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ABSTRACT

In recent years, the increasing demand for dynamic 3D assets in design and gam-
ing applications has given rise to powerful generative pipelines capable of syn-
thesizing high-quality 4D objects. Previous methods generally rely on score dis-
tillation sampling (SDS) algorithm to infer the unseen views and motion of 4D
objects, thus leading to unsatisfactory results with defects like over-saturation and
Janus problem. Therefore, inspired by recent progress of video diffusion models,
we propose to optimize a 4D representation by explicitly generating multi-view
videos from one input image. However, it is far from trivial to handle practical
challenges faced by such a pipeline, including dramatic temporal inconsistency,
inter-frame geometry and texture diversity, and semantic defects brought by video
generation results. To address these issues, we propose EG4D, a novel multi-stage
framework that generates high-quality and consistent 4D assets without score dis-
tillation. Specifically, collaborative techniques and solutions are developed, in-
cluding an attention injection strategy to synthesize temporal-consistent multi-
view videos, a robust and efficient dynamic reconstruction method based on Gaus-
sian Splatting, and a refinement stage with diffusion prior for semantic restoration.
The qualitative and quantitative evaluations demonstrate that our framework out-
performs the baselines in generation quality by a considerable margin.

1 INTRODUCTION

Recent years have seen a surge in the development of generative models capable of producing intelli-
gible text (Brown et al., 2020; Touvron et al., 2023; OpenAI, 2023), photo-realistic images (Ramesh
et al., 2021; Rombach et al., 2022a;a; Sauer et al., 2023a), video sequences (Skorokhodov et al.,
2022; Bahmani et al., 2023; Singer et al., 2023a), 3D (Chan et al., 2022; Poole et al., 2023; Lin
et al., 2023; Tang et al., 2024b) and 4D (dynamic 3D) assets (Ren et al., 2023; Jiang et al., 2024b;
Singer et al., 2023b). Particularly with 4D assets, manual creation is a laborious task that requires
considerable expertise from highly skilled designers. Systems capable of automatically generating
realistic and diverse 4D content could greatly streamline the workflows of artists and designers,
potentially unlocking new realms of creativity through “generative art” (Bailey, 2020).

Due to the scarcity of open-sourced annotated multi-view dynamic data, previous works (Yin et al.,
2023b; Xu et al., 2024; Bahmani et al., 2024a;b; Ren et al., 2023; Zhao et al., 2023; Jiang et al.,
2024b; Singer et al., 2023b; Zheng et al., 2024; Ling et al., 2024) rely on the score distillation
sampling (SDS) (Poole et al., 2023) or its variants from pre-trained 2D diffusion models to distill
information about unseen views and motion of objects. Despite the impressive performance, their
rendering results still suffer from highly saturated texture (Wang et al., 2023) and multi-face geom-
etry (Janus problem) (Armandpour et al., 2023), thus leading to less photo-realistic generations.

Motivated by recent progress in video diffusion models (Voleti et al., 2024; Blattmann et al., 2023a;
Brooks et al., 2024), we propose a novel multi-stage framework, EG4D, for Explicitly Generating
4D videos and then reconstructing 4D assets from them. EG4D goes beyond simply adapting video
generation results, as the synthesized frames inevitably suffer from temporal inconsistency and lim-
ited visual quality. More specifically, in the vanilla “frame-by-frame” reconstruction, the indepen-
dence and diversity of multi-view diffusion will cause appearance inconsistency across different
timestamps, particularly in unseen views.
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To address these challenges, we first design an attention injection mechanism, allowing each multi-
view diffusion inference to perceive temporal information through cross-frame latent exponential
moving average (EMA). This training-free strategy effectively alleviates the inconsistency issue at
the video level and ensures high-quality training samples for optimizing the following 4D represen-
tation. In the next stage of 4D reconstruction, we choose 4D Gaussian Splatting (4D-GS) (Wu et al.,
2024a) as our representation to take advantage of its efficient training and rendering capability.

Moreover, existing GS-based dynamic reconstruction methods (Wu et al., 2024a; Yang et al., 2023;
Huang et al., 2024b) commonly assume that appearance variations between different timestamps
are caused by the geometric deformation of Gaussian splats. However, this assumption does not
hold since unwanted color variations of texture details still exist in our synthesized images produced
by video diffusions, even with the proposed attention injection strategy. We manage to disentangle
such detailed texture inconsistencies from desired geometric deformation by introducing an extra
color transformation network, enabling texture-consistent 4D rendering. Furthermore, we leverage
image-to-image diffusion models to refine the rendered images and fine-tune our 4D representation,
achieving better generation quality.

