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Abstract

Modern machine learning methods often have to
rely on high-dimensional data that is expensive to
label, while unlabeled data is abundant. When the
data exhibits low-dimensional structure such as
sparsity, conventional regularization techniques
are known to improve generalization for a single
objective (e.g., prediction risk). However, it is
largely unexplored how to leverage this structure
in the context of multi-objective learning (MOL)
with multiple competing objectives. In this work,
we discuss how the application of vanilla regular-
ization approaches can fail, and propose the first
MOL estimator that provably yields improved
performance in the presence of sparsity and un-
labeled data. We demonstrate its effectiveness
experimentally for multi-distribution learning and
fairness-risk trade-offs.

1 INTRODUCTION

As machine learning models are employed more and more
broadly, they are expected to be trustworthy in numerous
ways: Besides being accurate, they should also be robust
against (adversarial) distribution shifts (Szegedy et al., 2014;
Yin et al., 2019), fairness-aware (Pedreshi et al., 2008; Hardt
et al., 2016), private (Dwork, 2006; Vaidya, 2009), inter-
pretable (Marcinkevičs and Vogt, 2023) and, more recently,
aligned with human values (Ji et al., 2023), to name just a
few. It is well understood that in many settings, achieving
all of these objectives simultaneously can be inherently im-
possible and that a trade-off between them is unavoidable
(Menon and Williamson, 2018; Wang et al., 2024; Zhang
et al., 2019; Raghunathan et al., 2020; Cummings et al.,
2019; Sanyal et al., 2022; Guo et al., 2024).

In the presence of such inherent trade-offs, we are usually
interested in learning models that lie on the Pareto front,
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where improving in one objective must come at the expense
of another (e.g., Ehrgott (2005)). In the optimization liter-
ature, it is well-known (Ehrgott, 2005; López et al., 2011)
that under some regularity conditions, a point on the Pareto
front of K objectives L1, . . . ,LK can be recovered by min-
imizing a scalarized objective, such as

K
ÿ

k“1

λkLk or max
kPrKs

λkLk (1)

using the appropriate weight vector λ from the simplex.

In the context of machine learning, however, the individ-
ual objectives of interest are population-level and hence
unknown. Instead, the Pareto front has to be learned from
data (Jin and Sendhoff, 2008), a problem that falls under
the general multi-objective learning (MOL) paradigm. To
estimate the population-level Pareto front, a common ap-
proach is to compute the Pareto front of empirical plug-in
estimates pL1, . . . , pLK , for example, by minimizing the em-
pirical scalarized objective

řK
k“1 λk

pLk or maxkPrKs λk
pLk,

thereby reducing the problem to a single-objective problem
(Jin and Sendhoff, 2008; Lin et al., 2019; Hu et al., 2024).
This approach can indeed perform well in regimes with
sufficiently many labeled training samples, where pL « L.

However, in modern overparameterized regimes with rela-
tively little labeled data but large amounts of unlabeled data
available, it is crucial to leverage low-dimensional structure.
In single-objective learning, this has been established in a
long line of work on estimators with the right inductive bias,
e.g., for recovering sparse ground truths (Bühlmann and
van de Geer, 2011; Wainwright, 2019). On the other hand,
in the context of multi-objective learning, there are so far no
theoretical guarantees on how regularization can counteract
the curse of dimensionality in the presence of sparsity or
other low-dimensional structure.

Hence, in this paper, we take a step towards addressing the
following question:

How can we leverage low-dimensional structure like
sparsity in the presence of multiple competing objectives?
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Our main contributions are outlined below.

• We introduce a new MOL estimator that can successfully
take advantage of the low-dimensional structure of the
objective-specific minimizers to estimate the entire Pareto
front, while leveraging unlabeled data (Section 3).

• We prove upper and lower bounds for the estimation error
of the Pareto front which reveal interesting geometric
peculiarities inherent to MOL problems (Section 4).

• We demonstrate the effectiveness of our method in several
applications, validated by experiments on synthetic and
semi-synthetic data (Section 5).

2 SETTING AND NOTATION

We begin by introducing the multi-objective learning (MOL)
problem using multi-objective optimization.

2.1 Multi-objective optimization

In the context of multi-objective learning, we are ultimately
interested in solving a multi-objective optimization (MOO)
problem (Ehrgott, 2005; López et al., 2011), where the objec-
tives are defined via distributions. Let F be our hypothesis
space of functions fϑ : X Ñ Y parameterized by ϑ P Rm.
Further, we write L : Rm ˆ P Ñ RK for a non-negative
vector-valued function that consists of K objectives

Lpϑ,Pq “
`

L1pϑ,P1q, . . . ,LKpϑ,PKq
˘

,

where the k-th objective depends on a distribution Pk that
is defined on X ˆ Y , and P denotes all K-tuples P “

pP1, . . . ,PKq. For each joint distribution Pk of the random
vector pX,Y q, we denote the marginal distribution of X
as Pk

X . Finally, we denote by θk the minimizers of the
individual objectives, that is,

θk P argmin
ϑPRm

Lkpϑ,Pkq P Rm. (2)

For the sake of a simpler exposition, we assume uniqueness
of the minimizers in this section.

