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Abstract

Many studies in multi-armed bandits focus on making exploration quick, often
obliviously to constraints tied to exploration like the cost of switching between
arms. Switching costs arise in many real-world settings like in healthcare when
personalizing treatments, where successive assignment of the same treatment
could be necessary for treatment to take effect; or in industrial applications where
reconfiguring production is costly. Unfortunately, controlling for switching is
significantly understudied outside of regret minimization. In this work, we present
a bandit formulation with constraints on the arm switching frequency in fixed-
confidence pure exploration and give a lower bound for this setting. We present
a batched bandit algorithm called SPB C-Tracking inspired by track-and-stop
algorithms, adapted to batch plays with a limited number of arm switches. Finally,
we empirically demonstrate that our approach achieves quick stopping times even
when constrained to a minimal switching limit.

1 Introduction

Sequential decision-making algorithms promise to improve outcomes in diverse applications, from
healthcare to e-commerce, by systematically exploring alternative policies for action. Classically, an
effective algorithm strikes a good balance between exploration and exploitation [29, 7, 26], converging
as quickly as possible to a good or optimal policy. However, many applications come with costs tied to
switching actions, and decision-making agents are incentivized to use the same action repeatedly. For
example, in healthcare settings such as in clinical trials [4] and treatment personalisation for chronic
diseases [22], switching treatments has costs for the patient: every time a treatment is changed, the
patient has to get used to the new treatment and its potential side effects. In the personalization of web
pages or apps, switching content or interface frequently may be inconveniencing or annoying to users,
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and in industrial applications, switching actions could mean high costs of reconfiguring production
setups. It is therefore desirable to limit the number of switches, even if they make exploration more
efficient.

In the multi-armed bandit (MAB) problem, an agent sequentially samples actions from a set of
unknown distributions, and it aims to sample (explore) them in a manner that helps it to learn
about the underlying distributions; either quickly, or with high confidence given an exploration
budget (pure exploration) [5, 14, 11], or in order to minimize the cumulative cost of choosing sub-
optimal actions (regret minimization) [31, 12, 25, 27]. Switching in multi-armed bandits has been
extensively studied in the regret minimization setting, [3, 9, 30, 2, 28] but it is less studied for pure
exploration, possibly because satisfying fixed-confidence correctness is difficult while minimizing
the total number of switches. Several works on regret minimization with switching costs use ideas
around batching the action selection in time. Although there are works on batched bandits for pure
exploration [18, 1, 23, 6], this area is still relatively under-explored.

In this work, we control arm switching in fixed-confidence pure exploration bandits based on a
provided constraint on the switching rate. We batch exploration and track the optimal batched
arm playing proportions from the setting’s lower bound, where we use sparse batch arm playing
proportions to attain lower switching. The intuition can be explained as follows: since in a batched
bandit exploration is not allowed inside a batch, the arms selected to be played in a batch can be
planned at the start of the batch in successive play segments if the number of arms in the sparse
proportions are less than the available slots in the batch. The switching then only occurs when
changing from one successive arm play segment to the next, or between batches.

Main contributions. 1) We propose a formulation to control the frequency of arm switches in fixed-
confidence pure exploration in a batched bandit setting (Section 2). 2) We provide a lower bound
for the search time of any algorithm in this setting while controlling arm switches with a switching
constraint (Section 4). 3) We present a tracking-based algorithm, Sparse-Projected Batch C-Tracking
(SPB C-Tracking) (Section 5). 4) We perform an empirical evaluation and present results showing
that our algorithm identifies the best arm quickly with a switching limitation compared to existing
batch algorithms. It also compares favorably to classical optimal algorithms in the fixed-confidence
setting (Section 6).

2 Problem Formulation

We consider the problem of fixed-confidence, pure exploration multi-armed bandits with a limit on
the number of arm switches.

