

(52)

i.e., pT (x|so) samples x proportionally to R(x). For the forth line above, we relied on the fact that
the probability of eaching

⋃ Ij is equal to one when starting at x ∈ X \ So and following pB .
Correspondingly, when x ∈ X , it follows from the satisfiability of the trajectory balance condition
that pT (x|so) ∝ R(x). This ensures SAL is a sound distributed learning algorithm for GFlowNets.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

D.9 PROOF OF LEMMA C.3

The global minimizer of Equation 9 satisfies, for every j, Fj(s)p
j
F (τ) = R(x)pjB(τ |x) for every

trajectory τ : s⇝ x starting at s ∈ Ij and finishing at x ∈ Xj . Consequently,

pjT (x|s) =
∑

τ : s⇝x

pjF (τ |s) =
∑

τ : s⇝x

pjB(τ |x)R(x)
Fj(s)

=
R(x)

Fj(s)

∑
τ : s⇝x

pjB(τ |s). (53)

Similarly, ∑
τ : s⇝x

Fj(s)p
j
F (τ |s) =

∑
τ : s⇝x

pjB(τ |x)R(x) (54)

implies that
Fj(s) =

∑
τ : s⇝x

pjB(τ |x)R(x) (55)

since
∑

τ : s⇝x p
j
F (τ |s) for every s. These equations jointly entail the proposition.

D.10 PROOF OF PROPOSITION C.5

As in the demonstrations above, we consider two cases in separate. First, when x ∈ X ∩ So, then
pT (x) = R(x)/ZF+ZR due to the satisfiability of the balance condition by the model. Hence,∑

x∈X∩So

|pT (x)− π(x)| =
∑

x∈X∩So

∣∣∣∣ R(x)

ZF + ZR
− R(x)

Z

∣∣∣∣
=

∣∣∣∣ 1

ZF + ZR
− 1

Z

∣∣∣∣ ∑
x∈X∩So

R(x) =

∣∣∣∣ 1

ZF + ZR
− 1

Z

∣∣∣∣ZR.

(56)

Second, when x ∈ X \ So, we note that

pT (x) =
∑

1≤j≤m

∑
s∈Sj

∑
τ : so⇝s⇝x

pF (τ |so)

=
∑

1≤j≤m

∑
s∈Sj

(∑
τ : so⇝s

poF (τ |so)
)(∑

τ : s⇝x

pjF (τ
′|s)
)

=
∑

1≤j≤m

∑
s∈Sj

poT (s)p
j
T (x|s) =

∑
1≤j≤m

∑
s∈Sj

Fj(s)

ZF + ZR
· pjT (x|s).

(57)

Similarly, for any X -valued function f ,

f(x) =
∑

1≤j≤m

∑
s∈Sj

Fj(s)

ZF
· f(x); (58)

hence,

π(x)− pT (x) =
∑

1≤j≤m

∑
s∈Sj

(
Fj(s)

ZF
· π(x)− Fj(s)

ZF + ZR
· pjT (x|s)

)

=
∑

1≤j≤m

∑
s∈Sj

Fj(s)

ZF

(
π(x)− ZF

ZF + ZR
pjT (x|s)

)

= Es∼po
T,\X

[(
π(x)− ZF

ZF + ZR
p
f(s)
T (x|s)

)]
.

(59)

By recalling that TV(π, pT) =
1
2

(∑
x∈X |π(x)− pT (x)|

)
, this result, along with Equation 56 and

Jensen’s inequality applied to the function x 7→ |x|, implies the proposition. To further strengthen
our intuition, we also consider directly bounding the accuracy of Go as a function of the trajectory-
level inaccuracies of each Gj . For this, we re-write π(x) as

π(x) =
∑

1≤j≤m

∑
s∈Sj

π(x)
∑

τ : s⇝x

pjB(τ |x). (60)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Correspondingly, by recalling the property pT (x) =
∑

1≤j≤m

∑
s∈Sj

poT (s)p
j
T (x|s), we conclude

|π(x)− pT (x)| =

∣∣∣∣∣∣
∑

1≤j≤m

∑
s∈Sj

∑
τ : s⇝x

π(x)pB(τ |x)− pF (τ |s)poT (s)

∣∣∣∣∣∣
≤

∑
1≤j≤m

∑
s∈Sj

∑
τ : s⇝x

∣∣∣π(x)pjB(τ |x)− pjF (τ |s)poT (s)
∣∣∣︸ ︷︷ ︸

Error associated to the jth client

.
(61)

Hence, the total variation distance between π and pT is bounded above by

TV(π, pT) =
ZR

2

∣∣∣∣ 1Z − 1

ZR + ZF

∣∣∣∣+1

2

∑
x∈X\So

∑
1≤j≤m

∑
s∈Sj

∑
τ : s⇝x

∣∣∣π(x)pjB(τ |x)− pjF (τ |s)poT (s)
∣∣∣︸ ︷︷ ︸

Error associated to the jth client

.

