# Reliable Lifelong Multimodal Editing: Conflict-Aware Retrieval Meets Multi-Level Guidance

Qiang Zhang 1\*, Fanrui Zhang 1,2\*, Jiawei Liu 1†, Ming Hu 3, Junjun He 3, Zheng-Jun Zha 1

MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, USTC 

<sup>2</sup>Shanghai Innovation Institute

<sup>3</sup>Shanghai Artificial Intelligence Laboratory
{zq\_126, zfr888}@mail.ustc.edu.cn {jwliu6, zhazj}@ustc.edu.cn

ming.hu@monash.edu hejunjun@sjtu.edu.cn

#### **Abstract**

The dynamic nature of real-world information demands efficient knowledge editing in multimodal large language models (MLLMs) to ensure continuous knowledge updates. However, existing methods often struggle with precise matching in largescale knowledge retrieval and lack multi-level guidance for coordinated editing, leading to less reliable outcomes. To tackle these challenges, we propose CARML, a novel retrieval-augmented editing framework that integrates conflict-aware dynamic retrieval with multi-level implicit and explicit guidance for reliable lifelong multimodal editing. Specifically, CARML introduces intra-modal uncertainty and inter-modal conflict quantification to dynamically integrate multi-channel retrieval results, so as to pinpoint the most relevant knowledge to the incoming edit samples. Afterwards, an edit scope classifier discerns whether the edit sample semantically aligns with the edit scope of the retrieved knowledge. If deemed in-scope, CARML refines the retrieved knowledge into information-rich continuous prompt prefixes, serving as the implicit knowledge guide. These prefixes not only include static knowledge prompt that capture key textual semantics but also incorporate token-level, context-aware dynamic prompt to explore fine-grained cross-modal associations between the edit sample and retrieved knowledge. To further enhance reliability, CARML incorporates a "hard correction" mechanism, leveraging explicit label knowledge to adjust the model's output logits. Extensive experiments across multiple MLLMs and datasets indicate the superior performance of CARML in lifelong multimodal editing scenarios.

## 1 Introduction

The rapid evolution of multimodal large language models (MLLMs), distinguished by the deep integration of visual and textual modalities, has significantly expanded the application boundaries of language models in real-world scenarios [1, 41, 43]. However, the static nature of pre-trained MLLMs' embedded knowledge presents a critical bottleneck in continuously evolving information environments [7]. To address this, knowledge editing [37, 38] has emerged as a promising paradigm for efficiently updating or correcting specific knowledge within models, avoiding the high costs of retraining. This technique plays an indispensable role in critical fields such as privacy preservation [19], bias mitigation [22], jailbreak attack defense [16], and hallucination correction [44, 8].

<sup>\*</sup> Equal contribution. † Corresponding author.

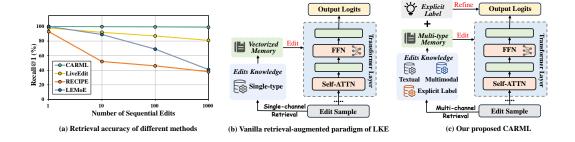


Figure 1: (a) The trend of retrieval accuracy (Recall@1) for the most relevant editing knowledge as the number of sequential edits increases across different methods. (b) The paradigm of conventional retrieval-augmented lifelong knowledge editing (LKE) methods. (c) Our proposed CARML achieves precise localization of relevant editing knowledge by dynamically integrating multi-channel retrieval information and enables reliable knowledge editing through multi-level collaborative guidance.

Existing knowledge editing research predominantly focuses on large language models (LLMs) domain, primarily addressing single or batch knowledge editing tasks. These approaches can be broadly categorized into two types: (1) Intrinsic knowledge editing [18, 30], which directly modifies specific model parameters to update and store new knowledge; and (2) External knowledge-aided editing [31, 3], which synergizes additional contexts or parametric modules (*e.g.*, in-context learning [45] or Feed-Forward Networks (FFN) [39]) to update knowledge without altering the model itself. While these methods have demonstrated efficacy within LLMs, their direct transposition to MLLMs often encounters substantial resistance. The inclusion of visual modalities and the complex semantic interactions between modalities make it difficult for these approaches to effectively capture crossmodal semantic associations, thereby limiting their capacity to steer MLLMs toward generating desired responses [7, 33].

In practical applications, LLMs or MLLMs often require continuous knowledge updates to reflect the dynamic changes of real-world information, giving rise to the concept of lifelong knowledge editing [2]. Conventional single or batch editing paradigms face acute challenges in such lifelong scenarios. This is primarily the inability to decouple the knowledge associated with different editing requests, which produces the cumulative effect of parameter perturbations, leading to catastrophic forgetting [20]. To counteract this, certain methods construct editable knowledge bases to store each edits independently, and introduce retrieval-augmented techniques to avoid directly modifying the model's original parameters, thereby alleviating forgetting [14, 15]. However, as the volume of editable knowledge grows, these methods encounter increasing difficulties in accurately matching relevant knowledge (Figure 1(a)). More critically, the editable knowledge they architect is generally circumscribed to a single type, lacking the synergistic integration of multi-level knowledge (encompassing unimodal, multimodal, and explicit label information), thus failing to collaboratively guide the editing process. This deficiency fundamentally limits the reliability of the editing outcomes.

To address this critical gap, we introduce CARML, a novel retrieval-augmented editing framework specifically designed to tackle the above challenges. The core innovation of CARML lies in its integration of conflict-aware dynamic retrieval and multi-level implicit and explicit knowledge guidance, enabling reliable lifelong knowledge editing in MLLMs. Its workflow is as follows:

To achieve precise knowledge retrieval, CARML introduces a conflict-aware dynamic retrieval mechanism. By leveraging a pre-trained multimodal embedding model, CARML processes visual, textual and multimodal information of sequential editing requests, constructing knowledge bases tailored to specific modalities. A multi-channel retrieval strategy is then used to query these knowledge bases in parallel for the incoming edit samples, generating modality-specific retrieval candidates. The key innovation lies in CARML's ability to quantify intra-modal uncertainty and inter-modal conflict across retrieval candidates, dynamically weighting and locating the most accurate and consistent retrieved knowledge. To ensure edits are applied only when necessary, CARML constructs an edit scope classifier that maps the embeddings of edit samples and retrieved knowledge into a newly constructed semantic space using two trainable MLPs. By calculating the semantic distance, it

evaluates whether a subsequent editor will be triggered. This mechanism safeguards the locality of editing by effectively filtering out irrelevant edit samples.

To ensure the high reliability of the editing process, CARML incorporates a carefully designed multi-level implicit and explicit knowledge guidance strategy. At the implicit knowledge guidance level, CARML distills retrieved knowledge into information-rich continuous prompt prefixes, which effectively guide MLLMs to generate the desired outcomes. These prefixes encapsulate two innovative types of prompts: (1) Static knowledge prompt, capturing key knowledge semantics in the textual modality. (2) Context-aware dynamic prompts, which dynamically integrate multi-type retrieval knowledge at a fine-grained token level, under the guidance of edit samples. These prompts can provide highly task-specific multimodal instructions tailored to the editing context. At the explicit knowledge guidance level, CARML further enhances the reliability of the editing process by introducing an output logits enhancement mechanism. During inference, this mechanism directly boosts the probabilities of tokens aligned with the true labels in the retrieved knowledge. By decoupling the knowledge update process from the core parameters of the MLLM and selectively integrating the most relevant retrieved knowledge, CARML ensures adherence to three critical editing properties: reliability, generality, and locality.

Our contributions are summarized as follows: (1) We architect CARML, a pioneering retrieval-augmented editing framework, specifically conceived for the demands of lifelong knowledge editing in MLLMs. (2) We introduce a conflict-aware dynamic retrieval mechanism that uniquely exploits multichannel retrieval information for accurate knowledge localization based on quantified uncertainty and conflict degree. (3) We construct an edit scope classifier, which guarantees the locality of editing by effectively filtering irrelevant edit samples. (4) We design an innovative multi-level collaborative guidance strategy, integrating implicit (static and dynamic prompts) and explicit (logits enhancement) knowledge injection to achieve reliable editing.

#### 2 Related Works

Knowledge Editing for LLMs. Knowledge editing focuses on directly modifying or updating fact-based knowledge or behavior stored within a model without the need for costly full retraining [12, 42]. And an ideal editing method should meet three critical criteria: reliability (accurately modifying the target knowledge), generality (applying the modification to relevant inputs), and locality (preserving unrelated knowledge) [38]. Knowledge editing for LLMs can be broadly categorized into intrinsic knowledge editing and external knowledge-aided methods. The intrinsic knowledge editing approaches involve updating specific model parameters to modify its knowledge. A straightforward strategy is to locate and edit parameters linked to specific knowledge. For instance, ROME [28] uses causal mediation analysis to locate editable regions, while MEMIT [29] supports batch editing via rank-one parameter modifications. Another strategy involves meta-learning, training a hypernetwork to update LLM parameters, as seen in MEND [30] and KE [9]. External knowledge-aided methods aim to store edited knowledge in external memory, leaving the model parameters unchanged. During inference, relevant information is retrieved to revise outputs. Notable examples include SERAC [31], IKE [45], and RECIPE [3].