Let A = {1, ...,K} be a set of actions and µa ∈ R the expected reward for playing arm a ∈ A,
with µ∗ = maxa∈A µa. A bandit algorithm ϕ plays an arm at in successive rounds t = 1, 2, ...,
before terminating according to a stopping criterion at time τ and recommending the arm âτ .
The total number of arm switches Sτ is the number of successive plays where the arms differ,
Sτ =

∑τ
t=2 [at ̸= at−1]. Our goal is to design a search strategy ϕ to minimize the expected number

of trials τ required to identify an optimal action with confidence at least 1 − δ for a given δ > 0,
while limiting the expected rate of switching actions to α ∈ [0, 1].

minimize
ϕ

Eϕ[τ ]

subject to P(µâτ< µ∗) ≤ δ

Eϕ[Sτ ] ≤ αEϕ[τ ]

(1)

To control the switching rate, we formulate a batched variant of the problem. In batched bandits [10,
15, 18, 6], arm plays are planned in a sequence at the start of a batch, and the rewards for all plays
are given at the end of it for the bandit to update its model. Using batches of fixed size B allows us
to ensure that all plays for a specific arm are made in sequence within the batches, and the number
of switches in a batch is determined by the number of distinct arms in the plan. With this, the total
number of switches in exploration will be attributed either to switching between arms within the
batches when changing from one successive arm play segment to the next, or to changing arms
between batches.
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If all batches include at most s switches, we can bound the expected number of switches by Eϕ[Sτ ] ≤
Eϕ[β](s+1)−1; where Eϕ[β] is the expected number of batches played by ϕ before terminating. The
bound covers the number of switches within a batch (from one successive arm segment to the next)
and the switches from one batch to the next. As a result, the second constraint in our objective above
can be satisfied by keeping the switches in the batches low, requiring that the constraint in Eq. (1)
holds for the right-hand side of the inequality above, ∀b : Eϕ[β](S

b +1)− 1 ≤ αEϕ[τ ] = αB Eϕ[β].
If this holds, with ⌊·⌋ the floor operator,

∀b : Sb ≤ s := ⌊αB − 1⌋ =⇒ Eϕ[Sτ ] ≤ αEϕ[τ ] . (2)

We can now re-formulate our goal to be to minimize the expected number of batches β required to
identify an optimal action, with confidence at least 1− δ, while limiting the arm switches within the
batch to be at most a pre-specified switching constraint s ∈ {0, ...,min(K − 1, B − 1)},

minimize
ϕ

Eϕ[β]

subject to P
(
µâβ

< µ∗) ≤ δ

Sb ≤ s, ∀b

(3)

In this work, all batches are planned deterministically. Randomized algorithms could achieve a
non-integer expected number of switches but we do not explore that here.

3 Related Work

Multi-armed bandits with switching costs have been studied widely in the regret minimization
setting [3, 9, 30, 2, 28], and analyses typically focus on regret bounds in both stochastic and
adversarial settings. Recently, algorithms based on variations of the Tsallis-INF and EXP3 bandit
algorithms have been presented. A key idea in these studies is the use of blocks/batches to control
the frequency of arm switching [3, 30, 2] and we use this idea in the pure exploration setting, where
studies of controlling switching in exploration are scarce.

Batched bandits are a setting where arms are planned in batches, and played as planned before
rewards are given for the whole batch at once. The arms to be sampled in a batch are determined
by the arms and rewards from previous batches. This setting has been studied widely in the regret
minimization setting [10, 15, 16, 13, 19, 20] with the focus being how many batches are required
to attain the optimal cumulative regret; using either static batch sizes or adaptive batch sizes. In
pure exploration, a few studies in batched bandits exist [18, 1, 23, 6]. All of these works focus on
arm elimination strategies, which are different in nature to our algorithm, which focuses on tracking
optimal arm playing proportions in batches.