For tree-shaped state graphs, the second term of the equation above can be significantly simplified
by noticing that (i) each x is uniquely associated to a j, a relationship which we denote by g(x) = j,
and (ii) that pjB(τ |x) = 1 and pjF (τ |s) = pjT (x|s). Under these conditions,

TV(π, pT) ≤
ZR

2

∣∣∣∣ 1Z − 1

ZR + ZF

∣∣∣∣+ 1

2

∑
x∈X\So

∑
s∈Sg(x)

∣∣∣π(x)− p
g(x)
T (x|s)poT (s)

∣∣∣
︸ ︷︷ ︸

Error associated to the j=g(x)th model

. (62)

D.11 PROOF OF PROPOSITION C.6

We proceed by strong induction on the number k of fixed-horizon partitions. For k = 1, the result
above is equivalent to Equation C.1. Assume, then, that the statement holds for j fixed-horizon
partitions of the state graph for all j < k. Let Gi, 0 ≤ i ≤ k, be a sequence of GFlowNets
satisfying the amortized trajectory balance condition. By induction, each x ∈ ⋃

1≤j≤k−1 Xj is
sampled proportionally to

∑
1≤j≤k−1 1[x ∈ Xj]Rj(s). In particular, if x ∈ X ∪ ⋃1≤j≤k−1 Xj ,

then x is sampled proportionally to R(x). For what remains, let x ∈ X \⋃1≤j≤k−1 Xj . Hence, for
each state s ∈ ⋃1≤j≤mk

Ik,j ⊆ Xk−1 and each trajectory τ : s⇝ x,

Fk(s)pF (τ |s) = pB(τ |x)R(x), (63)

i.e., pF (τ |s) = pB(τ |x)R(x)/Fk(s). Thus, by marginalizing out the non-terminal components of τ ,

pT (x|s) =
R(x)

Fk(s)

∑
τ : s⇝x

pB(τ |x) (64)

and, since each s is sampled proportionally to Rk−1(s) := Fk(s),

pT (x) ∝
∑

s∈⋃
1≤j≤mk

Ik,j

pT (x|s)Fk(s)

=
∑

s∈⋃
1≤j≤mk

Ik,j

Fk(s) ·
R(x)

Fk(s)

∑
τ : s⇝x

pB(τ |x)

= R(x)
∑

s∈⋃
1≤j≤mk

Ik,j

∑
τ : s⇝x

pB(τ |x)

︸ ︷︷ ︸
=1

= R(x).

(65)

This ensures that each x ∈ X \ ⋃1≤j≤k−1 Xj is sampled proportionally to R(x). By induction,
each x ∈ X is sampled proportionally to R(x). Hence, the recursive instance of SAL is a sound
approach for sampling objects proportionally to a reward function.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

5000 10000 15000 20000 25000
0

200

400

600

800

1000

#
m

od
es

Hypergrid 64 x 64

200 400 600 800 1000
0

200

400

600

SIX6

500 1000 1500 2000
0

1000

2000

3000

4000

5000

PHO4

1000 2000 3000 4000 5000
0

5000

10000

15000

20000

Bit sequences

500 1000 1500 2000
0

1000

2000

3000

4000

Set generation

5000 10000 15000 20000 25000
0

200

400

600

800

1000

#
m

od
es

200 400 600 800 1000
0

100

200

300

400

500

500 1000 1500 2000
0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000
0

20000

40000

60000

500 1000 1500 2000
0

2000

4000

6000

8000

5000 10000 15000 20000 25000
0

200

400

600

800

1000

#
m

od
es

200 400 600 800 1000
0

200

400

600

500 1000 1500 2000
0

1000

2000

3000

1000 2000 3000 4000 5000
0

5000

10000

15000

20000

500 1000 1500 2000
0

1000

2000

3000

4000
Centralized
SAL

Total number of epochs

Figure 13: Complementary results for Figure 7 with different random seeds. Notice that, except for
the hypergrid task, the threshold defining a mode is a random variable, which explains the variability
(albeit consistency) of the number of modes found within the same column.

