

FACTS: A FUTURE-AIDED CAUSAL TEACHER-STUDENT FRAMEWORK FOR MULTIMODAL TIME SERIES FORECASTING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Traditional *unimodal* time series forecasting models often perform unreliably in
 014 real-world applications because they fail to capture the underlying causal drivers
 015 of temporal change. Fortunately, auxiliary modalities can unveil these drivers,
 016 *e.g.*, sky images capture the illumination conditions that govern solar power gen-
 017 eration. However, the most informative *future* auxiliary signals directly tied to the
 018 target time series are unavailable at inference, while integrating such data is further
 019 hindered by cross-modal heterogeneity and structural mismatch. To address these
 020 challenges, we propose FACTS, a Future-Aided Causal Teacher-Student frame-
 021 work for *multimodal* time series forecasting. The teacher network, used only dur-
 022 ing training, leverages future auxiliary data to disentangle the causal responses
 023 underlying temporal dynamics, while the student network, trained solely on his-
 024 torical data, learns such causal knowledge via our proposed causal-perturbation
 025 contrastive distillation. To accommodate heterogeneous inputs, we design a bi-
 026 linear orthogonal projector that efficiently converts high-dimensional auxiliary
 027 data into a compact series over time, allowing us to model both auxiliary data
 028 and time series via a unified bidirectional attention backbone. Furthermore, we
 029 devise a lag-aware fusion to align cross-modal signals within a tolerance win-
 030 dows and apply random modality dropout to enhance the student’s robustness to
 031 modality missingness. Extensive experiments on benchmark datasets demonstrate
 032 that FACTS significantly outperforms state-of-the-art methods, achieving aver-
 033 age improvements of 32.98% in MSE and 22.25% in MAE. Code is available at
 034 <https://anonymous.4open.science/r/FACTS-7F94>.

1 INTRODUCTION

037 Time Series Forecasting (TSF) is a fundamental task in various real-world applications, including
 038 financial management (Elliott & Timmermann, 2013), energy consumption prediction (Trindade,
 039 2015), and weather forecasting (Angryk et al., 2020). Recently, deep learning has driven rapid
 040 progress in TSF, existing methods mainly leverage Multi-Layer Perceptrons (MLPs) (Wang et al.,
 041 2024b), Recurrent Neural Networks (RNNs) (Lin et al., 2023), Convolutional Neural Networks
 042 (CNNs) (Wu et al., 2023), Transformers (Zhou et al., 2022), and Large Language Models
 043 (LLMs) (Jia et al., 2024) as backbones. By learning complex temporal patterns inherent in time
 044 series, these models often perform well on single-modality benchmark datasets.

045 Despite strong benchmark results, current *unimodal* TSF models frequently perform unreliably in
 046 practice because they fail to capture the underlying causal drivers of temporal dynamics (Melnichuk
 047 et al., 2022). For example, in solar power forecasting, when power output is rising during a sustained
 048 period of clear-sky conditions, these models tend to extrapolate continued growth across subsequent
 049 horizons. However, in real-world scenarios, sudden cloud cover may drastically reduce illumination
 050 conditions and cause a sharp drop in power generation. In such cases, models trained solely on
 051 time series are unable to understand how abrupt illumination changes affect the power generation,
 052 leading to unreliable predictions.

053 In many applications, rich data from other modalities (*i.e.*, *auxiliary modalities*) can reveal the causal
 054 drivers behind time series variation (Williams et al., 2024; Lee et al., 2025). For solar power fore-

054 casting, sky images provide real-time illumination cues that directly drive power output, whereas
 055 meteorological variables (*e.g.*, temperature and wind speed) potentially modulate irradiance and con-
 056 version efficiency. Effectively exploiting auxiliary data is promising to promote forecasting models
 057 to identify key drivers of change, thereby achieving more accurate and reliable predictions.

058 However, leveraging auxiliary data is nontrivial and poses three key challenges (Liu et al., 2025c;
 059 Ni et al., 2025a): (i) *Causal Unobservability*. While historical auxiliary signals can help models
 060 learn cross-modal dependencies and explain why the series changes, predictions remain vulnera-
 061 ble to abrupt environmental shifts. In contrast, future auxiliary signals can indicate how the future
 062 trajectory will evolve and thereby stabilize forecasts, but such information is unavailable at infer-
 063 ence time. (ii) *Data Heterogeneity*. Time series data encodes continuous, evolving dynamics (*e.g.*,
 064 trends and periodicities), whereas auxiliary modalities such as images provide discrete scene snap-
 065 shots (*e.g.*, sunny vs. cloudy). These semantic and temporal discrepancies hinder straightforward
 066 multimodal fusion. (iii) *Structural Mismatch*. Images are high-dimensional tensors, while mete-
 067 orological measurements are low-dimensional vectors, which complicates multimodal architecture
 068 design. As a result, existing methods often struggle to effectively exploit auxiliary modalities to
 069 improve forecasting performance.

070 To address the above challenges, we propose FACTS, a Future-Aided Causal Teacher-Student frame-
 071 work for *multimodal* TSF. Our FACTS comprises a teacher network and a deployable student net-
 072 work that share a unified bidirectional-attention backbone. The teacher network ingests historical
 073 time series together with both historical and future auxiliary data to disentangle the causal drivers
 074 of unseen future time series. The student network is trained only on historical data and acquires
 075 meaningful causal knowledge from the teacher network via our Causal-Perturbation Contrastive
 076 Distillation (CPCD). To handle heterogeneous and structurally mismatched inputs, we introduce a
 077 Bilinear Orthogonal Projector (BOP) that maps auxiliary data to compact series over time. Ac-
 078 cordingly, the teacher and student networks can employ the unified backbone to capture temporal
 079 dependencies from both auxiliary and temporal data and be trained end-to-end. Finally, we devise
 080 a lag-aware fusion mechanism to align temporal signals extracted from various modalities within
 081 a tolerance window to obtain the final forecasts. We also apply random modality dropout during
 082 student training to enhance its robustness to modality missingness caused by sensor outages or
 083 transmission interruptions. By effectively exploring multimodal causal drivers while distilling them
 084 into a purely historical student network, FACTS consistently achieves State-Of-The-Art (SOTA)
 085 performance across multiple datasets. The contributions of this paper are summarized as:

- 086 1. We propose FACTS, a novel multimodal TSF framework, which employs a future-aided
 087 teacher network to uncover causal drivers for the target series, while distilling them to
 088 promote the performance of a historical-only, deployable student network via CPCD.
- 089 2. We propose BOP that maps heterogeneous and shape-mismatched auxiliary data to com-
 090 pact serialized data, enabling a unified bidirectional-attention backbone across modalities.
- 091 3. We devise lag-aware multimodal fusion to align cross-modal signals within a tolerance
 092 window and introduce random modality dropout during student training to handle missing
 093 modalities, together improving the model’s robustness in real-world scenarios.
- 094 4. Our FACTS consistently achieves SOTA performance across multiple real-world datasets,
 095 with average improvements of 32.98% in MSE and 22.25% in MAE.

097 2 RELATED WORK

100 2.1 UNIMODAL AND MULTIMODAL TIME SERIES FORECASTING

102 TSF has been extensively investigated in various domains like power systems (Trindade, 2015) and
 103 weather forecasting (Angryk et al., 2020). Traditional *unimodal* approaches rely solely on historical
 104 series and employ neural architectures such as MLPs (Wang et al., 2024b), RNNs (Lin et al., 2023),
 105 and CNNs (Wu et al., 2023) to capture temporal dependencies. Recently, Transformer-based meth-
 106 ods (Zhou et al., 2021; Liu et al., 2024c) have achieved SOTA performance on public benchmarks.
 107 However, these models are trained on a single temporal modality and are blind to the causal drivers
 108 of time series, leaving them prone to sudden environmental changes in real-world scenarios.

To overcome the above limitations, *multimodal* approaches (Ni et al., 2025a; Skenderi et al., 2024; Shen et al., 2025) seek to enhance forecasting with auxiliary modalities. Prevailing methods mainly synthesize images or text from time series. Image-based methods (Liu et al., 2025b; Zhong et al., 2025) convert time series into line charts or spectrograms and then extract spatiotemporal features from them. Text-based methods (Jin et al., 2024; Cheng et al., 2024) map time series into textual data via tokenization, prompting, or reprogramming. Although these methods can strengthen the model’s understanding of statistical regularities already present in time series, they do not introduce truly exogenous information that actually governs temporal dynamics. By contrast, recent studies (Jiang et al., 2025b; Ye et al., 2024) incorporate external signals. GPT4MTS (Jia et al., 2024) pairs time series with contemporaneous event descriptions via LLM-based summarization. VISUELLE (Skenderi et al., 2022) integrates product images with sales data to capture visual cues for demand forecasting. However, these approaches associate an entire time series with a single static description or image, which fails to capture evolving factors that influence temporal dynamics, and still achieve limited performance.

In this paper, we consider time-varying auxiliary data accompanying each timestamp. To the best of our knowledge, we are the first to formulate and study this per-timestep multimodal TSF setting. By effectively processing and aligning these auxiliary signals with time series, our method captures evolving causal drivers behind temporal dynamics, and thus enabling reliable forecasting.

2.2 AUXILIARY–TEMPORAL MODALITY ALIGNMENT

Auxiliary modalities differ fundamentally from time series. To bridge this gap, existing works (Xue & Salim, 2023; Liu et al., 2024b) align multimodal data at the input or representation levels. Prompt-Cast (Xue & Salim, 2023) encodes time series and generated text into a single prompt as model input. TimeLLM (Jin et al., 2024) embeds dataset descriptions as semantic prototypes and concatenates them with temporal representations. CALF (Liu et al., 2024b) enforces cross-branch consistency between temporal and textual pathways at both intermediate and output layers. TS-TCD (Wang et al., 2024a) uses self-attention to align time series with word embeddings learned by the LLM. These methods often construct auxiliary data from the time series itself and without introducing any external information, so no cross-modal temporal misalignment arises. In practice, however, multimodal signals exhibit inherent temporal lags (see App. B.2), which are often overlooked by existing methods. Therefore, we propose a lag-aware fusion mechanism that computes cross-modal similarities within a tolerance window, thereby improving predictive reliability.

2.3 CAUSAL LEARNING AND KNOWLEDGE DISTILLATION

Causal learning (Melnychuk et al., 2022; Gopnik et al., 2004) estimates causal effects among variables to promote reliable inference. In general, existing methods model causal relations via causal graph construction (Wei et al., 2022), invariant representation learning (Deng & Zhang, 2021), or counterfactual reasoning (Melnychuk et al., 2022). Among them, counterfactual-based methods are rather simple and effective, which alter specific variables and assess their impact on outcomes. For example, Causal Transformer (Melnychuk et al., 2022) generates counterfactual time series and employs a three-branch attention architecture to jointly model treatments, confounders, and outcomes. DAG-Aware Transformer (Liu et al., 2024a) separately computes observations and counterfactual outcomes for intervention and non-intervention groups, and estimates their differences.

Knowledge Distillation (KD) (Gou et al., 2021; Cho & Hariharan, 2019) transfers knowledge from a pretrained teacher network to improve the performance of a student network. TimeDistill (Ni et al., 2025b) extracts multiscale temporal patterns from a complex Transformer to guide a lightweight MLP. TimeKD (Liu et al., 2025a) leverages a teacher network with access to single-modality future time series to generate high-quality features and transfer them to the student network via feature alignment. In this work, we integrate causal learning with knowledge distillation and propose CPCD. The teacher network ingests real and perturbed future multimodal auxiliary data, which is trained to capture multimodal causal dependencies. The historical-only student network is promoted to learn faithful causal knowledge from the teacher network while apart from perturbed causal representations through a contrastive objective, thereby improving forecasting performance.

Figure 1: Overview of FACTS. (a) Bidirectional attention encoder for modality-specific branches. (b) Bilinear Orthogonal Projector (BOP) that maps images to a compact multivariate series. (c) *Teacher network* (blue) utilizes historical data and paired/unpaired future auxiliary inputs to produce *unperturbed* and *perturbed* features that contain faithful and spurious causal drivers, respectively. *Student network* (orange) encodes historical multimodal inputs to forecast the future series. Meanwhile, causal-perturbation contrastive distillation pulls the student feature toward the teacher’s unperturbed feature and away from perturbed ones, thereby learning meaningful causal knowledge. *Note*: Only the student network and historical data are used for inference.

