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Abstract

We initiate the study of federated reinforcement learning under environmental heterogeneity
by considering a policy evaluation problem. Our setup involves N agents interacting with
environments that share the same state and action space but differ in their reward functions
and state transition kernels. Assuming agents can communicate via a central server, we ask:
Does exchanging information expedite the process of evaluating a common policy? To answer
this question, we provide the first comprehensive finite-time analysis of a federated temporal
difference (TD) learning algorithm with linear function approximation, while accounting for
Markovian sampling, heterogeneity in the agents’ environments, and multiple local updates
to save communication. Our analysis crucially relies on several novel ingredients: (i) deriving
perturbation bounds on TD fixed points as a function of the heterogeneity in the agents’
underlying Markov decision processes (MDPs); (ii) introducing a virtual MDP to closely
approximate the dynamics of the federated TD algorithm; and (iii) using the virtual MDP to
make explicit connections to federated optimization. Putting these pieces together, we prove
that in a low-heterogeneity regime, exchanging model estimates leads to linear convergence
speedups in the number of agents. Our theoretical contribution is significant in that it is the
first result of its kind in multi-agent/federated reinforcement learning that complements the
numerous analogous results in heterogeneous federated optimization.

1 Introduction

In the popular federated learning (FL) paradigm (Konečnỳ et al., 2016; McMahan et al., 2017), a set of
agents aim to find a common statistical model that explains their collective observations. The motivation
to collaborate stems from the fact that if the underlying distributions generating the agents’ observations
are “similar", then each agent can end up learning a “better" model than if it otherwise used just its own
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Figure 1: (Left) Illustration of how FedTD(0) works. Each agent performs K local TD update steps on its own
MDP, and transmits its updated model to a server. The virtual MDP serves to approximate the dynamics of
FedTD(0). The global model θ̄t at the server is used to construct a linearly parameterized approximation of
the value function associated with a policy µ. (Right) FedTD(0) helps each agent converge quickly to a ball
B(θ∗, ϵ) centered around the optimal parameter θ∗ of the virtual MDP. Here, ϵ captures the heterogeneity in
the agents’ MDPs. Using the output θ̄T of FedTD(0), each agent i can then fine-tune based on its own data
to converge exactly to its own optimal parameter θ∗

i .

data. This idea has been formalized by the canonical FL algorithm FedAvg (and its many variants) where
agents communicate local models via a central server while keeping their raw data private. To achieve
communication-efficiency - a key consideration in FL - the agents perform multiple local model-updates
between successive communication rounds. There is a rich literature that analyzes the performance of FedAvg,
focusing primarily on the aspect of statistical heterogeneity that originates from differences in the agents’
underlying data distributions (Sahu et al., 2018; Khaled et al., 2019; 2020; Li et al., 2019; Koloskova et al.,
2020; Woodworth et al., 2020b; Malinovskiy et al., 2020; Pathak & Wainwright, 2020; Wang et al., 2020;
Karimireddy et al., 2020b; Acar et al., 2021; Gorbunov et al., 2021; Mitra et al., 2021; Mishchenko et al., 2022).
Notably, the above works focus on supervised learning problems that are modeled within the framework
of distributed optimization. However, for sequential decision-making with multiple agents interacting with
potentially different environments, little to nothing is known about the effect of heterogeneity. This is the
gap we seek to fill with our work.

The recent survey paper (Qi et al., 2021) describes a federated reinforcement learning (FRL) framework
which incorporates some of the key ideas from FL into reinforcement learning (RL); applications of FRL in
robotics (Liu et al., 2019), autonomous driving (Chen et al., 2015), and edge computing (Wang et al., 2019)
are discussed in detail in this paper. As RL algorithms often require many samples to achieve acceptable
accuracy, FRL aims to achieve sample-efficiency by leveraging information from multiple agents interacting
with similar environments. Importantly, as in standard FL, the FRL framework requires agents to keep their
raw data (e.g., rewards, states, and actions) private, and adhere to stringent communication constraints.

Motivation and Scope of this Work. While FRL is a promising idea, in reality, it will rarely be the case
that different agents end up interacting with exactly the same environment. Unfortunately, this is the running
assumption in almost all multi-agent RL (MARL) and FRL works (Doan et al., 2019; Liu & Olshevsky,
2021a; Khodadadian et al., 2022; Shen et al., 2023). Departing from this somewhat unrealistic yet prevalent
assumption, the main motivation of this paper is to build a systematic theoretical framework
for reasoning about what to expect when one mixes information from non-identical Markov
processes. The nature of this question is fundamental, and while we motivate its study from the perspective
of FRL1, it can just as easily be connected to stochastic control and estimation problems where one seeks to
“fuse” data generated from non-identical dynamical systems with noisy inputs (Wang et al., 2022b; Guo et al.,
2023; Xin et al., 2023).

1Just as statistical heterogeneity is a major challenge in FL, environmental heterogeneity is identified as a key open challenge
in FRL (Qi et al., 2021).
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To initiate a principled study of heterogeneity in FRL, we focus on the simplest RL problem, namely policy
evaluation. Our setup involves N agents where each agent interacts with an environment modeled as a
MDP. The agents’ MDPs share the same state and action space but have different reward functions and
state transition kernels, thereby capturing environmental heterogeneity. Each agent seeks to compute the
discounted cumulative reward (value function) associated with a common policy µ. Notably, the value
functions induced by µ may differ across environments. This leads to the central question we investigate: Can
an agent expedite the process of learning its own value function by leveraging information from potentially
different MDPs? As we explain shortly, this is a non-trivial question to answer even for policy evaluation;
hence, our focus on policy evaluation as a starting point. That said, recent works have shown that with
minor modifications to the analysis of TD learning for policy evaluation (Srikant & Ying, 2019), one can
analyze Q-learning for control (Chen et al., 2019). As such, we envision that the developments in this paper
can be suitably extended to control algorithms like Q-learning as well.

A typical application of the above FRL setup is that of an autonomous driving system where vehicles in
different geographical locations share local models capturing their learned experiences to train a shared model
that benefits from the collective exploration data of all vehicles. The vehicles (agents) essentially have the
same operations (e.g., steering, braking, accelerating, etc.), but can be exposed to different environments
(e.g., road and weather conditions, routes, driving regulations etc.).

1.1 Our Contributions

We study a federated version of the temporal difference (TD) learning algorithm TD(0) (Sutton, 1988). The
structure of this algorithm, which we call FedTD(0), is as follows. At each iteration, each agent plays an
action according to the policy µ, observes a reward, and transitions to a new state based on its own MDP. It
then uses TD(0) with linear function approximation to update a local model that approximates its own value
function. To benefit from other agents’ data in a communication-efficient manner, each agent periodically
synchronizes with a central server, and performs multiple local model-updates in between - as depicted in
Figure 1. Notably, as in FL, agents only exchange models but never their personal observations. We perform a
comprehensive analysis of FedTD(0) under environmental heterogeneity, and make the following contributions:

1. Effect of heterogeneity on TD(0) fixed points. Towards understanding the behavior of FedTD(0),
we start by asking: How does heterogeneity in the transition kernels and reward functions of MDPs
manifest into differences in the long-term behavior of TD(0) (with linear function approximation) on
such MDPs? Theorem 1 provides an answer by characterizing how perturbing a MDP perturbs the
TD(0) fixed point for that MDP. To arrive at this result, we combine results from the perturbation
theories of Markov chains and linear equations. Theorem 1 establishes the first perturbation result
for TD(0) fixed points, and complements results of a similar flavor in the RL literature, such as
the Simulation Lemma due to Kearns & Singh (2002). As such, Theorem 1 can serve as a tool of
independent interest in RL.

2. The Virtual MDP framework. In FL algorithms such as FedAvg, the average of the negative
gradients of the agents’ loss functions drives the iterates of FedAvg towards the minimizer of a global
loss function. In our setting, there is no such global loss function. So by averaging TD(0) update
directions of different MDPs, where do we end up? To answer this question, we construct a virtual
MDP in Section 3.1, and characterize several important properties of this fictitious MDP that aid
our subsequent analysis. Along the way, we derive a simple yet key result (Proposition 1) pertaining
to convex combinations of Markov matrices associated with aperiodic and irreducible Markov chains.
This result appears to be new, and may be of independent interest.

3. Linear Speedup under Markovian Sampling and Heteroegenity. Our most significant
contribution is to provide the first analysis of a federated RL algorithm, FedTD(0), that simultaneously
accounts for linear function approximation, Markovian sampling, multiple local updates, and hetero-
geneity. In Theorem 2, we prove that after T communication rounds with K local model-updating
steps per round, FedTD(0) guarantees convergence at a rate of Õ(1/NKT ) to a neighborhood of each
agent’s optimal parameter. The size of the neighborhood depends on the level of heterogeneity in the
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agents’ MDPs. The key implication of this result is that in a low-heterogeneity regime, each agent can
enjoy an N -fold linear speed-up in convergence via collaboration, and converge quickly to a vicinity
of its own optimal parameter. One can view this as a “coarse tuning phase”. As is typically done in
FL (Collins et al., 2022), each agent can use the solution of FedTD(0) to then fine-tune (personalize)
based on its own data. This is visually illustrated in Figure 1. Theorem 2 is significant in that it is
the first result in FRL that complements the myriad of federated optimization results that account
for the effects of heterogeneity (Sahu et al., 2018; Khaled et al., 2019; 2020; Li et al., 2019; Koloskova
et al., 2020; Woodworth et al., 2020b; Malinovskiy et al., 2020; Pathak & Wainwright, 2020; Wang
et al., 2020; Karimireddy et al., 2020b; Acar et al., 2021; Gorbunov et al., 2021; Mitra et al., 2021;
Mishchenko et al., 2022).

4. Novel Proof Framework. One might be tempted to think that the proof of Theorem 2 is a simple
combination of the standard FedAvg analysis with that of TD learning. We briefly explain here
why this isn’t quite the case, and defer a more elaborate explanation to Section 5.1. First, in the
centralized TD analysis (Bhandari et al., 2018; Srikant & Ying, 2019), and in the existing analysis for
MARL/FRL (Doan et al., 2019; Liu & Olshevsky, 2021a; Khodadadian et al., 2022) with identical
MDPs, the dynamics of the update rules correspond to one single MDP. In our setup, the dynamics
of FedTD(0) may not correspond to any MDP at all! Thus, we need new tools relative to existing
RL analyses. Second, while existing FL analyses are essentially distributed optimization proofs,
federated TD learning does not correspond to minimizing any fixed loss function. Moreover, unlike
the i.i.d. data model in FL, the data tuples observed by each agent in FedTD(0) are part of a single
Markovian trajectory. This creates complex time-correlations that are challenging to deal with even
in a single-agent setting. Thus, we cannot directly employ FL proofs either. As such, we introduce a
new analysis framework where we argue that the dynamics of FedTD(0) can be approximated by that
of TD(0) on a virtual MDP, up to an error term that captures heterogeneity in the agents’ MDPs.
Carefully tracking how this error term propagates over time accounts for the effect of heterogeneity;
establishing linear speedup under Markovian sampling and local steps requires much more work.

5. Bias introduced by Heterogeneity. Our convergence result in Theorem 2 features a bias term due
to heterogeneity that cannot be eliminated even by making the step-size arbitrarily small. Is such a
term unavoidable? We explore this question in Theorem 3 by studying a “steady-state” deterministic
version of FedTD(0). Even for this simple case, we prove that a bias term depending on a natural
measure of heterogeneity shows up inevitably in the long-term dynamics of FedTD(0). This result
sheds further light on the effect of heterogeneity in FRL.

1.2 Related Work

In what follows, we discuss the most relevant threads of literature.

1. Finite-Time Analysis of TD Learning Algorithms. In their seminal paper, Tsitsiklis &
Van Roy (1997) provided an asymptotic convergence analysis of the temporal difference (TD) learning
algorithm (Sutton, 1988; Sutton et al., 1998) with value function approximation, using tools from
stochastic approximation theory. Several years later, the work by Korda & La (2015) provided
finite-time rates for TD learning. However, the authors in Narayanan & Szepesvári (2017) noted
some issues with the proofs in Korda & La (2015). Under the i.i.d. observation model described in
Section 5, Dalal et al. (2018) and Lakshminarayanan & Szepesvári (2017) were able to resolve the
issues in Korda & La (2015). Even so, a non-asymptotic convergence analysis for the challenging
Markovian setting (that we consider in this paper) remained elusive till the work by Bhandari et al.
(2018). While the authors in Bhandari et al. (2018) made some elegant connections between the
dynamics of TD learning and gradient descent, an alternative proof technique using Stein’s method
was developed by Srikant & Ying (2019). Yet another interesting interpretation was provided by Liu
& Olshevsky (2021b): they argued that the steady-state temporal difference direction acts as a
“gradient-splitting" of an appropriately chosen function. Recently, a short proof of TD learning
with linear function approximation and more general nonlinear contractive stochastic approximation
schemes was provided by Mitra (2024) based on a novel inductive proof technique. While all the
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above works provide upper-bounds for the task of policy evaluation, for minimax lower bounds, we
refer the reader to the work of Khamaru et al. (2021).

2. Multi-Agent and Federated RL. In Doan et al. (2019) and Liu & Olshevsky (2021a), the authors
analyze multi-agent TD learning with linear function approximation over peer-to-peer networks.
Neither approach accounts for local steps or Markovian sampling. In Shen et al. (2023), the authors
study a parallel version of asynchronous actor-critic algorithms, and establish a linear speedup
result - albeit under an i.i.d. sampling assumption. Very recently, the authors in Khodadadian
et al. (2022) and Dal Fabbro et al. (2023) studied the effect of Markovian sampling for federated TD
learning. However, all of the above papers consider a homogeneous setting with identical MDPs for
all agents. In contrast, our work has to tackle the challenge of understanding the long-term effects
of mixing TD update directions from non-identical MDPs. The only two papers we are aware of
that perform any theoretical analysis of heterogeneity in FRL are Jin et al. (2022) and Xie & Song
(2023). However, their analyses are limited to the much simpler tabular setting with no function
approximation. In particular, the work of Xie & Song (2023) only comes with asymptotic results,
i.e., they do not provide finite-time rates. Moreover, unlike us, neither Jin et al. (2022) nor Xie &
Song (2023) provide any explicit linear speedup result. In conclusion, we are the first to establish
a finite-time theory for FRL under function approximation, environmental heterogeneity, and
Markovian sampling. Considering different settings, Zhang et al. (2024) proposed the FEDSARSA
algorithm to solve the on-policy FRL problem and Wang et al. (2023) proposed FedLQR to solve the
federated control design problem. A more detailed description of related work on federated learning
is relegated to the Appendix.

2 Model and Problem Formulation

We consider a Markov Decision Process (MDP) (Sutton et al., 1998) defined by the tuple M = ⟨S, A, R, P, γ⟩,
where S is a finite state space of size n, A is a finite action space, P is a set of action-dependent Markov
transition kernels, R is a reward function, and γ ∈ (0, 1) is the discount factor. We consider the problem
of evaluating the value function Vµ of a given policy µ, where µ : S → A. The policy µ induces a Markov
reward process (MRP) characterized by a transition matrix Pµ, and a reward function Rµ. Under the action
of the policy µ at an initial state s, Pµ(s, s′) is the probability of transitioning from state s to state s′, and
Rµ(s) is the expected instantaneous reward. The discounted expected cumulative reward obtained by playing
policy µ starting from initial state s is:

Vµ(s) = E

[ ∞∑
t=0

γtRµ(st)|s0 = s

]
,

where st is the state of the Markov chain at time t. From Tsitsiklis & Van Roy (1997), we know that Vµ is
the fixed point of the policy-specific Bellman operator Tµ : Rn → Rn, i.e., TµVµ = Vµ, where for any V ∈ Rn,

(TµV )(s) = Rµ(s) + γ
∑
s′∈S

Pµ(s, s′)V (s′), ∀s ∈ S.

TD learning with linear function approximation. We consider the setting where the number of states
is very large, making it practically infeasible to compute the value function Vµ directly. To mitigate the
curse of dimensionality, a common approach (Sutton et al., 1998) is to consider a low-dimensional linear
function approximation of the value function Vµ. Let {Φk}d

k=1 be a set of d linearly independent basis vectors
in Rn, and Φ ∈ Rn×d be a matrix with these basis vectors as its columns, i.e., the k-th column of Φ is Φk.
A parametric approximation V̂θ of Vµ in the span of {Φk}d

k=1 is then given by V̂θ = Φθ, where θ ∈ Rd is a
parameter vector to be learned. Notably, this is tractable since d ≪ n. We denote the s-th row of Φ by
ϕ(s) ∈ Rd, and refer to it as the fixed feature vector corresponding to state s. We write V̂θ(s) = ϕ(s)⊤θ and
make the standard assumption (Bhandari et al., 2018) that ∥ϕ(s)∥2 ≤ 1, ∀s ∈ S.

The objective is to find the best linear approximation of Vµ in the span of {Φk}d
k=1. More precisely, we seek a

parameter vector θ∗ that minimizes the distance between V̂θ and Vµ (in a suitable sense). When the underlying
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MDP is unknown, one of the most popular techniques to achieve this goal is the classical TD(0) algorithm. TD(0)
starts from an initial guess θ0 ∈ Rd. Subsequently, at the t-th iteration, upon playing the given policy µ, a new
data tuple Ot = (st, rt = Rµ(st), st+1) comprising of the current state, the instantaneous reward, and the next
state is observed. Let us define the TD(0) update direction as gt(θt) ≜

(
rt + γϕ (st+1)⊤

θt − ϕ (st)⊤
θt

)
ϕ (st).

Using a step-size αt ∈ (0, 1), the parameter θt is then updated as

θt+1 = θt + αtgt(θt).

Under some mild technical assumptions, it was shown in Tsitsiklis & Van Roy (1997) that the TD(0) iterates
converge asymptotically almost surely to a vector θ∗, where θ∗ is the unique solution of the projected Bellman
equation ΠDTµ(Φθ∗) = Φθ∗. Here, D is a diagonal matrix with entries given by the elements of the stationary
distribution π of the Markov matrix Pµ. Furthermore, ΠD(·) is the projection operator onto the subspace
spanned by {ϕk}d

k=1 with respect to the inner product ⟨·, ·⟩D.2

Objective. We study a multi-agent RL problem where agents interact with similar, but non-identical
MDPs that share the same state and action space. All agents seek to evaluate the same policy. Our goal is to
understand: Can an agent evaluate the value function of its own MDP in a more sample-efficient way by
leveraging data from other agents? Existing FL analyses that study statistical heterogeneity in supervised
learning/empirical risk minimization fall short of answering this question, since our problem does not involve
minimizing a static loss function. As such, the question we have posed above is non-trivial, and requires
several new ideas and tools. In the next section, we will start building these tools in a systematic manner by
accomplishing the following goals.

Goal 1. Formally defining what we mean by model heterogeneity in the agents’ MDPs.

Goal 2. Characterizing how such model heterogeneity translates to differences in the fixed points of the TD(0)
algorithm when run on the agents’ MDPs.

Goal 3. Introducing the notion of a virtual MDP that will play a crucial role in reasoning about the long-term
behavior of algorithms that combine information from non-identical MDPs.

3 Heterogeneous Federated RL

We consider a federated RL setting comprising of N agents that interact with potentially different environments.
Agent i’s environment is characterized by the following MDP: M(i) = ⟨S, A, R(i), P(i), γ⟩. While all agents
share the same state and action space, the reward functions and state transition kernels of their environments
can differ. We focus on a policy evaluation problem where all agents seek to evaluate a common policy µ that
induces N Markov reward processes characterized by the tuples {P

(i)
µ , R

(i)
µ }i∈[N ].3 Agent i aims to find a

linearly parameterized approximation of its own value function V
(i)

µ . Trivially, agent i can do so without
interacting with any other agent by simply running TD(0). However, the key question we ask pertains to the
value of side-information: By using data from other agents, can it achieve a desired level of approximation
with fewer samples relative to when it acts alone? Naturally, the answer to the above question depends on
the level of heterogeneity in the agents’ MDPs. Accordingly, we introduce the following definitions.
Assumption 1. (Markov Kernel Heterogeneity) There exists an ϵ > 0 such that for all agents i, j ∈ [N ],
it holds that |P (i)(s, s′) − P (j)(s, s′)| ≤ ϵ|P (i)(s, s′)|, ∀s, s′ ∈ S. Here, for each i ∈ [N ], P (i)(s, s′) represents
the (s, s′)-th element of the matrix P (i).
Assumption 2. (Reward Heterogeneity) There exists an ϵ1 > 0 such that for all i, j ∈ [N ], it holds that
∥R(i) − R(j)∥ ≤ ϵ1.

Clearly, smaller values of ϵ and ϵ1 capture more similarity in the agents’ MDPs. Suppose all agents can
communicate via a central server. Via such communication, the standard FL task is to find one common

2We will use ∥ · ∥D to denote the norm induced by the matrix D, and ∥ · ∥ to represent the standard Euclidean norm for
vectors and ℓ2 induced norm for matrices.

3We will henceforth drop the dependence of P (i) and R(i) on the policy µ.
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model that “fits" the data of all agents. In a similar spirit, our goal is to find a common parameter θ such that
V̂θ = Φθ approximates each V

(i)
µ , i ∈ [N ]. The role of this common θ will be to quickly (i.e., by leveraging

samples of all agents) provide a coarse model that the agents can then use as a warm-start to fine-tune based
on personal data. There is a natural tension here. While federation can help converge faster to a coarse
model, such a model may not accurately capture the value function of any agent if the agents’ MDPs are
very dissimilar. So does more data help or hurt?