Our formulation includes the case where we have different
losses on the same distribution (e.g., Duh et al. (2012)),
or the same loss on different distributions (i.e., multi-
distribution learning (Haghtalab et al., 2022)). For con-
creteness, we now present a simple example for the latter
that reappears in later sections of the paper, among others.

Example 1 (Multiple linear regression). Consider X “ Rd,
Y “ R and the distributions Pk induced by the model

Y “ xX, θky ` ξ with ξ „ N p0, σ2q (3)

where θk P Rm are (differing) s-sparse ground truths
}θk}0 ď s and X are B2-sub-Gaussian covariate vec-
tors with non-degenerate covariance matrices Σk “

EX„Pk
X

“

XXJ
‰

. We are interested in the prediction risks
using squared-loss for each k, defined as

Lkpϑ,Pkq “ EpX,Y q„Pk

“

pxX,ϑy ´ Y q2
‰

“

›

›

›
Σ

1{2
k pϑ ´ θkq

›

›

›

2

2
` σ2.

In view of multiple objectives, one goal could be to find
the minimizer of L with respect to ϑ P Rm in each coor-
dinate simultaneously. However, in many cases, this is not
possible because the sets of minimizers of the objectives
do not intersect (e.g., Martinez et al. (2020); Yaghini et al.
(2023)). In that case, MOO aims to either find the set of all
Pareto-optimal solutions, or a set of points that have a small
scalarized loss, both defined below.

Definition 1 (Pareto-optimality). A parameter ϑ P Rm is
Pareto-optimal, if for all ϑ1 P Rm and k P rKs

Lkpϑ1,Pkq ă Lkpϑ,Pkq ùñ Dj : Ljpϑ1,Pjq ą Ljpϑ,Pjq.

The set tLpϑ,Pq | ϑ P Rm is Pareto-optimalu is called the
Pareto front of L.

In Figure 1, we illustrate the set of Pareto-optimal points and
the Pareto front for a toy two-objective problem. On the left,
the solid red line depicts the set of Pareto-optimal points in
the parameter space Rm with “end-points” θk, while on the
right, it traces the Pareto front in the two-dimensional space
of objective function values. The red shaded region on the
right corresponds to the set of all achievable value pairs of
the two objective functions.

Definition 2. A scalarization of L is the composition psλ˝Lq

of L with a function sλ : RK Ñ R, parameterized by λ in
the simplex ∆K “ tλ P RK : λk ě 0 and

řK
k“1 λk “ 1u.

Equation (1) already introduced two important scalariza-
tions, known as linear and Chebyshev scalarization, respec-
tively. We denote by ϑλ the minimizers of a scalarization,
i.e.,

ϑλ P argmin
ϑPRm

psλ ˝ Lqpϑ,Pq. (4)

It is well-known (López et al., 2011) that a solution to (4)
is Pareto-optimal for linear or Chebyshev scalarization, if
the solution is unique or λk ą 0 for all k P rKs. Hence,
each minimizer ϑλ lies in the set of Pareto-optimal points,
and Lpϑλ,Pq lies on the Pareto front, as depicted in Fig-
ure 1. Further, when (4) has a unique solution for all λ with
λk “ 0 for some k, Chebyshev scalarization recovers all
Pareto-optimal points. When additionally strict convexity
holds for each objective, linear scalarization also parame-
terizes the entire set of Pareto-optimal points, that is each
λ corresponds to one Pareto-optimal point and vice versa
(Miettinen, 1998; Hillermeier, 2001; Roy et al., 2023). Note
that then, in the special case λk “ 1, we obtain ϑλ “ θk. In
the rest of the paper, when we use ϑλ to denote a minimizer
of an unspecified scalarization, we implicitly assume that
the scalarization parameterizes the Pareto-optimal points.



Manuscript under review by AISTATS 2025

Rm

θ2

θ1

ϑλ
pθ2

pθ1

pϑλ

L1

L2

LpRmq

Lpθ2q

Lpθ1q

Lpϑλq

Lppθ2q

Lppθ1q

Lppϑλq

Figure 1: We use the shorthand Lpϑq “ Lpϑ,Pq. The parameter
space Rm (left) parameterizes the hypothesis set F and contains
the set of the population Pareto-optimal points ϑλ, λ P ∆K (red
line), and the set of the empirical estimators (dashed blue line). ϑλ

can be non-sparse even when θ1, θ2 are sparse. In the right figure
we depict the region of all values that can be obtained by Lpϑ,Pq

for some ϑ (red shaded area), the population Pareto front (red line)
and estimated Pareto front (dashed blue line).