3 APPROACH

Traditional *unimodal* TSF predicts future series $\mathbf{y} \in \mathbb{R}^{T \times V_{time}}$ over a horizon T from a historical series $\mathbf{x}_{time} \in \mathbb{R}^{L \times V_{time}}$ with L steps, where V_{time} is the number of temporal variables. In this paper, our FACTS focuses on practical *multimodal* scenarios and incorporates auxiliary modalities to capture causal factors of temporal dynamics, thereby achieving accurate and reliable forecasts. For example, in solar power forecasting, each time series \mathbf{x}_{time} is accompanied by historical images $\mathbf{x}_{img} \in \mathbb{R}^{L \times H \times W}$ (channel dimension omitted) and weather data $\mathbf{x}_{wea} \in \mathbb{R}^{L \times V_{wea}}$, as well as future images $\mathbf{y}_{img} \in \mathbb{R}^{T \times H \times W}$ and weather data $\mathbf{y}_{wea} \in \mathbb{R}^{T \times V_{wea}}$.

As illustrated in Fig. 1, our approach comprises three components. First, we introduce BOP to unify heterogeneous multimodal data (Sec. 3.1), which converts high-dimensional auxiliary data into a serialized format. This enables our FACTS to utilize a unified backbone with bidirectional attention to capture both temporal and spatial dependencies across all modalities (Sec. 3.1). Second, we propose lag-aware fusion and random modality dropout, which explicitly address potential cross-modal temporal misalignment and modality missingness in practice, thereby effectively combining predictions from modality-specific branches (Sec. 3.2). Third, we employ a teacher network to grasp causal drivers from future auxiliary data and transfer them to improve the performance of the student network via our proposed CPCD, as detailed in Sec. 3.3.

3.1 UNIFIED MULTIMODAL PROCESSING VIA DATA SERIALIZATION

In real-world scenarios, rich auxiliary data is available to strengthen TSF. Existing methods (Jin et al., 2024; Zhong et al., 2025) usually encode auxiliary data with models pretrained on image or textual data. However, time series and auxiliary data are heterogeneous and structurally mismatched (Nie et al., 2023b). These pre-trained models struggle to effectively capture meaningful

temporal dynamics from auxiliary data. Meanwhile, cross-modal heterogeneity demands tailored branches for each modality, which complicates system design. Moreover, auxiliary data (e.g., images) are far higher-dimensional than time series, inflating compute costs. To address these issues, we introduce a Bilinear Orthogonal Projector (BOP) that directly maps high-dimensional auxiliary data to low-dimensional, ready-to-use serialized data. As a result, our FACTS can employ a unified backbone to effectively and efficiently process various modalities.

Bilinear Orthogonal Projector. Given a high-dimensional image sequence $\mathbf{x}_{\text{img}} \in \mathbb{R}^{L \times H \times W}$, we perform frame-wise dimensionality reduction with a *learnable* bilinear projector. Let $\mathbf{U} \in \mathbb{R}^{H \times r_h}$ and $\mathbf{V} \in \mathbb{R}^{W \times r_w}$ ($r_h \ll H$, $r_w \ll W$) be the row and column projection matrices, respectively, we process each frame $\mathbf{x}_{\text{img},l} \in \mathbb{R}^{H \times W}$ as:

$$\mathbf{x}_{\text{img},l}^{(\text{BOP})} = \mathbf{U}^\top \mathbf{x}_{\text{img},l} \mathbf{V} \in \mathbb{R}^{r_h \times r_w}, \quad l = 1, \dots, L. \quad (1)$$

During training, \mathbf{U} and \mathbf{V} are regularized toward orthogonality via $\|\mathbf{U}^\top \mathbf{U} - \mathbf{I}\|_F^2 + \|\mathbf{V}^\top \mathbf{V} - \mathbf{I}\|_F^2$, where \mathbf{I} is the identity matrix. Then, we vectorize each projected frame as:

$$\mathbf{x}_{\text{img},l}^{(\text{vec})} = \text{vec}(\mathbf{x}_{\text{img},l}^{(\text{BOP})}) \in \mathbb{R}^{V_{\text{img}}}, \quad V_{\text{img}} := r_h r_w, \quad l = 1, \dots, L. \quad (2)$$

Finally, we stack these vectors over time to form a multivariate series with V_{img} variables, as follows:

$$\mathbf{x}_{\text{img}}^{(\text{vec})} = \begin{bmatrix} \mathbf{x}_{\text{img},1}^{(\text{vec})} & \dots & \mathbf{x}_{\text{img},L}^{(\text{vec})} \end{bmatrix}^\top \in \mathbb{R}^{L \times V_{\text{img}}}. \quad (3)$$

In $\mathbf{x}_{\text{img}}^{(\text{vec})} \in \mathbb{R}^{L \times V_{\text{img}}}$, the v -th column $(\mathbf{x}_{\text{img}}^{(\text{vec})})_{:,v} \in \mathbb{R}^L$ forms a univariate series describing the dynamics at spatial location v , the l -th row $(\mathbf{x}_{\text{img}}^{(\text{vec})})_{l,:} \in \mathbb{R}^{V_{\text{img}}}$ summarizes the spatial state at time l . Inspired by (Zhang & Yan, 2023), we employ a bidirectional attention backbone to capture temporal and spatial dependencies from both temporal and auxiliary series. We adopt BOP rather than classical downsampling methods (Abdi & Williams, 2010; Stewart, 1993) as it preserves 2D spatial structure while only incurring negligible overhead, analyzed in App. A.1. Last but not least, BOP requires no offline precomputation and is trained *end-to-end* jointly with the forecasting backbone.

Backbone with Bidirectional Attention. We employ a backbone consisting of an encoder f_θ with N bidirectional-attention blocks and an MLP forecaster g_ϕ . The encoder extracts temporal and spatial dependencies from both temporal and auxiliary inputs, and the forecaster maps the encoder's hidden embedding $\mathbf{h}_m \in \mathbb{R}^{P \times V_m \times D}$ to the future series $\hat{\mathbf{y}}_m \in \mathbb{R}^{T \times V_{\text{time}}}$:

$$\mathbf{h}_m = f_{\theta_m}(\mathbf{x}_m), \quad \hat{\mathbf{y}}_m = g_{\phi_m}(\mathbf{h}_m), \quad (4)$$

where $m \in \{\text{time, img, wea}\}$, for simplicity, we omit modality-specific superscript/subscript below.

Specifically, we first patch the input series $\mathbf{x} \in \mathbb{R}^{L \times V}$ into a temporal embedding $\mathbf{z} \in \mathbb{R}^{P \times V \times D}$, where P is the number of patches and D is the per-patch embedding dimension (detailed in App. A.2). In each bidirectional-attention block, we process its embedding sequentially with cross-time attention and cross-variable attention.

Cross-Time Attention. For each variable $v \in \{1, \dots, V\}$, we apply Multi-Head Self-Attention (MHSA) over the temporal dimension (length P) to capture temporal dependencies:

$$\mathbf{z}_{:,v,:}^{(n,1)} = \text{LayerNorm}(\mathbf{z}_{:,v,:}^{(n,0)} + \text{MHSA}_{\text{time}}(\mathbf{z}_{:,v,:}^{(n,0)})), \quad (5)$$

$$\mathbf{z}_{:,v,:}^{(n,2)} = \text{LayerNorm}(\mathbf{z}_{:,v,:}^{(n,1)} + \text{MLP}_{\text{time}}(\mathbf{z}_{:,v,:}^{(n,1)})). \quad (6)$$

Here, $n \in \{1, \dots, N\}$ indexes blocks, we set $\mathbf{z}^{(1,0)} = \mathbf{z}$ and define $\mathbf{z}^{(n+1,0)} = \mathbf{z}^{(n,4)}$ (for $n < N$).

Cross-Variable Attention. For each patch with index $p \in \{1, \dots, P\}$, we also apply MHSA over the variable dimension (length V) to model inter-variable dependencies:

$$\mathbf{z}_{p,:,:}^{(n,3)} = \text{LayerNorm}(\mathbf{z}_{p,:,:}^{(n,2)} + \text{MHSA}_{\text{var}}(\mathbf{z}_{p,:,:}^{(n,2)})) \quad (7)$$

$$\mathbf{z}_{p,:,:}^{(n,4)} = \text{LayerNorm}(\mathbf{z}_{p,:,:}^{(n,3)} + \text{MLP}_{\text{var}}(\mathbf{z}_{p,:,:}^{(n,3)})). \quad (8)$$

The output of the N -th block is the final hidden embedding $\mathbf{h} = \mathbf{z}^{(N,4)}$ for the encoder. Then, the forecaster maps the hidden embedding as the predicted future series, see App. A.2.

270 3.2 ROBUST AND LAG-AWARE MULTIMODAL FUSION
271

272 In this paper, we focus on practical multimodal scenarios, where auxiliary modalities are available
273 and can be utilized to improve TSF. As shown in Fig. 1, the multimodal teacher/student network
274 comprises multiple branches (temporal, image, and weather), where each branch is instantiated
275 with the unified bidirectional-attention backbone and modality-specific configurations (provided in
276 App. A.3). Here, we illustrate the multimodal fusion using the student network, the teacher network
277 that accesses future auxiliary data follows the same fusion steps. Specifically, time series $\mathbf{x}_{\text{time}} \in \mathbb{R}^{L \times V_{\text{time}}}$,
278 images $\mathbf{x}_{\text{img}} \in \mathbb{R}^{L \times V_{\text{img}}}$, and weather records $\mathbf{x}_{\text{wea}} \in \mathbb{R}^{L \times V_{\text{wea}}}$ are processed by their
279 respective branches to predict the future time series as follows:

280 $\hat{\mathbf{y}}_{\text{time}} = g_{\phi_{\text{time}}}(\mathbf{f}_{\theta_{\text{time}}}(\mathbf{x}_{\text{time}})), \quad \hat{\mathbf{y}}_{\text{img}} = g_{\phi_{\text{img}}}(\mathbf{f}_{\theta_{\text{img}}}(\mathcal{B}(\mathbf{x}_{\text{img}}))), \quad \hat{\mathbf{y}}_{\text{wea}} = g_{\phi_{\text{wea}}}(\mathbf{f}_{\theta_{\text{wea}}}(\mathbf{x}_{\text{wea}})), \quad (9)$

281 where \mathcal{B} represents the BOP, $\hat{\mathbf{y}}_{\text{time}}, \hat{\mathbf{y}}_{\text{img}}, \hat{\mathbf{y}}_{\text{wea}} \in \mathbb{R}^{T \times V_{\text{time}}}$.
282

283 **Lag-Aware Multimodal Fusion.** In practice, temporal misalignment often occurs across modalities (Nie et al., 2023b; 2024), as visualized in Fig. A-1. For example, when a cloud nears a solar
284 power station, the sky camera can detect it immediately, but the power series drops only after it
285 actually shades the panels. To handle such offsets, we combine modality-specific predictions using
286 similarities computed within a lag window. Given the nonnegative lag set $\{0, 1, \dots, \delta_{\max}\}$, the
287 variable-wise similarities between temporal and image modalities are calculated as:
288

289
$$s_{\text{img}, \delta}^{(v)} = \sum_{t=1}^{T-\delta} \hat{\mathbf{y}}_{\text{time}, t+\delta, v} \hat{\mathbf{y}}_{\text{img}, t, v}, \quad s_{\text{img}}^{(v)} = \max(s_{\text{img}, \delta}^{(v)}), \quad \delta \in \{0, 1, \dots, \delta_{\max}\}. \quad (10)$$

290 By repeating the similarity computation across V_{time} predicted variables, we obtain the similarities
291 between the temporal and image data as $\mathbf{s}_{\text{img}} = [s_{\text{img}}^{(1)}, \dots, s_{\text{img}}^{(V_{\text{time}})}]^\top \in \mathbb{R}^{V_{\text{time}}}$. Meanwhile, the
292 similarities $\mathbf{s}_{\text{wea}} \in \mathbb{R}^{V_{\text{time}}}$ between temporal and weather data are calculated in the same way as \mathbf{s}_{img} .
293

294 **Random Modality Dropout.** Auxiliary data may be unavailable in practice due to sensor failures
295 or transmission interruptions (Wu et al., 2024; Jiang et al., 2025a), which renders the corresponding
296 auxiliary branches inoperative and degrades the forecast reliability of the student network. To
297 mitigate such modality missingness, during student training, we apply stochastic masks on modality-
298 specific predicted series. Accordingly, we fuse these modality-specific time series as follows:
299

300
$$\hat{\mathbf{y}} = \hat{\mathbf{y}}_{\text{time}} + (\mathbf{m}_{\text{img}} \odot \hat{\mathbf{y}}_{\text{img}}) \odot (\mathbf{1s}_{\text{img}}^\top) + (\mathbf{m}_{\text{wea}} \odot \hat{\mathbf{y}}_{\text{wea}}) \odot (\mathbf{1s}_{\text{wea}}^\top). \quad (11)$$