E LIMITATIONS AND FUTURE WORKS

We presently discuss the limitations of our work and the consequent opportunities for future re-
search. Although informative, our theoretical analysis was limited to the case of i.i.d. sampled
trajectories which, as highlighted in Section 5, does not necessarily reflect the nature of usual strate-
gies for learning GFlowNets, e.g., ϵ-greedy sampling. Indeed, the typical training of GFlowNets is
closer in spirit to active learning (AL) (Cohn et al., 1994; Gal et al., 2017) in the sense that a batch of
trajectories is sampled from a policy that is dynamically updated as more data points are observed,
and it would be interesting and important to pursue an investigation in this direction (Jain et al.,
2022; Malik et al., 2023). In contrast to AL, however, there is no explicit acquisition function guid-
ing GFlowNet training. On the other hand, Deleu & Bengio (2023)’s interpretation of GFlowNets
as Markov chains in the trajectory-space could be used together with Azuma’s inequality (Azuma,
1967), in the fashion of Theorem 5.4, as a useful starting point for this. More specifically, one could
consider that a sequence of trajectories {τt}t≥1 is observed during training and use the same tech-
niques enabling the proof of Theorem 5.4, namely, constructing a martingale difference sequence
Mt = LTB(τt) − Eτt [LTB(τt)|τs<t] and applying Theorem 1 of Seldin et al. (2012a) both within
and between trajectories, the results of which would then be unified via an union bound argument.

Additionally, the promising results of SAL pave the road to a range of interesting investigations.
Most promitently, we believe the development of principled partitioning methods can lead to
substantial improvements in scaling GFlowNet training. Although our discussion is constrained to
fixed-horizon partitions for easeness of exposition and implementation, the algorithm could in prin-
ciple be extended to more general settings. Theorem 5.2 suggests that a good partition would ensure
that the within- and between-partition distributions are close to uniform. Intuitively, we would like
that the target distribution of both the leaf and root GFlowNets are relatively simple to approximate
when compared against the original target and that the most important regions of the state space, as
measured by the reward function, are appropriately covered. The best way to ensure these properties,
however, remains an open problem and we think it is a promising venue for future endeavors.

E.1 ADDITIONAL EXPERIMENTS

Robustness of SAL with respect to the FHP’s size. It is intuitively clear that an increase in the
number m of partitions in a FHP would improve the coverage of the state graph and accelerate
mode discovery. In doing so, however, we also enlarge the memory cost of the algorithm due to the
necessity of aggregating a larger number of leaf GFlowNets in the server. To shed light on the effect
of m on SAL’s performance, Figure 14 presents the number of modes found during training for the
tasks of SIX6 and PHO4. As anticipated, SAL drastically improves upon a centralized GFlowNet

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

10 20
0

200

400

600

SIX6

10 20
0

2000

4000

6000
PHO4

SAL
Centralized

FHP’s size
N

um
be

ro
fm

od
es

Figure 14: SAL consistently outperforms a centralized GFlowNet irrespective of the number of
components defining the underlying FHP. As expected, the coverage of the state graph is an increas-
ing function of the FHP’s size. Results for the centralized model are included solely for comparison.

SAL Intentionally mode-collapsed SAL Target distribution

Figure 17: Extremely inaccurate estimation of the flow function might lead to mode collapse. (left)

Standard SAL-trained GFlowNet for a 8 × 8 grid with 2-sized FHP. (middle) SAL-trained GFlowNet
when the flow function F1 is severely inaccurate. (right) Target distribution.

— regardless of the size of the underlying FHP. Overall, our experiments throughout this work
indicated that SAL is notably robust to the choice of hyperparameters defining its implementation.

SAL Cent.0

5000

10000

15000

20000

21490

6170

50-sized subsets of {1, . . . , 100}

Figure 15: SAL leads to signif-
icantly faster mode discovery
for large-scale set generation.
Results averaged across 3 runs.

SAL Centralized
0.045±0.001 0.061±0.009

Table 3: SAL improves upon a
centralized GFlowNet for large-
scale set generation in terms of
FCS (Silva et al., 2024).

SAL Cent.0

2000

4000

6000

352

5553
Intentionally bad partition sampling

Figure 16: SAL underperforms
when the within-subgraph
sampling distribution is inade-
quately designed.