Impact of Heterogeneity on TD fixed points. To answer the above question, we need to carefully
understand how the structural heterogeneity assumptions on the MDPs (namely, Assumptions 1 and 2)
manifest into differences in the long-term dynamics of TD(0) on these MDPs. Since long-term dynamics are
intimately tied to fixed points, we first set out to characterize the “closeness" in TD(0) fixed points across
different MDPs. To proceed, we make the following standard assumption.
Assumption 3. For each i ∈ [N ], the Markov chain induced by the policy µ, corresponding to the state
transition matrix P (i), is aperiodic and irreducible.

The above assumption implies the existence of a unique stationary distribution π(i) for each i ∈ [N ]; let D(i)

be a diagonal matrix with the entries of π(i) on its diagonal. For each agent i, we then use θ∗
i to denote

the solution of the projected Bellman equation ΠD(i)T
(i)
µ (Φθ∗

i ) = Φθ∗
i for agent i. In words, θ∗

i is the best
linear approximation of V

(i)
µ in the span of {ϕk}d

k=1. From Section 2, we know that the iterates of TD(0) on
agent i’s MRP will converge to θ∗

i asymptotically almost surely. Our goal is to bound the gap ∥θ∗
i − θ∗

j ∥ as a
function of the heterogeneity parameters ϵ and ϵ1 appearing in Assumptions 1 and 2. The key observation
we will exploit is that for each i ∈ [N ], θ∗

i is the unique solution of the linear equation Āiθ
∗
i = b̄i, where

Āi = Φ⊤D(i)(Φ − γP (i)Φ) and b̄i = Φ⊤D(i)R(i). For an agent j ≠ i, viewing Āj and b̄j as perturbed versions
of Āi and b̄i, we can now appeal to results from the perturbation theory of linear equations (Horn & Johnson,
2012a, Chapter 5.8) to bound ∥θ∗

i − θ∗
j ∥. To that end, we first recall a result from the perturbation theory of

Markov chains (O’cinneide, 1993) which shows that under Assumption 1, the stationary distributions π(i)

and π(j) are close for any pair i, j ∈ [N ].
Lemma 1. (Perturbation bound on Stationary Distributions) Suppose Assumption 1 holds. Then,
for any pair of agents i, j ∈ [N ], the stationary distributions π(i) and π(j) satisfy:

∥π(i) − π(j)∥1 ≤ 2(n − 1)ϵ + O(ϵ2). (1)

We will now use the above result to bound ∥Āi − Āj∥ and ∥b̄i − b̄j∥. To state our results, we make the
standard assumption that for each i ∈ [N ], it holds that |R(i)(s)| ≤ Rmax, ∀s ∈ S, i.e., the rewards are
uniformly bounded. In (Tsitsiklis & Van Roy, 1997), it was shown that −Āi is a negative definite matrix;
thus, ∃δ1 > 0 such that ∥Āi∥ ≥ δ1, ∀i ∈ [N ]. We also assume that ∃δ2 > 0 such that ∥b̄i∥ ≥ δ2, ∀i ∈ [N ]. In
our first technical result, stated below, we provide a bound on the perturbation of TD fixed points.
Theorem 1. (Perturbation bounds on TD(0) fixed points) For all i, j ∈ [N ], we have:

1. ∥Āi − Āj∥ ≤ A(ϵ) ≜ γ
√

nϵ + (1 + γ)
(
2(n − 1)ϵ + O(ϵ2)

)
.

2. ∥b̄i − b̄j∥ ≤ b(ϵ, ϵ1) ≜ Rmax
(
2(n − 1)ϵ + O(ϵ2)

)
+ O(ϵ1).

3. Suppose ∃H > 0 s.t. ∥θ∗
i ∥ ≤ H, ∀i ∈ [N ]. Let κ(Āi) be the condition number of Āi. Then:

∥θ∗
i − θ∗

j ∥ ≤ Γ(ϵ, ϵ1) ≜ max
i∈[N ]

{
κ(Āi)H

1 − κ(Āi) A(ϵ)
δ1

(
A(ϵ)
δ1

+ b(ϵ, ϵ1)
δ2

)}
.

Discussion. Theorem 1 reveals how heterogeneity in the rewards and transition kernels of MDPs can be
mapped to differences in the limiting behavior of TD(0) on such MDPs from a fixed-point perspective. It
formalizes the intuition that if the level of heterogeneity - as captured by ϵ and ϵ1 - is small, then so is the
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gap in the TD(0) limit points of the agents’ MDPs. This result is novel, and complements similar perturbation
results in the RL literature such as the Simulation Lemma (Kearns & Singh, 2002).4

In what follows, we will introduce the key concept of a virtual MDP, and build on Theorem 1 to relate
properties of this virtual MDP to those of the agents’ individual MDPs.

3.1 Virtual Markov Decision Process

In a standard FL setting, the goal is to typically minimize a global loss function f(x) = (1/N)
∑

i∈[N ] fi(x)
composed of the local loss functions of N agents; here, fi(x) is the local loss function of agent i. In FL, due
to heterogeneity in the agents’ loss functions, there is a “drift" effect (Charles & Konečnỳ, 2020; Karimireddy
et al., 2020b): the local iterates of each agent i drift towards the minimizer of fi(x). However, when the
heterogeneity is moderate, the average of the agents’ iterates converges towards the minimizer of f(x). To
develop an analogous theory for FRL, we need to first answer: When we average TD(0) update directions
from different MDPs, where does the average TD(0) update direction lead us? It is precisely to answer this
question that we introduce the concept of a virtual MDP. To model a virtual environment that captures
the “average" of the agents’ individual environments, we construct an MDP M̄ = ⟨S, A, R̄, P̄, γ⟩, where
P̄ = (1/N)

∑N
i=1 P(i), and R̄ = (1/N)

∑N
i=1 R(i). Note that the virtual MDP is a fictitious MDP that we

construct solely for the purpose of analysis, and it may not coincide with any of the agents’ MDPs, in general.

Properties of the Virtual MDP. When applied to M̄, let the policy µ that we seek to evaluate induce
a virtual MRP characterized by the tuple {P̄ , R̄}. It is easy to see that P̄ = (1/N)

∑N
i=1 P (i), and R̄ =

(1/N)
∑N

i=1 R(i). The following result shows how the virtual MRP inherits certain basic properties from the
individual MRPs; the result is quite general and may be of independent interest.
Proposition 1. (Convex combinations of Markov matrices) Let {P (i)}N

i=1 be a set of Markov matrices
associated with Markov chains that share the same states, and are each aperiodic and irreducible. Then, for
any set of weights {wi}N

i=1 satisfying wi ≥ 0, ∀i ∈ [N ] and
∑

i∈[N ] wi = 1, the Markov chain corresponding to
the matrix

∑
i∈[N ] wiP

(i) is also aperiodic and irreducible.

The above result immediately tells us that the Markov chain corresponding to P̄ is aperiodic and irreducible.
Thus, there exists an unique stationary distribution π̄ of this Markov chain; let D̄ be the corresponding
diagonal matrix. As before, let us define Ā ≜ Φ⊤D̄(Φ − γP̄ Φ), b̄ ≜ Φ⊤D̄R̄, and use θ∗ to denote the solution
to the equation Āθ∗ = b̄. Our next result is a consequence of Theorem 1, and characterizes the gap between
θ∗

i and θ∗, for each i ∈ [N ].
Proposition 2. (Virtual MRP is “close" to Individual MRPs) Fix any i ∈ [N ]. Using the same
definitions as in Theorem 1, we have ∥Āi − Ā∥ ≤ A(ϵ), ∥b̄i − b̄∥ ≤ b(ϵ, ϵ1) and ∥θ∗

i − θ∗∥ ≤ Γ(ϵ, ϵ1).

We will later argue that the federated TD algorithm (to be introduced in Section 4) converges to a ball
centered around the TD(0) fixed point θ∗ of the virtual MRP. Proposition 2 is thus particularly important
since it tells us that in a low-heterogeneity regime, by converging close to θ∗, we also converge close to
the optimal parameter θ∗

i of each agent i. This justifies studying the convergence behavior of FedTD(0) on
the virtual MRP. Define Σv ≜ Φ⊤D̄Φ. The smallest eigenvalue of this matrix will end up dictating the
convergence rate of our proposed algorithm. We end this section with a result showing that this eigenvalue is
bounded away from zero.
Proposition 3. For the virtual MRP, it holds that λmax(Σv) ≤ 1, and ∃ ω̄ > 0 s.t. λmin(Σv) ≥ ω̄.

4 Federated TD Algorithm

In this section, we describe the FedTD(0) algorithm (outlined in Algorithm 1). The goal of FedTD(0) is to
generate a model θ such that V̂θ is a good approximation of each agent i’s value function V

(i)
µ , corresponding

4The simulation lemma tells us that if two MDPs with the same state and action spaces are similar, then so are the value
functions induced by a common policy on these MDPs.
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Algorithm 1 Description of FedTD(0)

1: Input: Policy µ, local step-size αl, global step-size α
(t)
g that depends on communication round t

2: Initialize: θ̄0 = θ0 and s
(i)
0,0 = s0, ∀i ∈ [N ]

3: for each round t = 0, . . . , T − 1 do
4: for each agent i ∈ [N ] do
5: for k = 0, . . . , K − 1 do with initial model θ

(i)
t,0 = θ̄t

6: Agent i plays µ(s(i)
t,k), observes O

(i)
t,k = (s(i)

t,k, r
(i)
t,k, s

(i)
t,k+1), and updates local model:

θ
(i)
t,k+1 = θ

(i)
t,k + αlgi(θ(i)

t,k), where gi(θ(i)
t,k) ≜

(
r

(i)
t,k + γϕ(s(i)

t,k+1)⊤θ
(i)
t,k − ϕ(s(i)

t,k)⊤θ
(i)
t,k

)
ϕ(s(i)

t,k)

7: end for
8: Agent i sends ∆(i)

t = θ
(i)
t,K − θ̄t back to the server

9: end for
10: Server broadcasts the following global model: θ̄t+1 = Π2,H(θ̄t + (α(t)

g /N)
∑

i∈[N ] ∆(i)
t )

11: end for

to the policy µ. In line with both standard FL algorithms, and also works in MARL/FRL (in homogeneous
settings) (Doan et al., 2019; Khodadadian et al., 2022), the agents keep their raw observations (i.e., their
rewards, states, and actions) private, and only exchange local models. In each round t, each agent i ∈ [N ]
starts from a common global model θ̄t and uses its local data to perform K local updates of the following
form: at each local iteration k, agent i takes action µ(s(i)

t,k) and observes a data tuple O
(i)
t,k based on its own

MRP, i.e., {P (i), R(i)}; we note here that observations are independent across agents. Using its data tuple,
agent i then updates its own local model θ

(i)
t,k along the direction gi(θ(i)

t,k) in line 6. Since each agent seeks to
benefit from the samples acquired by the other agents, there is intermittent communication via the server.
However, such communication needs to be limited as communication-efficiency is a key concern in FL. As
such, the agents upload their local models’ difference ∆(i)

t to the server only once every K time-steps. The
server averages these model differences and performs a projection to construct a global model θ̄t+1 that is
then broadcast to all agents (line 10). Here, we use Π2,H(·) to denote the standard Euclidean projection on to
a convex compact subset H ⊂ Rd that is assumed to contain each θ∗

i , i ∈ [N ], and also θ∗. Such a projection
step ensures that the global models do not blow up, and is common in stochastic approximation (Borkar,
2009) and RL (Bhandari et al., 2018; Doan et al., 2019). Each agent then resumes its local updating process
from this global model.

We note that the structure of FedTD(0) mirrors that of FedAvg (and its many variants) where agents perform
multiple local model-updates in isolation using their own data (to save communication), and synchronize
periodically via a server. However, there are significant differences in the dynamics of standard FL algorithms
and FedTD(0), making it quite challenging to derive finite-time convergence results for the latter. In the
next section where we analyze FedTD(0), we will explain the nature of these challenges, and discuss how we
overcome them.

5 Main Result and Analysis

To state our main convergence result for FedTD(0), we need to introduce a few objects. First, let H denote
the radius of the set H in line 10 of Algorithm 1. Also, define G ≜ Rmax + 2H and ν ≜ (1 − γ)ω̄, where ω̄
is as in Proposition 3. In our analysis, we will make use of the geometric mixing property of finite-state,
aperiodic, and irreducible Markov chains (Levin & Peres, 2017). Specifically, under Assumption 3, for each
i ∈ [N ], there exists some mi ≥ 1 and ρi ∈ (0, 1), such that for all t ≥ 0 and 0 ≤ k ≤ K − 1:

dT V

(
P
(

s
(i)
t,k = · | s

(i)
0,0 = s

)
, π(i)

)
≤ miρ

tK+k
i , ∀s ∈ S.

9
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Here, we use dT V (P, Q) to denote the total-variation distance between two probability measures P and
Q. For any ϵ̄ > 0, let us define the mixing time for P (i) as τmix

i (ϵ̄) ≜ min {t ∈ N0 | miρ
t
i ≤ ϵ̄}. Finally, let

τ(ϵ̄) = maxi∈[N ] τmix
i (ϵ̄) represent the mixing time corresponding to the Markov chain that mixes the slowest.

As one might expect, and as formalized by our main result below, it is this slowest-mixing Markov chain that
dictates certain terms in the convergence rate of FedTD(0).

Theorem 2. (Main Result) There exists a decreasing global step-size sequence {α
(t)
g }, a fixed local step-size

αl, and a set of convex weights, such that a convex combination θ̃T of the global models {θ̄t} satisfies the
following for each agent i ∈ [N ] after T rounds:

E
[∥∥∥Vθ̃T

− Vθ∗
i

∥∥∥2

D̄

]
≤ Õ

(
τ2G2 + K2

K2T 2 + cquad(τ)
ν2NKT

+ clin(τ)
ν4KT 2 + Q(ϵ, ϵ1)

)
, (2)

where τ = ⌈ τmix(α2
T )

K ⌉, αT = Kαlα
(T )
g , and cquad(τ) and clin(τ) are quadratic and linear functions in τ ,

respectively. Moreover, B(ϵ, ϵ1) = H
(√

nϵ + 2(n − 1)ϵ + O(ϵ2) + O(ϵ1)
)
, Γ(ϵ, ϵ1) is as defined in Theorem 1,

and Q(ϵ, ϵ1) = Õ( B(ϵ,ϵ1)G
ν + Γ2(ϵ, ϵ1)).

The proof of the above result is deferred to Appendix I. We now discuss its impplications.

Discussion. To parse Theorem 2, let us start by noting that the term Q(ϵ, ϵ1) in Eq. (2) captures the
effect of heterogeneity; we will comment on this term later. When T ≫ N , the dominant term among the
first three terms in Eq. (2) is cquad(τ)/(ν2NKT ). To appreciate the tightness of this term, we note that
in a centralized setting (i.e., when N = 1), given access to KT samples, the convergence rate of TD(0) is
O(1/(ν2KT )) (Bhandari et al., 2018). Our analysis thus reveals that by communicating just T times in KT
iterations, each agent i can achieve a linear speedup w.r.t. the number of agents. In a low-heterogeneity
regime, i.e., when Q(ϵ, ϵ1) is small, we note that by combining data from different MDPs, FedTD(0) guarantees
fast convergence to a model that is a good approximation of each agent’s value function; by fast, we imply a
N -fold speedup over the rate each agent would have achieved had it not communicated at all. Thus with
little communication, FedTD(0) quickly provides each agent with a good model that it can then fine-tune
for personalization. Theorem 2 is significant in that it is the first result of its kind in MARL/FRL with
heterogeneous environments, and complements the numerous analogous results in heterogeneous federated
optimization (Sahu et al., 2018; Khaled et al., 2019; 2020; Li et al., 2019; Koloskova et al., 2020; Woodworth
et al., 2020b; Malinovskiy et al., 2020; Pathak & Wainwright, 2020; Wang et al., 2020; Karimireddy et al.,
2020b; Acar et al., 2021; Gorbunov et al., 2021; Mitra et al., 2021; Mishchenko et al., 2022).

When all the MDPs are identical, Q(ϵ, ϵ1) = 0. But when the MDPs are different, should we expect such a
term? To further understand the effect of heterogeneity, it suffices to get rid of all the randomness in our
setting. As such, suppose we replace the random TD(0) direction gi(θ(i)

t,k) of each agent i in Algorithm 1 by
its steady-state deterministic version ḡi(θ(i)

t,k) = b̄i − Āiθ
(i)
t,k, where Āi and b̄i are as in Section 3. We call

the resulting deterministic algorithm mean-path FedTD(0). For simplicity, we skip the projection step. In
our next result, we exploit the affine nature of the steady-state TD(0) directions to characterize the effect of
heterogeneity in the limiting behavior of FedTD(0).

Theorem 3. (Heterogeneity Bias) Suppose N = 2 and K = 1. Let the step-size α = αlα
(t)
g be chosen

such that I − αÂ is Schur stable, where Â =
(
Ā1 + Ā2

)
/2. Define ei,t ≜ θ̄t − θ∗

i , i ∈ {1, 2}. The output of
mean-path FedTD(0) then satisfies:

lim
t→∞

e1,t = 1
2 Â−1Ā2(θ∗

1 − θ∗
2); lim

t→∞
e2,t = 1

2 Â−1Ā1(θ∗
2 − θ∗

1). (3)

Discussion: For the setting described in Theorem 3, the mean-path FedTD(0) updates follow the determin-
istic recursion θ̄t+1 = (I − αÂ)θ̄t + αb̂, where b̂ = (1/2)(b̄1 + b̄2). This is a discrete-time linear time-invariant
system (LTI). The dynamics of this system are stable if and only if the state transition matrix (I − αÂ) is
Schur stable, justifying the choice of α in Theorem 3. The main message conveyed by this result is that
the gap between the limit point of mean-path FedTD(0) and the optimal parameter θ∗

i of either of the two
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MRPs bears a dependence on the difference in the optimal parameters of the MRPs - a natural indicator of
heterogeneity between the two MRPs. Furthermore, this term has no dependence on the step-size α, i.e., the
effect of the heterogeneity-induced bias cannot be eliminated by making α arbitrarily small. Aligning with
this observation, notice that Q(ϵ, ϵ1) in Eq. (2) is also step-size independent. The above discussion sheds
some light on the fact that a term of the form Q(ϵ, ϵ1) is to be expected in Theorem 2. Notably, the bias term
in Eq. (3) persists even when the number of local steps is just one, i.e., even when the agents communicate
with the server at all time steps. This is a key difference with the standard FL setting where the effect of
heterogeneity manifests itself only when the number of local steps K strictly exceeds 1 (Charles & Konečnỳ,
2021; Karimireddy et al., 2020b; Mitra et al., 2021).

5.1 Main Technical Challenges and Overview of the Novel Ingredients in Our Analysis

Challenges. We summarize the major technical challenges that show up in the analysis of Theorem 2.
First, the FedTD(0) update direction may not correspond to the TD(0) update direction of any MDP. This
challenge is unique to our setting, and neither shows up in the centralized TD(0) analysis (Bhandari et al.,
2018; Srikant & Ying, 2019), nor in the existing MARL/FRL analyses with homogeneous MDPs (Doan et al.,
2019; Khodadadian et al., 2022). Second, unlike standard FL analyses that deal with i.i.d. observations for
each agent, our setting is complicated by the fact that each agent’s data is generated from a Markov chain.
Moreover, for each agent i, the parameter sequence {θ

(i)
t,k} and the data tuples {O

(i)
t,k} are intricately coupled.

Third, the synchronization step in FedTD(0) creates complex statistical dependencies between the local
parameter of any given agent and the past observations of all other agents. Fourth, controlling the gradient
bias (1/NK)

∑N
i=1
∑K−1

k=0
(
gi(θ(i)

t,k, O
(i)
t,k) − ḡi(θ(i)

t,k)
)

and the gradient norm E∥(1/NK)
∑N

i=1
∑K−1

k=0 gi(θ(i)
t,k)∥2

requires a very delicate analysis when one seeks to establish the linear speedup property w.r.t. the number of
agents N , i.e., the O(1/NKT )-type rate. In particular, naively bounding terms using the projection radius
(as in the centralized analysis (Bhandari et al., 2018)) will not yield the linear speedup property. Finally, we
need to control the “client-drift” effect due to environmental heterogeneity under the strong coupling between
the different random variables discussed above.

Proof Sketch for Theorem 2. Our first key innovation is to build on the results in Section 3 to show that
the mean-path (steady-state) FedTD(0) update direction (1/N)

∑N
i=1 ḡi(θ) is “close" to the mean-path TD(0)

update direction ḡ(θ) = b̄ − Āθ of the virtual MRP we constructed in Section 3.1; here, b̄, Ā are as defined in
Section 3.1. Formally, we have the following result.
Lemma 2. (Steady-state Pseudo-Gradient Heterogeneity) For each θ ∈ H, we have:

∥∥∥ḡ(θ) − 1
N

N∑
i=1

ḡi(θ)
∥∥∥ ≤ B(ϵ, ϵ1), (4)

where B(ϵ, ϵ1) is as in Theorem 2, and ḡ(θ) is the steady-state TD(0) direction of the virtual MRP.