Tracking proportions is ubiquitous in the fixed-confidence pure exploration setting since the idea
of Track-and-Stop algorithms was introduced by Garivier and Kaufmann [11], along with optimal
instance-dependent asymptotic regime results. Our work focuses on how these results can be used in
the batch setting with switching constraints. In this regard, Jourdan et al. [17] presented an interesting
setting in pure exploration for combinatorial bandits with semi-bandit feedback which combines
ideas from Garivier and Kaufmann [11], Degenne et al. [8] and the combinatorial bandits literature.
In our work, since the batch size is static and the switching limit in a batch is provided, we can derive
a related combinatorial bandit setting for the arm plays in batches. The difference in our setting
relates to the successive play segments allowed to enable minimizing of switching, as well as our
goal of identifying the best arm compared to a super arm.

4 Theoretical Discussion

For the fixed-confidence pure exploration setting, [11] presented a general lower bound for the
expected stopping time E[τ ] of any algorithm returning the best arm with probability at least 1− δ,
for some δ > 0,

E[τ ] ≥ T ∗(µ) kl(δ, 1− δ) . (4)
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where T ∗(µ)−1 := sup
w∈∆K

1

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.

Here, d(.) is the KL-divergence, and ∆K
1 := {w ∈K+ : w1 + · · ·+ wK = 1} the simplex of possible

arm playing proportions. This lower bound is derived by considering the optimal allocation of
arm pulls w∗ to minimize the worst-case instance-specific stopping time while ensuring that the
probability of incorrectly identifying the best arm does not exceed a pre-specified confidence level δ.
The term T ∗(µ) represents the inverse of the optimal allocation of arm draws, characterized by the
supremum over all possible allocation vectors w and the infimum over all alternative bandit models λ
(that differ from µ in their optimal arm). This formulation captures the inherent difficulty of the best
arm identification problem under the fixed-confidence setting, ensuring that any optimal strategy will
asymptotically match this lower bound as δ approaches zero.

Garivier and Kaufmann [11] also introduced the idea of track-and-stop algorithms, which aim to
track the optimal arm playing proportions, w∗(µ), matching this lower bound,

w∗(µ) := argmax
w∈∆K

1

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
(5)

An algorithm plays the arms following a tracking rule aiming for an overall arm proportion as close
to the optimal proportions as possible. The stop in track-and-stop is because an algorithm also
combines its tracking rule with a stopping rule which typically does a satistical test of whether the
past observations allow assessing that, with a risk of at most δ, one arm is larger than the others. The
Parallel Generalized Likelihood Ratio Test (GLRT) has become a standard stopping rule due to its
ability to exploit the geometry of the distributions better, hence earlier stopping.

4.1 Lower Bound on E[β] with Batch Plays

To start with, we show that if we consider a batched horizon, we can obtain a lower bound on
the expected number of batches β necessary for any δ-probably correct algorithm, following the
reasoning in the lower bound from Garivier and Kaufmann [11] (Eq. (4)) as:

E[β] ≥ T ∗
b (µ) kl(δ, 1− δ) (6)

where T ∗
b (µ)

−1 := 1/B sup
w∈∆K

1

inf
λ∈Alt(µ)

(
K∑

a=1

⌈waB⌉ · d(µa, λa)

)
.

We get this by applying the transportation lemma of Kaufmann et al. [21] with

K∑
a=1

Eµ[Na(β)] · d(µa, λa) ≥ kl(δ, 1− δ)

for any alternative bandit instance λ ∈ Alt(µ) = {λ ∈ RK : argmaxi λi ̸= argmaxj µj}. Here,
Na(β) is the total plays of arm a up to batch β. Combining the inequalities given by all alternatives
λa yields a bound,

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(β)] · d(µa, λa)

= B · Eµ[β] inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(β)]

B · Eµ[β]
· d(µa, λa)

≤ 1/B Eµ[β] sup
w∈∆K

1

inf
λ∈Alt(µ)

K∑
a=1

⌈waB⌉ · d(µa, λa)