301 Here, $\mathbf{1} \in \mathbb{R}^{T \times 1}$ denotes the all-ones column vector, which broadcasts \mathbf{s}_{img} (resp. \mathbf{s}_{wea}) to $\mathbb{R}^{T \times V_{\text{time}}}$,
302 and masks $\mathbf{m}_{\text{img}}, \mathbf{m}_{\text{wea}} \in \{0, 1\}^{T \times V_{\text{time}}}$ are generated i.i.d. from Bernoulli(α). If a modality is
303 missing at inference, its mask is set to 0 (and to 1 otherwise). The effectiveness of random modality
304 dropout is analyzed in App. C.3. Finally, the student network is promoted to predict as accurately as
305 the real future series \mathbf{y} by minimizing the Mean Squared Error (MSE) loss:
306

307
$$\mathcal{L}_{\text{MSE}} = \frac{1}{BT V_{\text{time}}} \sum_{i=1}^B \sum_{t=1}^T \sum_{v=1}^{V_{\text{time}}} (\mathbf{y}_{t,v}^i - \hat{\mathbf{y}}_{t,v}^i)^2, \quad (12)$$

308 where B denotes the batch size.
309

310 3.3 CAUSAL-PERTURBATION CONTRASTIVE DISTILLATION
311

312 Given historical time series and auxiliary data, the multimodal model can learn cross-modal dependencies
313 and understand why the series changes, thereby improving performance. In practice, however, abrupt events (e.g., rapid
314 cloud occlusion) often arise without clear precursors (Toller et al., 2025; Zheng & Hu, 2022), and models trained solely on historical
315 observations struggle to produce reliable forecasts. While future auxiliary signals can reveal imminent causal drivers of the target
316 future series, they are unavailable at deployment. Therefore, we exploit future auxiliary signals during
317 training without sacrificing deployability via a teacher-student framework. The teacher network
318 ingests historical time series with historical and future auxiliary data to explore causal responses for
319 temporal dynamics, while the historical-only student network learns the teacher’s causal knowledge
320 via the proposed CPCD. Notably, only the student network is retained for inference.
321

324
325
326
327
328Table 1: Results of time series forecasting. FACTS achieves an average improvement of **32.98%** in MSE and **22.25%** in MAE. The best results are in **bold** while the second best are underlined. Note: all Standard Deviation (STD) values in the table are scaled by $\times 10^{-2}$, and the teacher network used only for distillation during training is excluded from method ranking.

Modality	Model	Folsom				SKIPP'D				CCG				CRNN			
		MSE	STD	MAE	STD	MSE	STD	MAE	STD	MSE	STD	MAE	STD	MSE	STD	MAE	STD
Unimodal (Traditional)	Autoformer	0.1655	1.43	0.2030	0.91	0.4012	1.41	0.4798	1.23	0.0051	0.02	0.0488	0.10	0.3677	17.68	0.538	13.92
	Crossformer	0.1386	0.26	0.2556	0.60	0.3322	0.43	0.4214	1.15	0.0060	0.07	0.0524	0.41	0.3114	14.94	0.4524	12.87
	DLinear	0.1886	0.24	0.2792	0.45	0.3410	0.82	0.4286	1.18	0.0034	0.01	0.0325	0.02	0.1667	0.12	0.3101	0.16
	FEDformer	0.0794	0.12	0.1172	0.36	0.3449	0.72	0.4376	0.74	0.0036	0.01	0.0343	0.03	0.3278	18.82	0.4709	13.06
	Informers	0.1218	0.04	0.1253	0.13	0.3305	0.48	0.4306	0.34	0.0044	0.03	0.0422	0.06	0.2044	1.35	0.3470	1.55
	iTransformer	0.1217	0.07	0.1115	0.07	0.3057	0.19	0.4219	0.13	0.0045	0.08	0.0434	0.64	0.1584	0.17	0.3105	0.13
	MICN	0.1451	0.08	0.1199	0.21	0.3445	0.30	0.4318	0.16	0.0033	0.01	0.0322	0.01	0.1998	1.40	0.3379	1.27
	SegRNN	0.0828	0.23	0.1199	1.27	0.3368	0.24	0.4244	0.21	0.0033	0.01	0.0319	0.02	0.1726	0.58	0.3087	0.71
	TIDE	0.2242	0.59	0.2695	0.63	0.3214	0.16	0.4361	0.03	0.0040	0.01	0.0362	0.02	0.1825	0.32	0.3221	0.68
	TimesNet	0.0937	0.31	0.1435	0.44	0.3208	0.49	0.4106	0.42	0.0036	0.01	0.0350	0.11	0.2010	1.76	0.3451	1.74
Unimodal (LLM-based)	TimeXer	0.0825	0.06	0.1151	0.24	0.3151	0.23	0.4076	0.24	0.0038	0.01	0.0391	0.10	0.1907	0.41	0.3327	0.54
	TimeMixer	0.0896	0.13	0.1282	0.35	0.3236	0.47	0.4188	0.53	0.0078	0.09	0.0685	0.14	0.1837	0.69	0.3270	0.65
	CALF	0.0853	0.01	0.1228	0.18	0.3131	0.43	0.4322	0.06	0.0036	0.01	0.0325	0.02	0.1710	0.05	0.3113	0.54
MultiModal	OFA	0.2026	0.37	0.2101	0.22	0.3322	0.25	0.4202	0.13	0.0059	0.05	0.0539	0.23	0.2051	0.66	0.3517	0.56
	LLMMixer	0.1014	0.13	0.1456	0.37	0.3196	1.36	0.4337	0.82	0.0046	0.02	0.0356	0.17	0.2069	1.34	0.3512	1.04
	AimTS	0.1366	1.26	0.1843	1.62	<u>0.3025</u>	0.21	0.4154	0.19	0.0042	0.01	0.0328	0.03	0.1774	0.14	0.3193	0.11
	GPT4MTS	0.1024	0.40	0.1440	0.53	0.3230	0.26	0.4039	0.27	0.0057	0.05	0.0326	0.08	0.1643	0.17	0.3064	0.10
MultiModal	TimeVLM	0.1210	0.15	0.1599	0.24	0.3169	0.24	0.3966	0.19	0.0043	0.01	0.0317	0.01	0.1662	0.49	0.3026	0.51
	FACTS (Student)	0.0716	0.03	0.0968	0.05	0.2876	0.19	0.3843	0.23	0.0028	0.01	0.0315	0.01	0.1121	0.16	0.2497	0.06
	FACTS (Teacher)	0.0565	0.02	0.0923	0.07	0.2812	0.17	0.3701	0.15	0.0024	0.01	0.0303	0.01	0.1107	0.16	0.2466	0.06

341
342 For each time series $\mathbf{x}_{\text{time}}^i$, we form an *unperturbed* pair $(\mathbf{x}_{\text{time}}^i, \mathbf{x}_{\text{img}}^i, \mathbf{x}_{\text{wea}}^i, \mathbf{y}_{\text{img}}^i, \mathbf{y}_{\text{wea}}^i)$ with matched
343 historical and future auxiliary data, and a *perturbed* pair $(\mathbf{x}_{\text{time}}^i, \mathbf{x}_{\text{img}}^i, \mathbf{x}_{\text{wea}}^i, \mathbf{y}_{\text{img}}^j, \mathbf{y}_{\text{wea}}^j)$ where future
344 auxiliary data is replaced by random examples in the same batch ($i \neq j$). Both pairs are passed
345 through the teacher network to produce unperturbed feature \mathbf{h}_T^i and perturbed feature $\tilde{\mathbf{h}}_T^i$ as:

346
347
$$\mathbf{h}_T^i = \text{MLP}^T(\text{concat}(f_{\theta_{\text{time}}}^T(\mathbf{x}_{\text{time}}^i), f_{\theta_{\text{img}}}^T(\mathcal{B}^T(\text{concat}(\mathbf{x}_{\text{img}}^i, \mathbf{y}_{\text{img}}^i))), f_{\theta_{\text{wea}}}^T(\text{concat}(\mathbf{x}_{\text{wea}}^i, \mathbf{y}_{\text{wea}}^i))), \quad (13)$$

348
349
$$\tilde{\mathbf{h}}_T^i = \text{MLP}^T(\text{concat}(f_{\theta_{\text{time}}}^T(\mathbf{x}_{\text{time}}^i), f_{\theta_{\text{img}}}^T(\mathcal{B}^T(\text{concat}(\mathbf{x}_{\text{img}}^i, \mathbf{y}_{\text{img}}^j))), f_{\theta_{\text{wea}}}^T(\text{concat}(\mathbf{x}_{\text{wea}}^i, \mathbf{y}_{\text{wea}}^j))). \quad (14)$$

350 In parallel, the student network only ingests the historical inputs and its feature \mathbf{h}_S^i is obtained as:
351

352
353
$$\mathbf{h}_S^i = \text{MLP}^S(\text{concat}(f_{\theta_{\text{time}}}^S(\mathbf{x}_{\text{time}}^i), f_{\theta_{\text{img}}}^S(\mathcal{B}^S(\mathbf{x}_{\text{img}}^i)), f_{\theta_{\text{wea}}}^S(\mathbf{x}_{\text{wea}}^i))). \quad (15)$$

354 Here, superscripts (subscripts) ‘T’ and ‘S’ denote the teacher and student networks, respectively.
355 Then, the CPCD loss is computed as follows:

356
357
$$\mathcal{L}_{\text{CPCD}} = -\frac{1}{B} \sum_{i=1}^B \log \frac{\exp\left((\mathbf{h}_S^i)^\top \mathbf{h}_T^i / \tau\right)}{\sum_{j=1, j \neq i}^B \exp\left((\mathbf{h}_S^i)^\top \mathbf{h}_T^j / \tau\right) + \sum_{k=1}^B \exp\left((\mathbf{h}_S^i)^\top \tilde{\mathbf{h}}_T^k / \tau\right)}. \quad (16)$$

358 Here, τ is the temperature, for clarity, we omit feature normalization in the notation. By minimizing
359 $\mathcal{L}_{\text{CPCD}}$, the student’s features are pulled toward the teacher’s unperturbed features and away from
360 the teacher’s perturbed features (visualized in App. C.6), thereby learning the causal drivers from
361 the teacher network. Consequently, even without access to future auxiliary data, the student network
362 can still yield reliable predictive performance. The total objective function of the student network is
363 defined as:

364
365
$$\mathcal{L}_{\text{Total}} = \mathcal{L}_{\text{MSE}} + \lambda \mathcal{L}_{\text{CPCD}}, \quad (17)$$

366 where $\lambda > 0$ is a trade-off parameter to balance the contribution of \mathcal{L}_{MSE} and $\mathcal{L}_{\text{CPCD}}$. Teacher
367 network (with access to future auxiliary data) is trained only using MSE loss (detailed in App. A.4).
368 To ensure teacher network acquires sufficient representational capacity to extract reliable causal
369 signals for student network, we train it to convergence before student network distillation.
370
371

4 EXPERIMENTS

372
373

4.1 EXPERIMENTAL SETUP

374
375 **Datasets.** We study multimodal TSF, where each input pair consists of a target time series and
376 auxiliary modalities (e.g., images, weather records). We evaluate the proposed FACTS on two public
377 solar power generation datasets, *i.e.*, Folsom (Pedro et al., 2019) and SKIPP'D (Nie et al., 2023a),
378 and two water-level monitoring datasets, *i.e.*, CCG and CRNN.

378
379
380
381
382

Table 2: Results of component-wise model analysis, each row group replaces the indicated component of FACTS with alternatives while keeping all other parts unchanged. Error increases in MSE/MAE (lower is better) attributed to applied alternatives are denoted in red font in brackets. *Note*: all STD values in the table are scaled by $\times 10^{-2}$.