Knowledge Editing for MLLMs. Applying knowledge editing to multimodal large language models (MLLMs) is an emerging but challenging field [40, 32, 26]. Due to the complexity of multimodal information, directly adopting LLM editing methods often yields suboptimal performance [11, 4]. Research on MLLM knowledge editing is still in its early stages, with only a few methods tailored to multimodal scenarios. For instance, UniKE [33] proposes a unified framework that combines intrinsic knowledge editing with external memory assistance. LiveEdit [2] generates independent low-rank experts for each editing instance, employing hard routing and soft routing mechanisms to select and combine these experts. Despite these advancements, achieving reliable and continuous knowledge editing for MLLMs, particularly for lifelong knowledge editing that supports sustained updates, remains an open and pressing challenge.

#### 3 Method

In this section, we first formalize the problem of the lifelong multimodal knowledge editing (Section 3.1). We then provide an overview of our proposed CARML framework (Section 3.2), followed by

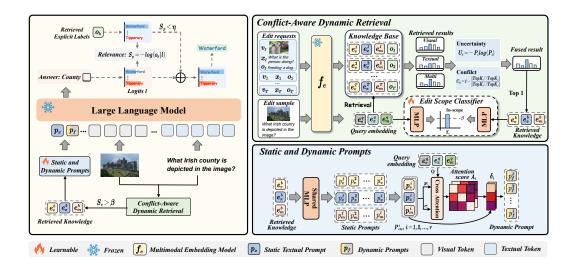


Figure 2: The overall architecture of the proposed CARML. It consists of two key modules: (1) Conflict-aware dynamic retrieval module: locates the most relevant knowledge for the edit sample and determines whether to initiate the subsequent editing process. (2) Multi-level knowledge guidance: delivers both implicit guidance (static and dynamic prompts) and explicit guidance (logits enhancement) for reliable editing of MLLM.

detailed descriptions of its two core modules: Conflict-Aware Dynamic Retrieval (Section 3.3) and Multi-Level Knowledge Guidance (Section 3.4).

#### 3.1 Background: Lifelong Multimodal Knowledge Editing

We focus on the task of lifelong multimodal knowledge editing. Given a Multimodal Large Language Model (MLLM)  $f_{\Theta}: v \times x \to o$ , parameterized by  $\Theta$ , which maps an input image v and text x to a prediction  $o = f_{\Theta}(v, x)$ . The editing process involves a sequence of edit requests evolving over time, denoted as  $D_{edit} = \{(v_t, x_t, o_t)\}_{t=1}^T$ , where  $(v_t, x_t)$  is the target input requiring editing, and  $o_t$  is the desired output. At time step T, a Model Editor (ME) receives the model  $f_{\Theta_{T-1}}$  (edited at step T-1), along with the current edit request  $(v_T, x_T, o_T)$ . It subsequently yields an updated model  $f_{\Theta_T}$  as follows:

$$f_{\Theta_T} = \text{ME}\left(f_{\Theta_{T-1}}, v_T, x_T, o_T\right), \quad \text{s.t. } f_{\Theta_T}\left(v, x\right) = \begin{cases} o_t & \text{if } (v_t, x_t) \in D_{edit}, \\ f_{\Theta}\left(v, x\right) & \text{if } (v, x) \notin D_{edit}. \end{cases}$$

This equation stipulates that subsequent to an edit, the updated MLLM  $f_{\Theta_T}$  should correctly predict the outcome for the current edit request, *i.e.*,  $f_{\Theta_T}\left(v_T,x_T\right)=o_T$ , while maintaining effective edits for past knowledge  $(v_t,x_t)\in D_{edit}$ . Additionally, for unrelated data  $(v,x)\notin D_{edit}$ , the model should retain the original capabilities of  $f_{\Theta}$ .

## 3.2 Overview of CARML

CARML is a novel retrieval-augmented editing framework designed for reliable lifelong multimodal knowledge editing, as shown in Figure 2. Its core workflow is as follows: Initially, CARML constructs an evolving multi-type edit knowledge base that stores historical edits context. Upon the arrival of a new edit sample, CARML instigates its innovative Conflict-Aware Dynamic Retrieval mechanism. This module utilizes a multi-channel retrieval strategy and quantifies intra-modal uncertainty and inter-modal conflicts, thereby adaptively fusing multi-channel retrieval information and re-ranking candidates to ensure highly accurate retrieval. Then, an edit scope classifier discerns whether the edit sample semantically aligns with the editing scope of the retrieved knowledge, a crucial step

for preserving model locality. If deemed in-scope, CARML activates a synergistic Multi-Level Knowledge Guidance strategy, comprising implicit guidance (static and dynamic prompts) and explicit guidance (logits enhancement). These strategies collaboratively navigate the MLLM towards generating outputs that faithfully adhere to the edit directive.

## 3.3 Conflict-Aware Dynamic Retrieval

To achieve precise retrieval within a continuously growing knowledge base, CARML introduces a conflict-aware dynamic retrieval mechanism comprising four key components: knowledge base construction, multi-channel retrieval, conflict-aware fusion and re-ranking, and an edit scope classifier.

**Knowledge Base Construction.** CARML first curates a multi-type edit knowledge base  $K = \{k_t = (e_v^t, e_x^t, e_m^t, o_t)\}_{t=1}^T$ , where each entry  $k_t$  corresponds to a historical edit request  $(v_t, x_t, o_t)$ . The knowledge base is initialized as empty and grows with new edit requests. The embeddings  $e_v^t, e_x^t, e_m^t \in \mathbb{R}^d$  represent the visual, textual, and fused multimodal embeddings, respectively, extracted using a frozen, pre-trained multimodal embedding model  $f_E$  (e.g., mexma-siglip2 [36]):

$$e_v^t = f_E^v(v_t), e_x^t = f_E^x(x_t + o_t), e_m^t = LayerNorm\left(e_v^t + e_x^t\right)$$
(2)

where  $f_E^v$  and  $f_E^x$  denote the visual and textual encoders of the embedding model  $f_E$ , and  $(x_t + o_t)$  stands for the string concatenation of  $x_t$  and  $o_t$ .

**Multi-Channel Retrieval.** Given an incoming edit sample  $q=(v_q,x_q)$ , its corresponding query embeddings  $q_e=(e_v^q,e_x^q,e_m^q)$  are computed via the similar process outlined in Equation 3.3. Subsequently, CARML executes a multi-channel retrieval strategy to identify relevant entries from the knowledge base K. This strategy computes the cosine similarity score between the query embedding  $q_e$  and each modality-specific embedding sets within the knowledge base K.

$$S_{v} = sim\left(e_{v}^{q}, \left\{e_{v}^{t}\right\}_{t=1}^{T}\right), S_{x} = sim\left(e_{x}^{q}, \left\{e_{x}^{t}\right\}_{t=1}^{T}\right), S_{m} = sim\left(e_{m}^{q}, \left\{e_{m}^{t}\right\}_{t=1}^{T}\right)$$
(3)

where  $sim(\cdot,\cdot)$  denotes the cosine similarity function. The sets  $\{e_v^t\}_{t=1}^T$ ,  $\{e_x^t\}_{t=1}^T$  and  $\{e_m^t\}_{t=1}^T$  represent the visual, textual and multimodal embedding collections within the knowledge base K, respectively. And  $S_v, S_x, S_m$  are the resultant modality-specific similarity score vectors.

**Conflict-Aware Fusion and Re-ranking.** To judiciously integrate information from multi-channels and manage potential inter-modal discrepancies, we devise a conflict-aware fusion and re-ranking mechanism. The procedure is as follows:

For the similarity score  $S_i$  of each modality  $i \in \{v, x, m\}$ , we first convert it into probability distribution  $P_i = softmax(S_i)$ . The information entropy  $U_i = -P_i \log(P_i)$  is then calculated for each distribution, quantifying the internal uncertainty of the retrieval results for modality i.