2.2 Multi-objective learning

In practice, we do not observe the distributions Pk but finite
samples from it. In particular, we assume a semi-supervised
setting, where we observe a set of nk i.i.d. labeled samples
from Pk, denoted

␣

pXk
i , Y

k
i q

(nk

i“1
, as well as Nk P N unla-

beled i.i.d. samples contained in the dataset
␣

Xk
i

(Nk

i“nk`1

from each marginal distribution Pk
X . We let D denote the

entire dataset of labeled and unlabeled datapoints. Based
on the labeled set of samples, we can estimate Pk using
the empirical measure pPk “ n´1

k

řnk

i“1 1pXk
i ,Y

k
i q and define

pP “ ppP1, . . . , pPKq accordingly. Moreover, we can estimate
the marginal Pk

X via the empirical marginal using the entire
dataset pPk

X “ pnk ` Nkq´1
řnk`Nk

i“1 1Xk
i

.

The aim of multi-objective learning (MOL) is to use the
data D to estimate the set of Pareto optimal points tϑλ|λ P

∆Ku Ă Rm with a set of estimators tpϑλ|λ P ∆Ku with
small squared estimation errors }pϑλ ´ ϑλ}22. Note that here,
we denote by pϑλ the estimator for the Pareto-optimal point
ϑλ parameterized by λ. We compare our estimation proce-
dures with the information-theoretically optimal estimation
error (i.e., minimax error), defined as

MλpPq “ inf
pϑ
sup
PPP

E
„

›

›

›

pϑpDq ´ ϑλ

›

›

›

2

2

ȷ

, (5)

where the infimum is taken over all estimators pϑpDq P Rm,
and the expectation is taken over draws of the dataset.

Under weak assumptions such as smoothness, a bound on
the estimator error }pϑλ ´ ϑλ}22 implies a bounds on the
excess in each individual objective, Lkppϑλ,Pq ´Lkpϑλ,Pq,
and the excess scalarized objective

Eλppϑλq :“ psλ ˝ Lqppϑλ,Pq ´ min
ϑPRm

psλ ˝ Lqpϑ,Pq. (6)

3 TWO ESTIMATORS

A commonly used approach in the multi-objective learn-
ing literature is to consider a plug-in estimator that is the
minimizer of the objective (4) where P is replaced by pP
(Jin, 2006). However, the high-dimensional regime requires
introducing regularization to this approach.

3.1 A directly regularized estimator

Since the scalarized objective can be viewed as a generic
scalar loss, we may be tempted to follow common practice
for high-dimensional (single-objective) learning and add a
penalty term ρ : Rm Ñ R to the empirical objective and
solve

min
ϑPRm

psλ ˝ Lqpϑ, pPqq ` ρpϑq (7)

or constrain the parameter space to a subset of Rm.1 Such
approaches are often used if the inductive bias on the multi-
objective solution from (4) is the same across the Pareto
front, or there is only one objective besides the penalty (Jin
and Sendhoff, 2008; Cortes et al., 2020; Mierswa, 2007;
Bieker et al., 2022; Hotegni et al., 2024).

The rationale behind regularization in high-dimensional
learning is the assumption that the minimizer exhibits a cer-
tain structure that is captured by the penalty ρ (e.g., sparsity
by the ℓ1-norm). Hence, estimators of the form (7) could
work well if the corresponding Pareto-optimal points adhere
to this structure. However, as we aim to recover the entire
Pareto-optimal set, asserting that the structure is present
across the entire set of Pareto-optimal solutions might be
rather unrealistic depending on the problem at hand. For
example, it may be natural to assume that the minimizers
θk of the individual objectives are sparse, but generally,
large parts of the Pareto-optimal can still be non-sparse,
cf. Figure 1. Therefore, applying a regularization penalty
that works for the individual objectives (such as an ℓ1-norm
penalty) does not generally improve the estimate from (7)
for all λ, except when λk “ 1 and we are estimating θk.

3.2 A new two-stage estimator

We now introduce our two-stage estimator that is able to
leverage the structure of individual minimizers. For this
purpose, we assume that each objective depends on the
distributions Pk via two parameter vectors.
Assumption 1. Objective Lkp¨,Pkq depends on Pk only
through θk P Rm as defined in Equation (2) and a parame-
ter ωk P RM that only depends on the marginal Pk

X .

In Example 1, the parameter ωk corresponds to a vector-
ization of the covariance matrices, which only depends on

1Alternatively, one may also add a penalty in each objective
separately or view the penalty as an additional objective. For linear
scalarization, any of these alternative strategies would result in a
final estimator that is equivalent to (7)
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the marginal. This means we can estimate ωk using unla-
beled data. We argue that such a re-parameterization holds
in many cases, which we also demonstrate in a number of
applications in Sections 4 and 5.

Denoting θ “ pθ1 . . . θKq P RmˆK and ω “ pω1 . . . ωKq P

RMˆK , we abuse notation and write Lkpϑ, θk, ωkq for
Lkpϑ,Pkq and correspondingly the vector-valued function

Lpϑ, θ, ωq :“ pL1pϑ, θ1, ω1q, . . . ,LKpϑ, θK , ωKqq.