Analysis Components	Algorithm	Folsom				SKIPP'D			
		MSE	STD	MAE	STD	MSE	STD	MAE	STD
CPCD	FKD	0.0868 (↑ 21.22%)	0.22	0.1338 (↑ 38.22%)	0.71	0.3334 (↑ 18.56%)	0.43	0.4168 (↑ 8.45%)	0.68
	CRD	0.0818 (↑ 14.24%)	0.16	0.1237 (↑ 27.78%)	0.64	0.3250 (↑ 15.57%)	0.68	0.4180 (↑ 8.76%)	0.83
	TimeKD	0.0833 (↑ 16.34%)	0.25	0.1195 (↑ 23.45%)	0.46	0.3117 (↑ 10.84%)	0.23	0.4163 (↑ 8.32%)	0.70
	TimeDistill	0.0779 (↑ 8.79%)	0.08	0.1121 (↑ 15.80%)	0.53	0.3125 (↑ 11.13%)	0.38	0.4051 (↑ 5.41%)	0.55
Multimodal Data Fusion	Gating	0.0860 (↑ 20.11%)	0.26	0.1331 (↑ 37.50%)	1.37	0.3031 (↑ 7.78%)	0.35	0.4035 (↑ 4.99%)	0.48
	Self-Attention	0.0823 (↑ 14.94%)	0.18	0.1262 (↑ 30.37%)	1.44	0.2975 (↑ 5.79%)	0.15	0.3992 (↑ 3.87%)	0.27
	Channel-Similarity	0.0811 (↑ 13.26%)	0.15	0.1199 (↑ 23.86%)	1.16	0.2928 (↑ 4.13%)	0.34	0.3944 (↑ 2.62%)	0.40
Backbone	iTransformer	0.0867 (↑ 21.08%)	0.32	0.1071 (↑ 10.64%)	0.29	0.3149 (↑ 11.98%)	0.26	0.4162 (↑ 8.30%)	0.15
	TimeMixer	0.1142 (↑ 59.49%)	0.65	0.1393 (↑ 43.90%)	0.95	0.3012 (↑ 7.11%)	0.29	0.3970 (↑ 3.30%)	0.47
	TimesNet	0.0928 (↑ 29.61%)	0.24	0.1149 (↑ 18.69%)	0.52	0.3138 (↑ 11.59%)	0.24	0.4059 (↑ 5.62%)	0.35
	GPT2	0.0968 (↑ 35.19%)	0.30	0.1283 (↑ 22.21%)	0.46	0.3175 (↑ 12.91%)	0.49	0.4148 (↑ 7.94%)	0.51
	Llama-7B	0.0867 (↑ 21.08%)	0.26	0.1109 (↑ 14.56%)	0.43	0.3064 (↑ 8.96%)	0.44	0.4052 (↑ 5.43%)	0.42
Ours	FACTS	0.0716	0.03	0.0968	0.05	0.2812	0.17	0.3843	0.23

392

393

394

Baselines. To assess the performance of FACTS, we compare it against representative methods, categorized as follows: (i) traditional unimodal methods, including MLP-based (Zeng et al., 2023; Das et al., 2023; Wang et al., 2024b), RNN-based (Lin et al., 2023), CNN-based (Wang et al., 2022; Wu et al., 2023), and Transformer-based (Wang et al., 2024c; Wu et al., 2021; Zhang & Yan, 2023; Zhou et al., 2022; Liu et al., 2022; Zhou et al., 2021; Liu et al., 2024c; Wang et al., 2024c) methods; (ii) LLM-based unimodal methods (Liu et al., 2024b; Zhou et al., 2023; Kowsher et al., 2024); and (iii) multimodal methods (Chen et al., 2025; Jia et al., 2024; Jin et al., 2024; Zhong et al., 2025). Further details regarding the datasets and baselines are provided in App. B.

402

Implementation Details. We use the Adam optimizer for both the teacher and student networks, with a learning rate of 0.001 and weight decay of 0.05. The modality-dropout probability is 0.4, the trade-off parameter λ in Eq. (17) is 0.1, δ_{\max} in lag-aware multimodal fusion is 5, r_h and r_w in BOP are set to 8, these hyperparameters are analyzed in Sec. 4.4. To ensure statistical reliability, we repeat each experiment three times and report the mean and standard deviation.

407

408

4.2 EXPERIMENTAL RESULTS

409

410

Settings. We conducted extensive experiments on four multimodal time series datasets, including Folsom, SKIPP'D, CCG, and CRNN. The input length L is 48, and the prediction horizon T is 24. The evaluation metrics are Mean Squared Error (MSE) and Mean Absolute Error (MAE), where lower values indicate better performance. Details for metrics are provided in App. B.5.

414

Results. The results are presented in Tab. 1. First, our proposed FACTS consistently outperforms all unimodal and multimodal baselines across the four datasets. For example, on Folsom, FACTS reduces MSE/MAE by 9.82%/13.18% compared with the second-best method. Similarly, on CRNN, FACTS surpasses the second-best method with reductions of 31.77%/17.48% in MSE/MAE. Furthermore, FACTS also exhibits smaller standard deviations than competing methods, which indicates greater stability. These significant gains demonstrate that incorporating auxiliary modalities effectively enhances TSF. Second, the teacher network, which accesses future auxiliary data, outperforms the student network, with average reductions of 11.98%/3.34% in MSE/MAE. These results suggest that future auxiliary data can provide precise causal drivers of temporal dynamics. By uncovering and transferring these cross-modal causal drivers via our CPCD, FACTS can effectively capture the underlying temporal dynamics, thereby delivering accurate and reliable predictions.

425

426

4.3 MODEL ANALYSIS

427

428

To evaluate the contribution of each component in our proposed FACTS, we conduct ablation studies on the Folsom and SKIPP'D datasets.

429

430

431

Causal-Perturbation Contrastive Distillation (CPCD). We replace CPCD with other KD methods, including widely used general-purpose methods of Feature Knowledge Distillation (FKD) (Zagoruyko & Komodakis, 2017) and Contrastive Representation Distillation (CRD) (Tian

432 et al., 2019); and SOTA distillation approaches TimeKD (Liu et al., 2025a) and TimeDistill (Ni et al., 433 2025b) tailored for TSF. Details of these KD methods are provided in App. B.4. As shown in the 434 ‘CPCD’ row group of Tab. 2, FACTS equipped with CPCD achieves the best performance. When 435 we replace our CPCD with TimeKD, which likewise leverages future information, the MSE/MAE 436 worsen by 16.34%/23.45% on Folsom and by 10.84%/8.32% on SKIPP’D. These results indicate 437 that CPCD can effectively uncover and transfer valuable causal signals from the future auxiliary 438 data, enabling the student network to achieve reliable performance.

439 **Multimodal Data Fusion.** We compare the proposed lag-aware fusion with commonly used fusion 440 techniques, including gating-based, self-attention-based, and channel-similarity-based methods (see 441 App. C.7). The results are reported in the ‘Multimodal Data Fusion’ row group in Tab. 2. First, our 442 lag-aware multimodal fusion, which fully accounts for inter-modal channel similarity and temporal 443 lag, achieves the best predictive performance. Second, without considering the temporal lag (the 444 ‘Channel-Similarity’ variant), the model’s performance dropped significantly. The MSE/MAE 445 increased by 13.26%/23.86% and 4.13%/2.62% on Folsom and SKIPP’D, respectively. These results 446 indicate that it is critical to address cross-modality temporal misalignment during multimodal fusion.

447 **Backbone with Bidirectional Attention.** To evaluate the effectiveness of our proposed backbone, 448 we benchmark it against classical TSF models (iTransformer (Liu et al., 2024c), TimeMixer (Wang 449 et al., 2024b), and TimesNet (Wu et al., 2023)) and pre-trained LLMs (GPT-2 (Radford et al., 450 2019) and Llama-7B (Touvron et al., 2023)). Here, the classical TSF baselines are trained from 451 scratch, like our backbone. In contrast, the original parameters of the LLMs are frozen, and 452 they are updated via LoRA. The results are shown in ‘Backbone’ row group of Tab. 2. We can 453 see that replacing our backbone with any of the alternatives leads to a significant performance 454 drop. In the most severe case, MSE and MAE increased by 59.49% and 43.90% on Folsom, 455 respectively. These results demonstrate that our backbone can facilitate accurate and reliable 456 forecasts with its capability to capture both cross-variable interactions and cross-temporal dynamics.

457 **Bilinear Orthogonal Projector (BOP).** To validate the effectiveness of our BOP, we 458 compare it with mainstream dimensionality-reduction 459 methods, including Principal Component Analy- 460 sis (PCA) (Abdi & Williams, 2010) and Indepen- 461 dent Component Analysis (ICA) (Lee, 1998) (de- 462 tailed in App. C.2). As shown in Fig. 2, our 463 approach achieves superior performance with lower 464 runtime compared with other methods. More- 465 over, when dropping BOP and directly applying 466 an image encoder (VGGNet (Simonyan & Zis- 467 sserman, 2014), ViT (Dosovitskiy et al., 2020), 468 and CLIP (Radford et al., 2021), detailed in 469 App. C.1) to process raw high-dimensional im- 470 ages, we observed a dramatic performance drop 471 and a substantial computation increase. These re- 472 sults demonstrate that our proposed BOP can effec- 473 tively convert images into time series, enabling 474 efficient temporal information exploration.

475 4.4 HYPERPARAMETER ANALYSIS

476 In our FACTS, there are several tunable hyperparameters, including the trade-off weight λ in ob- 477 jective function (Eq. (17)), the compression ratios r_h and r_w in BOP, and the window size δ_{\max} for 478 lag-aware fusion. In this section, we analyze the sensitivity of FACTS to these parameters on Fol- 479 som and CRNN datasets, which involve two distinct application domains (solar power generation 480 and water-level monitoring). During training, we vary one parameter while keeping the others fixed 481 and record the corresponding results.

482 The curves of MSE and MAE under different hyperparameter settings are shown in Fig. 3. The 483 parameter λ balances the contributions of \mathcal{L}_{MSE} and $\mathcal{L}_{\text{CPCD}}$, with values in $\{0.001, 0.01, 0.1, 1.0\}$. 484 Even across a wide range, the MSE and MAE curves remain smooth and relatively stable, which

485 Figure 2: Performance (lower is better) on Fol- 486 som and per-multimodal-input inference latency 487 of FACTS vs. BOP-replacement variants.

488

Figure 3: Analysis of λ in objective function, r_h ($r_h=r_w$) in bilinear orthogonal projector, and δ_{\max} for lag-aware fusion. Note: lower MSE/MAE indicates better model performance.

indicates that FACTS is robust to the variations of λ . Furthermore, FACTS consistently achieves competitive performance on both datasets when $\lambda = 0.1$, so we adopt this value for our experiments.

The parameters r_h and r_w determine the degree of data compression in BOP, with values in $\{2, 4, 8, 16\}$. To equally preserve spatial information along both height and width dimensions while maintaining BOP's parameter efficiency (see App. A.1), we set $r_h = r_w$ in our experiments. A small r_h (r_w) implies strong compression and large information loss, resulting in reduced model performance. As r_h (r_w) increases, more information is preserved and the model performance improves. When r_h (r_w) reaches 8, the MSE and MAE curves begin to stabilize. Considering both efficiency and accuracy, we set $r_h = r_w = 8$ in our experiments.

The parameter δ_{\max} controls the lag window size for computing cross-modal similarity, with values in $\{1, 3, 5, 7\}$. Similar to the trend observed for r_h (r_w), a small δ_{\max} insufficiently captures cross-modal temporal misalignment and results in inferior model performance. As δ_{\max} increases, the expanded lag window improves the model performance, and the curve stabilizes at $\delta_{\max} = 5$. To balance computational efficiency and predictive accuracy, we set $\delta_{\max} = 5$ in all experiments.

5 CONCLUSION

We introduced FACTS, a practical multimodal forecasting framework that (i) learns cross-modal causal responses with a future-aided teacher network and distills them to a deployable student network via CPCD, (ii) addresses modality heterogeneity with a BOP and a unified bidirectional-attention backbone spanning temporal and auxiliary inputs, and (iii) explicitly handles cross-modal misalignment via lag-aware fusion and modality missingness via random modality dropout. FACTS attains SOTA performance with improved stability on four real-world datasets, and ablations confirm that every component is necessary. To the best of our knowledge, FACTS is the first framework to jointly integrate temporal, image, and meteorological modalities for time series forecasting. By unifying heterogeneous modalities and distilling causal cues, FACTS offers an effective and efficient solution for realistic and challenging multimodal time series forecasting.

540 REPRODUCIBILITY STATEMENT
541

542 We provide an anonymous code repository with training/evaluation scripts and configuration files to
543 facilitate replication of all results. The main paper specifies the complete architecture and learning
544 setup. Implementation details (optimizer, learning rate/weight decay, modality-dropout probability,
545 loss weighting, lag window, BOP ranks), plus the “three runs with $\text{mean}\pm\text{std}$ ” reporting protocol,
546 are documented in the Experimental Setup and hyperparameter analysis sections of the paper and
547 appendix. We report ablations isolating each component in Sec. 4.3 and App. C, enabling verification
548 of individual design choices. Together, these materials (code, sectioned descriptions, and appendix)
549 are intended to make our results straightforward to reproduce and extend.