Beyond intra-modal uncertainty, the degree of decisional conflict among modalities is paramount for assessing fusion reliability. We first identify the index set  $TopK_i$  of the top-K candidates exhibiting the highest similarity scores for each modality i. For any pair of distinct modalities i and j, the Jaccard similarity coefficient  $J_{ij}$  of their  $TopK_i$  and  $TopK_j$  index sets is computed. Then, the conflict degree  $C_{ij}$  between modalities i and j is defined as:

$$C_{ij} = 1 - \frac{|TopK_i \cap TopK_j|}{|TopK_i \cup TopK_j|} \tag{4}$$

Considering both intra-modal uncertainty  $U_i$  and inter-modal conflicts  $C_{ij}$ , a dynamic weighting mechanism is introduced to adaptively assign a weight  $W_i$  to each modality. This weight aims to reward modalities that are both low-uncertainty and less conflict with others. Specifically, we first calculate an intermediate score  $m_i$  for each modality:

$$m_{i} = \frac{1}{2} \cdot \left( 1 - \frac{U_{i}}{\sum_{k} U_{k}} \right) + \frac{1}{2} \cdot \left( 1 - \frac{\sum_{i \neq j} C_{ij}}{\sum_{k,l;k \neq l} C_{kl}} \right)$$
 (5)

where the first term denotes the normalized entropy, the second term represents normalized conflict degree for modality i. And the final dynamic weights are procured via  $W_i = softmax(m_i)$ .

Finally, these dynamic weights  $W_i$  are employed to perform a weighted sum of the original similarity scores  $S_i$  for each modality, yielding the definitive fused similarity score vector  $S_f = \sum_{i \in \{v, x, m\}} W_i$ . Then, all candidates in the knowledge base are re-ranked based on  $S_f$ , and the single premier entry exhibiting the highest fused score is selected as the final retrieved knowledge  $k_b = (e_v^b, e_x^b, e_m^b, o_b)$ .

**Edit Scope Classifier.** To stringently preserve model locality, CARML integrates an edit scope classifier. This component determines whether the edit sample q falls within the editing scope of the retrieved knowledge  $k_b$ .

Specifically, two lightweight, trainable MLPs are used to map the current edit sample's query embedding  $q_e$  and the retrieved knowledge  $k_b$  into a fresh semantic spaces. These MLPs are trained with the objective of minimizing the distance between in-scope query-knowledge pairs and maximizing it for out-of-scope pairs in this projected space. The mean cosine similarity  $S_e$  between the mapped query and retrieved knowledge embeddings is then computed. If  $S_e$  exceeds a predefined threshold  $\beta$ , the current edit sample q is classified as in-scope; otherwise, it is deemed out-of-scope.

This scope classifier is optimized using the Focal Loss  $\mathcal{L}_{scope}$  [23], enabling it to concentrate on hard-to-classify instances. Ground-truth labels for training data are predefined: reliability and generality samples (which should be affected by the edit) are labeled as "in-scope", while locality samples (which must remain unaffected) are designated as "out-of-scope". The loss function is:

$$\mathcal{L}_{scope} = -y(1-\hat{y})^2 \log\left(\hat{y}\right) - (1-y)(\hat{y})^2 \log\left(1-\hat{y}\right)$$
(6)

where y is the ground-truth label,  $\hat{y}$  is the classifier's predicted probability.

#### 3.4 Multi-Level Knowledge Guidance

When the edit sample q is classified as in-scope, CARML activates its multi-level knowledge guidance module. This module leverages the retrieved knowledge  $k_b = (e_v^b, e_x^b, e_m^b, o_b)$  to provide both implicit and explicit guidance to the MLLM, steering it towards generating the desired output  $o_b$ .

## 3.4.1 Implicit Guidance: Static and Dynamic Prompts

Inspired by prompt tuning [25, 46], we distill the retrieved knowledge  $k_b$  into parameter-efficient continuous prompt, serving as implicit reference input to the MLLM. These continuous prompts are prepended to the MLLM's original input embedding sequence and comprise two distinct types:

**Static Knowledge Prompt.** This prompt is engineered to encapsulate the core semantic essence of the textual knowledge statement contained within the retrieved  $k_b$ . A lightweight MLP  $(MLP_p)$  is utilized to map the retrieved knowledge's text embedding  $e_x^b$  to a fixed-length continuous prompt  $p_x$ :

$$p_x = f_{resp}(MLP_p(e_x^b)) \tag{7}$$

where  $p_x \in \mathbb{R}^{r \times d^{mllm}}$ , r is the length of the continuous prompt,  $d_{mllm}$  is the word embedding dimension of the MLLM, and  $f_{resp}$  maps the MLP output vector into the desired matrix shape.

Context-Aware Dynamic Prompt. Since static knowledge prompts may lack the specificity required for intricate multimodal edits, we introduce the context-aware dynamic prompt. This generates customized multimodal instructions that are highly attuned to the interaction between the edit sample q and the retrieved knowledge  $k_b$ . Initially, the visual  $(e_v^b)$  and multimodal  $(e_m^b)$  embeddings of the retrieved knowledge  $k_b$  are transformed via shared-weight  $MLP_p$  (Equation 3.4.1) to produce continuous prompts  $p_v$  and  $p_m$  of length r, respectively. Then, we propose a token-level attention fusion mechanism to further explore the fine-grained associations between the edit sample q and retrieved knowledge  $k_b$ . For each token position i (from 1 to r), the edit sample embedding  $q_e$   $(e_v^q, e_x^q, e_m^q)$ , forming as a  $3 \times d^{mllm}$  matrix  $Q_e$ ) serves as the query, while the i-th tokens from the three modality prompts  $(p_x^i, p_v^i, p_m^i)$ , forming a  $3 \times d^{mllm}$  matrix  $P_{ix}^c$ ), serve as keys and values.

This calculates a token-specific attention score  $A_i \in \mathbb{R}^{3\times 3}$ :

$$A_i = softmax \left( \frac{Q_e \cdot (P_{ctx}^i)^T}{\sqrt{d}} \right), i = 1, 2, ..., r$$
 (8)

To derive context-aware fused prompt token  $p_f^i$ , we first sum the columns of  $A_i$  to obtain a  $1\times 3$  vector  $A_i'$  representing the aggregated importance of each prompt modality  $p_x^i$ ,  $p_v^i$ ,  $p_m^i$  with respect to the edit sample query  $q_e$ . Later, we set the fusion weight  $\delta_i = softmax(A_i')$ . The i-th fine-grained fused prompt token  $p_f^i$  is then computed as a weighted sum:  $p_f^i = P_{ctx}^i \cdot \delta_i$ . Repeating this fusion for all i=1,2,...,r, we can obtain the final context-aware dynamic prompt  $p_f \in \mathbb{R}^{r\times d^{mllm}}$ .

Finally, the static knowledge prompt  $p_x$ , context-aware dynamic prompt  $p_f$ , and the MLLM embeddings for the query image  $f_{emb}\left(v_q\right)$  and text  $f_{emb}\left(x_q\right)$  are concatenated to form the input sequence of MLLM. The inference process is reformulated as:  $o=f_\Theta\left(p_x\oplus p_f\oplus f_{emb}\left(v_q\right)\oplus f_{emb}\left(x_q\right)\right)$ .

## 3.4.2 Explicit Guidance: Output Logits Enhancement

To further enhance editing reliability, we introduce an explicit token bias mechanism that directly adjusts the MLLM's output logits. Specifically, during inference, let  $l \in \mathbb{R}^V$  be the initial probability distribution predicted by the MLLM after applying softmax, where V is the vocabulary size, and  $o_b$  is the ideal output token ids from the retrieved knowledge  $k_b$ . Therefore, thanks to the high precision of the retrieval strategy described above, we update the logits distribution l simply by:

$$l' = l + h(o_b), \text{ if } S_p = -\log(o_b|l) < \eta$$
 (9)

Where  $h(o_b) \in \mathbb{R}^V$  corresponds to the one-hot encoding of the desired token id  $o_b$ . The similarity  $S_p$  is used to measure the relevance between the original probability distribution l and the desired output  $o_b$ . Only when it is below the threshold  $\eta$ , the corresponding logits enhancement strategy is initiated, which further protects the model's original ability to irrelevant inputs.

## 3.5 Training Objective

The training objective of CARML is to jointly optimize the scope classifier and the implicit guidance modules, while keeping the core MLLM parameters frozen. Following previous work [2], we define the editing loss  $\mathcal{L}_{edit}$  to ensure that edits satisfy reliability, generality, and locality requirements. And the overall training loss  $\mathcal{L}_{total}$  is as follows:

$$\mathcal{L}_{total} = \mathcal{L}_{edit} + \lambda \cdot \mathcal{L}_{scope} \tag{10}$$

where  $\lambda$  is a weight balancing the two losses.

## 4 Experiments

## 4.1 Experimental Setup

**Datasets and Models.** Following [7], our experiments are conducted on the MMEdit benchmark [7], which includes two sub-tasks: Editing VQA (E-VQA) and Editing Image Caption (E-IC). Additionally, we incorporated VLKEB [17] dataset, which consists of real images to better represent real-world scenarios. Besides, experiments are executed on two prominent MLLMs: BLIP 2-OPT (2.7B) [21] and LLaVA-V1.5 (7B) [24].