This lets us define the two-stage regularized multi-objective
estimator pϑts

λ as the solution to a two-stage procedure.

Definition 3. We define pϑts
λ as the final solution of the fol-

lowing two-stage optimization problem.

Stage 1: Estimation. Use the data D to estimate the pa-
rameter matrices pθ “ ppθ1 . . . pθKq, pω “ ppω1 . . . pωKq, e.g.,
with

pθk P argmin
ϑPRm

Lkpϑ, pPkq ` ρkpϑq.

Stage 2: Optimization. Minimize the scalarized objective

pϑts
λ P argmin

ϑPRm

psλ ˝ Lqpϑ, pθ, pωq. (8)

Note that when λk “ 1, we recover the directly regularized
estimator from (7). The results in Section 4 shed light on the
relevance and unconventional benefits of using unlabeled
data to estimate ω for MOL.

The estimator is similar to probabilistic modeling pipelines
(Ng and Jordan, 2001) in that it learns all (necessary) pa-
rameters first, and then the estimation of any Pareto-optimal
point ϑλ can reap the benefits of the efficiency of the pa-
rameter estimation of θ, ω. But of course, for pϑts

λ to be an
efficient estimator, the estimators for θ, ω have to be cho-
sen well. In particular, the penalty ρk should induce the
correct inductive bias towards the population minimizers.
For instance, if θk is sparse, one could choose ρk to be the
ℓ1-norm (Tibshirani, 1996).

We now show how the two-stage estimator with the ℓ1-norm
penalty can outperform all directly regularized estimators
of the form in (7) in a concrete example.

3.3 A simple comparison

Consider the fixed-design linear regression setting, where
we observe matrices X1,X2 P Rnˆd and noisy responses

yk “ Xkθk ` ξk with ξk
i.i.d.
„ N p0, σ2Inq.

With slight abuse of notation, we define the population and
empirical objectives for k “ 1, 2 as

Lkpϑ,Pkq “
1

n
}Xkpϑ ´ θkq}

2
2 ` σ2,

Lkpϑ, pPkq “
1

n

›

›Xkϑ ´ yi
›

›

2

2
.

For any constant c ą 0, let Γpcq denote the set of all matrices
X P Rnˆd such that 1

nX
JX has eigenvalues lower-bounded

by c{2 and upper bounded by 2c, and Θ Ă Rm the set of
1-sparse vectors θ. The following proposition shows that
any estimator in the form of (7) generally cannot use the
sparsity of θk to mitigate the curse of dimensionality.

Proposition 1 (Insufficiency of direct regularization). Sup-
pose that c ě 2σ2, λ1 “ λ2 “ 1{2, n ě d and we use
linear scalarization. Then, for any regularizer ρ, an estima-
tor pϑ in the form of (7) satisfies

sup
θ1,θ2PΘ

X1,X2PΓpcq

E
„

›

›

›

pϑ ´ ϑλ

›

›

›

2

2

ȷ

Á
σ2d

n
,

whereas the two-stage estimator pϑts
λ with penalty ρkpϑq “

α }ϑ}1 and optimally chosen α achieves

sup
θ1,θ2PΘ

X1,X2PΓpcq

E
„

›

›

›

pϑts
λ ´ ϑλ

›

›

›

2

2

ȷ

À
σ2 log d

n
.

See Appendix C.1 for the proof. As we can see, any directly
penalized estimator may not be able to overcome the curse
of being in high dimensions, e.g., when d Á n, even though
the individual minimizers are 1-sparse. Our estimator, on
the other hand, recovers the well-known rates of the LASSO
(Tibshirani, 1996; Wainwright, 2019).

The proof of Proposition 1 relies on being able to choose
the covariance matrices adversarially (within the eigenvalue
constraints), so that the Pareto-optimal ϑλ lies anywhere in
an ℓ2-ball of fixed radius. If we did not allow for this (i.e.,
the covariance matrices are scaled identities), the Pareto-
optimal ϑλ would have to be Ks-sparse, and the directly
regularized estimator would work.

4 THEORETICAL GUARANTEES

We now provide estimation error bounds for our two-stage
estimation procedure for a general set of problems.

4.1 Main results

In this section we state theoretical guarantees for objectives
that satisfy the following two regularity assumptions.

Assumption 2 (Strong convexity, smoothness and local
Lipschitz-continuity).

1. The function ϑ ÞÑ Lkpϑ, θk, ωkq is convex, twice con-
tinuously differentiable, νk-smooth for all k P rKs and
pθk, ωkq P RmˆRM . Further, for at least one j P rKs

it is strongly convex w.r.t. the ℓ2-norm,

2. The function pθk, ωkq ÞÑ ∇ϑLkpϑ, θk, ωkq is locally
Lipschitz-continuous for all k P rKs and ϑ P Rm.
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The definitions of strong convexity, smoothness and local
Lipschitz-continuity are commonly used in the convex op-
timization literature; we recall them in Appendix A for
completeness. They are standard assumptions in large parts
of (multi-objective) optimization (Hillermeier, 2001; Roy
et al., 2023; Ehrgott, 2005; Rockafellar, 1970), and are natu-
rally satisfied for many standard losses in machine learning.
For example, it is easily verified that the objectives from
Example 1, and other objectives we discuss later, satisfy
Assumption 2. For our lower bound, we additionally rely
on the following identifiability assumption.