From Bhandari et al. (2018), we know that ḡ(θ) acts like a pseudo-gradient pointing towards the optimal model
θ∗ of the virtual MRP. Since based on Proposition 2, we know that θ∗ is close to θ∗

i , ∀i ∈ [N ], Lemma 2 tells
us that at least in the steady-state, the iterates of FedTD(0) will converge to a neighborhood of each agent’s
optimal model, where the size of the neighborhood depends on the level of heterogeneity. While this helps
build intuition, all the valuable insights conveyed by Lemma 2 only pertain to the steady state dynamics of
FedTD(0), i.e., all the statistical challenges we alluded to still need to be resolved. In particular, as mentioned
earlier, we cannot naively use a projection bound of the form E

[
∥(1/NK)

∑N
i=1
∑K−1

k=0 gi(θ(i)
t,k)∥2

]
= O(G2)

from the centralized analysis in Bhandari et al. (2018), since the local models may not belong to the set H.
Also, this will obscure the linear speedup effect. We overcome this difficulty by decomposing the random TD
direction of each agent i as gi(θ(i)

t,k) = bi(O(i)
t,k) − Ai(O(i)

t,k)θ(i)
t,k. Since Ai(O(i)

t,k) and bi(O(i)
t,k) only depend on the

randomness from the Markov chain, and O
(i)
t,k and O

(j)
t,k are independent, we can show that the variances of

(1/NK)
∑N

i=1
∑K−1

k=0 Ai(O(i)
t,k) and (1/NK)

∑N
i=1
∑K−1

k=0 bi(O(i)
t,k) get scaled down by NK (up to higher order

terms). Furthermore, to account for the fact that Ai(O(i)
t,k) and bi(O(i)

t,k) differ across agents, we appeal to
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Lemma 2. Putting these pieces together in a careful manner yields the final rate in Theorem 2. The detailed
analysis, along with some simulations, are deferred to the Appendix.

(a) Simulations on the effect of the linear speedup (b) Simulations on the effect of the heterogeneity level

Figure 2: Performance of FedTD(0) under Markovian sampling. (a) Performance of FedTD(0) for varying
number of agents N . The MDP M(1) of the first agent is randomly generated with a state space of size
n = 100. The remaining MDPs are perturbations of M(1) with the heterogeneity levels ϵ = 0.05 and ϵ1 = 0.1.
We evaluate the convergence in terms of the running error et = ∥θ̄t − θ∗

1∥2. (b) Performance of FedTD(0) for
varying heterogeneity level, with a fixed number of agents N = 20. Complying with theory, increasing N
reduces the error, and increasing the level of heterogeneity increases the size of the ball to which FedTD(0)
converges. We choose the number of local steps as K = 10 in both plots.

6 Conclusion

In this work, we have studied the problem of federated reinforcement learning under environmental hetero-
geneity and explored the following question: Can an agent expedite the process of learning its own value
function by using information from agents interacting with potentially different MDPs? To answer this
question, we studied the convergence of a federated TD(0) algorithm with linear function approximation,
where N agents under different environments collaboratively evaluate a common policy. The main differences
from the existing works are: (i) proposing a new definition of environmental heterogeneity; (ii) characterizing
the effect of heterogeneity on TD(0) fixed points; (iii) introducing a virtual MDP to analyze the long-term
behavior of the FedTD(0) algorithm; and (iv) making an explicit connection between federated reinforcement
learning and federated supervised learning/optimization by leveraging the virtual MDP. With these elements,
we proved that if the environmental heterogeneity between agents’ environments is small, then FedTD(0) can
achieve a linear speedup under both i.i.d and Markovian settings, and with multiple local updates.

A few interesting extensions to this work are as follows. First, it is natural to study federated variants of
other RL algorithms beyond the TD(0) algorithm. Second, it would be interesting to investigate whether
the personalization techniques used in the traditional FL optimization literature can be applied to solve
federated RL problems. Instead of learning a common value function/policy, can we design personalized value
functions/policies that might perform better in high-heterogeneity regimes? We leave the exploration of this
interesting question as future work.
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Zachary Charles and Jakub Konečnỳ. On the outsized importance of learning rates in local update methods.
arXiv preprint arXiv:2007.00878, 2020.
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A Additional Literature Survey

Federated Learning Algorithms. The literature on algorithmic developments in federated learning is vast;
as such, we only cover some of the most relevant/representative works here. The most popularly used FL
algorithm, FedAvg, was first introduced in McMahan et al. (2017). Several works went on to provide a detailed
theoretical analysis of FedAvg both in the homogeneous case when all clients minimize the same objective
function (Stich, 2018; Wang & Joshi, 2018; Spiridonoff et al., 2020; Reisizadeh et al., 2020; Haddadpour et al.,
2019; Woodworth et al., 2020a), and also in the more challenging heterogeneous setting (Khaled et al., 2019;
2020; Haddadpour & Mahdavi, 2019; Li et al., 2019; Koloskova et al., 2020). In the latter scenario, it was
soon realized that FedAvg suffers from a “client-drift" effect that hurts its convergence performance (Charles
& Konečnỳ, 2020; 2021; Karimireddy et al., 2020a).

Since then, a lot of effort has gone into improving the convergence guarantees of FedAvg via a variety of
technical approaches: proximal methods in FedProx (Sahu et al., 2018); operator-splitting in FedSplit
(Pathak & Wainwright, 2020); variance-reduction in Scaffold (Karimireddy et al., 2020a) and S-Local-SVRG
(Gorbunov et al., 2021); gradient-tracking in FedLin (Mitra et al., 2021); dynamic regularization in Acar et al.
(2021); and ADMM in FedADMM (Wang et al., 2022a). While these methods improved upon FedAvg in various
ways, they all fell short of providing any theoretical justification for performing multiple local updates under
arbitrary statistical heterogeneity. Very recently, the authors in Mishchenko et al. (2022) introduced the
ProxSkip algorithm, and showed that it can indeed lead to communication savings via local steps, despite
arbitrary heterogeneity.

Some other approaches to tackling heterogeneous statistical distributions in FL include personalization (Deng
et al., 2020; Fallah et al., 2020; T Dinh et al., 2020; Hanzely et al., 2020; Tan et al., 2022), clustering (Ghosh
et al., 2020; Sattler et al., 2020; Su et al., 2022), representation learning (Collins et al., 2021), and the use of
quantiles (Laguel et al., 2021).
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B Perturbation bounds for TD(0) fixed points

B.1 Proof of Theorem 1

In this section, we prove the perturbation bounds on TD(0) fixed points shown in Theorem 1. We start by
observing that:

∥Āi − Āj∥ = ∥Φ⊤D(i)(Φ − γP (i)Φ) − Φ⊤D(j)(Φ − γP (j)Φ)∥
≤ ∥Φ⊤D(i)(Φ − γP (i)Φ) − Φ⊤D(i)(Φ − γP (j)Φ)+

Φ⊤D(i)(Φ − γP (j)Φ) − Φ⊤D(j)(Φ − γP (j)Φ)∥
≤ ∥Φ⊤D(i)(Φ − γP (i)Φ) − Φ⊤D(i)(Φ − γP (j)Φ)∥+

∥Φ⊤D(i)(Φ − γP (j)Φ) − Φ⊤D(j)(Φ − γP (j)Φ)∥
(a)
≤ γ∥Φ∥2∥D(i)∥∥P (i) − P (j)∥ + ∥Φ∥2∥D(i) − D(j)∥∥(I − γP (j))∥
(b)
≤ γ

√
nϵ + (1 + γ)[2(n − 1)ϵ + O(ϵ2)], (5)

where (a) follows from the triangle inequality. The first term in (b) uses the fact that ∥Φ∥ ≤ 1, ∥D(i)∥ ≤ 1,
and

∥P (i) − P (j)∥ ≤
√

n∥P (i) − P (j)∥∞ ≤ ϵ
√

n∥P (i)∥∞ = ϵ
√

n,

where we use Assumption 1 in the second inequality. The second term in (b) uses the the facts that
∥I − γP (j)∥ ≤ 1 + γ, ∥D(i) − D(j)∥ ≤ ∥D(i) − D(j)∥1 ≤ ∥π(i) − π(j)∥1, along with Lemma 1.

Next, we bound

∥b̄i − b̄j∥ = ∥ΦD(i)R(i) − ΦD(j)R(j)∥
≤ ∥ΦD(i)R(i) − ΦD(i)R(j)∥ + ∥ΦD(i)R(j) − ΦD(j)R(j)∥
≤ ∥Φ∥∥D(i)∥∥R(i) − R(j)∥ + ∥Φ∥∥D(i) − D(j)∥∥R(j)∥
≤ ϵ1 + Rmax

(
2(n − 1)ϵ + O(ϵ2)

)
, (6)

where we use Assumption 2 in the last inequality and follow the same reasoning as we used to bound ∥Āi −Āj∥
above.

We are now ready to bound the gap between fixed points as:

∥θ∗
i − θ∗

j ∥
∥θ∗

i ∥
≤ κ(Āi)

1 − κ(Āi) ∥Āi−Āj∥
∥Āi∥

(
∥Āi − Āj∥

∥Āi∥
+ ∥b̄i − b̄j∥

∥b̄i∥

)
. (7)

Here, we leveraged the perturbation theory of linear equations in (Horn & Johnson, 2012b) Section 5.8.
Finally, for any ∥θ∗

i ∥ ≤ H, we have

∥θ∗
i − θ∗

j ∥ ≤ Γ(ϵ, ϵ1) ≜ κ(Āi)H
1 − κ(Āi) A(ϵ)

δ1

(
A(ϵ)
δ1

+ b(ϵ, ϵ1)
δ2

)
,

where we used the fact that δ1 and δ2 are positive constants that lower bound ∥Āi∥ and ∥b̄i∥, respectively.
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C Properties of the Virtual Markov Decision Process

C.1 Proof of Proposition 1

Before we prove this proposition, we present the following fact from (Pishro-Nik, 2016): a Markov matrix P
is irreducible and aperiodic if and only if there exists a positive integer k such that every entry of the matrix
P k is strictly positive, i.e., P k

s,s′ > 0, for all s, s′ ∈ S.

For every Markov matrix P (i), we know that there exists such an integer ki according to the above fact and
Assumption 3 in the paper. Then we define a set J = {i ∈ [N ]|wi > 0}. Since

∑N
i=1 wi = 1, and wi ≥ 0 holds

for all i ∈ [N ], we know that J is a non-empty set. If we define k̄ = mini∈[J]{ki} and j = arg mini∈[J]{ki},
then we have: ∑

i∈[N ]

wiP
(i)

k̄

= wk̄
j

(
P (j)

)k̄

︸ ︷︷ ︸
positive

+ · · · · · ·︸ ︷︷ ︸
nonnegative

, (8)

where each entry of wk̄
j

(
P (j))k̄ is strictly positive while the other matrices in the summation are non-negative.

Thus, we can conclude that the Markov chain associated with the Markov matrix
∑

i∈[N ] wiP
(i) is also

irreducible and aperiodic.

C.2 Proof of Proposition 2

Following similar arguments as in Theorem 1, we bound ∥Āi − Ā∥:

∥Āi − Ā∥ = ∥Φ⊤D(i)(Φ − γP (i)Φ) − Φ⊤D̄(Φ − γP̄Φ)∥
(a)
≤ γ∥Φ∥2∥D(i)∥∥P (i) − P̄∥ + ∥Φ∥2∥D(i) − D̄∥∥(I − γP̄ )∥
(b)
≤ γ

√
nϵ + (1 + γ)[2(n − 1)ϵ + O(ϵ2)] = A(ϵ), (9)

where inequality (a) follows the same reasoning as (a) in Eq.(5), (b) uses the same fact as (b) in Eq.(5), and
∥P (i) − P̄∥ ≤ 1

N

∑N
j=1∥P (i) − P (j)∥ ≤ ϵ

√
n and ∥D(i) − D̄∥ ≤ 2(n − 1)ϵ + O(ϵ2).

Based on the above facts: (i) ∥R̄∥ ≤ 1
N

∑N
i=1∥R(i)∥ ≤ Rmax, (ii) ∥R(i) − R̄∥ ≤ 1

N

∑N
j=1∥R(i) − R(j)∥ ≤ ϵ1

and (iii) ∥D(i) − D̄∥ ≤ 2(n − 1)ϵ + O(ϵ2), we finish the proof by showing that ∥b̄i − b̄∥ ≤ b(ϵ, ϵ1). To do so, we
follow the same steps as Eq. (6), and prove the bound on ∥θ∗

i − θ∗∥ by following the same analysis as Eq. (7).

C.3 Proof of Proposition 3

Since the virtual MDP is an average of the agents’ MDPs, i.e., P̄ = 1
N

∑N
i=1 P (i), the virtual Markov chain is

irreducible and aperiodic from Proposition 1. The maximum eigenvalue of a symmetric positive-semidefinite
matrix is a convex function. Then we have λmax(Φ⊤D̄Φ) ≤

∑
s∈S π̄(s)λmax

(
ϕ(s)ϕ(s)⊤) ≤

∑
s∈S π̄(s) = 1.

To show that there exists ω > 0 such that λmin(Φ⊤D̄Φ) ≥ ω > 0, we will establish that Φ⊤D̄Φ is a positive-
definite matrix. Since Φ is full-column rank, this amounts to showing that D̄ is a positive definite matrix.
From the definition of D̄, establishing positive-definiteness of D̄ is equivalent to arguing that every element
of the stationary distribution vector π̄ is strictly positive; here, π̄⊤P̄ = π̄. To that end, from Proposition 1,
we know that the Markov chain associated with P̄ is aperiodic and irreducible. From the Perron-Frobenius
theorem (Frobenius et al., 1912), we conclude that indeed every entry of π̄ is strictly positive. If we choose
ω = mins∈S{π̄(s)} > 0, we have λmin(Φ⊤D̄Φ) ≥ ω > 0.
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D Pseudo-gradient heterogeneity: Proof of Lemma 2

For each θ ∈ H, we have:∥∥∥ḡ(θ) − 1
N

N∑
i=1

ḡi(θ)
∥∥∥ =

∥∥∥ΦT D̄(T̄µΦθ − Φθ) − 1
N

( N∑
i=1

ΦT D(i)(T (i)
µ Φθ − Φθ)

)∥∥∥
(a)
≤ 1

N

N∑
i=1

∥∥∥ΦT D̄(T̄µΦθ − Φθ) − ΦT D(i)(T (i)
µ Φθ − Φθ)

∥∥∥
(b)
≤ 1

N

N∑
i=1

∥∥∥∥∥D̄
[ 1

N

N∑
j=1

R(j) + γ
1
N

N∑
j=1

P (j)Φθ − Φθ
]

− D(i)(T (i)
µ Φθ − Φθ)

∥∥∥∥∥
≤ 1

N

N∑
i=1

∥∥∥∥∥D̄
[ 1

N

N∑
j=1

R(j) + γ
1
N

N∑
j=1

P (j)Φθ − Φθ
]

− D̄(T (i)
µ Φθ − Φθ)

+ D̄(T (i)
µ Φθ − Φθ) − D(i)(T (i)

µ Φθ − Φθ)
∥∥∥∥∥

(c)
≤ 1

N

N∑
i=1

∥∥∥D̄
[ 1

N

N∑
j=1

R(j) + γ
1
N

N∑
j=1

P (j)Φθ − Φθ
]

− D̄(T (i)
µ Φθ − Φθ)

∥∥∥
+ 1

N

N∑
i=1

∥∥∥D̄(T (i)
µ Φθ − Φθ) − D(i)(T (i)

µ Φθ − Φθ)
∥∥∥

≤ 1
N

N∑
i=1

∥∥∥D̄
∥∥∥∥∥∥ 1

N

N∑
j=1

R(j) − R(i)
∥∥∥+ γ

∥∥∥ 1
N

N∑
j=1

P (j) − P (i)
∥∥∥∥∥∥Φθ

∥∥∥
+ 1

N

N∑
i=1

∥∥∥D̄ − D(i)
∥∥∥∥∥∥T (i)

µ Φθ − Φθ
∥∥∥

(d)
≤ 1

N

N∑
i=1

∥∥∥ 1
N

N∑
j=1

R(j) − R(i)
∥∥∥

2
+ γ
∥∥∥ 1

N

N∑
j=1

P (j) − P (i)
∥∥∥∥∥∥Φθ

∥∥∥
+ 1

N

N∑
i=1

∥∥∥D̄ − D(i)
∥∥∥∥∥∥T (i)

µ Φθ − Φθ
∥∥∥

(e)
≤
[
ϵ1 + γ

√
nϵ∥Φθ∥ +

[
2(n − 1)ϵ + O(ϵ2)

]
∥Φθ∥

≤ H
[
O(ϵ1) + γ

√
nϵ + 2(n − 1)ϵ + O(ϵ2)

]
= B(ϵ, ϵ1). (10)

Inequalities (a) and (c) follow from the triangle inequality, (b) is due to ∥Φ∥ ≤ 1; (d) is due to the fact that
∥D̄∥ ≤ 1; and (e) uses the following facts: (i) ∥R(i) − R̄∥ ≤ ϵ1; (ii) ∥P (i) − P (j)∥ ≤

√
n∥P (i) − P (j)∥∞ ≤

ϵ
√

n∥P (i)∥∞ = ϵ
√

n, which, in turn, follows from the proof of Theorem 1; (iii) ∥D(i) − D̄∥ ≤ 2(n−1)ϵ+O(ϵ2),
which, in turn, follows from the proof of Theorem 1 or Eq. (5); and (iv) ∥θ∥ ≤ H for any θ ∈ H.

E Auxiliary results used in the I.I.D. and Markovian settings

We make repeated use throughout the appendix (often without explicitly stating so) of the following
inequalities:

• Given any two vectors x, y ∈ Rd, for any β > 0, we have

∥x + y∥2 ≤ (1 + β)∥x∥2 +
(

1 + 1
β

)
∥y∥2. (11)
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• Given any two vectors x, y ∈ Rd, for any β > 0, we have

⟨x, y⟩ ≤ β

2 ∥x∥2 + 1
2β

∥y∥2. (12)

This inequality goes by the name of Young’s inequality.

• Given m vectors x1, . . . , xm ∈ Rd, the following is a simple application of Jensen’s inequality:∥∥∥∥∥
m∑

i=1
xi

∥∥∥∥∥
2

≤ m

m∑
i=1

∥xi∥2
. (13)

We prove the following result for the virtual MDP.
Lemma 3. For any θ1, θ2 ∈ Rd,

(θ2 − θ1)⊤ [ḡ(θ1) − ḡ(θ2)] ≥ (1 − γ)
∥∥∥V̂θ1 − V̂θ2

∥∥∥2

D̄
. (14)

Proof. Consider a stationary sequence of states with random initial state s ∼ π̄ and subsequent state s′, which,
conditioned on s, is drawn from P̄ (· | s). Define ϕ ≜ ϕ(s) and ϕ′ ≜ ϕ (s′). Define χ1 ≜ V̂θ2(s) − V̂θ1(s) =
(θ2 − θ1)⊤

ϕ and χ2 ≜ V̂θ2 (s′) − V̂θ1 (s′) = (θ2 − θ1)⊤
ϕ′. By stationarity, χ1 and χ2 are two correlated

random variables with the same same marginal distribution. By definition, E
[
χ2

1
]

= E
[
χ2

2
]

=
∥∥∥V̂θ2 − V̂θ2

∥∥∥2

D̄
since s, s′ are drawn from π̄. And we have,

ḡ(θ1) − ḡ(θ2) = E
[
ϕ (γϕ′ − ϕ)⊤ (θ1 − θ2)

]
= E [ϕ (χ1 − γχ2)] .

Therefore,

(θ2 − θ1)⊤ [ḡ(θ1) − ḡ(θ2)] = E [χ1 (χ1 − γχ2)]
= E

[
χ2

1
]

− γE [χ1χ2]
≥ (1 − γ)E

[
χ2

1
]

= (1 − γ)
∥∥∥V̂θ2 − V̂θ2

∥∥∥2

D̄
,

where we use the Cauchy-Schwartz inequality to conclude E [χ1χ2] ≤
√
E [χ2

1]
√

E [χ2
2] = E

[
χ2

1
]
.

Lemma 4. For any θ1, θ2 ∈ Rd, we have

∥ḡ(θ1) − ḡ(θ2)∥ ≤ 2
∥∥∥V̂θ1 − V̂θ2

∥∥∥
D̄

. (15)

Proof. Following the analysis of Lemma 3, we have

∥ḡ(θ1) − ḡ(θ2)∥ = ∥E [ϕ (χ1 − γχ2)]∥

≤
√

E [∥ϕ∥2]
√
E
[
(χ1 − γχ2)2

]
≤
√
E [χ2

1] + γ
√

E [χ2
2]

= (1 + γ)
√
E [χ2

1],
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where the second inequality is due to ∥ϕ∥ ≤ 1 and the final equality is due to E
[
χ2

1
]

= E
[
χ2

2
]
. We finish the

proof by using the fact that E
[
χ2

1
]

=
∥∥∥V̂θ2 − V̂θ2

∥∥∥2

D̄
and 1 + γ ≤ 2.

With this Lemma, we next show that the steady-state TD(0) update direction ḡ and ḡi are 2-Lipschitz.
Lemma 5. (2-Lipschitzness of steady-state TD(0) update direction) For any θ1, θ2 ∈ Rd, we have

∥ḡ(θ1) − ḡ(θ2)∥ ≤ 2 ∥θ1 − θ2∥ . (16)

And for each agent i ∈ [N ], we have

∥ḡi(θ1) − ḡi(θ2)∥ ≤ 2 ∥θ1 − θ2∥ . (17)

Proof. From Lemma 4, we can easily conclude that the steady-state TD(0) update direction ḡ for the vitual
MDP is 2-Lipschitz, i.e.,

∥ḡ(θ1) − ḡ(θ2)∥ ≤ 2 ∥θ1 − θ2∥ , (18)

based on the fact that λmax(Φ⊤D̄Φ) ≤ 1. We can follow the same reasoning to prove Eq. (17) since
∥ḡi(θ1) − ḡi(θ2)∥ ≤ 2

∥∥∥V̂θ1 − V̂θ2

∥∥∥
Di

holds for each i ∈ [N ] from Bhandari et al. (2018).