The maximum rounding error from the ceiling operation above is an additional KB batches. Finally,
replacing the strategy-dependent proportions of arm draws by their supremum yields the lower bound.
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4.2 Minimizing Switching: Lower Bound with Sparsity Constraint in Batch Plays

In our setting, we aim to restrict switching costs associated with changing arms in a batched multi-
armed bandit framework by limiting the number of switches in each batch to at most s. In a
track-and-stop framework, this imposes a constraint on the number of non-zero arm proportions
allowed in a batch. The batch switch limit inherently means that some arms will have a play count of
zero in certain batches. For this, we cannot directly apply [11]’s analysis and algorithm per batch,
since having arms with zero play proportion can not be the solution to the min-max problem. If
an arm a is never played, wa = 0, the adversary λ can exploit this and differ arbitrarily for that
arm. This is also evident from Lemma 4 in Garivier and Kaufmann [11] which would be violated if
proportions were 0.

By incorporating the arm sparsity constraint, we introduce a new dimension to the problem where
planning the plays over successive batches becomes crucial. In other words, when all batches are done,
we want to end up having played according to the minimizer of Eq. (5), but we can’t play according
to these proportions every batch. Arms with non-zero proportions must be scheduled in such a way
that minimizes the overall switching cost across batches, thereby optimizing the exploration process
while respecting the given constraints. To do this, we will study the optimal proportions of played
batch configurations instead.

Given that the batch size is fixed and known, we can determine the sparsity-constrained integer
playing configurations c of arm plays in the batch, ensuring that the total number of plays matches
the desired sparsity. With a given batch switch limit s, we introduce the available integer playing
configurations for plays corresponding to the desired sparsity, CKB,s:

CKB,s :=

{
c ∈ NK :

K∑
a=1

ca = B and ∥c∥0 ≤ s+ 1

}
(7)

Here, ∥·∥0 denotes the l0-norm, which counts the number of nonzero elements in the vector. Each
element c of CKB,s represents a planning of arms plays that can be executed in a batch of size B.

From the above definitions, considering ca,b as the number of plays of arm a in the feasible combina-
tion of plays in batch b, and considering pc,b as the probability of configuration c occurring in batch
b, the total plays up to batch β can be expressed as:

N(β) =

K∑
a=1

β∑
b=1

∑
c∈CK

B,s

pc,bca,b ,

and the total plays of arm a ∈ A up to batch β can be given as:

Na(β) =

β∑
b=1

∑
c∈CK

B,s

pc,bca,b .

Based on the definition of batch configurations given in Eq. (7), we now derive a lower bound for
batch plays with sparsity constraints:

Theorem 1. Let ∆C := ∆
|CK

B,s|
1 be the simplex over sparse batch configurations. Given δ ∈ (0, 1),

for any strategy that is returns the best arm with probability at least 1− δ, and for any bandit model
µ ∈ S, the following inequality holds:

Eµ[β] ≥ T ∗
bc(µ) · kl(δ, 1− δ), (8)

where

T ∗
bc(µ)

−1 := sup
p∈∆C

inf
λ∈Alt(µ)

K∑
a=1

∑
c∈CK

B,s

pccad(µa, λa). (9)

In Eq. (9), the supremum is computed over the possible probabilities of choosing the sparse configu-
rations, thereby incorporating the switch limit into the batch play optimization.
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Although shared in form, our lower bound differs from the result in [11] in several key ways. First,
we incorporate a switching constraint that limits the number of non-zero proportions within each
batch, unlike Garivier and Kaufmann’s method, which assumes no switching costs. Second, we use
a batching strategy with sparsity constraints, meaning only a limited number of arms are played in
each batch, whereas their method does not involve such batching or switch constraints. Finally, the
playing proportions in our result are defined for entire batch configurations CKB,s of integer arm plays,
a unique aspect not present in the fixed-confidence setting discussed in [11].