Assumption 3 (Lipschitz identifiability). For all k P

rKs, ωk P RM and ϑ P Rm the function

θk ÞÑ ∇ϑLkpϑ, θk, ωkq

is Ck-Lipschitz, injective, and its inverse is C 1
k-Lipschitz.

Assumptions of this type are common in the inverse opti-
mization literature, which studies the identification of op-
timization parameters from a minimizer; cf. Aswani et al.
(2018); Gebken and Peitz (2021) and references therein.
Assumption 3 is satisfied by many common losses, such as
Example 1 (under some assumptions). In Section 4.2, we
discuss how identifiability relates to MOL.

The next theorem provides upper bounds on the estimation
error }pϑts

λ ´ ϑλ}22 in terms of the estimation error of the
parameters θ, ω. Additionally, we provide a lower bound on
the minimax multi-objective estimation errors (5) in terms
of the minimax single-objective ℓ2-estimation error

δk :“ MkpPkq “ inf
pθ
sup
PPP

E
”
›

›

›

pθpDq ´ θk

›

›

›

2

ı

,

where the infimum is taken over all estimators that have
access to the unlabeled and labeled datasets.

Theorem 1. Let Assumption 2 hold and j be the index of
the strongly convex function, and pϑts

λ be the minimizer of the
linear scalarization psλ ˝Lq “

řK
k“1 λkLk in Equation (8),

with λj ą 0. Then there exists a constant CK,λ ą 0 that
only depends on K and λ such that

›

›

›

pϑts
λ ´ ϑλ

›

›

›

2

2
ď CK,λ

K
ÿ

k“1

´

}pθk ´ θk}22 ` }pωk ´ ωk}
2
2

¯

.

If, additionally, Assumption 3 holds and ω is known, i.e.
pω “ ω, we have for |¨|` “ max t0, ¨u that

MλpPq ě max
kPrKs

s´2
λ pνq

∣∣∣∣∣ λk

C 1
k

δk ´
ÿ

i‰k

Ciλiδi

∣∣∣∣∣
2

`

.

We prove Theorem 1 in Appendix C.2. Notice that using
maxλP∆K CK,λ we get a uniform bound on the estimation
error. The upper bound in Theorem 1 has a very straight-
forward interpretation: The terms }pθk ´θk}22 improve when-
ever the θk have a low-dimensional structure like sparsity,

and the terms }pωk ´ ωk}
2
2 vanish when the number of unla-

beled data points increase, recalling that estimating ωk can
be done purely with unlabeled data (Assumption 1).

On the other hand, the lower bound characterizes the “lim-
its” of Pareto-optimal set estimation in the best case when
we have a lot of unlabeled data (see also discussion in Sec-
tion 4.4), in which case we can essentially think of pωk “ ωk.
This is for simplicity of exposition only, and could be read-
ily adapted to capture the estimation error of pω. We can
now compare the upper and lower bound in the case when
δi ! δk for some k and all i ‰ k. Then, the lower bound
reduces to MλpPq Á maxkPrKs δ

2
k if λk ą 0. Moreover,

since we consider pωk “ ωk, the upper bound only consists
of the terms }pθk ´ θk}22. Supposing pθk estimates θk in a
minimax optimal manner so that E}pθk ´ θk}22 — δ2k (e.g.,
via the correct choice of ρ), we obtain that

max
kPrKs

δ2k À MλpPq ď E
„

›

›

›

pϑts
λ ´ ϑλ

›

›

›

2

2

ȷ

À max
kPrKs

δ2k,

and hence the two bounds are tight up to constant factors.
We conclude that, under Assumptions 2 and 3, the difficulty
of MOL is dominated by the hardest individual learning
problem, if all other individual learning tasks are easier. In
such a case our estimator is optimal.

4.2 Discussion of the lower bound and Assumption 3

Intuitively, one might think that MOL should always be as
hard as the hardest individual problem. However, this is
not exactly what the lower bound predicts: If all individual
minimax rates are of similar order (δk — δi for all k, j), the
lower bound can vanish. Does this mean the lower bound
is too loose, or can this actually happen? We now show in
a simple setting how, indeed, this can happen for δk — δi
for all k, j, and how the Lipschitz identifiability assumption
prevents such a setting when exactly one parameter θk is
harder to learn, i.e., δk " δi for all i ‰ k. Hence, the lower
bound is not as loose as it might appear at first glance and
captures some counterintuitive peculiarities of MOL. We
use the following toy example, visualized in Figure 2.