Next, we prove an analog of the Lipschitz property in Lemma 5 for the random TD(0) update direction of
each agent i.
Lemma 6. (2-Lipschitzness of random TD(0) update direction) For any θ1, θ2 ∈ Rd and i ∈ [N ], we have

∥gi (θ1) − gi (θ2)∥ ≤ 2 ∥θ1 − θ2∥ .

Proof. In this proof, we will use the fact that the random TD(0) update direction of agent i at the t-th
communication round and k-th local update is an affine function of the parameter θ. In particular, we have
gi(θ) = bi(O(i)

t,k) − Ai(O(i)
t,k)θ, where Ai(O(i)

t,k) = ϕ(s(i)
t,k)(ϕ⊤(s(i)

t,k) − γϕ⊤(s(i)
t,k+1)) and bi(O(i)

t,k) = r(s(i)
t,k)ϕ(s(i)

t,k).
Thus, we have

∥gi (θ1) − gi (θ2)∥ =
∥∥∥Ai(O(i)

t,k) (θ1 − θ2)
∥∥∥

≤
∥∥∥Ai(O(i)

t,k)
∥∥∥ ∥θ1 − θ2∥

≤
(∥∥ϕ

(
si

t,k

)∥∥2 + γ
∥∥ϕ
(
si

t,k

)∥∥ ∥∥ϕ
(
si

t,k+1
)∥∥) ∥θ1 − θ2∥

≤ 2 ∥θ1 − θ2∥ ,

where we used that ∥ϕ(s)∥ ≤ 1, ∀s ∈ S in the last step.
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F Notation

For our subsequent analysis, we will use F t
k to denote the filtration that captures all the randomness up to

the k-th local step in round t. We will also use F t to represent the filtration capturing all the randomness
up to the end of round t − 1. With a slight abuse of notation, F t

−1 is to be interpreted as F t. Based on
the description of FedTD(0), it should be apparent that for each i ∈ [N ], θ

(i)
t,k is F t

k−1-measurable and θ̄t is
F t-measurable. Furthermore, we use Et to represent the expectation conditioned on all the randomness up
to the end of round t − 1.

For simplicity, we define δt = 1
NK

∑N
i=1
∑K−1

k=0

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥ and ∆t = 1
NK

∑N
i=1
∑K−1

k=0

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥2
. The latter

term is referred to as the drift term. Note that (δt)2 ≤ ∆t holds for all t via Jensen’s inequality. Unless
specified otherwise, ∥ · ∥ denotes the Euclidean norm.

Step-size: Throughout the paper, we encounter three kinds of step-sizes: local step-size αl, global step-size
αg, and the effective step-size α. Some of our results will rely on effective step-sizes that decay as a function
of the communication round t; we will use {αt} to represent such a decaying effective step-size sequence.
While the local step-size αℓ will always be held constant, the decay in the effective step-size will be achieved
by making the global step-size at the server decay with the communication round. Accordingly, we will use
{α

(t)
g } to represent the decaying global step-size sequence at the server. In what follows, unless specified in

the subscript, all the step-sizes appearing in the proofs refer to the effective step-size.
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G Warm-up: Analysis of FedTD under i.i.d. sampling

To isolate the effect of heterogeneity and provide key insights regarding our main proof ideas, we will analyze
a simpler i.i.d. setting in this section. Specifically, we assume that for each agent i ∈ [N ], the data tuples
{O

(i)
t,k} are sampled i.i.d. from the stationary distribution π(i) of the Markov matrix P (i). Such an i.i.d

assumption is common in the finite-time analysis of RL algorithms (Dalal et al., 2018; Bhandari et al., 2018;
Doan et al., 2019). To proceed, for a fixed θ and for each i ∈ [N ], let us define ḡi(θ) ≜ E

O
(i)
t,k

∼π(i) [gi(θ)] as the

expected TD(0) update direction at iterate θ when the Markov tuple O
(i)
t,k hits its stationary distribution π(i).

We make the following standard bounded variance assumption (Bhandari et al., 2018); similar assumptions
are also made in FL analyses.
Assumption 4. E∥gi(θ) − ḡi(θ)∥2 ≤ σ2 holds for all agents i ∈ [N ], in each round t and local update k, and
∀θ.

Let H denote the radius of the set H. Also, define G ≜ Rmax + 2H and ν = (1 − γ)ω̄, where ω̄ is as in
Proposition 3. Our convergence result for FedTD(0) in the i.i.d. setting is as follows.
Theorem 4. (I.I.D. Setting) There exists a decreasing global step-size sequence {α

(t)
g }, a fixed local step-size

αl, and a set of convex weights, such that a convex combination θ̃T of the global models {θ̄t} satisfies the
following for each i ∈ [N ] after T rounds:

E
∥∥∥Vθ̃T

−Vθ∗
i

∥∥∥2

D̄
≤ Õ

( G2

K2T 2 + σ2

ν2NKT
+ σ2

ν4KT 2 +Q(ϵ, ϵ1)
)

, (19)

where Q(ϵ, ϵ1) = Õ( B(ϵ,ϵ1)G
ν + Γ2(ϵ, ϵ1)), B(ϵ, ϵ1) = H

(√
nϵ + 2(n − 1)ϵ + O(ϵ2) + O(ϵ1)

)
, and Γ(ϵ, ϵ1) is as

defined in Theorem 1.

In what follows, we provide a detailed convergence analysis of the above result.

G.1 Auxiliary lemmas for Theorem 4

G.1.1 Variance reduction

Lemma 7. (Variance reduction in the i.i.d. setting). In the i.i.d. setting, under Assumption 4, at each
round t, we have E

∥∥∥ 1
NK

∑N
i=1
∑K−1

k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
]∥∥∥2

≤ σ2

NK .

Proof. Define Y
(i)

t,k ≜ gi(O(i)
t,k, θ

(i)
t,k) − ḡi(θ(i)

t,k). Since {O
(i)
t,k} is drawn i.i.d. over time from its stationary

distribution π(i), we have E[Y (i)
t,k ] = E

[
E[Y (i)

t,k | θ
(i)
t,k]
]

= 0. As we mentioned before, for each i ∈ [N ], θ
(i)
t,k

is F t
k−1-measurable. If we condition on F t

k−1, we know that θ
(i)
t,k and θ

(j)
t,k are deterministic and the only

randomness in Y
(i)

t,k and Y
(j)

t,k come from O
(i)
t,k and O

(j)
t,k , which are independent. Therefore, Y

(i)
t,k and Y

(j)
t,k are

independent conditioned on F t
k−1.

For every i ̸= j ∈ [N ], we have

E
[〈

Y
(i)

t,k , Y
(j)

t,k

〉]
= E

[
E
[〈

Y
(i)

t,k , Y
(j)

t,k

〉
| F t

k−1

]] (a)= E
[〈

E[Y (i)
t,k | F t

k−1],E[Y (j)
t,k | F t

k−1]
〉]

= 0, (20)

where (a) follows from the fact that Y
(i)

t,k and Y
(j)

t,k are independent conditioned on F t
k−1. For every k < l and

i, j ∈ [N ],

E
[〈

Y
(i)

t,k , Y
(j)

t,l

〉]
= E

[
E
[〈

Y
(i)

t,k , Y
(j)

t,l

〉 ∣∣∣∣ F t
l−1

]]
= E

[〈
Y

(i)
t,k ,E[Y (j)

t,l | F t
l−1]

〉]
= 0. (21)

Then,

E

∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
]∥∥∥∥∥

2
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= E

∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Y
(i)

t,k

∥∥∥∥∥
2

= 1
N2K2

N∑
i=1

K−1∑
k=0

E∥Y
(i)

t,k ∥2 + 2
N2K2

∑
i<j

K−1∑
k=0

E[⟨Y (i)
t,k , Y

(j)
t,k ⟩]︸ ︷︷ ︸

0

+ 2
N2K2

N∑
i,j=1

∑
k<l

E[⟨Y (i)
t,k , Y

(j)
t,l ⟩]︸ ︷︷ ︸

0

≤ σ2

NK
,

where the second equality is due to Eq. (20)) and Eq. (21) and the last inequality is due to Assumption 4.

G.1.2 Per Round Progress

First, we characterize the error decrease at each iteration in the following lemma.
Lemma 8. (Per Round Progress). If the local step-size αl satisfies αl ≤ (1−γ)ω̄

48K , then the updates of FedTD(0)
with any global step-size αg satisfy

E∥θ̄t+1 − θ∗∥2 ≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 6α2E

∥∥∥ḡ(θ̄t)
∥∥∥2

+ 4α2
(

1
ζ1

+ 6
)
E[∆t] + 2α2σ2

NK
+ 2αB(ϵ, ϵ1)G + 6α2B2(ϵ, ϵ1), (22)

where ζ1 is any positive constant, and α is the effective step-size, i.e., α = Kαlαg.

Proof.

E∥θ̄t+1 − θ∗∥2

= E
∥∥∥Π2,H

(
θ̄t + α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k) − θ∗

)∥∥∥2
(updating rule)

≤ E
∥∥∥θ̄t + α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k) − θ∗

∥∥∥2
(projection is non-expansive)

= E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2E⟨ α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k), θ̄t − θ∗⟩ + E

∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k)
∥∥∥2

= E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2α

NK

N∑
i=1

K−1∑
k=0

E⟨gi(θ(i)
t,k) − ḡi(θ(i)

t,k), θ̄t − θ∗⟩︸ ︷︷ ︸
C1=0

+ 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)
t,k), θ̄t − θ∗⟩ + E

∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k)
∥∥∥2

= E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)
t,k), θ̄t − θ∗⟩ + E

∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k)
∥∥∥2

≤ E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)
t,k), θ̄t − θ∗⟩

+ 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
] ∥∥∥2

+ 2E
∥∥∥ α

NK

N∑
i=1

ḡi(θ(i)
t,k)
∥∥∥2

(Young’s inequality (12))
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(a)
≤ E

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)
t,k), θ̄t − θ∗⟩ + 2σ2

NK
+ 2E

∥∥∥ α

NK

N∑
i=1

ḡi(θ(i)
t,k)
∥∥∥2

= E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)
t,k) − ḡi(θ̄t) + ḡi(θ̄t) − ḡ(θ̄t) + ḡ(θ̄t), θ̄t − θ∗⟩

+ 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k)
∥∥∥2

+ 2α2σ2

NK

≤ E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)
t,k) − ḡi(θ̄t), θ̄t − θ∗⟩ + 2α

N

N∑
i=1

E⟨ḡi(θ̄t) − ḡ(θ̄t), θ̄t − θ∗⟩

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k)
∥∥∥2

+ 2α2σ2

NK

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 1

ζ1
E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

[
ḡi(θ(i)

t,k) − ḡi(θ̄t)
] ∥∥∥2

+ 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k)
∥∥∥2

+ 2α2σ2

NK
(Eq (12) and Lemma 2)

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 4α2

ζ1NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
+ 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k)
∥∥∥2

+ 2α2σ2

NK
(2-Lipschitz of ḡi in Lemma 5)

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 4α2

ζ1
E[∆t] + 2α2σ2

NK
+ 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

[
ḡi(θ(i)

t,k) − ḡi(θ̄t) + ḡi(θ̄t) − ḡ(θ̄t) + ḡ(θ̄t)
] ∥∥∥2

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 4α2

ζ1
E[∆t] + 2α2σ2

NK
+ 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 6E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k) − ḡi(θ̄t)

∥∥∥2

+ 6E
∥∥∥ α

N

N∑
i=1

[
ḡi(θ̄t) − ḡ(θ̄t)

] ∥∥∥2
+ 6E

∥∥∥αḡ(θ̄t)
∥∥∥2

(Eq (12) and Lemma 2)

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 4α2

ζ1
E[∆t] + 2α2σ2

NK
+ 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 24α2E[∆t] (2-Lipschitz of ḡi)

+ 6α2B2(ϵ, ϵ1) + 6α2E
∥∥∥ḡ(θ̄t)

∥∥∥2
(Eq (12))

= (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 6α2E

∥∥∥ḡ(θ̄t)
∥∥∥2

+ 4α2
(

1
ζ1

+ 6
)
E[∆t] + 2α2σ2

NK
+ 2αB(ϵ, ϵ1)G + 6α2B2(ϵ, ϵ1), (23)

where (a) is due to Lemma 7. Furthermore, the reason why C1 = 0 is as follows:

C1 =
N∑

i=1

K−1∑
k=0

E⟨gi(θ(i)
t,k) − ḡi(θ(i)

t,k), θ̄t − θ∗⟩
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=
N∑

i=1

K−2∑
k=0

E⟨gi(θ(i)
t,k) − ḡi(θ(i)

t,k), θ̄t − θ∗⟩+

N∑
i=1

E⟨gi(θ(i)
t,K−1) − ḡi(θ(i)

t,K−1), θ̄t − θ∗⟩

=
N∑

i=1

K−2∑
k=0

E⟨gi(θ(i)
t,k) − ḡi(θ(i)

t,k), θ̄t − θ∗⟩+

N∑
i=1

E
[
E
[
⟨gi(θ(i)

t,K−1) − ḡi(θ(i)
t,K−1), θ̄t − θ∗⟩ | F t

K−1

]]
=

N∑
i=1

K−2∑
k=0

E⟨gi(θ(i)
t,k) − ḡi(θ(i)

t,k), θ̄t − θ∗⟩+

N∑
i=1

E

〈θ̄t − θ∗,E
[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k) | F t

K−1

]
︸ ︷︷ ︸

0

〉
=

N∑
i=1

K−2∑
k=0

E⟨gi(θ(i)
t,k) − ḡi(θ(i)

t,k), θ̄t − θ∗⟩.

We can keep repeating this procedure by iteratively conditioning on F t
K−2, · · · , F t

1, F t
0.

G.1.3 Drift Term Analysis

We now turn to bounding the drift term ∆t.
Lemma 9. (Bounded Client Drift) The drift term ∆t at the t-th round can be bounded as

E[∆t] = 1
NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
≤ 27(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) α2

Kα2
g

, (24)

provided the fixed local step-size αl satisfies αl ≤ min (1−γ)ω̄
48K .

Proof.

E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2

= E
∥∥∥θ

(i)
t,k−1 + αlgi(θ(i)

t,k−1) − θ̄t

∥∥∥2
(updating rule)

= E
∥∥∥θ

(i)
t,k−1 + αlḡi(θ(i)

t,k−1) − θ̄t + αl

(
gi(θ(i)

t,k−1) − ḡi(θ(i)
t,k−1)

)∥∥∥2

= E
∥∥∥θ

(i)
t,k−1 + αlḡi(θ(i)

t,k−1) − θ̄t

∥∥∥2
+ α2

l E
∥∥∥gi(θ(i)

t,k−1) − ḡi(θ(i)
t,k−1)

∥∥∥2

+ 2αl E
[
E
〈

gi(θ(i)
t,k−1) − ḡi(θ(i)

t,k−1), θ
(i)
t,k−1 + αlḡi(θ(i)

t,k−1) − θ̄t

∣∣∣ F t
k−1

〉] ]
︸ ︷︷ ︸

C2=0

(a)
≤ (1 + ζ2)E

∥∥∥θ
(i)
t,k−1 + αlḡ(θ(i)

t,k−1) − θ̄t

∥∥∥2
+ (1 + 1

ζ2
)α2

l E
∥∥∥ḡ(θ(i)

t,k−1) − ḡi(θ(i)
t,k−1)

∥∥∥2

+ α2
l E
∥∥∥gi(θ(i)

t,k−1) − ḡi(θ(i)
t,k−1)

∥∥∥2

(b)
≤ (1 + ζ2)(1 + ζ3)E

∥∥∥θ
(i)
t,k−1 + αlḡ(θ(i)

t,k−1) − θ̄t − αlḡ(θ̄t)
∥∥∥2
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+ (1 + ζ2)(1 + 1
ζ3

)α2
l E
∥∥∥ḡ(θ̄t)

∥∥∥2

+ (1 + 1
ζ2

)α2
l E
∥∥∥ḡ(θ(i)

t,k−1) − ḡ(θ̄t) + ḡ(θ̄t) − ḡi(θ̄t) + ḡi(θ̄t) − ḡi(θ(i)
t,k−1)

∥∥∥2
+ α2

l σ2

(c)
≤ (1 + ζ2)(1 + ζ3)E

∥∥∥θ
(i)
t,k−1 + αlḡ(θ(i)

t,k−1) − θ̄t − αlḡ(θ̄t)
∥∥∥2

+ (1 + ζ2)(1 + 1
ζ3

)α2
l E
∥∥∥ḡ(θ̄t)

∥∥∥2

+ 3(1 + 1
ζ2

)α2
l E
∥∥∥ḡ(θ(i)

t,k−1) − ḡ(θ̄t)
∥∥∥2

+ 3(1 + 1
ζ2

)α2
l E
∥∥∥ḡ(θ̄t) − ḡi(θ̄t)

∥∥∥2

+ 3(1 + 1
ζ2

)α2
l E
∥∥∥ḡi(θ̄t) − ḡi(θ(i)

t,k−1)
∥∥∥2

+ α2
l σ2

(d)
≤ (1 + ζ2)(1 + ζ3)

[
1 − (2αl(1 − γ) − 4α2

l )ω̄
]
E
∥∥∥θ

(i)
t,k−1 − θ̄t

∥∥∥2

+ (1 + ζ2)(1 + 1
ζ3

)α2
l E
∥∥∥ḡ(θ̄t)

∥∥∥2

+ 12(1 + 1
ζ2

)α2
l E
∥∥∥θ

(i)
t,k−1 − θ̄t

∥∥∥2
+ 3(1 + 1

ζ3
)α2

l B2(ϵ, ϵ1)

+ 12(1 + 1
ζ3

)α2
l E
∥∥∥θ

(i)
t,k−1 − θ̄t

∥∥∥2
+ α2

l σ2

= (1 + ζ2)(1 + ζ3)
[

1 − (2αl(1 − γ) − 4α2
l )ω̄ +

24(1 + 1
ζ3

)α2
l

(1 + ζ2)(1 + ζ3)

]
E
∥∥∥θ

(i)
t,k−1 − θ̄t

∥∥∥2

+ (1 + ζ2)(1 + 1
ζ3

)α2
l E
∥∥∥ḡ(θ̄t)

∥∥∥2
+ 3(1 + 1

ζ3
)α2

l B2(ϵ, ϵ1) + α2
l σ2︸ ︷︷ ︸

D1

,

where we used the inequality in Eq (11) with any positive constant ζ2 for (a); for (b), we used Assumption 4
and the same reasoning as Eq (11) with any positive constant ζ3; for (c), we used the inequality in Eq (13) to
bound the third term; and for (d), we used Lemma 3 and Lemma 4 to bound the first term, the 2-Lipschitz
property of ḡ, ḡi (i.e., Lemma 5) in the third term and the fifth term, and the gradient heterogeneity bound

from Lemma 2 in the fourth term. If we define ζ4 ≜ (1 + ζ2)(1 + ζ3)
[
1 − (2αl(1 − γ) − 4α2

l )ω̄ + 24(1+ 1
ζ3

)α2
l

(1+ζ2)(1+ζ3)

]
and define D1 as above, we have that

E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
≤ ζ4E

∥∥∥θ
(i)
t,k−1 − θ̄t

∥∥∥2
+ D1. (25)

Next, we set ζ2 = ζ3 = 1
K−1 , K ≥ 2, and choose the local step-size αl to satisfy

αl(1 − γ)ω̄
2 ≥ 4α2

l ω̄ & αl(1 − γ)ω̄
2 ≥

24(1 + 1
ζ3

)α2
l

(1 + ζ2)(1 + ζ3) ,

so that
[
1 − (2αl(1 − γ) − 4α2

l )ω̄ + 24(1+ 1
ζ2

)α2
l

(1+ζ2)(1+ζ3)

]
≤ 1 − αl(1 − γ)ω̄. These inequalities hold when αl ≤

min (1−γ)ω̄
48K . Then, Eq (25) becomes

E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
≤ (1 + 3

K − 1) [1 − αl(1 − γ)ω̄]E
∥∥∥θ

(i)
t,k−1 − θ̄t

∥∥∥2
+ D1.

If we unroll this recurrence above, using θ
(i)
r,0 = θ̄t, we have that

E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
≤

k−1∑
s=0

D1

{
Πk−1

j=s+1(1 + 3
K − 1) [1 − α(1 − γ)ω̄]

}
(e)
≤

k−1∑
s=0

[
α2

l σ2 + 3Kα2
l B2(ϵ, ϵ1), +2α2

l KE
∥∥∥ḡ(θ̄t)

∥∥∥2]
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× Πk−1
j=s+1(1 + 3

K − 1)[1 − αl(1 − γ)ω̄]

≤
k−1∑
s=0

[
α2

l σ2 + 3α2
l KB2(ϵ, ϵ1) + 2α2

l KE
∥∥∥ḡ(θ̄t)

∥∥∥2]
× (1 + 3

K − 1)K−1Πk−1
j=s+1[1 − αl(1 − γ)ω̄]

(f)
≤ 27(σ2 + 3KB2(ϵ, ϵ1) + 2KE

∥∥∥ḡ(θ̄t)
∥∥∥2

)
k−1∑
s=0

α2
l × Πk−1

j=s+1[1 − α(1 − γ)ω̄]︸ ︷︷ ︸
≤1

≤ 27(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)Kα2
l (constant local step-size)

where we used the fact that (1 + ζ2)(1 + 1
ζ3

) ≤ 2K for (e) and (1 + 3
K−1 )K−1 ≤ 27 for (f). we finish the proof

by substituting αl = α
Kαg

.