Our approach to combining batch plays with sparsity constraints is related to the combinatorial
bandits discussed in Jourdan et al. [17]. In their work, they explore combinatorial bandits with
semi-bandit feedback, which involves making decisions over combinations of arms. Similarly, our
method involves managing combinations of arm plays within each batch, taking into account the
sparsity constraint to limit switching between arms.

The combination set CKB,s introduced in our method is high-dimensional, making it challenging to
deal with in practice. More particularly, for the case of at most s batch switches, we have∣∣CKB,s

∣∣ = s∑
i=0

(
K

i+ 1

)(
B − 1

i

)
and for the case of exactly s batch switches we have∣∣CKB,s

∣∣ = ( K

s+ 1

)(
B − 1

s

)
.

Addressing this high-dimensionality and optimizing the design of algorithms that efficiently handle
these combinations remain areas for future work.

5 Algorithms

This section presents the core algorithm introduced in our study, Sparse-Projected Batch C-Tracking
(SPB C-Tracking), which addresses the challenge of minimizing switching costs in a batched setting
for pure exploration bandits. We include its pseudocode and a detailed explanation of its operation.

Algorithm 1 outlines the steps involved in this process. The SPB C-Tracking algorithm begins with
initializing parameters, including the arm estimates, batch size, and batch switch limit. In each
iteration, the algorithm computes the optimal arm proportions w∗(µ̂b−1) using the current mean
estimates with respect to the optimization problem given in Eq. (5). Then, following the original
C-tracking algorithm [11], the algorithm computes wϵ(µ̂b−1) by projecting the optimal proportions
onto the L∞-bounded simplex ∆K

1,ϵ, where

∆K
1,ϵ := {(w1, ..., wK) ∈ [ϵ, 1] : w1 + ...+ wK = 1} .

This step ensures that any arm receives a proportion of at least ϵ and that the proportions sum to one.
Next, we project the C-tracking criterion B

∑b−1
i=0 w

ϵi(µ̂i) −N onto a constrained set
∑

s ∩∆K
B ,

ensuring that the number of non-zero proportions is limited by the batch switch limit s, where∑
s
=
{
w ∈ RK : ∥w∥0 ≤ s+ 1

}
and ∆K

B =
{
w ∈ RK

+ : w1 + · · ·+ wK = B
}
.

This projection minimizes the L2 norm difference between the projected proportions and the scaled
sum of previous proportions and the current play counts. The projection method used is equivalent
to the one proposed by Kyrillidis et al. [24], which employs a simple greedy algorithm for exact
sparse projection. The resulting sparse-projected proportions ws(µ̂b−1) are then converted to integers
w̄s(µ̂b−1), which represent the number of times each arm will be played in the batch. Within each
batch, the algorithm selects the arm at with the highest projected proportion and plays the selected
arm ωt times and observes the rewards rt to rt+ωt−1. The rewards are observed, and the arm estimates
are updated accordingly. The process repeats until a criterion based on a confidence threshold is met
(similar to Chernoff’s stopping rule presented in [11]), ultimately returning the best arm identified.

6 Simulation Experiments

In our experiments, we’re foremost interested in investigating if we can achieve a low stopping time
E[τ ] while observing a minimal switching limit s during exploration. We also investigate the effects
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Algorithm 1 Sparse-Projected Batch C-Tracking (SPB C-Tracking)
Input K arms, δ ∈ (0, 1), B : batch size, s : batch switch limit
Output β, âβ

1: b← 1, t← 1, Z1 ← 0, µ̂0 = 0, and Na ← 0 for all a ∈ A
2: while Zb ≤ log( log(t)+1

δ ) do
3: Compute w∗(µ̂b−1) ▷ See Eq. (5)
4: Compute wϵb−1(µ̂b−1) ▷ L∞ proj. of w∗(µ̂b−1) on to ∆K