**Baselines.** CARML's performance is compared with the following baselines: (1) FT-L [7]: direct fine-tuning of the last layer of the LLM. (2) Two intrinsic knowledge editing methods: TP [18] and MEND [30]. (3) External knowledge-aided methods: SERAC [31], LEMOE [39], and RECIPE [3], along with the state-of-the-art lifelong editing method LiveEdit [2], designed specifically for MLLM.

Implementation Details. Across all experiments, we utilize mexma-siglip2 [36] as the multimodal embedding model. Within CARML's conflict-aware dynamic retrieval module, we select the top 15 retrieval candidates to calculate inter-modal conflict degree. For the multi-level knowledge guidance module, the length r of each type of prompt is set to 4. And the weight coefficient  $\lambda$  in the final loss function is set to 0.04. More details of the experimental setup are shown in Appendix A.

Table 1: Main editing results for E-VQA dataset. T: Num Edits.

| Method     |       |        |        |        |        |         |        | E-VQA  |        |        |          |        |        |        |        |
|------------|-------|--------|--------|--------|--------|---------|--------|--------|--------|--------|----------|--------|--------|--------|--------|
| William    | T=1   |        |        |        |        | T = 100 |        |        |        |        | T = 1000 |        |        |        |        |
|            | Rel.  | T-Gen. | M-Gen. | T-Loc. | M-Loc. | Rel.    | T-Gen. | M-Gen. | T-Loc. | M-Loc. | Rel.     | T-Gen. | M-Gen. | T-Loc. | M-Loc. |
| BLIP-2 OPT |       |        |        |        |        |         |        |        |        |        |          |        |        |        |        |
| FT-L       | 64.6  | 57.5   | 41.9   | 91.7   | 84.5   | 53.5    | 47.6   | 49.3   | 75.2   | 37.4   | 38.3     | 32.3   | 37.5   | 41.6   | 28.6   |
| TP         | 70.1  | 65.8   | 53.1   | 98.1   | 85.3   | 44.3    | 38.2   | 33.3   | 43.8   | 38.5   | 20.6     | 15.1   | 18.4   | 8.7    | 8.3    |
| MEND       | 93.1  | 92.8   | 93.1   | 92.0   | 75.8   | 17.7    | 16.4   | 18.3   | 91.5   | 67.9   | 15.8     | 14.4   | 17.7   | 91.7   | 70.2   |
| SERAC      | 88.4  | 84.5   | 84.3   | 85.8   | 26.0   | 87.0    | 81.3   | 81.0   | 71.0   | 15.6   | 83.4     | 70.8   | 80.3   | 67.7   | 13.1   |
| LEMoE      | 93.6  | 92.2   | 91.4   | 98.5   | 85.2   | 29.5    | 22.6   | 28.4   | 81.7   | 22.7   | 20.5     | 15.0   | 20.2   | 73.5   | 22.6   |
| RECIPE     | 87.4  | 85.0   | 86.6   | 99.9   | 88.4   | 85.2    | 82.7   | 84.2   | 98.7   | 83.9   | 82.6     | 74.3   | 79.5   | 97.1   | 81.5   |
| LiveEdit   | 96.7  | 94.2   | 93.8   | 100.0  | 100.0  | 95.3    | 92.9   | 85.5   | 100.0  | 99.8   | 94.4     | 92.0   | 84.7   | 100.0  | 97.4   |
| CARML      | 100.0 | 100.0  | 100.0  | 100.0  | 97.0   | 97.3    | 96.7   | 94.9   | 100.0  | 97.7   | 97.0     | 95.9   | 93.2   | 100.0  | 91.9   |
|            |       |        |        |        |        |         | LLaVA  | -V1.5  |        |        |          |        |        |        |        |
| FT-L       | 96.4  | 92.7   | 93.4   | 76.5   | 72.1   | 68.8    | 60.1   | 62.6   | 42.8   | 34.6   | 44.2     | 38.2   | 41.6   | 33.6   | 24.7   |
| TP         | 36.0  | 36.1   | 28.7   | 93.9   | 97.6   | 29.4    | 28.7   | 24.7   | 14.6   | 45.0   | 16.6     | 16.8   | 15.7   | 7.3    | 15.6   |
| MEND       | 91.2  | 90.0   | 91.3   | 91.0   | 90.2   | 2.2     | 2.2    | 2.2    | 0.2    | 0.6    | 0.0      | 0.1    | 0.1    | 0.1    | 0.1    |
| SERAC      | 89.3  | 83.7   | 85.0   | 82.0   | 23.8   | 88.1    | 81.5   | 82.5   | 62.1   | 12.9   | 85.6     | 75.6   | 82.0   | 62.5   | 15.7   |
| LEMoE      | 93.6  | 92.8   | 90.0   | 99.3   | 97.0   | 43.0    | 37.2   | 34.6   | 78.1   | 50.4   | 31.4     | 25.3   | 27.4   | 70.1   | 41.5   |
| RECIPE     | 91.8  | 87.1   | 87.2   | 95.1   | 87.7   | 88.3    | 81.6   | 82.8   | 89.4   | 81.2   | 83.5     | 72.1   | 81.6   | 84.0   | 80.3   |
| LiveEdit   | 94.3  | 94.5   | 88.0   | 100.0  | 100.0  | 93.5    | 92.3   | 85.9   | 100.0  | 99.3   | 92.9     | 90.2   | 84.3   | 100.0  | 96.4   |
| CARML      | 100.0 | 99.7   | 98.8   | 100.0  | 99.9   | 100.0   | 99.5   | 98.8   | 100.0  | 96.6   | 97.1     | 95.9   | 92.8   | 100.0  | 94.9   |

## 4.2 Main Results

Competitive Performance of CARML. Tables 1, 2 and 3 present the results of lifelong editing experiments conducted on the MMEdit and VLKEB datasets for CARML and baseline methods. The experimental reveal the following findings: While most conventional methods can achieve satisfactory reliability in single-edit scenarios, their performance significantly degrades as the number of editing steps (T) increases. This is because, as the volume of edited knowledge grows, fine-tuning methods like FT-L and intrinsic knowledge editing approaches such as TP and MEND suffer from catastrophic forgetting due to accumulated parameter shifts. On the other hand, external knowledge-aided methods like LEMoE, RECIPE, and LiveEdit increasingly struggle to accurately retrieve relevant knowledge from an expanding knowledge base. In contrast, our proposed CARML consistently maintains nearly 100% performance even when the number of edits reaches 1000. This remarkable performance is primarily attributed to its ingenious conflict-aware dynamic retrieval strategy, which precisely locates the most relevant knowledge for each edit sample. Moreover, CARML's multi-level knowledge guidance mechanism robustly steers the MLLM at both implicit and explicit levels to generate the desired outputs.

Table 2: Main editing results for E-IC dataset. T: Num Edits.