If we incorporate Eq (24) into Eq (22), we have that

E
∥∥∥θ̄t+1 − θ∗

∥∥∥2
(26)

≤ (1 + ζ1)E
∥∥∥θ̄r − θ∗

∥∥∥2
+ 2αE⟨ḡ(θ̄r), θ̄r − θ∗⟩ + 6α2E

∥∥∥ḡ(θ̄r)
∥∥∥2

+ 108 α4

Kα2
g

(6 + 1
ζ1

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2α2σ2

NK
+ 2αB(ϵ, ϵ1)G + 6α2B2(ϵ, ϵ1). (27)

G.1.4 Parameter Selection

Lemma 10. Define ν ≜ (1 − γ)ω̄. If we choose any effective step-size α = Kαgαl < (1−γ)ω̄
96 , any local

step-size αl ≤ min (1−γ)ω̄
48K , and choose the constant ζ1 = αν, the updates of FedTD(0) satisfy

ν1E
∥∥∥Vθ̄t

−Vθ∗

∥∥∥2

D̄
≤ ( 1

α
− ν1)E

∥∥∥θ̄t − θ∗
∥∥∥2

− 1
α
E
∥∥∥θ̄t+1 − θ∗

∥∥∥2
+ 2ασ2

NK︸ ︷︷ ︸
O(α1)

+ 1080α2

Kα2
gν

(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)︸ ︷︷ ︸
O(α2)

+ 2B(ϵ, ϵ1)G + 6αB2(ϵ, ϵ1)︸ ︷︷ ︸
heterogeneity term

, (28)

where ν1 = ν
4 = (1−γ)ω̄

4 .

Proof. From Eq (26) and ζ1 = αν, we know

E
∥∥∥θ̄t+1 − θ∗

∥∥∥2

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩ + 6α2E

∥∥∥ḡ(θ̄r)
∥∥∥2

+ 108 α4

Kα2
g

(6 + 1
ζ1

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2α2σ2

NK
+ 2αB(ϵ, ϵ1)G + 6α2B2(ϵ, ϵ1)

≤ (1 + αν − 2αν)E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 24α2E

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄
+ 2α2σ2

NK
(Lemma 3 and 4)

+ 108 α4

Kα2
g

(6 + 1
αν

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2αB(ϵ, ϵ1)G + 6α2B2(ϵ, ϵ1)

≤ (1 − αν

2 )E
∥∥∥θ̄t − θ∗

∥∥∥2
− αν

2 E
∥∥∥θ̄t − θ∗

∥∥∥2
+ 24α2E

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄
+ 2α2σ2

NK

32



Published in Transactions on Machine Learning Research (06/2024)

+ 108 α4

Kα2
g

(6 + 1
αν

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2αB(ϵ, ϵ1)G + 6α2B2(ϵ, ϵ1)

(a)
≤ (1 − αν

2 )E
∥∥∥θ̄t − θ∗

∥∥∥2
− αν

2 E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄
+ αν

4 E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄
+ 2α2σ2

NK

+ 108 α4

Kα2
g

(6 + 1
αν

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2αB(ϵ, ϵ1)G + 6α2B2(ϵ, ϵ1),

where (a) comes from λmax(ΦT D̄Φ) ≤ 1 and 24α2 ≤ 24α (1−γ)w̄
96 = αν

4 . Moving E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄
(on the

right-hand side of (a)) to the left hand side of the above inequality yields:

αν

4 E
∥∥∥Vθ̄t

−Vθ∗

∥∥∥2

D̄
≤ (1 − αν

2 )E
∥∥∥θ̄t − θ∗

∥∥∥2
− E

∥∥∥θ̄t+1 − θ∗
∥∥∥2

+ 2α2σ2

NK

+ 108( 6α4

Kα2
g

+ α3

Kα2
gν

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2αB(ϵ, ϵ1)G + 6α2B2(ϵ, ϵ1).

Dividing by α on both sides of the inequality above and changing ν into ν1, we have:

ν1E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄

≤ ( 1
α

− ν1)E
∥∥∥θ̄t − θ∗

∥∥∥2
− 1

α
E
∥∥∥θ̄t+1 − θ∗

∥∥∥2
+ 2ασ2

NK

+ 108( 6α3

Kα2
g

+ 4α2

Kα2
gν1

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2B(ϵ, ϵ1)G + 6αB2(ϵ, ϵ1)

≤ ( 1
α

− ν1)E
∥∥∥θ̄t − θ∗

∥∥∥2
− 1

α
E
∥∥∥θ̄t+1 − θ∗

∥∥∥2
+ 2ασ2

NK︸ ︷︷ ︸
O(α1)

+ 1080α2

Kα2
gν1

(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)︸ ︷︷ ︸
O(α2)

+ 2B(ϵ, ϵ1)G + 6αB2(ϵ, ϵ1)︸ ︷︷ ︸
heterogeneity term

,

where we used the fact that α ≤ 1 in the last inequality.

With these lemmas, we are now ready to prove Theorem 4, which we restate for clarity.

G.2 Proof of Theorem 4

Given a fixed local step-size αl = 1
2

(1−γ)ω̄
48K , decreasing effective step-sizes αt = 8

ν(a+t+1) = 8
(1−γ)ω̄(a+t+1) ,

decreasing global step-sizes α
(t)
g = αt

Kαl
, and weights wt = (a + t), we have that

E
∥∥∥Vθ̃T

− Vθ∗
i

∥∥∥2

D̄
≤ Õ

(
G2

K2T 2 + σ2

ν4KT 2 + σ2

ν2NKT
+ B(ϵ, ϵ1)G

ν
+ Γ2(ϵ, ϵ1)

)
(29)

holds for any agent i ∈ [N ].

Proof. We take the effective step-size αt = 8
ν(a+t+1) = 2

ν1(a+t+1) for a > 0. In addition, we define weights
wt = (a + t) and define

θ̃T = 1
W

T∑
t=1

wtθ̄t,

where W =
∑T

t=1 wt ≥ 1
2 T (a + T ). By convexity of positive definite quadratic forms (λmin(ΦT D̄Φ) ≥ ω̄ > 0),

we have that

ν1E
∥∥∥Vθ̃T

− Vθ∗

∥∥∥2

D̄
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≤ ν1

W

T∑
t=1

(a + t)E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄

(28)
≤ ν1(a + 1)(a + 2)G2

2W
+ 1

W

T∑
t=1

[
2(a + t)αt

NK
σ2
]

+ 1
W

T∑
t=1

[
1080(a + t)α2

t

Kα2
gν1

(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)
]

+ 1
W

T∑
t=1

(a + t)
[
2B(ϵ, ϵ1)G + 6αtB

2(ϵ, ϵ1)
]

≤ ν1(a + 1)(a + 2)G2

2W
+ 2σ2

NKW

T∑
t=1

(a + t)αt

+ 1080(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)
Kα2

gν1W

T∑
t=1

(a + t)α2
t + 2B(ϵ, ϵ1)G + 6B2(ϵ, ϵ1)

W

T∑
t=1

(a + t)αt

≤ ν1(a + 1)(a + 2)G2

2W
+ 4σ2

ν1NKW
· T

+ 4320(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)
Kα2

gν3
1W

· (1 + log(a + T )) + 2B(ϵ, ϵ1)G + 12B2(ϵ, ϵ1)
ν1W

· T,

where we used
∥∥∥Vθ̄0

− Vθ∗

∥∥∥2

D̄
≤ G2. Dividing by ν1 on both sides, changing ν1 into ν, and using W ≥ T (a+T )

2 ,
we have:

E
∥∥∥Vθ̃T

− Vθ∗

∥∥∥2

D̄
≤ Õ

(
G2

K2T 2 + σ2

ν4KT 2 + σ2

ν2NKT
+ B(ϵ, ϵ1)G

ν

)
.

We finish the proof by using the following inequality: E
∥∥∥Vθ̃T

− Vθ∗
i

∥∥∥2

D̄
≤ 2E

∥∥∥Vθ̃T
− Vθ∗

∥∥∥2

D̄
+ 2E

∥∥∥Vθ∗
i

− Vθ∗

∥∥∥2

D̄
,

in tandem with the third point in Theorem 1.
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H Heterogeneity bias: Proof of Theorem 3

In this section, we prove Theorem 3.

Proof of Theorem 3. As θ∗
1 and θ∗

2 are the TD(0) fixed points of agents 1 and 2, respectively, we have
θ∗

1 = Ā−1
1 b̄1 and θ∗

2 = Ā−1
2 b̄2. The output of mean-path FedTD(0) with k = 1 and α = αgαl satisfies:

θ̄t+1 = θ̄t + α(−Âθ̄t + b̂)
=⇒ θ̄t+1 − θ∗

1 = θ̄t − θ∗
1 + α(−Â(θ̄t − θ∗

1 + θ∗
1) + b̂)

=⇒ e1,t+1 = (I − αÂ)e1,t − αÂθ∗
1 + αb̂

=⇒ e1,t+1 = (I − αÂ)e1,t − α

(
Ā1 + Ā2

2

)
Ā−1

1 b̄1 + α
b̄1 + b̄2

2

=⇒ e1,t+1 = (I − αÂ)e1,t − α
Ā2Ā−1

1 b̄1

2 + α
b̄2

2

=⇒ e1,t+1 = (I − αÂ)e1,t − αĀ2

2
(
Ā−1

1 b̄1 − Ā−1
2 b̄2

)
=⇒ e1,t+1 = (I − αÂ)︸ ︷︷ ︸

Ã

e1,t + αĀ2

2 (θ∗
2 − θ∗

1)︸ ︷︷ ︸
Ỹ

. (30)

Let us now note that e1,t+1 = Ãe1,t + Ỹ can be viewed as a discrete-time linear time-invariant (LTI) system
where α is chosen s.t. Ã is Schur stable, i.e., |λmax(Ã)| < 1. At the t-th iteration, we have:

e1,t = Ãte1,0 +
t−1∑
k=0

ÃkỸ.

As t → ∞, the small gain theorem tells us that because ρ(Ã) < 1 (where ρ(·) denotes the spectral radius),∑t−1
k=0 Ãk exists and is given by (I − Ã)−1. We can then conclude that

lim
t→∞

e1,t = (I − Ã)−1Ỹ

=
(

αÂ
)−1 αĀ2

2 (θ∗
1 − θ∗

2)

= 1
2 Â−1Ā2 (θ∗

1 − θ∗
2) . (31)

The limiting expression for e2,t follows the same analysis.
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I Proof of the Markovian setting

We now turn our attention to proving the main result of the paper, namely, Theorem 2.

I.1 Outline

As mentioned in the main body, one of the main obstacles to overcome in the analysis is that in general,
E[(1/N)

∑N
i=1
(
gi(θ(i)

t,k, O
(i)
t,k) − ḡi(θ(i)

t,k)
)
] ̸= 0. In order to show that a linear speedup is achievable, we first

decompose the random TD direction of each agent i as gi(θ(i)
t,k) = bi(O(i)

t,k)−Ai(O(i)
t,k)θ(i)

t,k in subsection I.2.1 and
show that the variances of (1/NK)

∑N
i=1
∑K−1

k=0 Ai(O(i)
t,k) and (1/NK)

∑N
i=1
∑K−1

k=0 bi(O(i)
t,k) get scaled down

by NK in subsection I.2.2. To decouple the randomness between the parameter θ
(i)
t,k and the observations

O
(i)
t,k using the method called information theoretic control of coupling in Bhandari et al. (2018), we need

to bound E
[∥∥θ̄t − θ̄t−τ

∥∥2] in subsection I.2.3. As the analysis in the i.i.d. setting and traditional FL, we
characterize the drift term, per-iteration error decrease, and parameter selection in subsections I.2.4, I.2.5
and I.2.6, respectively. Finally, we prove Theorem 2 in subsection I.3.

Additional Notation: Under Assumption 3, for each MDP i, there exists some mi ≥ 1 and some ρi ∈ (0, 1),
such that for all t ≥ 0 and 0 ≤ k ≤ K − 1, it holds that

dT V

(
P
(

s
(i)
t,k = · | s

(i)
0,0 = s

)
, π(i)

)
≤ miρ

tK+k
i , ∀s ∈ S.

Furthermore, we define ρ = maxi∈[N ]{ρi}, m = maxi∈[N ]{mi}.

I.2 Auxiliary lemmas for Theorem 2

I.2.1 Decomposition Form

The first step in our proof of Theorem 2 is to rewrite agent i’s update direction of FedTD(0) as:

gi(θ(i)
t,k) = −Ai(O(i)

t,k)θ(i)
t,k + bi(O(i)

t,k)

where Ai(O(i)
t,k) = ϕ(s(i)

t,k)(ϕ⊤(s(i)
t,k) − γϕ⊤(s(i)

t,k+1)) and bi(O(i)
t,k) = r(s(i)

t,k)ϕ(s(i)
t,k). Note that the steady-state

value of E[bi(O(i)
t,k)] is not equal to 0. For convenience, we apply appropriate centering to rewrite gi as:

gi(θ(i)
t,k) = −Ai(O(i)

t,k)(θ(i)
t,k − θ∗

i ) + bi(O(i)
t,k) − Ai(O(i)

t,k)θ∗
i︸ ︷︷ ︸

Zi(O
(i)
t,k

)

. (32)

Define Zi(O(i)
t,k) ≜ bi(O(i)

t,k) − Ai(O(i)
t,k)θ∗

i . As ḡi(θ) ≜ E
O

(i)
t,k

∼π(i) [gi(θ)] , we have:

ḡi(θ(i)
t,k) = −Āi(θ(i)

t,k − θ∗
i ). (33)

where Āi = Φ⊤D(i)(Φ − γP (i)Φ). Note that E
O

(i)
t,k

∼π(i)

[
Zi(O(i)

t,k)
]

equals to 0. Taking into account the
definitions above, we establish the following lemmas:

Lemma 11. (Uniform norm bound) There exist some constants c1, c2, c3 ≥ 0 such that
∥∥∥Ai

(
O

(i)
t,k

)∥∥∥ ≤ c1 :=

1 + γ ,
∥∥∥Āi

∥∥∥ ≤ c2 := 1 + γ and
∥∥∥Zi

(
O

(i)
t,k

)∥∥∥ ≤ c3 := Rmax + c1H holds for all i ∈ [N ].
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Proof. Based on the definition and the fact that ∥ϕ(s)∥ ≤ 1, we have∥∥∥Ai

(
O

(i)
t,k

)∥∥∥ =
∥∥∥ϕ(s(i)

t,k)(ϕ⊤(s(i)
t,k) − γϕ⊤(s(i)

t,k+1))
∥∥∥ ≤

∥∥∥ϕ(s(i)
t,k)
∥∥∥∥∥∥ϕ⊤(s(i)

t,k) − γϕ⊤(s(i)
t,k+1)

∥∥∥ ≤ 1 + γ.

Similarly, making use of the fact that r(s) ≤ Rmax for any s ∈ S, we apply the same reasoning to conclude
that ∥∥∥Āi

∥∥∥ ≤ 1 + γ &
∥∥∥Zi

(
O

(i)
t,k

)∥∥∥ ≤ Rmax + c1H

.

Lemma 12. There exist some constants L1, L2 ≥ 0 such that∥∥∥Āi − E
[
Ai

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥ ≤ L1ρ(t2−t1)K+k2−k1 ,∥∥∥Āi − Et1

[
Ai

(
O

(i)
t2,k2

)]∥∥∥ ≤ L1ρ(t2−t1)K+k2 ,∥∥∥E [Zi

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥ ≤ L2ρ(t2−t1)K+k2−k1 ,∥∥∥Et1

[
Zi

(
O

(i)
t2,k2

)]∥∥∥ ≤ L2ρ(t2−t1)K+k2

hold for any i ∈ [N ], 0 ≤ k1, k2 ≤ K − 1 and t2 ≥ t1 ≥ 0.

Proof. We have:∥∥∥E [Zi

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥ =
∥∥∥∥E [Zi

(
O

(i)
t2,k2

)
| F t1

k1

]
− E

O
(i)
t2,k2

∼π(i)

[
Zi

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥∥
=
∥∥∥∥∥ ∑

s
(i)
t2,k2

,s
(i)
t2+1,k2+1

(
π(i)(s(i)

t2,k2
)P (s(i)

t2+1,k2+1 | s
(i)
t2,k2

)

−P (s(i)
t2,k2

= · | s
(i)
t1,k1

)P (s(i)
t2+1,k2+1 | s

(i)
t2,k2

)
)

Zi(O(i)
t2,k2

)
∥∥∥∥∥

≤
∑

s
(i)
t2,k2

∣∣∣π(i)(s(i)
t2,k2

) − P (s(i)
t2,k2

= · | s
(i)
t1,k1

)
∣∣∣ ∥∥∥Zi(O(i)

t2,k2
)
∥∥∥

(a)
≤
∑

s
(i)
t2,k2

∣∣∣π(i)(s(i)
t2,k2

) − P (s(i)
t2,k2

= · | s
(i)
t1,k1

)
∣∣∣ (Rmax + c1H)

= 2(Rmax + c1H)dT V

(
P
(

s
(i)
t2,k2

= · | s
(i)
t1,k1

= s
)

, π(i)
)

≤ 2(Rmax + c1H)miρ
(t2−t1)K+k2−k1
i

where (a) is due to Lemma 11 and the last step follows from Assumption 3. We finish the proof by choosing
L2 ≜ maxi∈[N ]{2(Rmax + c1H)mi} = 2c3m. And we follow the same analysis to bound:∥∥∥Āi − E

[
Ai

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥ =
∥∥∥∥∥E

[
Ai

(
O

(i)
t2,k2

)
| F t1

k1

]
− E

O
(i)
t2,k2

∼π(i)

[
Ai

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥∥
=
∥∥∥∥∥ ∑

s
(i)
t2,k2

,s
(i)
t2+1,k2+1

(
π(i)(s(i)

t2,k2
)P (s(i)

t2+1,k2+1 | s
(i)
t2,k2

)

−P (s(i)
t2,k2

= · | s
(i)
t1,k1

)P (s(i)
t2+1,k2+1 | s

(i)
t2,k2

)
)

Ai(O(i)
t2,k2

)
∥∥∥∥∥

≤
∑

s
(i)
t2,k2

∣∣∣π(i)(s(i)
t2,k2

) − P (s(i)
t2,k2

= · | s
(i)
t1,k1

)
∣∣∣ ∥∥∥Ai(O(i)

t2,k2
)
∥∥∥
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(b)
≤ 2c1dT V

(
P
(

s
(i)
t2,k2

= · | s
(i)
t1,k1

= s
)

, π(i)
)

≤ 2c1miρ
(t2−t1)K+k2−k1
i

We finish the proof by choosing L1 ≜ maxi∈[N ]{2c1mi} = 2c1m. We employ the same reasoning to prove the
remaining three inequalities.

I.2.2 Variance Reduction

We are now ready to present the variance reduction Lemma in the Markov setting. The following Lemma estab-
lishes an analog of the variance reduction Lemma 7 in the i.i.d. setting. Based on the assumption that trajecto-
ries are independent across agents, it is easy to understand that the variance of (1/NK)

∑N
i=1
∑K−1

k=0 Ai(O(i)
t,k)

and (1/NK)
∑N

i=1
∑K−1

k=0 bi(O(i)
t,k) can be scaled by the number of agents N . However, it is not obvious that

the variances can be scaled by K (the number of local iterations), since the observations of each agent O
(i)
t,k1

and O
(i)
t,k2

are correlated at different local steps k1, k2. Due to the geometric mixing property of the Markov
chain, the correlation between O

(i)
t,k1

and O
(i)
t,k2

will geometrically decay after the mixing time. Based on
this fact, we show that the variances of (1/NK)

∑N
i=1
∑K−1

k=0 Ai(O(i)
t,k) and (1/NK)

∑N
i=1
∑K−1

k=0 bi(O(i)
t,k) get

scaled down by NK with an additional additive, higher order term dependent on the mixing time τ , which is
formally stated as follows:
Lemma 13. (Variance reduction in the Markovian setting) For any 0 < τ < t, there exists d1, d2 > 0 such
that:

Et−τ

[∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

[
Ai(O(i)

t,k) − Āi

]∥∥∥∥∥
]

≤ d1√
NK

+ 2L1ρτK , (34)

Et−τ

∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

[
Ai(O(i)

t,k) − Āi

]∥∥∥∥∥
2 ≤ d2

1
NK

+ 4L2
1ρ2τK , and (35)

Et−τ

[∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥∥∥
]

≤ d2√
NK

+ 2L2ρτK , (36)

Et−τ

∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥∥∥

2 ≤ d2
2

NK
+ 4L2

2ρ2τK , (37)

where d1 ≜
√

(c1 + c2)2 + 2(c1+c2)L1ρ
1−ρ and d2 ≜

√
c2

3 + 2c3L2ρ
1−ρ .

Proof.