1,ϵb−1
with

ϵb−1=(K2+(b−1)B)−1/2/2

5: Compute ws(µ̂b−1) ∈ argminw:w∈
∑

s∩∆K
B

∥∥∥w −B
∑b−1

i=0 w
ϵi(µ̂i) +N

∥∥∥
2

6: Compute w̄s(µ̂b−1) = integer(ws(µ̂b−1))
7: while t ≤ bB do
8: at = argmaxa∈A w̄s

a(µ̂b−1)
9: ωt = maxa∈A w̄s

a(µ̂b−1)
10: Play at ωt times, and Observe rt to rt+ωt−1

11: Update Nat ← Nat + ωt and µ̂b,at = µ̂b−1,at +
1

Nat

(∑t+ωt−1
j=t rj − ωtµ̂b−1,at

)
12: Update w̄s

at
(µ̂b−1)← 0

13: Update t← t+ ωt

14: end while
15: Update b← b+ 1
16: Compute Zb

17: end while
18:
19: Return âβ

of different combinations of s and the batch size B on E[τ ]. As discussed in Section 2, s and B are
inherently tied from s := ⌊αB − 1⌋. For small batch sizes, the choice of s will have a large impact
on which arm configurations can be played in a batch, and therefore on the nature of exploration. We
aim to validate this empirically.

We compare our SPB C-Tracking algorithm to the BatchRacing algorithm [18]. Batch Racing
is a Batched Racing algorithm that successively eliminates arms across the rounds, starting with
the full set of available arms as a surviving set S1 = A. In each round of batches of size B, it
uses a RoundRobin algorithm to determine plays in the batch uniformly. It is designed for top-k
identification, to which end our setting lies in top-1. In each round, BatchRacing uses a UCB (resp
LCB) to determine if there is any arm that is confidently top-k (resp not), and moves the arms to an
accepted, At (resp rejected, Rt) set. The arms moved to the accepted or rejected sets are removed
from the surviving sets and the process repeats until k arms are accepted, whereby it terminates and
outputs the accepted set Aτ . In our setting |Aτ | = 1.

6.1 Experimental setup

Our experimental simulation setting comprises a set of 8 arms from Gaussian distributions, with
means µ = {0.8, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35} and standard deviation σ = 1. The algorithms
(SPB C-Tracking, BatchRacing and Track and Stop C-Tracking [11]) are run with δ = 0.01, and a
pull limit of 20,000. We run experiments to investigate the effect of varying a switching limit s in SPB
C-Tracking. In these, we set the number of switches Sb = s for all batches b, rather than let them be
bounded by s from above. We also compare the effect of the batch size in SPB C-Tracking and the
BatchRacing baseline. We use the stopping time, E[τ ], as the evaluation metric and we additionally
compare the stopping times of the batched algorithms to the stopping time of the un-batched Track
and Stop C-Tracking. All experiments are done for 300 repetitions for each combination of batch
size and switching limit.
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Figure 1: Comparison trace of switches along time in batches for SPB C-Tracking (Ours) vs
BatchRacing (Baseline)
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Figure 2: Comparison of stopping times E[τ ] over a range of switching limits s in SPB C-Tracking
(Ours) with different batch sizes B. Track-and-stop C-tracking is not batched.

6.2 Results and discussion

In Figure 1, we see that our algorithm achieves faster stopping, as shown by the shorter batch horizons
over the repeated runs, even when constrained to a minimal switching limit (s = 1) across the batch
horizon. The switches behaviour of the BatchRacing algorithm shows that it starts with the maximum
possible switches in early batches and eventually decreases to s = 1 in later batches. Successive
elimination algorithms, including BatchRacing, which comprise the bulk of the limited work in
batched bandits in pure exploration [18, 1, 23, 6] will always exhibit this switching behaviour. These
algorithms are expected to have a high number of switches during exploration, as they always start
with the whole set of arms as the feasible exploration set. This validates our approach of tracking
the optimal arm-playing proportions, as it enables the computation of sparse proportions that yield a
solution (SPB C-Tracking) for limiting switches during exploration.