Experiments on large-scale set generation tasks (|X | ≈ 1030). To underscore the scalability of
SAL with respect to the underlying domain’s size, Figure 15 and Table 3 respectively show that
our distributed algorithm entails faster mode discovery and lead to a more accurate distributional
approximation for the problem of generating 50-sized subsets of {1, . . . , 100}; see Section A.3 for a
definition of this task. For a fair comparison, the centralized GFlowNet is trained for 60 seconds —
twice the time allocated to each leaf GFlowNet and to the aggregation step. Besides, we adopt the
experimental setup described in Section B. Importantly, these results suggest that the applicability
of SAL is not limited by the domain sizes presented in the main text.

In the following paragraphs, we examine two potential causes for catastrophic failures of the aggre-
gated model, as mentioned in Proposition C.5 on Section C.2.

Insufficient training of a leaf GFlowNet. As the aggregation phase in SAL relies on the locally

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

estimated flows as a surrogate reward for the root GFlowNet (recall Algorithm 1), a natural driver of
catastrophic failures is an inaccurately approximated flow function by a leaf GFlowNet. In particular,
if a local flow Fj is significantly larger than its correct value, the resulting model might allocate a
substantial probability mass to the subgraph associated to the jth leaf GFlowNet. In this case, high-
probability regions of the remaining subgraphs might be completely missed by the global GFlowNet.
We illustrate this effect in Figure 17, which shows the learned distribution over a 8 × 8 grid for (i)
a SAL-trained GFlowNet and (ii) a SAL-trained GFlowNet with a substantially over-estimated F1.
To emulate (ii), we train each leaf GFlowNet in a standard fashion and, during the aggregation
phase, multiply the learned F1 by 100. In both cases, we considered 2-sized FHPs and followed
the experimental setup of Section 6.2. Notably, Figure 17 confirms that a severely inaccurate flow
function Fj may lead to a misrepresentation of the target distribution’s high-probability regions by
the global GFlowNet. In spite of these results, we stress that we did not observed this pathological
behavior throughout our experiments in the main text and in Section C.

Insufficiently diverse within-subgraph sampling distributions. Recall in Definition 6.2 that SAL
depends on a distribution qj over the initial states Ij of the jth subgraph defining the FHP; see
Figure 3. Clearly, when qj’s probability mass is overly concentrated in a relatively small subset of
Ij , the corresponding leaf GFlowNet might fail to accurately learn from the target distribution due
a the restricted exploration of the state graph — in the fashion of Section 4. Also, the efficiency of
mode discovery during training would be significantly hindered. In this context, Figure 16 illustrates
the mode discovery rate for the task of generating 16-sized subsets of {1, . . . , 32} with the reward
function described in Section A when each qj is set as a truncated Poisson distribution with mean
equal to 1/5000-th of the size of the corresponding Ij . Importantly, similarly to Figure 17, this is an
extreme corner case that did not pose an issue in our experiments. In practice, we suggest setting qj
as an uniform distribution to maximize the diversity of the explored partitions.

43

	Introduction
	Preliminaries
	Overview of our results
	When do GFlowNets not generalize?
	PAC-Bayesian generalization bounds for GFlowNets
	Non-vacuous empirical generalization bounds
	Oracle generalization bounds

	Divide and Conquer: Distributed Learning of GFlowNets
	Subgraph Asynchronous Learning
	Empirical illustration

	Conclusions
	Background and related works
	Directed Acyclic Graphs
	Generative Flow Networks
	Learning GFlowNets
	Related works
	Additional review of PAC-Bayes bounds

	Experimental details and additional discussions
	A non-generalizable distribution
	Non-vacuous generalization bounds
	Oracle generalization bounds: Lemmata
	Subgraph Asynchronous Learning

	SAL: Implementation and Theoretical Analysis
	An efficient implementation of SAL
	Theoretical analysis and extensions
	Conditional SAL
	SAL and EP-GFlowNets

	Proofs
	Proof of Lemma 4.1
	Proof of Proposition 4.2
	Proof of Proposition 5.1
	Proof of Lemma B.1
	Proof of Theorem 5.2
	Proof of Lemma B.2
	Proof of Theorem 5.4
	Proof of Theorem C.1
	Proof of Lemma C.3
	Proof of Proposition C.5
	Proof of Proposition C.6

	Limitations and future works
	Additional experiments