Et−τ

[∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥∥∥
]

= Et−τ


√√√√( 1

NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
)⊤(

1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
)

≤

√√√√√Et−τ

( 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
)⊤(

1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
)

(concavity of square root and Jensen’s inequality)
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=

Et−τ

 1
N2K2

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)⊤Zi(O(i)

t,k) + 2
N2K2

N∑
i=1

∑
k<l

Zi(O(i)
t,k)⊤Zi(O(i)

t,l )︸ ︷︷ ︸
T1

+ 2
N2K2

∑
i<j

K−1∑
k=0

Zi(O(i)
t,k)⊤Zj(O(j)

t,k)︸ ︷︷ ︸
T2

+ 2
N2K2

∑
i<j

∑
k<l

Zi(O(i)
t,k)⊤Zj(O(j)

t,l )︸ ︷︷ ︸
T3




1
2

(38)

where T1 can be further bounded by:

Et−τ [T1] = Et−τ

[
2

N2K2

N∑
i=1

∑
k<l

Zi(O(i)
t,k)⊤Zi(O(i)

t,l )
]

= Et−τ

[
2

N2K2

N∑
i=1

∑
k<l

Zi(O(i)
t,k)⊤E

[
Zi(O(i)

t,l ) | F t
k

]]

≤ Et−τ

[
2

N2K2

N∑
i=1

∑
k<l

∥∥∥Zi(O(i)
t,k)
∥∥∥∥∥∥E [Zi(O(i)

t,l ) | F t
k

]∥∥∥]
(Cauchy–Schwarz inequality)

≤ Et−τ

[
2

N2K2

N∑
i=1

∑
k<l

c3L2ρ(l−k)

]
( Lemma 11 and 12)

≤ Et−τ

[
2

N2K2

N∑
i=1

K−1∑
k=0

∞∑
m=1

c3L2ρm

]

= 2c3L2NK

N2K2
ρ

1 − ρ
= 2c3L2ρ

NK(1 − ρ) .

And T2 can be bounded by:

Et−τ [T2] = 2
N2K2

∑
i<j

K−1∑
k=0

Et−τ

[
Zi(O(i)

t,k)
]⊤

Et−τ

[
Zj(O(j)

t,k)
]

(O(i)
t,k and O

(j)
t,k are independent)

≤ 2
N2K2

∑
i<j

K−1∑
k=0

L2
2ρ2τK+2k (Lemma 12)

≤ 2
K

L2
2ρ2τK .

Meanwhile, T3 can be bounded by:

Et−τ [T3] = 2
N2K2

∑
i<j

∑
k<l

Et−τ

[
Zi(O(i)

t,k)
]⊤

Et−τ

[
Zj(O(j)

t,l )
]

(O(i)
t,k and O

(j)
t,l are independent)

≤ 2
N2K2

∑
i<j

∑
k<l

L2
2ρ2τK+k+l (Lemma 12)

≤ 2L2
2ρ2τK

Substituting the upper bound of T1, T2 and T3 into Eq (38), we have:

Et−τ

[∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥∥∥
]
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≤

√√√√ 1
N2K2

N∑
i=1

K−1∑
k=0

Et−τ

[
Zi(O(i)

t,k)⊤Zi(O(i)
t,k)
]

+ 2c3L2ρ

NK(1 − ρ) + 2
K

L2
2ρ2τK + 2L2

2ρ2τK

(a)
≤

√
NK

N2K2 c2
3 + 2c3Lρ

NK(1 − ρ) + 2
K

L2
2ρ2τK + 2L2

2ρ2τK

≤

√
1

NK

(
c2

3 + 2c3L2ρ

1 − ρ

)
+ 4L2

2ρ2τK (K ≥ 1)

≤

√
1

NK

(
c2

3 + 2c3L2ρ

1 − ρ

)
+
√

4L2
2ρ2τK =

√
1

NK

(
c2

3 + 2c3L2ρ

1 − ρ

)
+ 2L2ρτK .

where (a) used the fact that
∥∥∥Zi

(
O

(i)
t,k

)∥∥∥ ≤ c3 mentioned in Lemma 11. The proof of other inequalities
follows the same reasoning.

I.2.3 Bounding E
[∥∥θ̄t − θ̄t−τ

∥∥2]
Lemma 14. (Bounding ∥θt − θt−τ ∥2) Consider τ = ⌈ τmix(α2

T )
K ⌉ and choose the effective step-size

α ≤ min
{ 1

30c4(τ + 1) ,
1

96c2
4τ

, 1
}

where c4 = 3c1. For any t ≥ 2τ , we have the following bound:

Et−2τ

[∥∥θ̄t − θ̄t−τ

∥∥2] ≤ 8α2τ2c2
4Et−2τ

[∥∥θ̄t − θ∗∥∥2]+ 14α2τ2 d2
2

NK
+ 52L2

2α4τ

1 − ρ2

+ 4α2c2
4τ

τ∑
s=0

Et−2τ [∆t−s] + 3200α2c2
4c2

1τ3Γ2(ϵ, ϵ1) + 4α2c2
1τ2Γ2(ϵ, ϵ1). (39)

Proof. For any l ≥ 2τ , we have∥∥∥θ̄l+1 − θ̄l

∥∥∥2

=
∥∥∥Π2,H

(
θ̄l + α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
l,k)
)

− θ̄l

∥∥∥2

≤
∥∥∥θ̄l + α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
l,k) − θ̄l

∥∥∥2

= α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
−Ai(O(i)

l,k)
(

θ
(i)
l,k − θ∗

i

)
+ Zi(O(i)

l,k)
] ∥∥∥2

≤ 2α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
−Ai(O(i)

l,k)
(

θ
(i)
l,k − θ∗

)
+ Zi(O(i)

l,k)
] ∥∥∥2

+ 2α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
−Ai(O(i)

l,k)
(

θ∗ − θ∗
i

)] ∥∥∥2

(a)
≤ 2α2

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

[
−Ai(O(i)

l,k)
(

θ
(i)
l,k − θ∗

)
+ Zi(O(i)

l,k)
] ∥∥∥2

+ 2α2c2
1Γ2(ϵ, ϵ1)
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= 6α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Ai(O(i)
l,k)
(

θ
(i)
l,k − θ̄l

)∥∥∥2
+ 6α2

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Ai(O(i)
l,k)
(

θ̄l − θ∗
)∥∥∥2

+ 6α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+ 2α2c2
1Γ2(ϵ, ϵ1)

≤ 6α2

(
c1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ
(i)
l,k − θ̄l

∥∥∥)2

+ 6α2c2
1

∥∥∥θ̄l − θ∗
∥∥∥2

+ 6α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+ 2α2c2
1Γ2(ϵ, ϵ1), (40)

where (a) comes from the upper bound of fixed points distance in Theorem 1 and the fact that
∥∥∥Ai

(
O

(i)
t,k

)∥∥∥ ≤ c1

in Lemma 11. Taking square root on both sides of the inequality above, we get:∥∥∥θ̄l+1 − θ̄l

∥∥∥
≤ 3

√√√√α2

(
c1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ
(i)
l,k − θ̄l

∥∥∥)2

+ 3
√

α2c2
1

∥∥∥θ̄l − θ∗
∥∥∥2

+ 3

√√√√α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+
√

2α2c2
1Γ2(ϵ, ϵ1)

≤ 3αc1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ
(i)
l,k − θ̄l

∥∥∥+ 3αc1

∥∥∥θ̄l − θ∗
∥∥∥+ 3α

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥+ 2αc1Γ(ϵ, ϵ1). (41)

By using the fact that
∥∥∥θ̄l+1 − θ∗

∥∥∥ ≤
∥∥∥θ̄l − θ∗

∥∥∥+
∥∥∥θ̄l+1 − θ̄l

∥∥∥, we have:

∥∥∥θ̄l+1 − θ∗
∥∥∥ ≤ (1 + 3αc1)

∥∥∥θ̄l − θ∗
∥∥∥+ 3αc1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ
(i)
l,k − θ̄l

∥∥∥
+ 3α

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥+ 2αc1Γ(ϵ, ϵ1).

(42)

For simplicity, we define c4 ≜ 3c1 and δl ≜ 1
NK

∑N
i=1
∑K−1

k=0

∥∥∥θ
(i)
l,k − θ̄l

∥∥∥. Taking the square on both sides of
Eq (42), we have:∥∥∥θ̄l+1 − θ∗

∥∥∥2

≤ (1 + αc4)2
∥∥∥θ̄l − θ∗

∥∥∥2
+ α2c2

4δ2
l + 9α2

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+ 4α2c2
1Γ2(ϵ, ϵ1)

+ 6α(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥︸ ︷︷ ︸

H1

+ 2αc4(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥δl︸ ︷︷ ︸
H2

+ 6α2c4δl

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥︸ ︷︷ ︸

H3

+ 4α2c1c4δlΓ(ϵ, ϵ1)︸ ︷︷ ︸
H4
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+ 4αc1(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥Γ(ϵ, ϵ1)︸ ︷︷ ︸
H5

+ 12α2c1

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥Γ(ϵ, ϵ1)︸ ︷︷ ︸

H6

. (43)

We can further bound H1 as:

H1 = 6α(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥

= 2
√

3α(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥ ·
√

3α(1 + αc4)
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥

≤ 3α(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥2
+ 3α(1 + αc4)

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

≤ 6α
∥∥∥θ̄l − θ∗

∥∥∥2
+ 6α

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

. (44)

where we use the fact 1 + αc4 ≤ 2 in the last inequality. Similary, we can bound H2 as:

H2 = 2αc4(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥δl ≤ 2α
∥∥∥θ̄l − θ∗

∥∥∥2
+ 2αc2

4δ2
l . (45)

And we bound H3 as:

H3 = 6α2c4δl

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥ ≤ 3α2

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+ 3α2c2
4δ2

l . (46)

For H4, H5, H6, we have:

H4 = 4α2c1c4δlΓ(ϵ, ϵ1) ≤ 2α2c2
4δ2

l + 2α2c2
1Γ2(ϵ, ϵ1),

H5 = 4αc1(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥Γ(ϵ, ϵ1) ≤ 4α
∥∥∥θ̄l − θ∗

∥∥∥2
+ 4αc2

1Γ2(ϵ, ϵ1),

H6 = 12α2c1

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥Γ(ϵ, ϵ1) ≤ 6α2

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+6α2c2
1Γ2(ϵ, ϵ1),

Substituting the upper bound of H1, H2, . . . , H6 into Eq (43) and noting that (1 + αc4)2 ≤ 1 + 3αc4 because
αc4 ≤ 1, we have:∥∥∥θ̄l+1 − θ∗

∥∥∥2

≤ (1 + α(3c4 + 12))
∥∥∥θ̄l − θ∗

∥∥∥2
+ (6α2 + 2α)c2

4δ2
l

+ (18α2 + 6α)
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+ (12α2 + 4α)c2
1Γ2(ϵ, ϵ1)

≤ (1 + αh1)
∥∥∥θ̄l − θ∗

∥∥∥2
+ 8αc2

4δ2
l + 24α

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+ 16αc2
1Γ2(ϵ, ϵ1), (47)

where we denote h1 ≜ 3c4 + 12 for simplicity. For any t − τ ≤ l ≤ t, conditioning on Ft−2τ on both sides of
the above inequality, we have:

Et−2τ

∥∥∥θ̄l+1 − θ∗
∥∥∥2
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≤ (1 + αh1)Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2

+ 24αEt−2τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
l,k)
∥∥∥2

+ 8αc2
4Et−2τ

[
δ2

l

]
+ αM3(ϵ, ϵ1)

≤ (1 + αh1)Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2

+ 24α

[
d2

2
NK

+ 4L2
2ρ2(l−t+2τ)K

]
(Lemma 13)

+ 8αc2
4Et−2τ

[
δ2

l

]
+ αM3(ϵ, ϵ1)

(a)
≤ (1 + αh1)Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2

+ 24α

[
d2

2
NK

+ 4L2
2α2ρ2(l−t+τ)K

]
+ 8αc2

4Et−2τ

[
δ2

l

]
+ αM3(ϵ, ϵ1)

≤ (1 + αh1)Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2

+ αct(l) + 8αc2
4Et−2τ

[
δ2

l

]
+ αM3(ϵ, ϵ1), (48)

where we denote M3(ϵ, ϵ1) ≜ 16c2
1Γ2(ϵ, ϵ1) and ct(l) = 24

[
d2

2
NK + 4L2

2α2ρ2(l−t+τ)K
]

for simplicity. Inequality

(a) is due to ρ2τK ≤ α4
T ≤ α2

t . In the following steps, we try to map Et−2τ

∥∥∥θ̄l+1 − θ∗
∥∥∥2

to Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

for any t − τ ≤ l ≤ t. By applying Eq (48) recursively, we have:

Et−2τ

∥∥∥θ̄l+1 − θ∗
∥∥∥2

≤ (1 + αh1)l+1−t+τ Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ α

l∑
k=t−τ

(1 + αh1)l−k (ct(k) + M3(ϵ, ϵ1))

+ 8αc2
4Et−2τ

[
l∑

k=t−τ

(1 + αh1)l−k
δ2

k

]
(b)
≤ (1 + αh1)τ+1 Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ α

t∑
k=t−τ

(1 + αh1)l−k (ct(k) + M3(ϵ, ϵ1))︸ ︷︷ ︸
H7

+ 8αc2
4Et−2τ

[
t∑

k=t−τ

(1 + αh1)l−k
δ2

k

]
︸ ︷︷ ︸

H8

(49)

where (b) is due to l ≤ t. For H7, we have:

H7 ≤
t∑

k=t−τ

(1 + αh1)t−k (ct(k) + M3(ϵ, ϵ1)) (l ≤ t)

=
τ∑

k′=0
(1 + αh1)τ−k′

(ct(k′ + t − τ) + M3(ϵ, ϵ1))

( changing index k into k′ with k′ = k + τ − t)

≤ 24
τ∑

k′=0
(1 + αh1)τ−k′

[
d2

2
NK

+ 4L2
2α2ρ2k′K + M3(ϵ, ϵ1)

]
(Substituting the definition of ct(k′) inside)

= 24
[(

d2
2

NK
+ M3(ϵ, ϵ1)

)
(1 + αh1)τ+1 − 1

αh1
+ 4L2

2α2 (1 + αh1)τ
τ∑

k′=0

(
ρ2K

1 + αh1

)k′]

≤ 24
[(

d2
2

NK
+ M3(ϵ, ϵ1)

)
(1 + αh1)τ+1 − 1

αh1
+ 4L2

2α2 (1 + αh1)τ
τ∑

k′=0
ρ2k′K

]
(1 + αh1 ≥ 1)
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≤ 24
[(

d2
2

NK
+ M3(ϵ, ϵ1)

)
(1 + αh1)τ+1 − 1

αh1
+ 4L2

2α2 (1 + αh1)τ 1
1 − ρ2

]
.

Here we follow the analysis in (Khodadadian et al., 2022). Notice that for x ≤ log 2
τ , we have (1 + x)τ+1 ≤

1 + 2x(τ + 1). If α ≤ 1
4h1τ ≤ log 2

h1τ and α ≤ 1
2h1(τ+1) , we have (1 + αh1)τ+1 ≤ 1 + 2αh1(τ + 1) ≤ 2 and

(1 + αh1)τ ≤ 1 + 2αh1τ ≤ 1 + 1/2 ≤ 2. Hence, we have

H7 ≤ 24
[(

d2
2

NK
+ M3(ϵ, ϵ1)

)
2(τ + 1) + 8L2

2α2

1 − ρ2

]
.

We apply the similar analysis to bound H8 as:

H8 =
τ∑

k=0
(1 + αh1)τ−k

δ2
t−τ+k ≤

τ∑
k=0

(1 + αh1)τ
δ2

t−τ+k ≤
τ∑

k=0
(1 + 2αh1τ) δ2

t−τ+k ≤ 2
τ∑

k=0
δ2

t−k.

Substituting the upper bound of H7 and H8 into Eq (49), we have:

Et−2τ

∥∥∥θ̄l+1 − θ∗
∥∥∥2

≤ 2Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ 24α

[(
d2

2
NK

+ M3(ϵ, ϵ1)
)

2(τ + 1) + 8L2
2α2

1 − ρ2

]
+ 16αc2

4

τ∑
k=0

Et−2τ [δ2
t−k].

Then it is straightforward to bound Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2

as:

Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2

≤ 2Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ 24α

[(
d2

2
NK

+ M3(ϵ, ϵ1)
)

4τ + 8L2
2α2

1 − ρ2

]
+ 16αc2

4

τ∑
k=0

Et−2τ [δ2
t−k]. (50)

Furthermore, based on the triangle inequality, we have:∥∥∥θ̄t − θ̄t−τ

∥∥∥2

≤

(
t−1∑

s=t−τ

∥∥∥θ̄s+1 − θ̄s

∥∥∥)2

≤ τ

t−1∑
s=t−τ

∥∥∥θ̄s+1 − θ̄s

∥∥∥2

≤ τ

t−1∑
s=t−τ

[
α2c2

4

∥∥∥θ̄s − θ∗
∥∥∥2

+ α2c2
4δ2

s + 6α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
s,k)
∥∥∥2

+ 2α2c2
1Γ2(ϵ, ϵ1)

]

where the last inequality is due to Eq (40) with c4 = 3c1. If we take the expectation on both sides, we have:

Et−2τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

≤ τ

t−1∑
s=t−τ

[
α2c2

4Et−2τ

∥∥∥θ̄s − θ∗
∥∥∥2

+ α2c2
4δ2

s

+ 6α2Et−2τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
s,k)
∥∥∥2

+ 2α2c2
1Γ2(ϵ, ϵ1)

]
≤ τα2c2

4

t−1∑
s=t−τ

[
2Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2
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+ 24α

[(
d2

2
NK

+ M3(ϵ, ϵ1)
)

4τ + 8L2
2α2

1 − ρ2

]
+ 16αc2

4

τ∑
k=0

Et−2τ [δ2
t−k]

]
(Eq (50))

+ 6α2τ

t−1∑
s=t−τ

(
d2

2
NK

+ 4L2
2ρ2(s−t+2τ)K

)

+ α2c2
4τ

t−1∑
s=t−τ

Et−2τ [δ2
s ] + 2α2c2

1τ2Γ2(ϵ, ϵ1) (Lemma 13)

(a)
≤ τ2α2c2

4

[
2Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ 96
(

d2
2

NK
ατ + 2L2

2α3

1 − ρ2

)]
+ 6α2τ

[
d2

2
NK

τ + 4L2
2α2

1 − ρ2K

]
+ α2c2

4τ(1 + 16ατc2
4)

τ∑
s=0

Et−2τ [δ2
t−s] + 96α2c2

4τ3M3(ϵ, ϵ1) + 2α2c2
1τ2Γ2(ϵ, ϵ1)

(b)
≤ 2τ2α2c2

4Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ d2
2

NK
α2τ2 (96ατc2

4 + 6
)

+ 12L2
2α4τ

1 − ρ2

(
16αc2

4τ + 2
)

+ α2c2
4τ(1 + 16ατc2

4)
τ∑

s=0
Et−2τ [∆t−s] + 96α2c2

4τ3M3(ϵ, ϵ1) + 2α2c2
1τ2Γ2(ϵ, ϵ1) (51)

where we used the fact that ρ2τK ≤ α2 for (a) and (b), and that δ2
t ≤ ∆t (via Jensens’ inequality) for all

t ≥ 0 in the last inequality. Let us choose α such that 96ατc2
4 + 6 ≤ 7, 16αc2

4τ + 2 ≤ 13
6 and 1 + 16ατc2

4 ≤ 2,
this holds when

α ≤ min
{ 1

96τc2
4

,
1

96c2
4τ

,
1

16τc2
4

, 1
}

.

Based on the fact that ∥θ̄t−τ − θ∗∥2 ≤ 2∥θ̄t − θ̄t−τ ∥2 + 2∥θ̄t − θ∗∥2 and the requirement on α, we have

2α2τ2c2
4Et−2τ ∥θ̄t−τ − θ∗∥2 ≤ 4α2τ2c2

4Et−2τ ∥θ̄t − θ̄t−τ ∥2 + 4α2τ2c2
4Et−2τ ∥θ̄t − θ∗∥2

≤ 0.5Et−2τ ∥θ̄t − θ̄t−τ ∥2 + 4α2τ2c2
4Et−2τ ∥θ̄t − θ∗∥2 (4α2τ2c2

4 ≤ 0.5)
(a)
≤ τ2α2c2

4Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ 7d2
2

2NK
α2τ2 + 13L2

2α4τ

(1 − ρ2)

+ α2c2
4τ

τ∑
s=0

Et−2τ [∆t−s] + 48α2c2
4τ3M3(ϵ, ϵ1) + α2c2

1τ2Γ2(ϵ, ϵ1)

+ 4α2τ2c2
4Et−2τ ∥θ̄t − θ∗∥2 (52)

where (a) is due to Eq (51) and the choice of α. Putting the term τ2α2c2
4Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2

together by
rearranging the terms, we have:

α2τ2c2
4Et−2τ ∥θ̄t−τ − θ∗∥2 ≤ 7d2

2
2NK

α2τ2 + 13L2
2α4τ

(1 − ρ2)

+ α2c2
4τ

τ∑
s=0

Et−2τ [∆t−s] + 48α2c2
4τ3M3(ϵ, ϵ1) + α2c2

1τ2Γ2(ϵ, ϵ1)

+ 4α2τ2c2
4Et−2τ ∥θ̄t − θ∗∥2 (53)

The proof is completed by substituting this inequality into Eq (51) and the definition of M3(ϵ, ϵ1). Note that
we require the effective step-size

α ≤ min
{ 1

4h1τ
,

1
2h1(τ + 1) ,

1
96c2

4τ
, 1
}

in this proof, which holds when α ≤ min
{

1
30c4(τ+1) , 1

96c2
4τ

, 1
}

since c4 = 3c1 ≥ 1.