The stopping times in Figure 2 show that as expected, SPB C-Tracking always outperforms the
BatchRacing baseline. This can be explained by the algorithm’s characteristic of tracking the optimal
playing proportions from the lower bound. This is also visible from the stopping times of the similarly
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optimal-proportions-designed Track and Stop C-Tracking, to which SPB C-Tracking is fairly matched.
A keener look reveals that SPB C-Tracking seems to perform slightly better than Track and Stop
C-Tracking with higher batch sizes. This could be explained by our forced exploration (playing
exactly s+ 1 arms) being better in larger batch sizes. For smaller batch sizes, this forced exploration
appears to be costlier in exploration (e.g. see in B = 8, s = 6) likely due to playing arms that do
not add value to the exploration utility. For the larger batch sizes (B ≥ 32), it is also visible that
the stopping times of SPB C-Tracking decrease as the switching limit is relaxed and more arms are
explored in the batch—the algorithm is able to get information from more arms and hence learn more
about their distributions. However, when batch sizes get too large, stopping times increase again (see
Appendix Figure 3), most likely due to exploration being limited.

7 Conclusion

In this work, we presented a formulation to control arm switching frequency in fixed confidence
pure exploration, and showed that it is possible to stop quicker even when constrained to a minimal
switching limit, s. We present a batched algorithm that empirically demonstrates this, the SPB C-
Tracking, that is designed to track the optimal playing proportions. Our algorithm achieves minimal
switching via use of sparse arm playing proportions computed through a sparse simplex projection.
A limitation of our approach is that the algorithm always plays exactly s+ 1 arms which is wasteful
of exploration, evident in stopping times with lower batch sizes with s ≥ 5. This will be revised
in future work with s as an upper bound. Additionally, future work will focus on providing sample
complexity results for SPB C-Tracking, as well as analyzing this problem in a combinatorial pure
exploration bandit setting for the arm plays in batches analogous to Jourdan et al. [17]. This will be a
step towards an algorithm that more explicitly aligns with the combinatorial sparse configurations
lower bound in Eq. (8) as well as relieves the computation of the expensive optimization problem
required for the optimal playing proportions w∗(µ̂b−1).
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A Appendix: Proof of Theorem 1

Proof of Theorem 1: Consider δ ∈ (0, 1) and a bandit model µ in S, along with a δ-PAC strategy.
For each block b ≥ 1, let Na(b) represent the number of times arm a is drawn up to the end of block
b. According to Garivier and Kaufmann [11, Lemma 1], the expected number of draws for each
arm and the Kullback-Leibler divergence between two bandit models with distinct optimal arms are
related to the error probability δ:

∀λ ∈ S : a∗(λ) ̸= a∗(µ),

K∑
a=1

Eν [Na(β)]d(µa, λa) ≥ kl(δ, 1− δ).

Rather than selecting a specific λ for each arm a to provide a lower bound on Eµ[β], we integrate the
inequalities from all alternative λs:

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(β)]d(µa, λa)

Let CKB,s be the available integer playing configurations for plays corresponding to the desired sparsity

and ∆C := ∆
|CK

B,s|
1 be the simplex over sparse batch configurations. Then, we have

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

K∑
a=1

Eµ

 β∑
b=1

∑
c∈CK

B,s

ca,b

 d(µa, λa)

= inf
λ∈Alt(µ)

K∑
a=1

Eµ[β]Eµ

 ∑
c∈CK

B,s

ca

 d(µa, λa)

≤ Eµ[β] sup
p∈∆C

inf
λ∈Alt(µ)

K∑
a=1

∑
c∈CK

B,s

pcca d(µa, λa),

where the last inequality arises because the probabilities of arm draws specific to each batch are less
than or equal to their maximum values. This substitution is made to derive a bound that applies to
any δ-PAC algorithm.
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B Appendix: Additional experimental results
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Figure 3: Effect of batch size on the stopping times for BatchRacing and SPB C-Tracking
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