Example 2. Consider Example 1 with two objectives
Lkpϑ, θkq “ }ϑ ´ θk}22, k “ 1, 2, where the covariance
matrices are the identity. Assume that the set of minimizers
is known to satisfy one of the two:

1. θ1 “ ´θ2 (Figure 2(b)),

2. θ1 “ 0 (Figure 2(a)).

In the first case of Example 2, estimating θ1 and θ2 is equally
hard (i.e., δ1 “ δ2), but for the choice λ “ p1{2, 1{2q, it
holds that ϑλ “ 0 irrespective of θ1 and θ2. Hence, one
can always estimate pϑts

λ “ 0, and achieve estimation error
}pϑ ´ ϑλ}22 “ 0. Thus, the lower bound must be 0, even
though both individual learning tasks may be hard.
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ϑλ

pϑts
λ

θ2

pθ2

0

pθ1 “ θ1

(a) δ1 ! δ2

θ2

θ1
0

pϑts
λ “ ϑλ

pθ1

pθ2

(b) δ1 “ δ2

Figure 2: Two MOL problems to exemplify the counterintuitive
lower bound from Theorem 1. (a): A problem where estimating
one individual minimizer θ1 “ 0 is easy, but estimating the other
θ2 and all other ϑλ is hard. (b): A problem where estimating
both individual minimizers θ1 “ ´θ2 is hard, but estimating a
parameter ϑλ “ 0 is easy.

It is now natural to wonder why the lower bound does not
vanish for the case δ1 ! δ2, such as in the second case
of Example 2. Specifically, as discussed in Section 4.1,
in such a case our lower bound is tight and predicts that
learning ϑλ is as hard as learning θ2. To understand this,
interpreting the identifiability assumption Assumption 3 is
crucial. On a high level, it implies that knowing ϑλ and θ1,
we can fully identify θ2. Specifically, in the second case
of Example 2, given the minimizer ϑλ for some λ, we can
compute θ2 “ ϑλ{λ2. Hence, anticipating a contradition,
if we assume there existed a λ for which it were easier to
learn ϑλ than θ2, i.e., supθ2 E}pϑλ ´ ϑλ}2 ă λ2δ2, then, by
identifiability, we could also estimate θ2 using pθ2 “ pϑλ{λ2,
yielding supθ2 E}pθ2 ´ θ2}2 ă δ2 – a contradiction of the
definition of the minimax rate.

This leads us to the following counterintuitive conclusion
that is captured in the lower bound of Theorem 1: Under
Lipschitz indentifiability, a MOL problem may be easy if
individual learning tasks are hard, but a MOL cannot be
easy if all but one individual learning tasks are easy.

4.3 Discussion of the upper bound and Assumption 2

We now turn to Assumption 2. The key ingredient for deriv-
ing guarantees for the two-stage estimator is to understand
how improvements in estimating the parameters θ, ω trans-
late into improvements to estimating the Pareto-optimal ϑλ.
Assumption 2 is used in Theorem 1 to apply tools from
optimization stability (Ito and Kunisch, 1992; Gfrerer and
Klatte, 2016; Dontchev, 1995; Bonnans and Shapiro, 2000;
Shvartsman, 2012), which is the study of how the minimizer
of an optimization problem changes with respect to the pa-
rameters of that problem. In our setting, Assumption 2
ensures that the implicitly defined function

pθ, ωq ÞÑ ϑλpθ, ωq “ argmin
ϑPRm

psλ ˝ Lqpϑ, θ, ωq

is Lipschitz continuous (Shvartsman, 2012). Results in this
literature often rely on assumptions similar to Assumption 2
for the Implicit Function Theorem to apply, see (Bonnans
and Shapiro, 2000, §1). A literature review on sensitivity
analysis for MOO is outlined in (Miettinen, 1998, §I.3.4) .

Assumption 2 excludes examples where all objectives are
Lipschitz continuous, such as the Huber loss (Huber, 1964),
and hence there is not one (globally) strongly convex func-
tion. Fortunately, the case when the loss function is Lips-
chitz in its parameters can easily be addressed using stan-
dard arguments on the excess scalarized objective, and the
following proposition offers an alternative to Theorem 1.
Proposition 2 (Lipschitz parameterization). Assume that
the parameterization pθk, ωkq ÞÑ Lkp¨, θk, ωkq is 1-
Lipschitz-continuous w.r.t. Φ : pRm ˆ RM q2 Ñ R, i.e.

sup
ϑPRm

∣∣Lkpϑ, θk, ωkq ´ Lkpϑ, θ1
k, ω

1
kq
∣∣ ď Φpθk, ω, θ

1
k, ω

1
kq.

(9)
Then, for any scalarization of the form sλpxq “ }λ d x}

with some norm }¨}, the excess scalarized loss of pϑts
λ —as

defined in Equation (6)—is bounded by

Eλppϑts
λ q ď 2sλ

´

pΦppθk, pωk, θk, ωkqqKk“1

¯

.