45



Published in Transactions on Machine Learning Research (06/2024)

I.2.4 Drift Term Analysis.

Now we bound the drift term as follows:
Lemma 15. (Bounded Client Drift) If αl ≤ 1

2
√

2c1(K−1) , the drift term satisfies

E[∆t] = 1
NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
≤ 4α2

Kα2
g

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

. (54)

Proof.

1
NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
= 1

NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ̄t + αl

k−1∑
s=0

gi(θ(i)
t,s) − θ̄t

∥∥∥2

= α2
l

1
NK

N∑
i=1

K−1∑
k=0

E
∥∥∥ k−1∑

s=0
−Ai(O(i)

t,s)
(

θ
(i)
t,s − θ∗

i

)
+ Zi(O(i)

t,s)
∥∥∥2

≤ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

E
∥∥∥ k−1∑

s=0
−Ai(O(i)

t,s)
(

θ
(i)
t,s − θ∗

i

)∥∥∥2
+ 2α2

l

1
NK

N∑
i=1

K−1∑
k=0

E
∥∥∥ k−1∑

s=0
Zi(O(i)

t,s)
∥∥∥2

≤ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

k

k−1∑
s=0

E
∥∥∥Ai(O(i)

t,s)
(

θ
(i)
t,s − θ∗

i

)∥∥∥2
+ 2α2

l

1
NK

N∑
i=1

K−1∑
k=0

k−1∑
s=0

E
∥∥∥Zi(O(i)

t,s)
∥∥∥2

+ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s ̸=s′

E
〈

Zi(O(i)
t,s), Zi(O(i)

t,s′)
〉

≤ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

kc2
1

k−1∑
s=0

E
∥∥∥θ

(i)
t,s − θ∗

i

∥∥∥2
+ 2α2

l

1
NK

N∑
i=1

K−1∑
k=0

kc2
3 (Lemma 11)

+ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s ̸=s′

E
[
E
〈

Zi(O(i)
t,s), Zi(O(i)

t,s′)
〉 ∣∣ F t

s

]

≤ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

kc2
1

k−1∑
s=0

E
∥∥∥θ

(i)
t,s − θ∗

i

∥∥∥2
+ 2α2

l

1
NK

N∑
i=1

K−1∑
k=0

kc2
3

+ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s ̸=s′

E
[〈

Zi(O(i)
t,s),E

[
Zi(O(i)

t,s′)
∣∣ F t

s

] 〉]

≤ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

kc2
1

k−1∑
s=0

E
∥∥∥θ

(i)
t,s − θ∗

i

∥∥∥2
+ 2α2

l

1
NK

N∑
i=1

K−1∑
k=0

kc2
3

+ 4α2
l

1
NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s<s′

E
[∥∥∥Zi(O(i)

t,s)
∥∥∥∥∥∥E [Zi(O(i)

t,s′)
∣∣ F t

s

] ∥∥∥]

≤ 4α2
l

1
NK

N∑
i=1

K−1∑
k=0

kc2
1

k−1∑
s=0

E
∥∥∥θ

(i)
t,s − θ̄t

∥∥∥2
+ 4α2

l

1
NK

N∑
i=1

K−1∑
k=0

kc2
1

k−1∑
s=0

E
∥∥∥θ̄t − θ∗

i

∥∥∥2
(Eq (11))
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+ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

kc2
3 + 4α2

l

1
NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s<s′

c3L2ρs′−s (Lemma 12)

≤ 4α2
l

1
NK

N∑
i=1

K−1∑
k=0

kc2
1

k−1∑
s=0

E
∥∥∥θ

(i)
t,s − θ̄t

∥∥∥2
+ 4α2

l

1
NK

N∑
i=1

K−1∑
k=0

4kc2
1(K − 1)H2

+ 2α2
l

1
NK

N∑
i=1

K−1∑
k=0

kc2
3 + 4α2

l

1
NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s<s′

c3L2ρs′−s

︸ ︷︷ ︸
M1

(55)

where we used the property that θ̄t, θ∗
i ∈ H in the last inequality, i.e., ∥θ̄t∥ ≤ H2 and ∥θ∗

i ∥ ≤ H2. We now
bound M1 as:

k−1∑
s,s′=0
s<s′

c3L2ρs′−s = c3L2

k−1∑
s=0

k−1∑
s′=s+1

ρs′−s = c3L2

k−1∑
s=0

ρ − ρs−s′

1 − ρ
≤ c3L2

ρk

1 − ρ
(56)

Define RK ≜
∑N

i=1
∑K−1

k=0 E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
and note that RK is monotonically increasing in K. With this

definition, if we plug in the upper bound of M1 into Eq (55), we have:

RK ≤ 4α2
l

N∑
i=1

K−1∑
k=0

kc2
1

k−1∑
s=0

E
∥∥∥θ

(i)
t,s − θ̄t

∥∥∥2
+ 4α2

l

N∑
i=1

K−1∑
k=0

4kc2
1(K − 1)H2

+ 2α2
l

N∑
i=1

K−1∑
k=0

kc2
3 + 4α2

l

N∑
i=1

K−1∑
k=0

c3L2
ρk

1 − ρ

≤ 2α2
l (K − 1)NK

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4α2
l c2

1(K − 1)
K−1∑
k=1

N∑
i=1

k−1∑
s=0

E
∥∥∥θ

(i)
t,s − θ̄t

∥∥∥2

︸ ︷︷ ︸
Rk

= 2α2
l (K − 1)NK

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4α2
l c2

1(K − 1)
K−1∑
k=1

Rk (57)

By the monotonicity of Rk, we have

RK ≤ 2α2
l (K − 1)NK

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4α2
l c2

1(K − 1)2RK−1

Let us choose αl such that 4α2
l c2

1(K − 1)2 ≤ 1
2 , i.e., αl ≤ 1

2
√

2c1(K−1) , the following recursion holds:

RK ≤ 1
2RK−1 + 2α2

l (K − 1)NK

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

(58)

for all k ∈ [K]. Next, we unroll the recurrence, go back K − 1 steps and use the fact that R1 = 0, we have:

RK ≤

{ ∞∑
l=1

(
1
2

)l
}(

2α2
l (K − 1)NK

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
])

= 4α2
l (K − 1)NK

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

(59)

We finish the proof by dividing NK on both sides and substituting αl = α
Kαg

.
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I.2.5 Per Round Progress

Lemma 16. (Per Round Progress). If the local step-size αl ≤ 1
2

√
2c1(K−1) , and the effective step-size

α = Kαlαg satisfies:

α ≤ min{ ξ1

24(c1 + c2)2 + 24ξ2
1 + 16 , 1,

ξ1(c1 + c2)
2L1 + 8τ2c2

4
,

1
30c4(τ + 1) ,

1
96c2

4τ
, X }, 5

where

X = 2B(ϵ, ϵ1)G + 3ξ1(c1 + c2)Γ2(ϵ, ϵ1)
4B2(ϵ, ϵ1) + 24(c1 + c2)2Γ2(ϵ, ϵ1) + 2L1Γ(ϵ, ϵ1)G + 6400c2

1c2
4τ3Γ2(ϵ, ϵ1) + 8c2

1τ2Γ2(ϵ, ϵ1) ,

and choose τ = ⌈ τmix(α2
T )

K ⌉, then we have,

Et−2τ ∥θ̄t+1 − θ∗∥2

≤ (1 + 32αξ1(c1 + c2))Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

︸ ︷︷ ︸
Expected progress for the virtual MDP

+ 9 + 28τ2

NK
α2d2

2︸ ︷︷ ︸
Linear speedup

+ α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
︸ ︷︷ ︸

High order terms: O(α3)

+ 4α3

Kα2
g

(14
ξ1

+ 14ξ1)(c1 + c2)
[
c2

3 + 2c3L2ρ

1 − ρ
+ 4c2

1(K − 1)H2
]

︸ ︷︷ ︸
drift term

+ 4αB(ϵ, ϵ1)G + 6αξ1(c1 + c2)Γ2(ϵ, ϵ1)︸ ︷︷ ︸
heterogeneity term

. (60)

where ξ1 is any universal positive constant.

Proof. According to the updating rule and the fact that the projection operator is non-expansive, we have:

Et−τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

= Et−τ

∥∥∥Π2,H

(
θ̄t + α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k)
)

− θ∗
∥∥∥2

≤ Et−τ

∥∥∥θ̄t + α

NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k) − θ∗

∥∥∥2

= Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2Et−τ

〈 α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k), θ̄t − θ∗

〉
+ 2Et−τ

〈 α

NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
]
, θ̄t − θ∗

〉
5This requirement is very easy to satisfy since the denominator in X is composed by the heterogeneity terms, which is quite

small and thereby makes X large. Overall, the feasible set of the step-sizes is not empty.
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+ α2Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k)
∥∥∥2

≤ Et−τ

{∥∥∥θ̄t − θ∗
∥∥∥2

+ 2
〈 α

N

N∑
i=1

ḡi(θ̄t), θ̄t − θ∗
〉

+ 2
〈 α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k) − ḡi(θ̄t), θ̄t − θ∗

〉}
︸ ︷︷ ︸

B1

+ 2αEt−τ

〈 1
NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
]
, θ̄t − θ∗

〉
︸ ︷︷ ︸

B2

+α2Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k)
∥∥∥2

︸ ︷︷ ︸
B3

(61)

We now begin to bound the gradient bias term B2 by decomposing this term into three terms:

〈 1
NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
]
, θ̄t − θ∗

〉
=
〈 1

NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
]
, θ̄t − θ̄t−τ

〉
︸ ︷︷ ︸

B21

+
〈 1

NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − gi(θ(i)
t−τ,k) − ḡi(θ(i)

t,k) + ḡi(θ(i)
t−τ,k)

]
, θ̄t−τ − θ∗

〉
︸ ︷︷ ︸

B22

+
〈 1

NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t−τ,k) − ḡi(θ(i)
t−τ,k)

]
, θ̄t−τ − θ∗

〉
︸ ︷︷ ︸

B23

. (62)

Next, we bound Et−τ [B21] as:

Et−τ

〈 1
NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
]
, θ̄t − θ̄t−τ

〉
≤ Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

gi(θ(i)
t,k) − ḡi(θ(i)

t,k)
∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥
(a)= Et−τ

[∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(−Ai(O(i)
t,k) + Āi)(θ(i)

t,k − θ∗
i ) + Zi(O(i)

t,k)
∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥]

≤ Et−τ

[∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(Ai(O(i)
t,k) − Āi)(θ(i)

t,k − θ∗
i )
∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥]

+ Et−τ

[∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥]

≤ 1
NK

N∑
i=1

K−1∑
k=0

Et−τ

[∥∥∥(Ai(O(i)
t,k) − Āi)(θ(i)

t,k − θ∗
i )
∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥]
+ α

2Et−τ

[∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2
]

+ 1
2α

Et−τ

[∥∥∥θ̄t − θ̄t−τ

∥∥∥2
]

(b)
≤ (c1 + c2)

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ∗

i

∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥
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+ α

2Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 1
2α

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

≤ ξ1(c1 + c2)
2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ∗

i

∥∥∥2
+ (c1 + c2)

2ξ1NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

(Young’s inequality (12) with constant ξ1)

+ α

2Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 1
2α

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

(c)
≤ 3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥2
+ 3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 3ξ1(c1 + c2)
2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ∗ − θ∗
i

∥∥∥2
+ (c1 + c2)

2ξ1NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

+ α

2Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 1
2α

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

= 3ξ1(c1 + c2)
2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥2
+ 3ξ1(c1 + c2)

2 Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 3ξ1(c1 + c2)
2 Γ2(ϵ, ϵ1) + (c1 + c2)

2ξ1
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

+ α

2Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 1
2α

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

(d)
≤ 3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥2
+ 3ξ1(c1 + c2)

2 Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 3ξ1(c1 + c2)
2 Γ2(ϵ, ϵ1) + c1 + c2

2ξ1
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

+ α

2

[
d2

2
NK

+ 4L2
2ρ2τK

]
+ 1

2α
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

= 3ξ1(c1 + c2)
2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥2
+ 3ξ1(c1 + c2)

2 Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 3ξ1(c1 + c2)
2 Γ2(ϵ, ϵ1) +

(
c1 + c2

2ξ1
+ 1

2α

)
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
+ α

2

 d2
2

NK
+ 4L2

2ρ2τK︸ ︷︷ ︸
≤4L2

2α2

 , (63)

where (a) is due to gi(θ(i)
t,k) = −Ai(O(i)

t,k)(θ(i)
t,k − θ∗

i ) + Zi(O(i)
t,k), (b) is due to Lemma 12 (the upper bound of

Ai(O(i)
t,k) and Āi), (c) is due to Eq (13) and (d) is due to Lemma 13.

And we bound B22 as:

B22 =
〈 1

NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − gi(θ(i)
t−τ,k) − ḡi(θ(i)

t,k) + ḡi(θ(i)
t−τ,k)

]
, θ̄t−τ − θ∗

〉
≤ 1

NK

N∑
i=1

K−1∑
k=0

∥∥∥gi(θ(i)
t,k) − gi(θ(i)

t−τ,k) − ḡi(θ(i)
t,k) + ḡi(θ(i)

t−τ,k)
∥∥∥∥∥∥θ̄t−τ − θ∗

∥∥∥
(Cauchy-Schwarz inequality)

50



Published in Transactions on Machine Learning Research (06/2024)

≤ 1
NK

N∑
i=1

K−1∑
k=0

[∥∥∥gi(θ(i)
t,k) − gi(θ(i)

t−τ,k)
∥∥∥+

∥∥∥ḡi(θ(i)
t,k) − ḡi(θ(i)

t−τ,k)
∥∥∥] ∥∥∥θ̄t−τ − θ∗

∥∥∥
(a)
≤ 1

NK

N∑
i=1

K−1∑
k=0

[
2
∥∥∥θ

(i)
t,k − θ

(i)
t−τ,k

∥∥∥+ 2
∥∥∥θ

(i)
t,k − θ

(i)
t−τ,k

∥∥∥] ∥∥∥θ̄t−τ − θ∗
∥∥∥

≤ 1
NK

N∑
i=1

K−1∑
k=0

[
4
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥+ 4
∥∥∥θ̄t − θ̄t−τ

∥∥∥+ 4
∥∥∥θ̄t−τ − θ

(i)
t−τ,k

∥∥∥] ∥∥∥θ̄t−τ − θ∗
∥∥∥

(Triangle inequality)

≤ 4δt

∥∥∥θ̄t−τ − θ∗
∥∥∥+ 4

∥∥∥θ̄t − θ̄t−τ

∥∥∥∥∥∥θ̄t−τ − θ∗
∥∥∥+ 4δt−τ

∥∥∥θ̄t−τ − θ∗
∥∥∥

≤ 2
ξ2

∆t + 2
ξ2

∆t−τ + (2ξ2 + 4ξ2)
∥∥∥θ̄t−τ − θ∗

∥∥∥2
+ 2

ξ2

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

(Young’s inequality (12) with constants ξ2 and δ2
t ≤ ∆t)

≤ 2
ξ2

∆t + 2
ξ2

∆t−τ + 12ξ2

∥∥∥θ̄t − θ∗
∥∥∥2

+ (12ξ2 + 2
ξ2

)
∥∥∥θ̄t − θ̄t−τ

∥∥∥2
(Eq 13) (64)

where (a) is due to the 2-Lipschitz property of steady-state ḡ (i.e., Lemma 5) and random direction gi (i.e.,
Lemma 6), δt = 1

NK

∑N
i=1
∑K−1

k=0

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥ and ∆t ≜ 1
NK

∑N
i=1
∑K−1

k=0 E
∥∥∥θ

(i)
t,k − θ̄t

∥∥∥2
.

Now, we bound B23 as:

Et−τ [B23]

=
〈 1

NK

N∑
i=1

K−1∑
k=0

Et−τ

[
gi(θ(i)

t−τ,k) − ḡi(θ(i)
t−τ,k)

]
, θ̄t−τ − θ∗

〉
≤ 1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥∥∥∥Et−τ

[
gi(θ(i)

t−τ,k) − ḡi(θ(i)
t−τ,k)

] ∥∥∥ (Cauchy-Schwarz inequality)

= 1
NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥∥∥∥Et−τ

[
−Ai(O(i)

t,k)(θ(i)
t−τ,k − θ∗

i ) + Zi(O(i)
t,k) + Āi(θ(i)

t−τ,k − θ∗
i )
] ∥∥∥

≤ 1
NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥{∥∥∥Et−τ (Ai(O(i)

t,k) − Āi)(θ(i)
t−τ,k − θ∗

i )
∥∥∥+

∥∥∥Et−τ

[
Zi(O(i)

t,k)
] ∥∥∥}

(a)
≤ 1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥{L1ρτK+k

∥∥∥θ
(i)
t−τ,k − θ∗

i

∥∥∥+ L2ρτK+k
}

≤ 1
NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥

×
{

L1ρτK+k
[∥∥∥θ

(i)
t−τ,k − θ̄t−τ

∥∥∥+
∥∥∥θ̄t−τ − θ∗

∥∥∥+
∥∥∥θ∗ − θ∗

i

∥∥∥]+ L2ρτK+k
}

(b)
≤ α2L1

∥∥∥θ̄t−τ − θ∗
∥∥∥δt−τ + α2L1

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ α2L1Γ(ϵ, ϵ1)G + α2L2G

≤ α2L1

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ α2L1∆t−τ + α2L1

∥∥∥θ̄t−τ − θ∗
∥∥∥2

+ α2L1Γ(ϵ, ϵ1)G + α2L2G

(c)
≤ 2α2L1G2 + α2L2G + α2L1∆t−τ + α2L1Γ(ϵ, ϵ1)G, (65)

where (a) is due to Lemma 12, (b) is due to the fact that θ̄t−τ , θ∗ ∈ H, which radius is H ≤ G
2 , and

τ = ⌈ logρ(α2
T )

K ⌉ (i.e., ρτK ≤ α2) and (c) is due to the fact that θ̄t−τ , θ∗ ∈ H. Then, the term B2 can be
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bounded as:

Et−τ [B2]
= Et−τ [B21 + B22 + B23]

≤ 3ξ1(c1 + c2)
2 Et−τ [∆t] + 3ξ1(c1 + c2)

2 Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 3ξ1(c1 + c2)
2 Γ2(ϵ, ϵ1)

+
(

c1 + c2

2ξ1
+ 1

2α

)
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
+ α

2

[
d2

2
NK

+ 4L2
2ρ2τK

]
+ 2

ξ2
Et−τ [∆t] + 2

ξ2
Et−τ [∆t−τ ] + 12ξ2Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ (12ξ2 + 2
ξ2

)Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

+ 2α2L1G2 + α2L2G + α2L1Et−τ [∆t−τ ] + α2L1Γ(ϵ, ϵ1)G

≤
(

3ξ1(c1 + c2)
2 + 12ξ2

)
Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
(

c1 + c2

2ξ1
+ 1

2α
+ 12ξ2 + 2

ξ2

)
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

+
(

3ξ1(c1 + c2)
2 + 2

ξ2

)
Et−τ [∆t] +

(
2
ξ2

+ α2L1

)
∆t−τ + α

2

[
d2

2
NK

+ 4L2
2α2
]

+ 2α2L1G2 + α2L2G + 3ξ1(c1 + c2)
2 Γ2(ϵ, ϵ1) + α2L1Γ(ϵ, ϵ1)G (66)

Next, we bound B3 as:

Et−τ [B3]

= Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

[
gi(θ(i)

t,k) − ḡi(θ(i)
t,k) + ḡi(θ(i)

t,k) − ḡi(θ̄t) + ḡi(θ̄t) − ḡ(θ̄t) + ḡ(θ̄t)
] ∥∥∥2

≤ 4Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(
gi(θ(i)

t,k) − ḡi(θ(i)
t,k)
)∥∥∥2

+ 4Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ(i)

t,k) − ḡi(θ̄t)
)∥∥∥2

+ 4Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ̄t) − ḡ(θ̄t)

) ∥∥∥2
+ 4Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

ḡ(θ̄t)
∥∥∥2

(Eq 13)

= 4Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

[(
Āi − Ai(O(i)

t,k)
)

(θ(i)
t,k − θ∗

i ) + Zi(O(i)
t,k)
] ∥∥∥2

+ 4Et−τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+ 4Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ(i)

t,k) − ḡi(θ̄t)
)∥∥∥2

+ 4Et−τ

∥∥∥ 1
N

N∑
i=1

(
ḡi(θ̄t) − ḡ(θ̄t)

) ∥∥∥2

︸ ︷︷ ︸
Lemma 2

(a)
≤ 8Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(
Āi − Ai(O(i)

t,k)
)

(θ(i)
t,k − θ∗

i )
∥∥∥2

+ 8Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 16 1
NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥2
+ 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)
∥∥∥2

≤ 8
NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥Āi − Ai(O(i)
t,k)
∥∥∥2∥∥∥θ

(i)
t,k − θ∗

i

∥∥∥2
+ 8Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 16Et−τ [∆t] + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)
∥∥∥2

≤ 8(c1 + c2)2

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ∗

i

∥∥∥2
+ 8Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 16Et−τ [∆t] + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)
∥∥∥2
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≤ 24(c1 + c2)2

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ
(i)
t,k − θ̄t

∥∥∥2
+ 24(c1 + c2)2

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 24(c1 + c2)2

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ∗
i − θ∗

∥∥∥2
+ 8Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 16Et−τ [∆t] + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)
∥∥∥2

= 24(c1 + c2)2Et−τ [∆t] + 24(c1 + c2)2Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 24(c1 + c2)2Γ2(ϵ, ϵ1)

+ 8Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

Zi(O(i)
t,k)
∥∥∥2

+ 16Et−τ [∆t] + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)
∥∥∥2

(b)
≤ (24(c1 + c2)2 + 16)Et−τ [∆t] + 8( d2

2
NK

+ 4L2
2ρτK︸ ︷︷ ︸

≤4L2
2α2

) + 24(c1 + c2)2Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 4Et−τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+ 4B2(ϵ, ϵ1) + 24(c1 + c2)2Γ2(ϵ, ϵ1), (67)

where (a) is due to 2-Lipschitz of ḡi (i.e., Lemma 5) and the gradient heterogeneity (i.e., Lemma 2) and (b) is
due to Lemma 13.