| Method   | E-IC       |        |        |        |        |         |        |        |        |        |          |        |        |        |        |
|----------|------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|----------|--------|--------|--------|--------|
|          | T = 1      |        |        |        |        | T = 100 |        |        |        |        | T = 1000 |        |        |        |        |
|          | Rel.       | T-Gen. | M-Gen. | T-Loc. | M-Loc. | Rel.    | T-Gen. | M-Gen. | T-Loc. | M-Loc. | Rel.     | T-Gen. | M-Gen. | T-Loc. | M-Loc. |
|          | BLIP-2 OPT |        |        |        |        |         |        |        |        |        |          |        |        |        |        |
| FT-L     | 40.6       | 41.2   | 38.7   | 97.7   | 98.9   | 44.5    | 45.1   | 39.4   | 83.2   | 53.4   | 45.8     | 42.2   | 43.7   | 52.6   | 54.1   |
| TP       | 49.7       | 48.6   | 46.0   | 93.7   | 79.0   | 37.5    | 37.6   | 33.8   | 10.3   | 20.9   | 26.0     | 26.3   | 24.9   | 4.1    | 11.8   |
| MEND     | 95.0       | 92.5   | 92.3   | 95.0   | 8.9    | 8.0     | 8.2    | 8.0    | 20.2   | 23.2   | 6.5      | 6.5    | 6.5    | 13.5   | 20.4   |
| SERAC    | 88.7       | 83.8   | 84.4   | 84.3   | 24.7   | 43.6    | 42.2   | 39.1   | 57.8   | 15.8   | 43.1     | 41.7   | 38.7   | 48.1   | 14.9   |
| LEMoE    | 93.1       | 91.4   | 83.3   | 94.5   | 60.4   | 55.9    | 52.3   | 49.2   | 92.1   | 53.7   | 41.6     | 40.9   | 40.2   | 93.8   | 65.5   |
| RECIPE   | 80.7       | 79.2   | 78.9   | 100.0  | 95.3   | 41.5    | 40.2   | 40.6   | 98.8   | 93.5   | 37.0     | 38.6   | 37.2   | 99.8   | 92.7   |
| LiveEdit | 80.6       | 80.1   | 76.9   | 100.0  | 100.0  | 79.2    | 77.4   | 74.1   | 100.0  | 100.0  | 72.9     | 70.3   | 67.9   | 100.0  | 100.0  |
| CARML    | 99.4       | 99.5   | 99.6   | 100.0  | 100.0  | 99.4    | 99.5   | 99.5   | 100.0  | 100.0  | 99.4     | 99.5   | 99.3   | 100.0  | 100.0  |
|          |            |        |        |        |        |         | LLaV   | A-V1.5 |        |        |          |        |        |        |        |
| FT-L     | 72.1       | 71.9   | 66.1   | 99.1   | 98.7   | 64.2    | 56.5   | 53.2   | 85.5   | 91.8   | 58.0     | 52.3   | 53.8   | 65.2   | 80.3   |
| TP       | 57.6       | 59.2   | 55.3   | 60.9   | 88.0   | 22.9    | 25.8   | 20.9   | 3.6    | 14.9   | 10.3     | 13.1   | 9.8    | 1.7    | 4.5    |
| MEND     | 92.8       | 91.8   | 90.6   | 96.4   | 93.7   | 56.8    | 56.9   | 53.1   | 87.6   | 84.6   | 54.4     | 54.1   | 51.0   | 83.9   | 80.6   |
| SERAC    | 88.2       | 81.0   | 85.6   | 84.0   | 28.6   | 53.4    | 53.7   | 49.4   | 48.0   | 17.3   | 52.9     | 53.4   | 49.0   | 49.9   | 16.7   |
| LEMoE    | 93.8       | 91.4   | 90.6   | 95.1   | 93.0   | 56.7    | 53.2   | 52.0   | 92.7   | 79.9   | 36.7     | 33.1   | 29.7   | 85.2   | 77.1   |
| RECIPE   | 85.9       | 76.1   | 83.3   | 96.7   | 95.2   | 55.3    | 53.2   | 51.9   | 91.3   | 92.5   | 51.7     | 53.4   | 48.5   | 88.9   | 91.4   |
| LiveEdit | 82.2       | 81.0   | 78.3   | 100.0  | 100.0  | 80.8    | 78.8   | 63.5   | 100.0  | 100.0  | 72.8     | 70.0   | 57.1   | 100.0  | 99.8   |
| CARML    | 99.9       | 99.8   | 99.8   | 100.0  | 100.0  | 99.9    | 99.8   | 99.8   | 100.0  | 100.0  | 99.3     | 99.4   | 99.2   | 100.0  | 100.0  |

**Cross-task Editing Evaluation.** In the process of cross-task editing, MLLMs face the challenging task of simultaneously handling and editing samples from different tasks (E-VQA and E-IC) in a continuous editing sequence. Table 4 summarizes the results for 1000 sequential edits (the average of E-VQA and E-IC test results) based on the BLIP 2-OPT model in this demanding scenario. Evidently, most baseline methods struggle to effectively edit both tasks within a single editing sequence.

Table 3: Main editing results for VLKEB dataset. T: Num Edits.

| Method   | VLKEB      |        |        |        |        |         |        |        |        |        |          |        |        |        |        |
|----------|------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|----------|--------|--------|--------|--------|
|          | T=1        |        |        |        |        | T = 100 |        |        |        |        | T = 1000 |        |        |        |        |
|          | Rel.       | T-Gen. | M-Gen. | T-Loc. | M-Loc. | Rel.    | T-Gen. | M-Gen. | T-Loc. | M-Loc. | Rel.     | T-Gen. | M-Gen. | T-Loc. | M-Loc. |
|          | BLIP-2 OPT |        |        |        |        |         |        |        |        |        |          |        |        |        |        |
| FT-L     | 54.8       | 54.1   | 55.2   | 98.7   | 95.1   | 56.4    | 57.5   | 56.7   | 86.4   | 70.2   | 55.9     | 55.7   | 55.1   | 52.4   | 52.7   |
| TP       | 51.0       | 49.5   | 50.9   | 94.8   | 78.6   | 46.6    | 48.1   | 47.2   | 64.3   | 43.2   | 24.4     | 24.2   | 24.3   | 16.4   | 20.0   |
| MEND     | 94.9       | 93.8   | 93.8   | 95.0   | 86.5   | 39.9    | 41.0   | 40.4   | 92.3   | 84.3   | 37.2     | 38.0   | 37.2   | 91.5   | 84.1   |
| SERAC    | 88.0       | 84.7   | 85.2   | 68.1   | 17.8   | 66.7    | 53.7   | 64.4   | 59.2   | 17.9   | 53.6     | 45.8   | 52.4   | 56.8   | 16.9   |
| LEMoE    | 94.6       | 93.1   | 92.4   | 94.5   | 61.5   | 47.7    | 48.3   | 47.5   | 52.8   | 51.5   | 37.7     | 39.2   | 37.8   | 52.7   | 55.5   |
| RECIPE   | 93.1       | 91.5   | 88.0   | 97.7   | 93.5   | 63.5    | 58.2   | 64.0   | 93.5   | 94.2   | 51.8     | 48.2   | 50.6   | 91.0   | 92.8   |
| LiveEdit | 98.8       | 98.1   | 94.9   | 100.0  | 100.0  | 98.2    | 97.7   | 94.0   | 100.0  | 100.0  | 97.0     | 91.9   | 87.5   | 100.0  | 100.0  |
| CARML    | 99.1       | 99.2   | 99.1   | 100.0  | 95.5   | 99.1    | 99.2   | 98.9   | 100.0  | 95.5   | 99.1     | 99.1   | 98.8   | 100.0  | 95.5   |
|          |            |        |        |        |        |         | LLaV   | A-V1.5 |        |        |          |        |        |        |        |
| FT-L     | 92.8       | 89.1   | 92.6   | 92.1   | 91.8   | 74.1    | 74.8   | 75.6   | 68.7   | 83.4   | 68.4     | 67.9   | 67.2   | 66.8   | 74.9   |
| TP       | 50.8       | 55.7   | 51.7   | 87.9   | 90.4   | 19.7    | 20.1   | 19.4   | 11.4   | 24.1   | 5.5      | 4.8    | 5.5    | 2.8    | 7.2    |
| MEND     | 92.1       | 91.3   | 90.2   | 89.2   | 90.1   | 0.6     | 0.6    | 0.7    | 0.2    | 0.1    | 0.0      | 0.1    | 0.1    | 0.1    | 0.1    |
| SERAC    | 90.0       | 89.1   | 87.9   | 66.7   | 14.2   | 72.3    | 62.4   | 70.7   | 53.7   | 13.7   | 60.9     | 56.5   | 60.1   | 52.9   | 15.0   |
| LEMoE    | 94.9       | 93.1   | 91.7   | 87.0   | 87.9   | 78.3    | 76.2   | 73.5   | 50.9   | 49.2   | 63.2     | 57.5   | 56.8   | 48.4   | 45.6   |
| RECIPE   | 93.1       | 92.8   | 92.1   | 91.7   | 86.4   | 77.2    | 66.0   | 76.4   | 88.5   | 84.1   | 63.8     | 56.2   | 61.9   | 86.7   | 81.2   |
| LiveEdit | 96.4       | 95.2   | 93.7   | 100.0  | 100.0  | 94.6    | 90.7   | 89.6   | 100.0  | 100.0  | 92.2     | 84.0   | 82.8   | 100.0  | 100.0  |
| CARML    | 99.4       | 99.4   | 99.3   | 100.0  | 95.0   | 99.4    | 99.4   | 99.2   | 100.0  | 95.3   | 99.4     | 99.3   | 99.0   | 100.0  | 95.3   |

Table 4: Main results on cross-task editing.

| Method   | Rel. | T-Gen. | M-Gen. | T-Loc. | M-Loc. |
|----------|------|--------|--------|--------|--------|
| FT-L     | 29.7 | 25.0   | 28.9   | 2.6    | 6.3    |
| LEMoE    | 22.4 | 20.8   | 21.5   | 70.3   | 16.3   |
| RECIPE   | 81.2 | 77.7   | 78.8   | 99.9   | 65.9   |
| LiveEdit | 89.0 | 87.6   | 69.4   | 100.0  | 99.3   |
| CARML    | 94.5 | 94.2   | 92.8   | 100.0  | 92.1   |

Table 5: Ablation study of CARML.

| Method      | Rel. | T-Gen. | M-Gen. | T-Loc. | M-Loc. |
|-------------|------|--------|--------|--------|--------|
| Base        | 37.0 | 38.6   | 37.2   | 99.8   | 92.7   |
| +Retrieval  | 71.4 | 71.9   | 70.6   | 99.1   | 92.5   |
| +Classifier | 70.2 | 73.4   | 69.4   | 100.0  | 100.0  |
| +C-prompt   | 83.4 | 81.0   | 82.7   | 100.0  | 100.0  |
| +Logits     | 99.4 | 99.5   | 99.3   | 100.0  | 100.0  |

However, CARML demonstrates remarkable capability in integrating and editing knowledge from these diverse tasks. It outperforms all baseline methods in key metrics such as reliability and generality, highlighting its adaptability and dependable knowledge editing capability.