550
551 ETHICS STATEMENT
552

553 This work studies multimodal time series forecasting using publicly available datasets on solar genera-
554 tion (with upward-facing sky cameras and meteorological measurements) and river water levels
555 from the United States Geological Survey. We did not collect new data and did not process any data
556 containing personally identifiable information or human subjects. No Institutional Review Board
557 approval was required.

558 We adhered to dataset licenses and usage terms and will release code, configuration files, and
559 documentation sufficient to reproduce the reported results, including data preprocessing steps and
560 train/validation/test splits, to promote transparency and reproducibility. We took care to avoid tem-
561 poral leakage across splits.

562 Potential risks include distribution shift and misuse of forecasts in safety-critical settings (e.g., grid
563 operations, flood response). Our method is intended for research and decision-support; it should
564 not be deployed as the sole basis for real-time control without rigorous domain validation, uncer-
565 tainty analysis, and human oversight. We discuss limitations and robustness (e.g., missing-modality
566 sensitivity) and report results across multiple runs to mitigate over-claiming.

567 Fairness concerns may arise from geographical or climatological imbalances in the source datasets
568 (e.g., clear-sky prevalence, sensor coverage). We encourage future evaluations on diverse regions
569 and conditions and provide implementation details to facilitate such auditing.

570 Regarding environmental impact, we report model sizes and training settings to enable estimation
571 of computational cost. Our design includes efficient dimensionality-reduction components intended
572 to reduce compute relative to high-resolution image processing baselines.

573 We believe this work complies with the ICLR Code of Ethics, including considerations of privacy,
574 data governance, potential harms, fairness, and research integrity.

575 REFERENCES
576

577 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: com-
578 putational statistics*, 2(4):433–459, 2010.

579 Rafal A Angryk, Petrus C Martens, Berkay Aydin, Dustin Kempton, Sushant S Mahajan, Sunitha
580 Basodi, Azim Ahmadzadeh, Xumin Cai, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi,
581 et al. Multivariate time series dataset for space weather data analytics. *Scientific Data*, 7(1):227,
582 2020.

583 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
584 and recurrent networks for sequence modeling. *arXiv:1803.01271*, 2018.

585 Yuxuan Chen, Shanshan Huang, Yunyao Cheng, Peng Chen, Zhongwen Rao, Yang Shu, Bin Yang,
586 Lujia Pan, and Chenjuan Guo. Aims: Augmented series and image contrastive learning for time
587 series classification. In *2025 IEEE 41st International Conference on Data Engineering (ICDE)*,
588 pp. 1952–1965. IEEE Computer Society, 2025.

589 Mingyue Cheng, Yiheng Chen, Qi Liu, Zhiding Liu, and Yucong Luo. Advancing time series clas-
590 sification with multimodal language modeling. *arXiv preprint arXiv:2403.12371*, 2024.

594 Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In *Proceedings*
 595 *of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4794–4802, 2019.
 596

597 Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. Long-term forecasting
 598 with TiDE: Time-series dense encoder. *arXiv:2304.08424*, 2023.

599 Xiang Deng and Zhongfei Zhang. Comprehensive knowledge distillation with causal intervention.
 600 *Advances in Neural Information Processing Systems (NeurIPS)*, 34:22158–22170, 2021.
 601

602 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 603 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 604 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 605 *arXiv:2010.11929*, 2020.

606 Graham Elliott and Allan Timmermann. *Handbook of economic forecasting*. Newnes, 2013.
 607

608 Alison Gopnik, Clark Glymour, David M Sobel, Laura E Schulz, Tamar Kushnir, and David Danks.
 609 A theory of causal learning in children: causal maps and bayes nets. *Psychological review*, 111
 610 (1):3, 2004.

611 Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
 612 survey. *International Journal of Computer Vision (IJCV)*, 129(6):1789–1819, 2021.

613 Furong Jia, Kevin Wang, Yixiang Zheng, Defu Cao, and Yan Liu. Gpt4mts: Prompt-based large
 614 language model for multimodal time-series forecasting. In *Proceedings of the AAAI Conference*
 615 *on Artificial Intelligence*, number 21, pp. 23343–23351, 2024.

616 Yushan Jiang, Kanghui Ning, Zijie Pan, Xuyang Shen, Jingchao Ni, Wenchao Yu, Anderson Schneider,
 617 Haifeng Chen, Yuriy Nevmyvaka, and Dongjin Song. Multi-modal time series analysis: A
 618 tutorial and survey. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery*
 619 *and Data Mining V. 2*, pp. 6043–6053, 2025a.

620 Yushan Jiang, Wenchao Yu, Geon Lee, Dongjin Song, Kijung Shin, Wei Cheng, Yanchi Liu, and
 621 Haifeng Chen. Explainable multi-modal time series prediction with llm-in-the-loop. *arXiv*
 622 *preprint arXiv:2503.01013*, 2025b.

623 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan
 624 Liang, Yuan-fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming large
 625 language models. In *International Conference on Learning Representations (ICLR)*, 2024.

626 Md Kowsler, Md Shohanur Islam Sobuj, Nusrat Jahan Prottasha, E Alejandro Alanis, Ozlem Ozmen
 627 Garibay, and Niloofar Yousefi. Llm-mixer: Multiscale mixing in llms for time series forecasting.
 628 *arXiv:2410.11674*, 2024.

629 Geon Lee, Wenchao Yu, Kijung Shin, Wei Cheng, and Haifeng Chen. Timecap: Learning to context-
 630ualize, augment, and predict time series events with large language model agents. In *Proceedings*
 631 *of the AAAI Conference on Artificial Intelligence*, number 17, pp. 18082–18090, 2025.

632 Te-Won Lee. Independent component analysis. In *Independent component analysis: Theory and*
 633 *applications*, pp. 27–66. Springer, 1998.

634 Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
 635 rnn: Segment recurrent neural network for long-term time series forecasting. *arXiv preprint*
 636 *arXiv:2308.11200*, 2023.

637 Chenxi Liu, Hao Miao, Qianxiong Xu, Shaowen Zhou, Cheng Long, Yan Zhao, Ziyue Li, and Rui
 638 Zhao. Efficient multivariate time series forecasting via calibrated language models with privileged
 639 knowledge distillation. In *2025 IEEE 41st International Conference on Data Engineering (ICDE)*,
 640 pp. 3165–3178. IEEE Computer Society, 2025a.

641 Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, and Rui
 642 Zhao. Timecma: Towards llm-empowered multivariate time series forecasting via cross-modality
 643 alignment. In *Proceedings of the AAAI Conference on Artificial Intelligence*, number 18, pp.
 644 18780–18788, 2025b.

648 Chenxi Liu, Shaowen Zhou, Qianxiong Xu, Hao Miao, Cheng Long, Ziyue Li, and Rui Zhao. To-
 649 wards cross-modality modeling for time series analytics: A survey in the llm era. *arXiv preprint*
 650 *arXiv:2505.02583*, 2025c.

651 Manqing Liu, David R Bellamy, and Andrew L Beam. Dag-aware transformer for causal effect
 652 estimation. *arXiv preprint arXiv:2410.10044*, 2024a.

654 Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao Xia.
 655 Calf: Aligning llms for time series forecasting via cross-modal fine-tuning. *arXiv:2403.07300*,
 656 2024b.

657 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
 658 Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
 659 casting. In *International Conference on Learning Representations (ICLR)*, 2022.

660 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 661 iTransformer: Inverted transformers are effective for time series forecasting. *International Con-
 662 ference on Learning Representations (ICLR)*, 2024c.

664 Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating
 665 counterfactual outcomes. In *International Conference on Machine Learning (ICML)*, pp. 15293–
 666 15329. PMLR, 2022.

667 Jingchao Ni, Ziming Zhao, ChengAo Shen, Hanghang Tong, Dongjin Song, Wei Cheng, Dongsheng
 668 Luo, and Haifeng Chen. Harnessing vision models for time series analysis: A survey. *arXiv*
 669 *preprint arXiv:2502.08869*, 2025a.

671 Junlong Ni, Zewen Liu, Shiyu Wang, Ming Jin, and Wei Jin. Timedistill: Efficient long-term time
 672 series forecasting with mlp via cross-architecture distillation. *arXiv preprint arXiv:2502.15016*,
 673 2025b.

674 Yuhao Nie, Xiatong Li, Andea Scott, Yuchi Sun, Vignesh Venugopal, and Adam Brandt. Skipp'd:
 675 A sky images and photovoltaic power generation dataset for short-term solar forecasting. *Solar
 676 Energy*, 255:171–179, 2023a.

678 Yuhao Nie, Eric Zelikman, Andea Scott, Quentin Paletta, and Adam Brandt. Skygpt: Probabilistic
 679 short-term solar forecasting using synthetic sky videos from physics-constrained videogpt. *arXiv*
 680 *preprint arXiv:2306.11682*, 2023b.

682 Yuhao Nie, Quentin Paletta, Andea Scott, Luis Martin Pomares, Guillaume Arbod, Sgouris
 683 Sgouridis, Joan Lasenby, and Adam Brandt. Sky image-based solar forecasting using deep learn-
 684 ing with heterogeneous multi-location data: Dataset fusion versus transfer learning. *Applied
 685 Energy*, 369:123467, 2024.

686 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 687 64 words: Long-term forecasting with transformers. In *International Conference on Learning
 688 Representations (ICLR)*, 2023c.

689 Hugo TC Pedro, David P Larson, and Carlos FM Coimbra. A comprehensive dataset for the accel-
 690 erated development and benchmarking of solar forecasting methods. *Journal of Renewable and
 691 Sustainable Energy*, 11(3), 2019.

693 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 694 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

695 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 696 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 697 models from natural language supervision. In *International Conference on Machine Learning
 698 (ICML)*, pp. 8748–8763. PMLR, 2021.

699 ChengAo Shen, Wenchao Yu, Ziming Zhao, Dongjin Song, Wei Cheng, Haifeng Chen, and Jingchao
 700 Ni. Multi-modal view enhanced large vision models for long-term time series forecasting. *arXiv*
 701 *preprint arXiv:2505.24003*, 2025.

702 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 703 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

704

705 Geri Skenderi, Christian Joppi, Matteo Denitto, Berniero Scarpa, and Marco Cristani. The multi-
 706 modal universe of fast-fashion: The visuelle 2.0 benchmark. In *Proceedings of the IEEE/CVF*
 707 *Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 2241–2246,
 708 June 2022.

709 Geri Skenderi, Christian Joppi, Matteo Denitto, and Marco Cristani. Well googled is half done:
 710 Multimodal forecasting of new fashion product sales with image-based google trends. *Journal of*
 711 *Forecasting*, 43(6):1982–1997, 2024.

712 Gilbert W Stewart. On the early history of the singular value decomposition. *SIAM review*, 35(4):
 713 551–566, 1993.

714

715 Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In *Inter-
 716 national Conference on Learning Representations (ICLR)*, 2019.

717 Maximilian B Toller, Bernhard C Geiger, and Roman Kern. Detecting abrupt changes in missing
 718 time series data. *Information Sciences*, pp. 122322, 2025.

719

720 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 721 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 722 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

723 Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015. DOI:
 724 <https://doi.org/10.24432/C58C86>.

725

726 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN: Multi-
 727 scale local and global context modeling for long-term series forecasting. In *International Confer-
 728 ence on Learning Representations (ICLR)*, 2022.

729 Pengfei Wang, Huanran Zheng, Silong Dai, Wenjing Yue, Wei Zhu, and Xiaoling Wang. Ts-tcd:
 730 Triplet-level cross-modal distillation for time-series forecasting using large language models.
 731 *arXiv e-prints*, pp. arXiv–2409, 2024a.

732

733 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 734 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
 735 *International Conference on Learning Representations (ICLR)*, 2024b.

736

737 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
 738 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
 739 with exogenous variables. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:
 469–498, 2024c.

740

741 Yinwei Wei, Xiang Wang, Liqiang Nie, Shaoyu Li, Dingxian Wang, and Tat-Seng Chua. Causal
 742 inference for knowledge graph based recommendation. *IEEE Transactions on Knowledge and*
 743 *Data Engineering (TKDE)*, 35(11):11153–11164, 2022.

744

745 Andrew Robert Williams, Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Jithendaraa Sub-
 746 ramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Chapados,
 747 et al. Context is key: A benchmark for forecasting with essential textual information. *arXiv*
 748 *preprint arXiv:2410.18959*, 2024.

749

750 Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H. Hoi. ETSformer:
 751 Exponential smoothing transformers for time-series forecasting. *arXiv:2202.01381*, 2022.

752

753 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 754 formers with auto-correlation for long-term series forecasting. *Advances in Neural Information*
 755 *Processing Systems (NeurIPS)*, 34:22419–22430, 2021.

756

757 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet:
 758 Temporal 2d-variation modeling for general time series analysis. In *International Conference on*
 759 *Learning Representations (ICLR)*, 2023.