Next, we bound B1 as:

Et−τ [B1]

= Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2Et−τ

〈 α

N

N∑
i=1

ḡi(θ̄t), θ̄t − θ∗
〉

+ 2Et−τ

〈 α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k) − ḡi(θ̄t), θ̄t − θ∗

〉
≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−τ

〈 1
N

N∑
i=1

ḡi(θ̄t) − ḡ(θ̄t), θ̄t − θ∗
〉

+ 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 2αEt−τ

〈 1
NK

N∑
i=1

K−1∑
k=0

ḡi(θ(i)
t,k) − ḡi(θ̄t), θ̄t − θ∗

〉
≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−τ

∥∥∥ 1
N

N∑
i=1

ḡi(θ̄t) − ḡ(θ̄t)
∥∥∥∥∥∥θ̄t − θ∗

∥∥∥+ 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ α

ξ3
Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ(i)

t,k) − ḡi(θ̄t)
)∥∥∥2

+ αξ3Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

(Young’s inequality Eq (12) with constant ξ3)
(a)
≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αB(ϵ, ϵ1)G + 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ α

ξ3
Et−τ

∥∥∥ 1
NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ(i)

t,k) − ḡi(θ̄t)
)∥∥∥2

+ αξ3Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

(b)
≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αB(ϵ, ϵ1)G + 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α

ξ3
Et−τ [∆t] + αξ3Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

, (68)

where (a) is due to the fact that θ̄t, θ∗ ∈ H and the gradient heterogeneity; (b) is due to 2-Lipschitz property
of function ḡ in Lemma 5.
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Incorporating the upper of B1 from Eq (68), B2 from Eq (66) and B3 from Eq (67) into Eq (61), we have:

Et−τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+
(
αξ3 + α(3ξ1(c1 + c2) + 24ξ2) + 24α2(c1 + c2)2)Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ α

(
c1 + c2

ξ1
+ 1

α
+ 24ξ2 + 4

ξ2

)
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2

+ 9d2
2

NK
α2 + 36L2

2α4 + 4α3L1G2 + 2α3L2G +
(

4α

ξ2
+ 2α3L1

)
∆t−τ

+ α

(
4
ξ3

+ 3ξ1(c1 + c2) + 4
ξ2

+ α2 (24(c1 + c2)2 + 16
))

Et−τ [∆t]

+ 2αB(ϵ, ϵ1)G + 4α2B2(ϵ, ϵ1) + 24α2(c1 + c2)2Γ2(ϵ, ϵ1)
+ 3αξ1(c1 + c2)Γ2(ϵ, ϵ1) + 2α3L1Γ(ϵ, ϵ1)G (69)

Conditioned on Ft−2τ and using Lemma 14 to give an upper bound of Et−2τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
, we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+
(
αξ3 + α(3ξ1(c1 + c2) + 24ξ2) + 24α2(c1 + c2)2)︸ ︷︷ ︸

E1

Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ α

(
c1 + c2

ξ1
+ 1

α
+ 24ξ2 + 4

ξ2

)
︸ ︷︷ ︸

E2

{
8α2τ2c2

4Et−2τ

[∥∥θ̄t − θ∗∥∥2]+ 14α2τ2 d2
2

NK
+ 52L2

2α4τ

1 − ρ2

+4α2c2
4τ

τ∑
s=0

Et−2τ [∆t−s] + 3200α2c2
1c2

4τ3Γ2(ϵ, ϵ1) + 4α2c2
1τ2Γ2(ϵ, ϵ1)

}

+ 9d2
2

NK
α2 + 36L2

2α4 + 4α3L1G2 + 2α3L2G +
(

4α

ξ2
+ 2α3L1

)
Et−2τ [∆t−τ ]

+ α

(
4
ξ3

+ 3ξ1(c1 + c2) + 4
ξ2

+ α2 (24(c1 + c2)2 + 16
))

︸ ︷︷ ︸
E3

Et−2τ [∆t]

+ 2αB(ϵ, ϵ1)G + 4α2B2(ϵ, ϵ1) + 24α2(c1 + c2)2Γ2(ϵ, ϵ1)
+ 3αξ1(c1 + c2)Γ2(ϵ, ϵ1) + 2α3L1Γ(ϵ, ϵ1)G (70)

If we choose step-size α such that αE2 = α
(

c1+c2
ξ1

+ 1
α + 24ξ2 + 4

ξ2

)
≤ 2, ξ1 = ξ2 = ξ3, E1 = αξ3 +

α(3ξ1(c1 + c2) + 24ξ2) + 24α2(c1 + c2)2 ≤ 28αξ1(c1 + c2) + 24α2(c1 + c2)2 ≤ 30αξ1(c1 + c2) (c1, c2 > 1) and
E3 = 4

ξ3
+ 3ξ1(c1 + c2) + 4

ξ2
+ α2 (24(c1 + c2)2 + 16

)
≤ ( 9

ξ1
+ 9ξ1)(c1 + c2), i.e.,

α ≤ 1(
c1+c2

ξ1
+ 24ξ2 + 4

ξ2

) = ξ1

(c1 + c2 + 24ξ2
1 + 4)

α ≤ min{ ξ1

12(c1 + c2) , 1,
( 5

ξ1
+ 5ξ1)(c1 + c2)

24(c1 + c2)2 + 16 },

which is sufficient to hold when α ≤ min{ ξ1
24(c1+c2)2+24ξ2

1+16 , 1}, then we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2
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≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+ 30αξ1(c1 + c2)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2
{

8α2τ2c2
4Et−2τ

[∥∥θ̄t − θ∗∥∥2]+ 14α2τ2 d2
2

NK
+ 52L2

2α4τ

1 − ρ2

+4α2c2
4τ

τ∑
s=0

Et−2τ [∆t−s] + 3200α2c2
1c2

4τ3Γ2(ϵ, ϵ1) + 4α2c2
1τ2Γ2(ϵ, ϵ1)

}

+ 9d2
2

NK
α2 + 36L2

2α4 + 4α3L1G2 + 2α3L2G +
(

4α

ξ2
+ 2α3L1

)
Et−2τ [∆t−τ ]

+ α

(
4
ξ3

+ 3ξ1(c1 + c2) + 4
ξ2

+ α2 (24(c1 + c2)2 + 16
))

Et−2τ [∆t]

+ 2αB(ϵ, ϵ1)G + 4α2B2(ϵ, ϵ1) + 24α2(c1 + c2)2Γ2(ϵ, ϵ1)
+ 3αξ1(c1 + c2)Γ2(ϵ, ϵ1) + 2α3L1Γ(ϵ, ϵ1)G

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+
(
30αξ1(c1 + c2) + 16α2τ2c2

4
)
Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 9 + 28τ2

NK
α2d2

2 + 36
(

1 + 3τ

1 − ρ2

)
L2

2α4 + 4α3L1G2 + 2α3L2G

+
(

4α

ξ1
+ 2α3L1

)
Et−2τ [∆t−τ ] + α( 9

ξ1
+ 9ξ1)(c1 + c2)Et−2τ [∆t] + 8α2c2

4τ

τ∑
s=0

Et−2τ [∆t−s]

+ 2αB(ϵ, ϵ1)G + 4α2B2(ϵ, ϵ1) + 24α2(c1 + c2)2Γ2(ϵ, ϵ1)
+ 3αξ1(c1 + c2)Γ2(ϵ, ϵ1) + 2α3L1Γ(ϵ, ϵ1)G
+ 6400α2c2

1c2
4τ3Γ2(ϵ, ϵ1) + 8α2c2

1τ2Γ2(ϵ, ϵ1) (71)

if we choose the step-size α such that the high order O(α2) terms are dominanted by the first order terms
O(α), i.e., 4α2B2(ϵ, ϵ1)+24α2(c1 +c2)2Γ2(ϵ, ϵ1)+2α3L1Γ(ϵ, ϵ1)G+6400α2c2

1c2
4τ3Γ2(ϵ, ϵ1)+8α2c2

1τ2Γ2(ϵ, ϵ1) ≤
2αB(ϵ, ϵ1)G + 3αξ1(c1 + c2)Γ2(ϵ, ϵ1), i.e.,

α ≤ min{ 2B(ϵ, ϵ1)G + 3ξ1(c1 + c2)Γ2(ϵ, ϵ1)
4B2(ϵ, ϵ1) + 24(c1 + c2)2Γ2(ϵ, ϵ1) + 2L1Γ(ϵ, ϵ1)G + 6400c2

1c2
4τ3Γ2(ϵ, ϵ1) + 8c2

1τ2Γ2(ϵ, ϵ1) , 1},

we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+
(
30αξ1(c1 + c2) + 16α2τ2c2

4
)
Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 9 + 28τ2

NK
α2d2

2 + 36
(

1 + 3τ

1 − ρ2

)
L2

2α4 + 4α3L1G2 + 2α3L2G

+
(

4α

ξ1
+ 2α3L1

)
Et−2τ [∆t−τ ] + α( 9

ξ1
+ 9ξ1)(c1 + c2)Et−2τ [∆t] + 8α2c2

4τ

τ∑
s=0

Et−2τ [∆t−s]

+ 4αB(ϵ, ϵ1)G + 6αξ1(c1 + c2)Γ2(ϵ, ϵ1) (72)

With Lemma (15), we have the upper bound of Et−2τ [∆t], Et−2τ [∆t−τ ] and τ
∑τ

s=0 Et−2τ [∆t−s]. Then we
have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2
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≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+
(
30αξ1(c1 + c2) + 16α2τ2c2

4
)︸ ︷︷ ︸

E4

Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 9 + 28τ2

NK
α2d2

2 + α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ 4α2

Kα2
g

(
4α

ξ1
+ 2α3L1 + α( 9

ξ1
+ 9ξ1)(c1 + c2) + 8α2c2

4τ2
)

︸ ︷︷ ︸
E5

[
c2

3 + 2c3L2ρ

1 − ρ
+ 4c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + 6αξ1(c1 + c2)Γ2(ϵ, ϵ1) (73)

If we choose step-size such that E4 = 30αξ1(c1 + c2) + 16α2τ2c2
4 ≤ 32αξ1(c1 + c2) and E5 = 4α

ξ1
+ 2α3L1 +

α( 9
ξ1

+ 9ξ1)(c1 + c2) + 8α2c2
4τ2 ≤ α( 14

ξ1
+ 14ξ1)(c1 + c2), i.e.,

α ≤ min{ξ1(c1 + c2)
8τ2c2

4
, 1,

( 1
ξ1

+ ξ1)(c1 + c2)
2L1 + 8c2

4τ2 },

which is sufficient to hold when α ≤ ξ1(c1+c2)
2L1+8τ2c2

4
, then we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+ 32αξ1(c1 + c2)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 9 + 28τ2

NK
α2d2

2 + α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ 4α3

Kα2
g

(14
ξ1

+ 14ξ1)(c1 + c2)
[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + 6αξ1(c1 + c2)Γ2(ϵ, ϵ1). (74)

I.2.6 Parameter Selection

With Lemma 16, we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

≤ (1 + 32αξ1(c1 + c2))Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+ 9 + 28τ2

NK
α2d2

2 + α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ 4α3

Kα2
g

(14
ξ1

+ 14ξ1)(c1 + c2)
[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + 6αξ1(c1 + c2)Γ2(ϵ, ϵ1). (75)

Proposition 4. If α satisfies the requirement as Lemma 16, choose ξ1 = (1−γ)ω̄
32(c1+c2) and τ = ⌈ τmix(α2

T )
K ⌉, we

have:

ν1Et−2τ

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄
≤ ( 1

α
− ν1)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− 1
α
Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

+ 9 + 28τ2

NK
αd2

2
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+ α2
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ α2c6

K

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4B(ϵ, ϵ1)G + ν1Γ2(ϵ, ϵ1) (76)

where ν1 = ν
4 = (1−γ)ω̄

4 and c6 ≜ 4
α2

g
( 14

ξ1
+ 14ξ1)(c1 + c2).

Proof. Incorporating ξ1 = (1−γ)ω̄
32(c1+c2) , c6 ≜ 4

α2
g
( 14

ξ1
+ 14ξ1)(c1 + c2) and 6ξ1(c1 + c2) ≤ ν1 into Eq (75), we have

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)
∥∥∥2

+ α(1 − γ)ω̄Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 9 + 28τ2

NK
α2d2

2 + α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ α3c6

K

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + αν1Γ2(ϵ, ϵ1)
(a)
≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− 2α(1 − γ)ω̄Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 16α2Et−2τ

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄

+ α(1 − γ)ω̄Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 9 + 28τ2

NK
α2d2

2 + α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ α3c6

K

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + αν1Γ2(ϵ, ϵ1)

= Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− α(1 − γ)ω̄
2 Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− α(1 − γ)ω̄
2 Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 16α2Et−2τ

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄
+ 9 + 28τ2

NK
α2d2

2 + α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ α3c6

K

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + αν1Γ2(ϵ, ϵ1)

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− α(1 − γ)ω̄
2 Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− α(1 − γ)ω̄
2 Et−2τ

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄

+ 16α2Et−2τ

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄
+ 9 + 28τ2

NK
α2d2

2 + α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ α3c6

K

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + αν1Γ2(ϵ, ϵ1)
(b)
≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− α(1 − γ)ω̄
2 Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− α(1 − γ)ω̄
4 Et−2τ

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄

+ 9 + 28τ2

NK
α2d2

2 + α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ α3c6

K

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + αν1Γ2(ϵ, ϵ1)
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≤ (1 − 2αν1)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− αν1Et−2τ

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄
+ 9 + 28τ2

NK
α2d2

2

+ α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ α3c6

K

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + αν1Γ2(ϵ, ϵ1) (77)

where (a) is due to Lemma 3 and the selection of parameter; (b) is due to 16α2 ≤ α(1−γ)ω̄
4 . Rearranging the

terms and using the fact 1 − 2αν1 ≤ 1 − αν1, we have:

αν1Et−2τ

∥∥∥Vθ̄t
− Vθ∗

∥∥∥2

D̄
≤ (1 − αν1)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2

+ 9 + 28τ2

NK
α2d2

2

+ α3
(

36L2
2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)
+ α3c6

K

[
c2

3 + 2c3L2ρ

1 − ρ
+ 8c2

1(K − 1)H2
]

+ 4αB(ϵ, ϵ1)G + αν1Γ2(ϵ, ϵ1) (78)

Then we finish the proof by dividing α on both sides.

With these Lemmas, we are now ready to prove Theorem 2.

I.3 Proof of Theorem 2.

Given a fixed local step-size αl ≤ 1
4

√
2c1(K−1) , decreasing effective step-sizes αt = 8

ν(a+t+1) = 8
(1−γ)ω̄(a+t+1) ,

decreasing global step-sizes α
(t)
g = αt

Kαl
and weights wt = (a + t), we have:

E
∥∥∥Vθ̃T

− Vθ∗
i

∥∥∥2

D̄
≤ Õ

(
τ2G2

K2T 2 + cquad(τ)
ν2NKT

+ clin(τ)
ν4KT 2 + B(ϵ, ϵ1)G

ν
+ Γ2(ϵ, ϵ1)

)
(79)

Proof. We take the step-size αt = 8
ν(a+t+1) = 2

ν1(a+t+1) for a > 0. In addition, we define weights wt = (a + t)
and define

θ̃T = 1
W

T∑
t=1

wtθ̄t

where W =
∑T

t=1 wt ≥ 1
2 T (a + T ). By convexity of positive definite quadratic forms (λmin(ΦT D̄Φ) ≥ ω̄ > 0),

we have

ν1E
∥∥∥Vθ̃T

− Vθ∗

∥∥∥2

D̄

≤ ν1

W

T∑
t=1

(a + t)E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄

≤ ν1

W

2τ−1∑
t=1

(a + t)E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄
+ ν1

W

T∑
t=2τ

(a + t)E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄

≤ ν1
(2τ − 1)(a + 2τ − 1)G2

W
+ ν1

W

T∑
t=2τ

(a + t)E
∥∥∥Vθ̄t

− Vθ∗

∥∥∥2

D̄

(76)
≤ ν1

(2τ − 1)(a + 2τ − 1)G2

W
+ ν1(a + 2τ)(a + 2τ + 1)G2

2W
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+ 1
W

T∑
t=2τ

[
(9 + 28τ2)d2

2
NK

(a + t)αt + (a + t)α2
t

(
36L2

2 + 108τ

1 − ρ2 L2
2 + 4L1G2 + 2L2G

)]

+ 1
W
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+ 1
W
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4(a + t)B(ϵ, ϵ1)G + (a + t)ν1Γ2(ϵ, ϵ1)

]
(80)

where
∥∥∥Vθ̄2τ

− Vθ∗

∥∥∥2

D̄
≤ G2. We know that 1

W

∑T
t=2τ (a + t)α2

t ≤ 1
W

∑T
t=1(a + t) 4

ν2
1 (a+t)2 ≤ 8 log(a+T )

ν2
1 T 2 and that

1
W

∑T
t=2τ (a + t)αt ≤ 4

ν1T . Plugging in these inequalities into Eq (80), we have:

ν1E
∥∥∥Vθ̄ − Vθ∗

∥∥∥2

D̄

≤ 3ν1(a + 2τ)(a + 2τ + 1)G2

2W
+ 4(9 + 28τ2)d2

2
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36L2

2 + 108τ
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2 + 4L1G2 + 2L2G

)
+ 8c6 log(a + T )
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1T 2K
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2
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+ 8 log(a + T )
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1T 2K

[
K

(
36L2

2 + 108τ
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2 + 4L1G2 + 2L2G

)
+ c6

(
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3 + 2c3L2ρ
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)]

︸ ︷︷ ︸
clin(τ)

+ 4B(ϵ, ϵ1)G + ν1Γ2(ϵ, ϵ1) (81)

where cquad(τ) = 4d2
2(9 + 28τ2). Dividing ν1 on the both sides, changing ν1 into ν (ν = (1 − γ)ω̄) and noting

that c6 = 4
α2

g
( 14

ξ1
+ 14ξ1)(c1 + c2) = O( 1

ν ), we have:

E
∥∥∥Vθ̃T

− Vθ∗

∥∥∥2

D̄
≤ Õ

(
τ2G2

K2T 2 + cquad(τ)
ν2NKT

+ clin(τ)
ν4KT 2 + B(ϵ, ϵ1)G

ν
+ Γ2(ϵ, ϵ1)
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. (82)

We finish the proof by using the inequality, E
∥∥∥Vθ̃T

− Vθ∗
i

∥∥∥2

D̄
≤ 2E

∥∥∥Vθ̃T
− Vθ∗

∥∥∥2

D̄
+ 2E

∥∥∥Vθ∗
i

− Vθ∗

∥∥∥2

D̄
and

combining with the third point in Theorem 1.
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J Simulation Results

J.1 Simulation results for the I.I.D. setting

In this subsection, we provide numerical results for FedTD(0) under the i.i.d. sampling setting to verify the
theoretical results of Theorem 4. In particular, the MDP M(1) of the first agent is randomly generated with
a state space of size n = 100. The remaining MDPs are perturbations of M(1) with the heterogeneity levels
ϵ = 0.1 and ϵ1 = 0.1. The number of local steps is chosen as K = 20. We evaluate the convergence in terms
of the running error et = ∥θ̄t − θ∗

1∥2. Each experiment is run 10 times. We plot the mean and standard
deviation across the 10 runs in Figure 3.

Figure 3: Performance of FedTD(0) with i.i.d. sampling with varying number of agents N . Solid lines denote
the mean and shaded regions indicate the standard deviation over ten runs.

As shown in Fig 3, FedTD(0) converges for all choices of N . Larger values of N decreases the error, which is
consistent with our theoretical analysis in Theorem 4.
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J.2 Simulation results for the Markovian setting

In this subsection, we provide numerical results for FedTD(0) under the Markovian sampling setting to verify
the theoretical results of Theorem 2. Here we generate all MDPs in the same way as the i.i.d setting and
choose the number of local steps as K = 20. All the remaining parameters are kept the same as those in the
subsection J.1.

Figure 4: Performance of FedTD(0) with the Markovian sampling with varying number of agents N . Solid
lines denote the mean and shaded regions indicate the standard deviation over ten runs.

As shown in Fig 4, FedTD(0) converges for all choices of N . Larger values of N decreases the error, which is
consistent with our theoretical analysis in Theorem 2.
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J.3 Simulation on the effect of the heterogeneity level for the Markovian setting.

(a) Effect of the heterogeneity with different reward and Markov kernel heterogeneity.

(b) Effect of the heterogeneity with a fixed reward heterogeneity ϵr and different reward heterogeneity ϵ.

(c) Effect of the heterogeneity with a fixed Markov kernel heterogeneity ϵ and different reward heterogeneity ϵr.

As shown in Fig (a) ∼ (c), we can conclude that increasing the level of heterogeneity level will increase the
size of the ball to which FedTD(0) converge, which is completely consistent with our theoretical analysis in
Theorem 2.
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