#### 4.3 Further Analysis

Effect of Individual Components. To analyze the efficacy of the core components within CARML, we conduct a detailed ablation study with results presented in Table 5. The experiment takes RECIPE [3] as the *base* model and is carried out in 1000 editing scenarios on the E-IC dataset. First, we replace RECIPE's unimodal text retrieval with our conflict-aware dynamic retrieval strategy (+Retrieval), resulting in a significant performance boost due to improved retrieval accuracy. This highlights the importance of precise knowledge matching in enhancing editing performance. Next, we substitute RECIPE's original classification strategy with our edit scope classifier (+Classifier), which significantly improved locality by better identifying out-of-scope edit samples. We then incorporate context-aware dynamic prompts (+C-prompt) into the model's prompt prefix further enhanced reliability and generality. This improvement stems from capturing fine-grained cross-modal correlations between the editing sample and retrieved knowledge, enabling tailored multimodal instructions to guide the model effectively. Lastly, adding the explicit output logits enhancement mechanism (+Logits) further strengthened the model's reliability and generality.

Analysis of the Semantic Space for Edit Scope Classifier. We employ t-SNE [35] for dimensionality reduction and visualized the embedding distribution of retrieved knowledge (blue) and out-of-scope edit samples (red) within the edit scope classifier, as shown in Figure 3.(a). This provides an intuitive confirmation of the effectiveness of the edit scope classifier: it successfully maximizes the distance between out-of-scope samples and retrieved knowledge within the learned semantic space. Such clear semantic distinction is critical for CARML to perform reliable edits, preventing unintended modifications to unrelated knowledge.

Analysis of the Trade-off between Accuracy and Editing Time. Figure 3.(b) illustrates the trade-off between accuracy and overall editing time (including single-edit latency and inference delay after sequential edits) across different methods. It can be observed that CARML achieves an outstanding balance of high accuracy and low time cost, outperforming other baseline methods. This not only



Figure 3: (a) Visualization of the semantic space of retrieved knowledge and out-of-scope samples. (b) The trade-off between accuracy and editing time on the E-IC dataset, where editing time is the sum of single edits and the time taken for model inference after 1000 edits. (c) Visualization example.

highlights CARML's exceptional efficiency-to-performance ratio but also demonstrates its practical applicability and scalability in demanding lifelong multimodal editing scenarios.

**Visualization Examples.** As shown in Figure 3.c and Appendix E, CARML achieves reliable lifelong multimodal editing, which enables precise editing of relevant edit samples and maintains the original knowledge of irrelevant samples.

## 5 Conclusion

To address the challenges of lifelong knowledge editing for MLLMs, this paper proposes a novel retrieval-augmented editing framework named CARML. Its core innovation lies in the organic integration of the conflict-aware dynamic retrieval mechanism and multi-level knowledge guidance strategy. The former dynamically fuses multi-channel retrieval information and incorporates an edit scope classifier, to achieve precise localization and scope determination of the edited knowledge. The latter employs implicit static and dynamic prompts, along with explicit output logit enhancement, to collaboratively guide the model in generating desired outcomes. Extensive experiments demonstrate that CARML significantly outperforms existing methods in lifelong multimodal editing scenarios.

## 6 Limitations

Despite the promising results, the proposed CARML has several limitations: (1) Generalization in Complex Editing: While CARML exhibits strong performance in tasks such as VQA and image caption editing, its capability to handle highly complex and abstract editing (*e.g.* intricate commonsense reasoning) requires further investigation. (2) Model Scale Constraints: Due to computational limitations, our evaluation is currently restricted to MLLMs with a specific parameter scale. The adaptability and performance of CARML on larger-scale models (*e.g.*, InternVL2.5-78B [6]) remain to be explored.

## Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 62476260, 62225207 and 62436008, the Fundamental Research Funds for the Central Universities under Grant WK2100000057.

## References

- [1] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.
- [2] Qizhou Chen, Chengyu Wang, Dakan Wang, Taolin Zhang, Wangyue Li, and Xiaofeng He. Lifelong knowledge editing for vision language models with low-rank mixture-of-experts. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.

- [3] Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li, Chengyu Wang, Longtao Huang, et al. Lifelong knowledge editing for llms with retrieval-augmented continuous prompt learning. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 13565–13580, 2024.
- [4] Qizhou Chen, Taolin Zhang, Chengyu Wang, Xiaofeng He, Dakan Wang, and Tingting Liu. Attribution analysis meets model editing: Advancing knowledge correction in vision language models with visedit. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 2168–2176, 2025.
- [5] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv* preprint arXiv:1504.00325, 2015.
- [6] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24185–24198, 2024.
- [7] Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen, Yongheng Wang, Huajun Chen, and Ningyu Zhang. Can we edit multimodal large language models? In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 13877–13888, 2023.
- [8] Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola: Decoding by contrasting layers improves factuality in large language models. *arXiv* preprint arXiv:2309.03883, 2023.
- [9] N De Cao, W Aziz, and I Titov. Editing factual knowledge in language models. In *EMNLP* 2021-2021 Conference on Empirical Methods in Natural Language Processing, Proceedings, pages 6491–6506, 2021.
- [10] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm: General language model pretraining with autoregressive blank infilling. arXiv preprint arXiv:2103.10360, 2021.
- [11] Junfeng Fang, Zac Bi, Ruipeng Wang, Houcheng Jiang, Yuan Gao, Kun Wang, An Zhang, Jie Shi, Xiang Wang, and Tat-Seng Chua. Towards neuron attributions in multi-modal large language models. *Advances in Neural Information Processing Systems*, 37:122867–122890, 2024.
- [12] Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. arXiv preprint arXiv:2410.02355, 2024.
- [13] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa matter: Elevating the role of image understanding in visual question answering. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 6904–6913, 2017.
- [14] Xiaoqi Han, Ru Li, Hongye Tan, Wang Yuanlong, Qinghua Chai, and Jeff Pan. Improving sequential model editing with fact retrieval. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 11209–11224, 2023.
- [15] Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi. Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural Information Processing Systems, 36:47934–47959, 2023.
- [16] Hanjiang Hu, Alexander Robey, and Changliu Liu. Steering dialogue dynamics for robustness against multi-turn jailbreaking attacks. *arXiv preprint arXiv:2503.00187*, 2025.
- [17] Han Huang, Haitian Zhong, Tao Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Vlkeb: A large vision-language model knowledge editing benchmark. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.

- [18] Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong. Transformer-patcher: One mistake worth one neuron. In *The Eleventh International Conference on Learning Representations*.
- [19] Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. In *The 61st Annual Meeting Of The Association For Computational Linguistics*, 2023.
- [20] Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang, Lifeng Shang, Ruiming Tang, et al. Learning to edit: Aligning llms with knowledge editing. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 4689–4705, 2024.
- [21] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pages 19730–19742. PMLR, 2023.
- [22] Tomasz Limisiewicz, David Mareček, and Tomáš Musil. Debiasing algorithm through model adaptation. In *The Twelfth International Conference on Learning Representations*, 2024.
- [23] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *Proceedings of the IEEE international conference on computer vision*, pages 2980–2988, 2017.
- [24] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 26296–26306, 2024.
- [25] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks. *arXiv* preprint arXiv:2110.07602, 2021.
- [26] Yaohui Ma, Xiaopeng Hong, Shizhou Zhang, Huiyun Li, Zhilin Zhu, Wei Luo, and Zhiheng Ma. Comprehendedit: A comprehensive dataset and evaluation framework for multimodal knowledge editing. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 19323–19331, 2025.
- [27] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvf conference on computer vision and pattern recognition*, pages 3195–3204, 2019.
- [28] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.
- [29] Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing memory in a transformer. In ICLR, 2023.
- [30] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.
- [31] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-based model editing at scale. In *International Conference on Machine Learning*, pages 15817–15831. PMLR, 2022.
- [32] Haowen Pan, Yixin Cao, Xiaozhi Wang, Xun Yang, and Meng Wang. Finding and editing multimodal neurons in pre-trained transformers. In *Findings of the Association for Computational Linguistics ACL 2024*, pages 1012–1037, 2024.
- [33] Kaihang Pan, Zhaoyu Fan, Juncheng Li, Qifan Yu, Hao Fei, Siliang Tang, Richang Hong, Hanwang Zhang, and Qianru Sun. Towards unified multimodal editing with enhanced knowledge collaboration. *Advances in Neural Information Processing Systems*, 37:110290–110314, 2024.
- [34] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10684–10695, 2022.