756 Renjie Wu, Hu Wang, Hsiang-Ting Chen, and Gustavo Carneiro. Deep multimodal learning with
 757 missing modality: A survey. *arXiv preprint arXiv:2409.07825*, 2024.

758

759 Hao Xue and Flora D Salim. Promptcast: A new prompt-based learning paradigm for time series
 760 forecasting. *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 2023.

761

762 Jixia Ye, Weiqi Zhang, Ziyue Li, Jia Li, Meng Zhao, and Fugee Tsung. Medualtime: A
 763 dual-adapter language model for medical time series-text multimodal learning. *arXiv preprint*
 764 *arXiv:2406.06620*, 2024.

765

766 Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-
 767 formance of convolutional neural networks via attention transfer. In *International Conference on*
 768 *Learning Representations (ICLR)*, 2017.

769

770 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 771 forecasting? In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
 772 11121–11128, 2023.

773

774 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 775 for multivariate time series forecasting. In *International Conference on Learning Representations*
 776 (*ICLR*), 2023.

777

778 Wendong Zheng and Jun Hu. Multivariate time series prediction based on temporal change informa-
 779 tion learning method. *IEEE Transactions on Neural Networks and Learning Systems (TNNLS)*,
 780 34(10):7034–7048, 2022.

781

782 Siru Zhong, Weilin Ruan, Ming Jin, Huan Li, Qingsong Wen, and Yuxuan Liang. Time-vlm: Explor-
 783 ing multimodal vision-language models for augmented time series forecasting. In *International*
 784 *Conference on Machine Learning (ICML)*, 2025.

785

786 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 787 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 788 *of the AAAI Conference on Artificial Intelligence*, number 12, pp. 11106–11115, 2021.

789

790 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
 791 enhanced decomposed transformer for long-term series forecasting. In *International Conference*
 792 *on Machine Learning (ICML)*, pp. 27268–27286. PMLR, 2022.

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
 811 Table A-1: Inference costs and parameter footprints over L square frames for our BOP and other
 812 compared methods.

Method	Inference Costs (all L frames)	Params
PCA	$\mathcal{O}(L S^2 K)$	$\mathcal{O}(HWK)$
ICA	$\mathcal{O}(L S^2 K)$	$\mathcal{O}(HWK + K^2)$
BOP (ours)	$\mathcal{O}(L(S^2\sqrt{K} + SK))$	$\mathcal{O}((H + W)\sqrt{K})$

A MODEL DETAILS

A.1 INFERENCE COMPLEXITY AND PARAMETER FOOTPRINT OF DOWNSAMPLE METHODS

Given a high-dimensional image sequence $\mathbf{x}_{\text{img}} \in \mathbb{R}^{L \times H \times W}$, we analyze the end-to-end inference costs and parameter footprints for our BOP and two widely used frame-wise dimensionality-reduction methods, including Principal Component Analysis (PCA) and Independent Component Analysis (ICA).

PCA. Firstly, each frame in \mathbf{x}_{img} is vectorized as $\mathbf{x}_{\text{img},l}^{(\text{vec})} := \text{vec}(\mathbf{x}_{\text{img},l}) \in \mathbb{R}^{HW}$. Then, given the mean vector $\bar{\mathbf{x}}_{\text{img}}^{(\text{vec})} = \frac{1}{L} \sum_{l=1}^L \mathbf{x}_{\text{img},l}^{(\text{vec})}$ and the scatter matrix $\mathbf{G} = \frac{1}{L} \sum_{l=1}^L (\mathbf{x}_{\text{img},l}^{(\text{vec})} - \bar{\mathbf{x}}_{\text{img}}^{(\text{vec})})(\mathbf{x}_{\text{img},l}^{(\text{vec})} - \bar{\mathbf{x}}_{\text{img}}^{(\text{vec})})^\top \in \mathbb{R}^{HW \times HW}$, the projection matrix $\mathbf{W}_{\text{PCA}} \in \mathbb{R}^{HW \times K}$ is obtained by collecting the top- K eigenvectors of \mathbf{G} ($K \ll HW$). Finally, the PCA feature of frame l is obtained by a single linear projection:

$$\mathbf{x}_{\text{img},l}^{(\text{PCA})} = \mathbf{W}_{\text{PCA}}^\top (\mathbf{x}_{\text{img},l}^{(\text{vec})} - \bar{\mathbf{x}}_{\text{img}}^{(\text{vec})}) \in \mathbb{R}^K, \quad l = 1, \dots, L. \quad (18)$$

Inference complexity (all L frames). For each frame, mean subtraction costs $\mathcal{O}(HW)$ and the projection $\mathbf{W}_{\text{PCA}}^\top(\cdot)$ costs $\mathcal{O}(HWK)$. Hence, the end-to-end inference cost is

$$\text{cost}^{(\text{PCA})}(L) = \mathcal{O}(LHWK) = \mathcal{O}(LS^2K), \quad S = H = W. \quad (19)$$

Parameter footprint. Storing $\mathbf{W}_{\text{PCA}} \in \mathbb{R}^{HW \times K}$ requires $\mathcal{O}(HWK)$ parameters.

ICA. Following the standard ICA pipeline, a (precomputed) *whitening* matrix $\mathbf{B} \in \mathbb{R}^{HW \times K}$ maps centered inputs to K -dimensional whitened features, and an ICA *demixing* (rotation) matrix $\mathbf{R} \in \mathbb{R}^{K \times K}$ enforces statistical independence:

$$\mathbf{W}_{\text{ICA}} := \mathbf{B} \mathbf{R}^\top \in \mathbb{R}^{HW \times K}.$$

The ICA feature of frame l is

$$\mathbf{x}_{\text{img},l}^{(\text{ICA})} = \mathbf{W}_{\text{ICA}}^\top (\mathbf{x}_{\text{img},l}^{(\text{vec})} - \bar{\mathbf{x}}_{\text{img}}^{(\text{vec})}) \in \mathbb{R}^K, \quad l = 1, \dots, L. \quad (20)$$

Inference complexity (all L frames). Per frame, mean subtraction costs $\mathcal{O}(HW)$ and the projection $\mathbf{W}_{\text{ICA}}^\top(\cdot)$ costs $\mathcal{O}(HWK)$. Hence, the end-to-end inference cost is

$$\text{cost}^{(\text{ICA})}(L) = \mathcal{O}(LHWK) = \mathcal{O}(LS^2K), \quad S = H = W. \quad (21)$$

Parameter footprint. Storing $\mathbf{W}_{\text{ICA}} \in \mathbb{R}^{HW \times K}$ requires $\mathcal{O}(HWK)$.

BOP. For each frame $\mathbf{x}_{\text{img},l} \in \mathbb{R}^{H \times W}$, BOP applies a separable bilinear map with $\mathbf{U} \in \mathbb{R}^{H \times r_h}$ and $\mathbf{V} \in \mathbb{R}^{W \times r_w}$:

$$\mathbf{Y}_l = \mathbf{U}^\top \mathbf{x}_{\text{img},l} \mathbf{V} \in \mathbb{R}^{r_h \times r_w}, \quad \mathbf{x}_{\text{img},l}^{(\text{BOP})} = \text{vec}(\mathbf{Y}_l) \in \mathbb{R}^K, \quad K := r_h r_w. \quad (22)$$

The orthogonality regularizers used during training incur no extra cost at inference.

Inference complexity (all L frames). Per frame, evaluating $\mathbf{U}^\top \mathbf{x}_{\text{img},l} \mathbf{V}$ can be done in either order:

$$\underbrace{\mathbf{U}^\top \mathbf{x}}_{\mathbf{U}^\top \mathbf{x}} + \underbrace{(\cdot) \mathbf{V}}_{(\cdot) \mathbf{V}} = \mathcal{O}(HWr_h + WK),$$

864

or

865

$$\underbrace{\mathcal{O}(HWr_w)}_{\mathbf{x}\mathbf{V}} + \underbrace{\mathcal{O}(Hr_h r_w)}_{\mathbf{U}^\top(\cdot)} = \mathcal{O}(HWr_w + HK).$$

866

Choosing the cheaper order yields

867

$$\text{cost}^{(\text{BOP})}(L) = \mathcal{O}\left(L \cdot \min\{HWr_h + WK, HWr_w + HK\}\right). \quad (23)$$

868

In our BOP (square frames $H = W = S$) with balanced ranks $r_h = r_w = r$ (so $K = r^2$),

869

$$\text{cost}^{(\text{BOP})}(L) = \mathcal{O}(L(S^2r + Sr^2)) = \mathcal{O}(L(S^2\sqrt{K} + SK)). \quad (24)$$

870

Parameter footprint. BOP stores only the factor matrices:

871

$$\text{params}^{(\text{BOP})} = \mathcal{O}(Hr_h + Wr_w), \quad (25)$$

872

which under balanced ranks simplifies to $\mathcal{O}((H + W)\sqrt{K})$.

873

874

Complexity and Parameter Ranking (lower is better). Under square frames $H = W = S$ and balanced ranks for BOP ($r_h = r_w = \sqrt{K} \leq S$), the per-sequence inference costs and parameter footprints satisfy

875

Inference complexity: BOP \ll PCA \approx ICA

876

Parameter footprint: BOP \ll PCA \approx ICA

877

These inequalities hold whenever $K \ll S^2$.

878

879

Improved Parameter Efficiency via Balanced Rank. Adopting a balanced-rank configuration ($r_h = r_w$) in BOP mathematically guarantees a minimized parameter footprint of $\mathcal{O}(Hr_h + Wr_w)$. For instance, when compressing a 64×64 image from Folsom dataset to an 8×8 representation, the balanced-rank setting ($r_h = r_w = 8$) requires only 1,024 parameters ($64 \times 8 + 64 \times 8$). In comparison, an unbalanced configuration of equivalent capacity (e.g., $r_h = 2, r_w = 32$) necessitates 2,176 parameters ($64 \times 2 + 64 \times 32$), demonstrating the significant efficiency gains of the balanced approach.

880

881

A.2 DETAILS OF BIDIRECTIONAL-ATTENTION BACKBONE.

882

Time Series Partitioning and Embedding Given the input series $\mathbf{x} \in \mathbb{R}^{L \times V}$, we first partition it along the temporal axis into P patches of length S with stride r :

883

$$\mathbf{x}_{(p)} = \mathbf{x}_{t_p:t_p+S-1,:} \in \mathbb{R}^{S \times V}, \quad t_p = 1 + (p-1)r, \quad P = \left\lfloor \frac{L-S}{r} \right\rfloor + 1. \quad (26)$$

884

Here, $p \in \{1, \dots, P\}$, we omit modality-specific superscripts and subscripts for notational simplicity. Then, each patch is linearly projected along the temporal dimension to produce a D -dimensional embedding per variable:

885

$$\mathbf{z}_p = \mathbf{x}_{(p)}^\top \mathbf{W}_t + \mathbf{b}, \quad \mathbf{W}_{\text{proj}} \in \mathbb{R}^{S \times D}, \mathbf{b}_{\text{proj}} \in \mathbb{R}^D. \quad (27)$$

886

Here, \mathbf{W}_{proj} and \mathbf{b}_{proj} are the weight and bias of the projection layer, respectively. The temporal embeddings for P patches are stacked as the patching embedding $\mathbf{z} \in \mathbb{R}^{P \times V \times D}$.

887

888

Forecaster. Given the encoder output $\mathbf{h} \in \mathbb{R}^{P \times V \times D}$, we first flatten each variable to obtain:

889

$$\mathbf{h}_{\text{reshape}} = \text{reshape}(\mathbf{h}, V \times (PD)) \in \mathbb{R}^{V \times (PD)}. \quad (28)$$

890

The forecaster g_ϕ is a two-layer MLP that maps \mathbf{H} to a T -step forecast:

891

$$\mathbf{h}_{\text{reshape}}^{(1)} = \sigma\left(\mathbf{h}_{\text{reshape}} \mathbf{W}_\phi^{(1)} + \mathbf{1} b_\phi^{(1)\top}\right) \in \mathbb{R}^{V \times d_f}, \quad (29)$$

892

$$\mathbf{h}_{\text{reshape}}^{(2)} = \mathbf{h}_{\text{reshape}}^{(1)} \mathbf{W}_\phi^{(2)} + \mathbf{1} b_\phi^{(2)\top} \in \mathbb{R}^{V \times T}, \quad (30)$$

893

$$\hat{\mathbf{y}} = \mathbf{h}_{\text{reshape}}^{(2)\top} \in \mathbb{R}^{T \times V}. \quad (31)$$

894

895

Here, $\mathbf{W}_\phi^{(1)} \in \mathbb{R}^{(PD) \times d_f}$, $\mathbf{b}_\phi^{(1)} \in \mathbb{R}^{d_f}$, $\mathbf{W}_\phi^{(2)} \in \mathbb{R}^{d_f \times T}$, $\mathbf{b}_\phi^{(2)} \in \mathbb{R}^T$, $\sigma(\cdot)$ denotes a nonlinearity (e.g., GELU), d_f is the hidden size, and $\mathbf{1}$ is an all-ones column vector for bias broadcasting.