Notably, Proposition 2 can apply to non-convex objectives,
and allows the use of Chebyshev scalarization (Equation (1)).
The proof, found in Appendix C.3, follows excess-risk style
arguments similar to those found in Súkenı́k and Lampert
(2022). The difference here is that we may still observe the
effect of regularization and unlabeled data.

4.4 More examples

We now apply Theorem 1 and derive upper bounds for two
concrete multi-objective learning problems: The problem
described in Example 1, and a setting where we have a
fairness-notion as the second objective.

Multiple linear regression continued. We now apply
Theorem 1 to the setting described in Example 1.
Corollary 1. In the setting of Example 1, assume nk “

n,Nk “ N for all i and n`N ě d. Then our estimator pϑts
λ ,

with ρkpϑq “ αk }ϑ}1 and optimally chosen αk, achieves
for all λ P ∆K

E
„

›

›

›

pϑts
λ ´ ϑλ

›

›

›

2

2

ȷ

À
σ2s log d

n
`

B2d2

n ` N
.

The proof can be found in Appendix C.4.

Example 1 and Corollary 1 offer good intuition why it is
sensible that a small upper bound requires both individual
minimizers θk and the marginal quantities ωk to be esti-
mated well. We illustrate the effects of both regularization
and the estimation of the marginal distribution (in terms
of the covariance) in Figure 3 for the case that the true co-
variances are the identity. Notice how the estimators pϑts

λ

of the Pareto-optimal points depend both on the individual
minimizers pθk and the estimated covariance matrices. It is
hence important for finding the entire Pareto set to estimate
both θ and the covariance matrices well.
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Figure 3: The important roles of both regularization and additional unlabeled data for Example 1 illustrated on a geometric and intuitive
level (a), and by evaluating the excess scalarized loss in simulations (b): Increasing sparsity together with appropriate regularization
improves the estimate of the parameters θk, while an increasing number of unlabeled datapoints Nk improves the estimate of the
covariance matrices Σk, both improving the estimation of the Pareto front.

Fairness-risk tradeoff in linear regression. We now
consider a setting where one of the losses is a group-
wise fairness loss. Specifically, consider the random vari-
ables Y,X,A distributed according to Y “ xX, θy ` ξ
with a s-sparse ground-truth θ, where ξ „ N p0, σ2q, and
X|A „ N pµA, Idq, and A „ Bernoullip1{2q. A represents
an observed protected group-attribute (such as gender or eth-
nicity), and covariates means of the groups differ µ1 ‰ µ2.

As the first objective, we consider the usual prediction risk
with square loss, as defined in Example 1, and as the sec-
ond objective, we choose a recently introduced notion of
unfairness (Gouic et al., 2020; Chzhen and Schreuder, 2022;
Fukuchi and Sakuma, 2024) that measures demographic par-
ity via the 2-Wasserstein distance between the group-wise
distributions of xX,ϑy |A “ a and their barycenter;

Lfairpϑ,Pq “ min
νPP2pRq

!1

2
W 2

2 plawpxX,ϑy | A “ 1q, νq

`
1

2
W 2

2 plawpxX,ϑy | A “ 2q, νq

)

.

Details on this, including definitions, can be found in Ap-
pendix B, where we also demonstrate that under our assump-
tions, Lfairpϑ,Pq “ Lfairpϑ, µ1, µ2q “ 1

4 xµ1 ´ µ2, ϑy
2.

This violates the assumption of having a unique minimizer,
which is why we have to restrict ourselves to the case that
λfair ą 0. Unless xµ1 ´ µ2, θy “ 0, there is a trade-off
between fairness and risk. The following corollary applies
Theorem 1 to this setting with the proof in Appendix C.5.

Corollary 2. In the setting described above, assume that
µ1 “ ´µ2, nk “ n, Nk “ N . Then our estimator with
the appropriate ℓ1-penalty for estimating θ achieves for all
λ P ∆2 with λfair ą 0

E
„

›

›

›

pϑts
λ ´ ϑλ

›

›

›

2

2

ȷ

À
σ2s log d

n
`

d

n ` N
.

5 EXPERIMENTS

In this section we present some experiments on synthetic and
real data to confirm the theoretical results from Section 4.4.

5.1 Multiple linear regression

The first simulation is on synthetic data in the setting of
Example 1 for two objectives. We present two experiments.

In the first experiment, we fix λi “ 1{2, d “ 50, ni “ 15
and two arbitrarily chosen covariance matrices Σ1,Σ2. The
covariates are sampled from Gaussians. We vary the spar-
sity s of two random ground-truths (normalized in ℓ2-norm)
between 5 and 45, and the number of additional unlabeled
datapoints Ni between 15 and 50. For each configuration,
we repeat the experiment 10 times and show the resulting
average log-excess scalarized loss (i.e., log Eλ) of our esti-
mator with appropriately chosen ℓ1-penalty in Figure 3. The
smaller the s and the more unlabeled data are available, the
better the estimator performs, as predicted by Corollary 1.