- [35] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.
- [36] visheratin. mexma-siglip2. https://huggingface.co/visheratin/mexma-siglip2, 2025.
- [37] Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large language models. Advances in Neural Information Processing Systems, 37:53764–53797, 2024.
- [38] Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi, Yunzhi Yao, Ziwen Xu, Mengru Wang, Shengyu Mao, Xiaohan Wang, Siyuan Cheng, et al. Easyedit: An easy-to-use knowledge editing framework for large language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, pages 82–93, 2024.
- [39] Renzhi Wang and Piji Li. Lemoe: Advanced mixture of experts adaptor for lifelong model editing of large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 2551–2575, 2024.
- [40] Zhen Zeng, Leijiang Gu, Xun Yang, Zhangling Duan, Zenglin Shi, and Meng Wang. Visual-oriented fine-grained knowledge editing for multimodal large language models. arXiv preprint arXiv:2411.12790, 2024.
- [41] Fanrui Zhang, Dian Li, Qiang Zhang, Junxiong Lin, Jiahong Yan, Jiawei Liu, Zheng-Jun Zha, et al. Fact-r1: Towards explainable video misinformation detection with deep reasoning. *arXiv* preprint arXiv:2505.16836, 2025.
- [42] Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge editing for large language models. *arXiv preprint arXiv:2401.01286*, 2024.
- [43] Qiang Zhang, Jiawei Liu, Fanrui Zhang, Jingyi Xie, and Zheng-Jun Zha. Natural language-centered inference network for multi-modal fake news detection. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24*, pages 2542–2550, 2024.
- [44] Shaolei Zhang, Tian Yu, and Yang Feng. Truthx: Alleviating hallucinations by editing large language models in truthful space. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 8908–8949, 2024.
- [45] Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we edit factual knowledge by in-context learning? In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023.
- [46] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.

## **NeurIPS Paper Checklist**

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction mention that this paper focuses on the lifelong multimodal editing scenario. The paper's contributions are detailed line at the end of the introduction.

#### Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
  contributions made in the paper and important assumptions and limitations. A No or
  NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This paper discusses in Section 6 the limitations of the work.

#### Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

#### 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: This paper provides the full set of assumptions and a complete and correct proof in the Section 3.2

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

## 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This work provides all the information needed to reproduce the main experimental results of the paper in the Implementation Details.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
  - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
  - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
  - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
  - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

## 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: This paper uses publicly available datasets. And we will release the source code as soon as the paper is accepted.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

### 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: In this paper, all the training and test details are elaborated in Implementation Details.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
  material.

#### 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Experiment statistical significance is not necessary for our task.

## Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
  of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

## 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: All experiments are conducted on a NVIDIA H100 GPU.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

#### 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper is in line with the NeurIPS Code of Ethics in every respect.

## Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
  deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

## 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses potential positive and negative social impacts in Section F. Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

## 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no risk of misuse in this article. In addition, this paper uses public datasets, and there is no data privacy leakage.

## Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
  necessary safeguards to allow for controlled use of the model, for example by requiring
  that users adhere to usage guidelines or restrictions to access the model or implementing
  safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

## 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All models and datasets used in this paper have been properly cited.

## Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
  package should be provided. For popular datasets, paperswithcode.com/datasets
  has curated licenses for some datasets. Their licensing guide can help determine the
  license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We will provide the code as well as the README.md file to facilitate researcher communication.

## Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

## 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper is not among the many experiments and studies that have used humans as subjects.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

#### Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

#### 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Large language models were used in this work, but not as a novel or unconventional component of the core methodology.

#### Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

## **Appendix**

## A Detailed Experimental Settings

## A.1 Description of Datasets

To evaluate the effectiveness of our proposed CARML, we conduct experiments on three multimodal knowledge editing datasets: E-VQA [7], E-IC [7], and VLKEB [17]. E-VQA and E-IC are part of the MMEdit benchmark, while VLKEB includes real-world images to simulate practical scenarios. Regarding the data split of all three datasets, we followed the setup in the original dataset. The details of each dataset are as follows:

**E-VQA** [7]: The E-VQA dataset is derived from the VQAv2 [13] dataset, designed to evaluate the knowledge editing capabilities of multimodal large language models (MLLMs) within the context of visual question answering tasks. The dataset comprises 6,346 training samples and 2,093 testing samples, with evaluation metrics covering reliability, generality (T-Generality and M-Generality) and locality (T-Locality and M-Locality).

**E-IC** [7]: The E-IC dataset is constructed from the COCO Caption [5] dataset and serves as a benchmark for evaluating the knowledge editing capabilities of MLLMs in image caption tasks. The dataset includes 2,849 training samples and 1,000 testing samples. The evaluation framework mirrors that of E-VQA, thereby offering a robust means to gauge the effectiveness of knowledge editing in image captioning scenarios.

Each sample in E-VQA and E-IC datasets includes an edit instance, along with additional samples to evaluate textual and multimodal generality and locality. Generality samples are generated by rephrasing images and queries using tools like Stable Diffusion [34] and ChatGLM [10], ensuring the model's ability to generalize edits across different modalities. And locality samples are derived from unrelated images and queries from datasets such as OK-VOA [27], providing a stringent test of edit precision and locality. These datasets provide a comprehensive benchmark for evaluating model editors, focusing on their ability to maintain overall task performance while updating MLLM-specific factual knowledge.

**VLKEB** [17]: The Vision-Language Knowledge Editing Benchmark (VLKEB) is a large-scale dataset designed to evaluate the knowledge editing capabilities of MLLMs in realistic scenarios. Unlike prior benchmarks that primarily rely on synthetic or simplified data, VLKEB uses real-world images linked to structured knowledge triples from a multimodal knowledge graph. It contains 8,174 editing instances (5,000 for training and 3,174 for evaluation) and over 18,000 images, which provides a rigorous and comprehensive benchmark for advancing research in factual editing for MLLMs.

## A.2 Description of Baselines

**FT-L** [7] fine-tunes the last layer of the language model within MLLMs, which is the most widely used strategy for adapting pre-trained models to specific tasks.

**TP** [18] is an efficient model editing technique that implements knowledge updating by injecting small, trainable neurons (referred to as patches) into the final feed-forward layer. Each patch is tailored to correct a distinct mistake, allowing for precise, sequential edits without compromising the model's overall functionality.

**MEND** [30] trains a hypernetwork via meta-learning that enables efficient model editing by transforming back-propagated gradients into FFN matrix parameter offsets. It enables precise edits with a single example, providing a fast and scalable method for editing large language models.

**SERAC** [31] is a memory-based model editing method that stores edits externally and uses a scope classifier to selectively apply them via a counterfactual model. This allows for accurate, non-destructive updates without retraining, preserving the base model's original behavior.

**LEMoE** [39] is a model editing framework that enables continual, non-destructive updates to large language models by dynamically adding expert modules. It ensures stable routing with KV anchor mechanisms and optimizes edit order through clustering, effectively addressing forgetting and interference in lifelong editing scenarios.

**RECIPE** [3] is a lifelong model editing approach that encodes edited knowledge as continuous prompts and enhances large language models (LLMs) through a retrieval mechanism. Furthermore, it employs a knowledge sentinel to filter the edit samples for each query, enabling efficient and accurate updates to LLMs.

LiveEdit [2] is a specialized framework for lifelong knowledge editing in multimodal large language models (MLLMs). It employs a low-rank mixture-of-experts (MoE) approach, generating tailored low-rank experts for each specific edit. During inference, LiveEdit implements a two-stage routing mechanism: initially, it uses hard filtering based on visual semantics to discard irrelevant experts, followed by soft routing that leverages textual relevance to integrate the appropriate experts.

#### **A.3 Implementation Details**

During training, we used the Adam optimizer with batch size of 8, learning rate of 1e-5, and set the number of epochs to 120. During testing, the threshold  $\beta$  for the edit scope classifier was set to 0.4 for experiments on the E-IC dataset, and 0.7 for the E-VQA and VLKEB datasets. In explicit guidance, the relevance threshold  $\eta$  was set to 6. To comprehensively evaluate the model's performance, we employed reliability, generality (including T-Generality and M-Generality), and locality (including T-Locality and M-Locality) accuracy as evaluation metrics. All experiments were conducted on a single NVIDIA H100 GPU.