896

897

918
919 Table A-2: Model configurations of our FACTS.
920

Parameter	Value	Description
P	4	Number of patches of the segmented input sequence.
S	12	Patch length for each segment.
r	12	Stride for patching, equals S for non-overlapping patches.
D	512	Patch embedding dimension.
N_{BA}	4	Number of bidirectional-attention blocks.
n_{heads}	4	Number of attention heads.
Enc_in	$V_{\text{img}}, V_{\text{wea}}$ or V_{time}	Number of input channels (variables).
Enc_out	V_{time}	Number of output channels.

921
922
923
924
925
926
927
928
929
930
931 Table A-3: The details of multimodal benchmark datasets.
932

Field	Dataset	Variate	Frequency	Time Range	Modality
Solar Power Generation	Folsom	42	5 mins	2014.01-2016.12	Temporal, Image, Weather
	SKIPP'D	1	2 mins	2017.03-2019.10	Temporal, Image
Water-Level Monitoring	CCG	1	15 mins	2024.01-2025.07	Temporal, Image
	CRNN	1	1 hour	2023.12-2024.08	Temporal, Image

933
934
935
936
937
938
939
940 A.3 BRANCH-SPECIFIC MODEL CONFIGURATION
941

942 To account for the heterogeneity in variable dimensionality across modalities, we employ branch-
943 specific parameterization for each modality branch. Detailed configurations are provided in Tab. A-
944 2. Except for the number of input channels (which equals the number of variables in each modality),
945 all branches share identical parameter configurations. Therefore, our multimodal multi-branch ar-
946 chitecture does not introduce additional parameter-configuration overhead.

947
948 A.4 TEACHER TRAINING AND MODEL SETTINGS
949

950 **Training of Teacher Network.** Given the time series $\mathbf{x}_{\text{time}}^i$ and the concatenated auxiliary se-
951 quences $\mathbf{z}_{\text{img}}^i$ and $\mathbf{z}_{\text{wea}}^i$, we first input them into the teacher network and obtain the modality-specific
952 predictions as follows:

$$953 \hat{\mathbf{y}}_{\text{time}}^{\text{Tea}} = g_{\phi_{\text{time}}}^{\text{Tea}}(f_{\theta_{\text{time}}}^{\text{Tea}}(\mathbf{x}_{\text{time}})), \quad \hat{\mathbf{y}}_{\text{img}}^{\text{Tea}} = g_{\phi_{\text{img}}}^{\text{Tea}}(f_{\theta_{\text{img}}}^{\text{Tea}}(\mathcal{B}^{\text{Tea}}(\mathbf{z}_{\text{img}}))), \quad \hat{\mathbf{y}}_{\text{wea}}^{\text{Tea}} = g_{\phi_{\text{wea}}}^{\text{Tea}}(f_{\theta_{\text{wea}}}^{\text{Tea}}(\mathbf{z}_{\text{wea}})). \quad (32)$$

954 Here, the superscript ‘Tea’ is employed to denote teacher network, distinguishing it from the pre-
955 diction horizon T . Then, we fuse the modality-specific predictions based on their similarity scores
956 to obtain the final forecast $\hat{\mathbf{y}}_{\text{Tea}}^i \in \mathbb{R}^{T \times V}$, following the process detailed in Sec. 3.2. The teacher is
957 optimized with the mean squared error (MSE):
958

$$959 \mathcal{L}_{\text{MSE}}^{\text{Tea}} = \frac{1}{BTV_{\text{time}}} \sum_{i=1}^B \sum_{t=1}^T \sum_{v=1}^{V_{\text{time}}} (\mathbf{y}_{t,v}^i - \hat{\mathbf{y}}_{\text{Tea},t,v}^i)^2, \quad (33)$$

960 where B , T , and V_{time} denote the batch size, prediction horizon, and number of variables, respec-
961 tively. By minimizing $\mathcal{L}_{\text{MSE}}^{\text{Tea}}$, the teacher network is promoted to predict as accurately as the ground-
962 truth series \mathbf{y} .

963
964 **Model Configurations.** Because the teacher network ingests both historical and future auxiliary
965 data, the input length of its auxiliary branches is $L + T$, whereas the student network uses only
966 historical auxiliary data with length L . Apart from this difference in input length, the two networks
967 share the same model configuration, as shown in Tab. A-2.

Figure A-1: Visualization of the time series and the corresponding sky images in the Folsom dataset. Here, the dashed interval displays the earliest image in that window. For example, the 17:00–17:30 interval shows the photo taken at 17:00. The sky image at 17:00 shows extensive cloud occlusion. However, the solar power output continues to rise for the next several minutes before dropping sharply. This indicates a temporal mismatch (lag) between the image and temporal modalities.

B ADDITIONAL EXPERIMENTAL SETUPS

B.1 BENCHMARK DATASETS

In this paper, we evaluate our proposed FACTS on four publicly available multimodal time series datasets, including two solar power generation datasets (Folsom and SKIPP'D) and two water-level monitoring datasets (CCG and CRNN). Detailed descriptions (summarized in Tab. A-3) of the datasets are provided below:

Folsom comprises three consecutive years (2014.01–2016.12) of solar-irradiance measurements collected in Folsom, California, which are directly related to photovoltaic power generation. It includes 5-minute-resolution ground irradiance (the target time series for forecasting), one all-sky camera image per minute, and meteorological observations. The time series component provides the same set of seven irradiance-related variables at six lead times (5, 10, 15, 20, 25, and 30 minutes), yielding 42 variables in total. The seven variables are Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI), clear-sky GHI, clear-sky DNI, Clear-sky-normalized GHI, Clear-sky-normalized DNI, and solar elevation angle. The meteorological observations contain seven variables, including air temp, relative humidity, pressure, wind speed, wind direction, and precipitation.

SKIPP'D is a SKy Images and Photovoltaic Power Generation Dataset for short-term solar forecasting, which is collected on Stanford University's campus. It comprises three consecutive years (2017.03–2019.10) of synchronized data, including a ready-to-use benchmark with 1-minute resolution, down-sampled all-sky images (64×64) paired with minutely averaged solar power series (with 1 variable).

Clear Creek in Golden (CCG) is a water-level monitoring dataset from the official website of the United States Geological Survey (USGS)¹. The monitoring site is located at Clear Creek in Golden, and the time span is from 2024.01 to 2025.07. The benchmark uses 15-minute resolution and pairs downsampled river-scene images (64×64) with a single water-level time series sampled every 15 minutes, targeting short-horizon stream-level forecasting.

Connecticut River Near Northfield (CRNN) is also a water-level monitoring dataset from USGS, covering from 2023.12 to 2024.08. It adopts the 1-hour resolution, which contains 64×64 river images synchronized with one water-level variable. CRNN and CCG are collected from different sites, and thus representing distinct flow dynamics and seasonality.

¹<https://waterdata.usgs.gov>

Figure A-2: Visualization results of the time series data from the four benchmark datasets. The time series exhibits distinct temporal patterns across datasets.

As illustrated in Fig. A-2, these datasets from various fields are collected from distinct locations and exhibit different temporal patterns. Despite these challenges, FACTS performs consistently well across multiple datasets, indicating strong generalization.

B.2 VISUALIZATION OF TEMPORAL LAGS

As discussed in Sec. 3.2, cross-modal signals often exhibit temporal misalignment. Fig. A-1 shows that in the image for the 17:00–17:30 interval (captured at 17:00), the sun is obscured by clouds; however, the power output does not drop immediately at 17:00 but rises briefly before falling sharply. This observation indicates that temporal misalignment indeed occurs in practice. To address this issue, we propose a lag-aware multimodal fusion mechanism.

B.3 BASELINE TIME SERIES FORECASTING METHODS

In this paper, we compare an extensive range of SOTA Time Series Forecasting (TSF) methods, primarily categorized as follows:

(i) Transformer-based Unimodal Methods:

- Crossformer (Zhang & Yan, 2023) identifies that the crossvariable relationships in time series data are crucial for TSF and captures them using attention mechanisms.
- FEDformer (Zhou et al., 2022) and Autoformer (Wu et al., 2021), which decouple seasonal and trend components in the frequency domain and learn them based on the attention mechanism.
- PatchTST (Nie et al., 2023c), the first work proposed partitioning input series into multiple patches, effectively enhancing the long-range TSF capability of Transformers.
- iTransformer (Liu et al., 2024c) transposes the input time series and implements the attention mechanism along the variable dimension to capture relationships between variables.
- ETSformer (Woo et al., 2022) introduces both smoothing attention and frequency attention to replace the original self-attention mechanism in Transformers, which can effectively extract the temporal patterns in input series.

(ii) CNN-Based Unimodal Methods:

- TimesNet (Wu et al., 2023), which selects representative periods in the frequency domain to construct an image and processes such an image using 2D convolution layers.
- TCN (Bai et al., 2018) conducts a systematic evaluation of generic convolutional and recurrent architectures for sequence modeling.
- MICN (Wang et al., 2022) decomposes the time series signal into seasonal and trend components and learns them separately using convolutional and linear regression layers.

1080
1081(ii) **MLP-Based Unimodal Methods:**1082
1083
1084
1085
1086
1087

- DLinear (Zeng et al., 2023) explores the application of linear layers in time series tasks and achieves efficient time series prediction.
- TiDE (Das et al., 2023) designs an encoder-decoder structure based on MLP, which can achieve comparable performance with Transformers while requiring fewer computations.
- TimeMixer (Wang et al., 2024b) downsamples the time series into multiple-scale inputs for ensemble predictions in the MLP model.

1088
1089(iv) **LLM-Based Unimodal Methods:**1090
1091
1092
1093
1094
1095
1096

- GPT4TS (Zhou et al., 2023), the pioneering work that employs LLM for TSF by segmenting continuous time series into discrete tokens compatible with LLM.
- TimeLLM (Jin et al., 2024), which proposes patch reprogramming to encode prior knowledge from time series datasets into prompts for guiding the LLM in TSF.
- CALF (Liu et al., 2024b) trains separate branches for temporal and textual modalities and closely aligns them with leveraging textual knowledge in LLMs for time series prediction.

1097

(v) **Multimodal Methods:**1098
1099
1100
1101
1102
1103

- TimeVLM (Zhong et al., 2025) converts the input time series into a textual description and a spectrum image, and processes them with a pre-trained VLM. Then, the outputs from various modality branches are fused together as the final prediction.
- AimTS (Chen et al., 2025) transfers time series into a line chart and aligns temporal feature and image feature via contrastive learning.

1104
1105**B.4 KNOWLEDGE DISTILLATION BASELINES**1106
1107
1108
1109
1110
1111

To verify the effectiveness of our proposed causal-perturbation contrastive distillation, we conduct comparative experiments against **classical knowledge distillation** methods and existing **time series distillation** techniques. Classical knowledge distillation has been widely applied in image recognition, natural language processing, and other domains, effectively extracting and transferring knowledge to improve model performance. The main approaches include:

1112
1113
1114
1115
1116
1117

- Feature Knowledge Distillation (FKD) (Zagoruyko & Komodakis, 2017) suggests intermediate features contain rich knowledge and performs distillation by aligning teacher and student features at intermediate and penultimate layers.
- Contrastive Representation Distillation (CRD) (Tian et al., 2019) brings paired teacher–student features closer in the representation space while pushing apart non-paired features, thereby improving the representational ability of the student network.

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

In recent years, knowledge distillation has also gained traction in time series forecasting, which is employed to transfer temporal knowledge from powerful pre-trained models to enhance the predictive performance of target models. Representative methods include:

1128
1129
1130
1131
1132
1133

- TimeDistill (Ni et al., 2025b) distills multi-scale and multi-period temporal signals from complex pre-trained models (*e.g.*, Transformers) into a simple MLP, successfully promoting the simple MLP to equip comparable performance with those complicated ones.
- TimeKD (Liu et al., 2025a) utilizes a model with access to future series as the teacher network to learn high-quality temporal representations and transfer them to a student network that observes only historical inputs.

1134
1135
1136
1137**B.5 METRICS OF TIME SERIES FORECASTING**1138
1139
1140
1141
1142

In this paper, we mainly employ four widely used metrics to assess model performance, including Mean Squared Error (MSE) and Mean Absolute Error (MAE).