The qualitative results, quantitative evaluations and user preferences validate that our EG4D outper-
forms SDS-based baselines by a large margin, producing 4D content with realistic 3D appearance,
high image fidelity, and fine temporal consistency. Extensive ablation studies also showcase our
effective solutions to the challenges in reconstructing 4D representation with synthesized videos.

2 RELATED WORKS

In this section, we present the recent progress of video diffusion models and 4D generation. More
discussion on related works can be found in Appendix A.

Video diffusion models. Diffusion models (Ho et al., 2020), characterized by their superior gener-
ative capabilities, have become dominant in the field of video generation (Ho et al., 2022b; Singer
et al., 2022b; Ho et al., 2022a; Blattmann et al., 2023a; Yin et al., 2023a). Among them, VDM (Ho
et al., 2022b) replaces the typical 2D U-Net for modeling images with a 3D U-Net. Make-A-
Video (Singer et al., 2022b) successfully extends a diffusion-based T2I model to T2V without text-
video pairs. Text2Video-Zero (Khachatryan et al., 2023) achieve zero-shot text-to-video generation
using only a pre-trained text-to-image diffusion model without any further fine-tuning or optimiza-
tion. Following Latent Diffusion Models (Rombach et al., 2022b), Video-LDM (Blattmann et al.,
2023b) and AnimateDiff (Guo et al., 2024a) introduce additional temporal layers designed to model
the temporal consistency. Stable Video Diffusion (Blattmann et al., 2023a), trained on well-curated
high quality video dataset, presents robust text-to-video and image-to-video generation capabilities
across various domains. Recently, SV3D (Voleti et al., 2024) adapts image-to-video generation for
novel view synthesis by leveraging the generalization and multi-view consistency of the video mod-
els. Different from these works, we aim to explicitly generate 4D videos with both temporal and
multi-view consistency using two orthogonal video diffusion models.

4D generation. Following the line of text-to-3D synthesis (Poole et al., 2023; Wang et al., 2023;
Wan et al., 2024), one line of research explores the text-conditioned 4D generation (Yin et al.,
2023b; Cai et al., 2023; Xu et al., 2024; Bahmani et al., 2024a; Zheng et al., 2024; Bahmani et al.,
2024b; Singer et al., 2023b; Zheng et al., 2024; Ling et al., 2024). They use score distillation sam-
pling (SDS) (Poole et al., 2023) to optimize the 4D representations, like KPlanes (Fridovich-Keil
et al., 2023), Hexplanes (Cao & Johnson, 2023) and Deformable Gaussians (Yang et al., 2023).
MAV3D (Singer et al., 2023b) employs temporal SDS to transfer the motion from text-to-video dif-
fusions (Singer et al., 2022a)) to a dynamic NeRF. 4D-fy (Bahmani et al., 2024b) exploits hybrid
score distillation methods by alternating optimization procedure to improve the structure and quality
of the 4D model. AYG (Ling et al., 2024) explores compositional 4D generation with 3D Gaussian
Splatting. Inspired by recent advancement in image-to-3D models (Liu et al., 2023b;a; Shi et al.,
2024), several works (Zhao et al., 2023; Ren et al., 2023; Jiang et al., 2024b; Pan et al., 2024) explore
the field of image/video-conditioned 4D generation. Animate124 (Zhao et al., 2023) pioneers on this
task in a coarse-to-fine fashion: it first optimizes deformation with multi-view diffusions, then cor-
rects the details with ControlNet (Zhang et al., 2023). DreamGaussian4D (Ren et al., 2023) adopts
explicit modeling of spatial transformations in Gaussian Splatting, achieving minute-level genera-
tion. L4GM (Ren et al., 2024) trains a large-scale feed-forward network for Gaussian sequences to
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Figure 1: Framework of EG4D. In video generation (right, Sec. 4.1), we use SVD to produce dy-
namic frames, and then use SV3D equipped with attention injection to generate temporal-consistent
multi-view images. In coarse 4D reconstruction (left top, Sec. 4.2), we optimize the 4D Gaussian
Splatting with additional color affine transformation with the annotated multi-view images produced
by Stage I. In diffusion refinement (left bottom, Sec. 4.3), we freeze the canonical Gaussians and
fine-tune the temporal deformation network with images refined by image-to-image diffusion model.