| Method   | T = 1 |        |        |        | T = 100 |      |        |        |        | T = 1000 |      |        |        |        |        |
|----------|-------|--------|--------|--------|---------|------|--------|--------|--------|----------|------|--------|--------|--------|--------|
|          | Rel.  | T-Gen. | M-Gen. | T-Loc. | M-Loc.  | Rel. | T-Gen. | M-Gen. | T-Loc. | M-Loc.   | Rel. | T-Gen. | M-Gen. | T-Loc. | M-Loc. |
| FT-L     | 70.2  | 67.8   | 64.6   | 92.6   | 90.2    | 60.2 | 56.9   | 56.1   | 73.6   | 61.8     | 51.8 | 48.1   | 49.8   | 52.0   | 52.6   |
| TP       | 52.5  | 52.5   | 47.6   | 88.2   | 86.5    | 33.4 | 33.1   | 29.9   | 24.7   | 31.1     | 17.2 | 16.7   | 16.4   | 6.8    | 11.2   |
| MEND     | 93.2  | 92.0   | 91.9   | 93.1   | 74.2    | 20.9 | 20.9   | 20.4   | 48.7   | 43.5     | 19.0 | 18.9   | 18.8   | 46.8   | 42.6   |
| SERAC    | 88.8  | 84.5   | 85.4   | 78.5   | 22.5    | 68.5 | 62.5   | 64.5   | 58.6   | 15.5     | 63.2 | 57.3   | 60.4   | 56.3   | 15.4   |
| LEMoE    | 93.9  | 92.3   | 89.9   | 94.8   | 80.8    | 51.9 | 48.3   | 47.5   | 74.7   | 51.2     | 38.5 | 35.2   | 35.4   | 70.6   | 51.3   |
| RECIPE   | 88.7  | 85.3   | 86.0   | 96.9   | 91.1    | 68.5 | 63.6   | 66.7   | 93.4   | 88.2     | 61.7 | 57.1   | 59.9   | 91.2   | 86.6   |
| LiveEdit | 91.5  | 90.5   | 87.6   | 100.0  | 100.0   | 90.3 | 88.3   | 82.1   | 100.0  | 99.9     | 87.0 | 83.1   | 77.4   | 100.0  | 98.9   |
| CARMI    | 99.6  | 99.6   | 99.4   | 100.0  | 07.0    | 00.2 | 99 N   | 08 5   | 100.0  | 97.5     | 08 5 | 08.2   | 97.0   | 100.0  | 96.3   |

Table 6: Average editing results across three datasets and two base MLLMs. T: Num Edits.

## **Summary of Experimental Results**

Table 6 summarizes the average performance across three datasets and two base MLLMs. It can be observed that CARML significantly outperforms other methods on most metrics, with only a slight underperformance in M-Locality compared to LiveEdit. Moreover, CARML maintains consistently high performance even as the number of edits (T) increases, demonstrating its robustness and superiority in lifelong multimodal editing scenarios.

#### $\mathbf{C}$ **Pseudo Code of CARML**

The pseudo-code of the CARML editing stage is in Algorithm 1, and the one of the CARML inference stage is Algorithm 2.

## Algorithm 1 CARML Editing Stage

**Input:** The initial multi-type edit knowledge base K, the edit dataset  $\mathcal{D}_{\text{edit}}$  whose length is T.

**Output:** The final multi-type edit knowledge base  $K = \{k_t = (e_v^t, e_x^t, e_m^t, o_t)\}_{t=1}^T$  after T edits.

- 1: **for** each edit  $(v_t, x_t, o_t) \in \mathcal{D}_{\text{edit}}, t \in [T]$  **do**
- Get multi-type knowledge representations.
- 3: Convert  $(v_t, x_t, o_t)$  to  $e_v^t, e_x^t, e_m^t$  using Equation 3.3.
- Update the multi-type edit knowledge base K.  $K_t = K_{t-1} \cup \{k_t = (e_v^t, e_x^t, e_m^t, o_t)\}.$ 4:
- 5:
- 7: **return** The final multi-type edit knowledge base  $K = \{k_t = (e_v^t, e_x^t, e_m^t, o_t)\}_{t=1}^T$ .

## Algorithm 2 CARML Inference Stage

Input: The MLLM model  $f_{\Theta}$  including the embedding layer  $f_{\mathrm{emb}}$ , the test dataset  $\mathcal{D}_{\mathrm{test}}$ , the final multi-type edit knowledge base  $K = \{k_t = (e_v^t, e_x^t, e_m^t, o_t)\}_{t=1}^T$ , the trained edit scope classifier  $f_{\mathrm{cls}}$ , the implicit guidance module  $f_{\mathrm{imp}}$ , the edit scope threshold  $\beta$ , and the logits relevance threshold  $\eta$ . Output: The model's output o.

```
1: for each edit sample q = (v_q, x_q) \in \mathcal{D}_{\text{test}} do
          Convert q = (v_q, x_q) to q_e = (e_v^q, e_x^q, e_m^q) using Equation 3.3.
Perform conflict-aware dynamic retrieval to pinpoint the most relevant knowledge k_b =
 2:
 3:
      (e_v^b, e_x^b, e_m^b, o_b) in K.
 4:
          if f_{\rm cls}(q_e,k_b)>\beta then
 5:
                Generate static knowledge prompts p_x and context-aware dynamic prompts p_f with f_{imp}.
                Get the initial probability distribution l = f_{\Theta}(p_x \oplus p_f \oplus f_{\text{emb}}(v_q) \oplus f_{\text{emb}}(x_q)).
 6:
 7:
                if -\log(o_b \mid l) < \eta then
 8:
                     Perform logits enhancement l' = l + h(o_b).
 9:
                     o = \operatorname{argmax}(l').
10:
                else
                     o = \operatorname{argmax}(l).
11:
12:
               end if
13:
          else
14:
                o = f_{\Theta} (f_{\text{emb}} (v_q) \oplus f_{\text{emb}} (x_q)).
15:
          end if
16: end for
17: return The model's output o.
```

## D Description of Editing Loss

The editing loss is designed to ensure three key properties of knowledge editing: reliability, generality, and locality. Given a MLLM  $f_{\Theta}$  and a training batch consisting of b editing samples  $(v_t, x_t, o_t)$ , along with corresponding generality samples  $(v_g, x_g, o_t)$  and locality samples  $(v_l, x_l, o_l)$ , the loss terms associated with these properties are defined as follows:

**Reliability Loss**  $\mathcal{L}_{rel}$ : This term serves to minimize the negative log-likelihood of generating the desired output  $o_t$  on the editing samples  $(v_t, x_t, o_t)$ , conditioned on the static knowledge prompt  $p_x$  and context-aware dynamic prompt  $p_f$  generated in Section 3.4.1.

$$\mathcal{L}_{rel} = -\log f_{\Theta} \left( o_t \mid p_x \oplus p_f \oplus f_{emb} \left( v_t \right) \oplus f_{emb} \left( x_t \right) \right) \tag{11}$$

**Generality Loss**  $\mathcal{L}_{gen}$ : Beyond correcting individual specific inputs, the edited MLLM should generalize to semantically equivalent neighborhoods  $(v_g, x_g, o_t)$ . This loss is defined analogously to the reliability loss.

$$\mathcal{L}_{gen} = -\log f_{\Theta} \left( o_t \mid p_x \oplus p_f \oplus f_{emb} \left( v_q \right) \oplus f_{emb} \left( x_q \right) \right) \tag{12}$$

**Locality Loss**  $\mathcal{L}_{loc}$ : To ensure the edit remains localized, the output distribution of the edited model should remain close to that of the original frozen model  $f_{\Theta}$  on unrelated samples  $(v_l, x_l, o_l)$ . This is enforced by minimizing the KL divergence between their outputs.

$$\mathcal{L}_{loc} = \text{KL}\left(f_{\Theta}\left(f_{emb}\left(v_{l}\right) \oplus f_{emb}\left(x_{l}\right)\right) \| f_{\Theta}\left(p_{x} \oplus p_{f} \oplus f_{emb}\left(v_{l}\right) \oplus f_{emb}\left(x_{l}\right)\right)\right) \tag{13}$$

The overall editing loss  $\mathcal{L}_{edit}$  is the sum of these three components.

$$\mathcal{L}_{edit} = \mathcal{L}_{rel} + \mathcal{L}_{gen} + \mathcal{L}_{loc} \tag{14}$$

## **E** Visualization Examples

In Figure 4, we present some additional visualization examples sourced from the E-IC, E-VQA, and VLKEB datasets. These diverse examples comprehensively demonstrate CARML's robust performance in achieving highly reliable, generalized, and localized multimodal knowledge editing.



Figure 4: Visualization examples for multimodal knowledge editing.

## F Broader Impacts

**Positive Societal Impacts.** Knowledge editing for MLLMs allows models to be updated quickly and precisely with new or corrected information, minimizing the need for full retraining. This capability supports timely responses in dynamic domains such as news, healthcare, and disaster response. By enabling fine-grained control over factual updates, these techniques can help curb the spread of outdated or incorrect information while improving model alignment with human values and current knowledge. Such advancements enhance trust and reliability in applications like education, accessibility tools, and interactive AI assistants.

**Negative Societal Impacts.** Despite its benefits, knowledge editing poses certain risks when misused or applied recklessly. Inaccurate or biased edits can propagate falsehoods with the same confidence and fluency as factual information, potentially leading to hallucinations or the spread of misinformation. Malicious actors could exploit these methods to implant targeted disinformation without leaving detectable traces in model parameters. Furthermore, without robust safeguards, knowledge editing could undermine model transparency and introduce new avenues for manipulation.