1143
1144

MSE measures the average of the squared differences between the predicted and actual values. MSE gives more weight to more significant errors because the errors are squared, making it sensitive to

1134
 1135 Table A-4: Parameter counts (in millions, M), Floating-Point Operations (FLOPs) (in gigas, G),
 1136 and forecasting errors for alternative image branches and our FACTS image branch. *Note:* all STD
 1137 values in the table are scaled by $\times 10^{-2}$.

Image Branch	Parameters (M)	FLOPs (G)	MSE	STD	MAE	STD
VGGNet16	14.72	1.26	0.0901	0.16	0.1284	0.37
ViT-B/16	85.65	16.86	0.0981	0.24	0.1301	0.44
CLIP	427.60	116.29	0.0891	0.20	0.1193	0.22
FACTS (Ours)	2.36	0.26	0.0716	0.03	0.0968	0.05

1143
 1144 outliers. Given T steps ground-truth time series signal $\mathbf{y} \in \mathbb{R}^{T \times V_{\text{time}}}$ and prediction $\hat{\mathbf{y}} \in \mathbb{R}^{T \times V_{\text{time}}}$,
 1145 MSE is calculated as:

$$1146 \quad \text{MSE} = \frac{1}{TV_{\text{time}}} \sum_{t=1}^T \sum_{v=1}^{V_{\text{time}}} (\mathbf{y}_{t,v} - \hat{\mathbf{y}}_{t,v})^2. \quad (34)$$

1147
 1148 **MAE** quantifies the average absolute differences between predicted and actual values. It is less
 1149 sensitive to outliers than MSE because it does not square the errors, treating all errors linearly. MAE
 1150 is computed as:

$$1151 \quad \text{MAE} = \frac{1}{TV_{\text{time}}} \sum_{t=1}^T \sum_{v=1}^{V_{\text{time}}} |\mathbf{y}_{t,v} - \hat{\mathbf{y}}_{t,v}|. \quad (35)$$

1152
 1153 *Note:* Both metrics are ‘lower is better’.

1154 C MODEL ANALYSIS

1155 C.1 OVERVIEW OF THE ALTERNATIVE IMAGE ENCODERS

1156 To evaluate the effectiveness of our proposed bilinear orthogonal projector, we remove it and conduct
 1157 controlled experiments. After removal, the input dimensionality of the image branch changes from
 1158 $\mathbb{R}^{V_{\text{img}}}$ ($V_{\text{img}} := r_h r_w$, $r_h \ll H$ and $r_w \ll W$) to $\mathbb{R}^{H \times W}$, which prevents it from processing high-
 1159 dimensional raw images. Accordingly, we replace the original image branch with either trained-
 1160 from-scratch or pretrained image models. These alternatives take high-dimensional images $\mathbf{x}_{\text{img}} \in$
 1161 $\mathbb{R}^{H \times W}$ as input and output a time series $\hat{\mathbf{y}}_{\text{img}} \in \mathbb{R}^{T \times V_{\text{time}}}$.

1162
 1163 **Trained-From-Scratch Image Models.** We adopt the classic VGGNet16 (Simonyan & Zisserman,
 1164 2014) and ViT-B/16 (Dosovitskiy et al., 2020) as replacement image branches and substitute their
 1165 classifier with a temporal projector, which projects the image feature as the time series.

1166
 1167 **Pretrained Image Models.** Compared with image models trained from scratch, pretrained models
 1168 learn stronger representations from large-scale image datasets. Therefore, we use the CLIP’s (Rad-
 1169 ford et al., 2021) image encoder as replacement image branches. Tab. A-4 reports the computational
 1170 and parameter costs of our image branch and the alternatives. We can observe that our image branch
 1171 has substantially fewer parameters and requires far less computation, while FACTS achieves the best
 1172 forecasting performance. These results indicate that our image branch with the bilinear orthogonal
 1173 projector can efficiently and effectively extract meaningful temporal signals from images to improve
 1174 time series forecasting.

1175 C.2 IMAGE DIMENSIONALITY REDUCTION METHODS

1176 To validate the effectiveness of our bilinear orthogonal projector, we replace it with alternative
 1177 dimensionality-reduction techniques and conduct controlled experiments, including:

- 1178 • Principal Component Analysis (PCA) (Abdi & Williams, 2010). Input images are first
 1179 flattened and mean-centered to learn principal directions via covariance decomposition.
 1180 Then, each image is projected to the top K principal components as a low-dimensional
 1181 vector.

1188

1189

Table A-6: Computational cost and performance comparison on Folsom dataset.

1190

1191

1192

1193

1194

1195

1196

1197

Table A-7: Parameter sensitivity analysis results of α in random modality dropout.

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

- Independent Component Analysis (ICA) (Lee, 1998). Flattened images are first mean-centered and whitened, after which a set of statistically independent bases is learned by maximizing non-Gaussianity or information. Independent components under these bases represent each image, and the top K components are used as reduced features.

1211

1212

C.3 RANDOM MODALITY DROPOUT

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

C.4 COMPUTATIONAL COST ANALYSIS

1237

1238

1239

1240

1241

Our FACTS adopts a teacher-student architecture. The teacher network is used only during training to distill causal knowledge into the student network, while the student network serves as the final deployable model. Here, we provide a detailed analysis of the computational overheads incurred by FACTS and other multimodal methods. The Floating-point OPerations (FLOPs) and training time (in hours, H) of all methods are reported in Tab. A-6. All experiments are conducted on Folsom dataset using an NVIDIA RTX 4090 GPU. Even though FACTS includes both teacher and student

Table A-5: Results of student networks with missing modalities. *Note:* all STD values in the table are scaled by $\times 10^{-2}$.

Missing Modality	Algorithm	MSE	STD	MAE	STD
Image	w/o RMD	0.1729	1.08	0.2883	1.75
	with RMD	0.0842	0.27	0.1304	0.59
Weather	w/o RMD	0.0958	0.25	0.2232	0.73
	with RMD	0.0781	0.09	0.1193	0.18
Image and Weather	w/o RMD	0.3553	1.96	0.4359	2.80
	with RMD	0.0937	0.32	0.1457	0.53
N/A	FACTS	0.0716	0.03	0.0968	0.05

We also analyze the dropout ratio α in our employed random modality dropout, the results are reported in Tab. A-7. We can observe that when $\alpha=0.0$ (no modalities are dropped during training), the model’s performance degrades significantly in the presence of missing modalities. When $\alpha=0.4$, the model suffers only minor performance losses under modality absence, so we set $\alpha=0.4$ in our experiments. When $\alpha=0.8$, a large fraction of modalities are dropped, which severely disrupts the student training and leads to an obvious decline in performance.

Table A-6: Computational cost and performance comparison on Folsom dataset.

Model	FLOPs (Giga)	Training Time (H)	MSE	STD	MAE	STD
AimTS	5.34	3.65	0.1366	1.26	0.1843	1.62
TimeVLM	31.03	9.7	0.1210	0.15	0.1599	0.24
FACTS (Proposed)	0.93	1.54	0.0716	0.03	0.0968	0.05

networks, it requires only 0.93G FLOPs, which is significantly lower than AimTS (5.34G) and TimeVLM (31.03G). This indicates that our FACTS is highly efficient for real-world inference.

C.5 UNDERLYING DATA ASSUMPTIONS

Our FACTS aims to leverage auxiliary modalities through a teacher network during training to uncover causal drivers, and then transfer this knowledge to a deployable student network that relies solely on historical data, thereby enhancing the performance and reliability of student network. To achieve this, there are two key and readily satisfied underlying data assumptions:

1. Future auxiliary data (e.g., sky images) contains true causal drivers that reveal temporal dynamics. This condition is validated by the results in Tab. 1, where teacher network (with access to future auxiliary data) consistently outperforms student network (which relies solely on historical data). This demonstrates that the future auxiliary data indeed carries essential causal information.
2. The perturbed examples (with random future data) can be clearly distinguished from the unperturbed examples (with true future data). This condition is supported by the visualization results in Fig. A-3, which show a clear separation between the unperturbed (red) and perturbed (green) features.

C.6 T-SNE VISUALIZATION FOR CPCD

To intuitively validate the effectiveness of our CPCD, we conducted a t-SNE visualization on the test set of Folsom dataset. As shown in Fig. A-3, the teacher network’s unperturbed features (red, representing ‘faithful causal knowledge’) and perturbed features (green, representing ‘spurious correlations’) correspond to two clearly separated trajectories. This suggests that the perturbation introduces substantial shifts in the feature space of teacher network, enabling CPCD to construct meaningful contrasting signals.

More importantly, the features of student network (blue) largely follow the same manifold as the unperturbed features of teacher network (red), while remaining clearly separated from the perturbed features of teacher network (green). This visualization indicates that CPCD successfully guides student network to learn the representations aligned with the ‘faithful causal knowledge’ extracted by teacher network, while repelling them from the ‘spurious correlations’, and thus achieving effective causal disentanglement.

C.7 COMPARED MULTIMODAL DATA FUSION METHODS

To verify the effectiveness of our lag-aware multimodal fusion mechanism, we compare it against three fusion methods, including gating-based, attention-based, and simple-similarity-based approaches. For completeness, we also report a simple similarity-based fusion baseline that ignores temporal misalignment.

Gating-Based Method. Given future series $\hat{y}_{\text{time}}, \hat{y}_{\text{img}}, \hat{y}_{\text{wea}} \in \mathbb{R}^{T \times V_{\text{time}}}$ predicted by various modality branches, a gating network is employed to map them to gating tensors $g_{\text{time}}, g_{\text{img}}, g_{\text{wea}} \in [0, 1]^{T \times V_{\text{time}}}$. Then, these future series are fused as:

$$\hat{y} = \hat{y}_{\text{time}} \odot g_{\text{time}} + \hat{y}_{\text{img}} \odot g_{\text{img}} + \hat{y}_{\text{wea}} \odot g_{\text{wea}}. \quad (36)$$

Attention-Based Method. These modality-specific sequences are concatenated and fused by a Multi-Head Self-Attention (MHSA) layer, as follows:

$$\hat{y} = \text{MHSA}_{\text{fuse}}(\hat{y}_{\text{time}}, \hat{y}_{\text{img}}, \hat{y}_{\text{wea}}). \quad (37)$$

1296 **Simple-Similarity-Based Method.** As a simple baseline, it directly computes channel-wise simi-
 1297 larities among $\hat{\mathbf{y}}_{\text{time}}$, $\hat{\mathbf{y}}_{\text{img}}$, and $\hat{\mathbf{y}}_{\text{wea}}$ to derive static weights, as follows:
 1298

$$1299 \quad w_{\text{img}}^{(v)} = \sum_{t=1}^T \hat{\mathbf{y}}_{\text{time}, t, v} \hat{\mathbf{y}}_{\text{img}, t, v}, \quad w_{\text{wea}}^{(v)} = \sum_{t=1}^T \hat{\mathbf{y}}_{\text{time}, t, v} \hat{\mathbf{y}}_{\text{wea}, t, v}, \quad v \in \{1, \dots, V_{\text{time}}\}. \quad (38)$$

1302 Then, given the similarities $\mathbf{w}_{\text{img}} = [w_{\text{img}}^{(1)}, \dots, w_{\text{img}}^{(V_{\text{time}})}]^\top \in \mathbb{R}^{V_{\text{time}}}$ and $\mathbf{w}_{\text{wea}} =$
 1303 $[w_{\text{wea}}^{(1)}, \dots, w_{\text{wea}}^{(V_{\text{time}})}]^\top \in \mathbb{R}^{V_{\text{time}}}$, the final prediction $\hat{\mathbf{y}}$ are obtained as:
 1304

$$1305 \quad \hat{\mathbf{y}} = \hat{\mathbf{y}}_{\text{time}} + \hat{\mathbf{y}}_{\text{img}} \odot \mathbf{w}_{\text{img}} + \hat{\mathbf{y}}_{\text{wea}} \odot \mathbf{w}_{\text{wea}}. \quad (39)$$

1307 STATEMENT ON LLM USAGE

1309 We used a large language model (LLM; *e.g.*, ChatGPT) solely as an editorial aid to polish the
 1310 manuscript’s prose. The LLM was *not* used for research ideation, model or algorithm design, dataset
 1311 curation, experiment setup, code writing, analysis, or result generation. All technical contributions,
 1312 experiments, figures/tables, and conclusions were conceived and produced by the authors, and all
 1313 LLM-suggested edits were manually reviewed for accuracy and originality; citations were inserted
 1314 and verified by the authors. No non-public data was shared with the LLM.

1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349