In the second experiment, we compare our estimator with
the directly regularized plug-in estimator for fixed dimen-
sion d “ 80 and fixed sample sizes ni “ 25, Ni “ 60, with
two randomly chosen 1-sparse ground truths and covariance
matrices. Figure 4(a) shows the Pareto fronts of 50 different
runs and their point-wise average. As expected, the benefit
of our method lies in the cases where λ1 « λ2.

5.2 Fairness-risk trade-off in linear regression

We also apply our estimator to two real fairness datasets:
The Communities and Crime dataset (Redmond, 2002)
where the task is to predict the number of violent crimes in
a community and ethnicity is a protected attribute, and the
Adult dataset (Becker and Kohavi, 1996) where the task is
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(a) Multiple linear regression. (b) Communities and Crime dataset. (c) Adult dataset.

Figure 4: True Pareto fronts and their estimates using directly regularized estimators (blue) and our method (orange) for the experiments
described in Section 5. On synthetic data (a) from sparse multiple linear regression and on the fairness datasets (Redmond, 2002; Becker
and Kohavi, 1996), our estimator outperforms direct regularization methods.

to predict income and the protected attribute is gender.

To simulate the (moderately) high-dimensional regime for
the Communities and Crime dataset (data dimension d “

145), we subsample uniformly n “ 150 labeled and N “

350 unlabeled datapoints, and use the remaining samples
as test samples to estimate risk and fairness scores from
Section 4.4. Since the Adult dataset only has dimension d “

13, additional to subsampling, we add 1000 noisy features
(sampled from a Gaussian) to artificially increase the data
dimensionality to d “ 1013. We then uniformly sample
n “ 1000 labeled and N “ 2000 unlabeled examples, with
the remaining samples serving as the test set. Our two-stage
estimator and the directly regularized estimator (7) are then
applied using an ℓ1-penalty.

We repeat all experiments 10 times and show the resulting
estimated Pareto fronts, as well as their point-wise average
in Figures 4(b) and 4(c). On the Communities and Crime
dataset, our estimator outperforms the directly regularized
estimator across the entire Pareto front. On the Adult dataset,
the difference is smaller, with the biggest difference being
when the fairness is weighed more than the risk (zoomed-in
box). Overall, these experiments confirm our approach.

6 RELATED WORK

Multi-objective learning is a rich field of research (Jin, 2006;
Jin and Sendhoff, 2008), rooted in multi-objective optimiza-
tion (Deist et al., 2023; Shah and Ghahramani, 2016; Duh
et al., 2012; Hu et al., 2024; Ţifrea et al., 2024) and with
connections to many adjacent fields machine learning such
as federated or distributed learning (Kairouz et al., 2021;
Li et al., 2021b; Wang et al., 2017, 2020; Lee et al., 2017),
continual learning (Parisi et al., 2019; Wang et al., 2022),
reinforcement learning (Hayes et al., 2022; Van Moffaert
et al., 2014), and transfer learning (Li et al., 2021a).

MOL is closely related to, but distinct from, multi-task
learning. The latter, for example, considers settings where
sharing parameters across multiple learning tasks is helpful

for training task-specific models (Caruana, 1997; Baxter,
2000; Sener and Koltun, 2018; Li and Bilen, 2020). The use
of sparsity for multi-task learning has been studied, e.g., in
Lounici et al. (2009); Guo et al. (2011).

While several works consider special cases of MOL, such as
multi-distribution learning (Haghtalab et al., 2023; Zhang
et al., 2024) or fairness (Xian et al., 2023), generalization of
general MOL is still rather poorly studied, with the excep-
tions of Súkenı́k and Lampert (2022); Cortes et al. (2020).
These works however do not yield meaningful bounds in
the high-dimensional regime that we study in this paper.

7 CONCLUSIONS & FUTURE WORK

In this work, we propose an estimator for the Pareto front of
a MOL problem that performs well in the high-dimensional
regime by leveraging both the sparsity of the task-specific
minimizers, as well as readily available unlabeled data. We
investigate the estimator theoretically, and prove the opti-
mality of the proposed estimator under certain conditions.
While the focus of this work is primarily on sparsity, the pro-
posed estimator can also, in principle, exploit other forms
of low-dimensional structure. Through synthetic and real
experiments, we demonstrate the good performance of our
estimator in applications.

We leave it as future work to use arguments such as Fano’s
method to obtain different lower bounds that apply beyond
the identifiability argument considered in Section 4, aiming
to include settings similar to the weighted median (Fletcher
et al., 2008). We also note that other results from the sta-
bility literature could relax the convexity in Assumption 2.
Moreover, there are other choices of objectives where our
theory can be applied, e.g., in the robustness-accuracy trade-
off (Yin et al., 2019). It remains an exciting direction for
future research to demonstrate that the proposed estimator
performs well in other multi-objective problems.
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