extend LGM (Tang et al., 2024a) in the temporal dimension without optimization. Recently, some
concurrent works (Xie et al., 2024; Zeng et al., 2024; Liang et al., 2024; Jiang et al., 2024a) also
try to exploit the video diffusion models for 4D content generation, by jointly optimize the temporal
and view dimensions to train a 4D-aware video diffusion model. Although achieving appearance
consistency, this approach entangles motion and multi-view generating processes, and typically re-
quires limited 4D datasets and considerable computing resources for the training. STAG4D (Zeng
et al., 2024) leverages multi-view score distillation sampling to generate 4D representation from
diffusion models. Although score distillation algorithm can infer motion and unseen views from 2D
diffusion models, it suffers from imperfections like over-saturation and Janus problem. Our frame-
work gets around the above problems by explicitly generating temporal-consistent multi-views of
dynamic objects in a training-free manner, and then uses them to reconstruct 4D representations.

3 PRELIMINARIES

Video diffusion. In this work, we use two different video diffusion models: Stable Video Diffu-
sion (Blattmann et al., 2023a) (SVD) and SV3D (Voleti et al., 2024). SVD generates a sequence
of video frames {It|t ∈ {0, · · · , T}} conditioned on an initial image I0 or text prompt. SV3D is a
pose-conditioned image-to-multiviews model that takes a reference image I0 and a series of camera
poses {cp|p ∈ {1, · · · , N}}, producing a sequence of video frames {Ip|p ∈ {1, · · · , N}} corre-
sponding to the specified pose (camera parameters) sequence. Both SVD and SV3D adopt similar
video diffusion architecture (Ling et al., 2024) with spatial and temporal attention layers.

3D Gaussian Splatting. 3DGS (Kerbl et al., 2023) is an explicit representation using millions of
3D Gaussians to model a scene. Each Gaussian is characterized by a set of learnable parameters
as follows: 1) 3D center; 2) 3D rotation; 3) 3D size (scaling factor); 4) view-dependent RGB color
represented by k-DoF spherical harmonics coefficients: h ∈ R3(k+1)2 → c ∈ R3; 5) opacity. Here
a color decoder Φsh is used to turn the spherical harmonics coefficients h and the view direction γ
into an actual RGB color c. For a position in the scene, each Gaussian makes its contribution at that
coordinate according to the standard Gaussian function weighted by its opacity. The differentiable
rendering of 3DGS applies the splatting techniques (Kerbl et al., 2023). For a certain pixel, the point-
based rendering computes its color by evaluating the blending of depth-ordered points overlapping
that pixel via the volume rendering equation (Max, 1995). The optimization of Gaussian parameters
is then supervised by the reconstruction loss (difference between rendered and ground-truth images).

3
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4 4D OBJECT GENERATION

Given an object image, we want to generate the 4D representation of it, enabling free-view dy-
namic rendering. To this end, we introduce a multi-stage framework (generation-reconstruction-
refinement) for 4D object generation, as illustrated in Figure 1. Network details can be found in
Appendix B.

4.1 STAGE I: VIEW AND DYNAMIC GENERATION WITH VIDEO DIFFUSIONS

In this stage, we employ two orthogonal video diffusion models to generate samples for the later
4D representation optimization. Given a reference image, we use SVD (Blattmann et al., 2023a) to
generate a sequence of video frames {It|t ∈ {0, · · · , T}}, where t is the timestamp. Next, we utilize
SV3D (Voleti et al., 2024) to generate multi-view images {It,p|p ∈ {1, · · · , N}} with a predefined
camera pose sequence for each frame It. However, vanilla “frame-by-frame” reconstruction causes
significant temporal differences due to the diverse nature of SV3D inferences for those frames.
Hence, we hope to exploit temporal context to guide the otherwise independent generating process,
thereby obtaining results that are as temporally consistent as possible. To this end, we introduce the
training-free attention injection strategy during our SV3D inference.

Specifically, in each self-attention module of the spatial layers of a diffusion UNet, we simultane-
ously consider the visual information from the current reference frame and the frames at previous
timestamps, and implement the attention injection by spatial KV latent blending formulated as

zt ← αz∗
t + (1− α)zt−1, (1)

Q = W qz∗
t ,K = W kzt,V = W vzt, (2)

Attention(Q,K,V ) = Softmax(
QKT

√
dk

V ), (3)

where zt is the exponential moving average (EMA) of the current multi-view latent zt∗ and the one
from the previous timestamp zt−1, with the blending weight α. dk is the key dimension.

4.2 STAGE II: COARSE RECONSTRUCTION WITH GAUSSIAN SPLATTING

With the synthesized multi-view images {It,p|t ∈ {0, · · · , T}, p ∈ {1, · · · , N}} of the dynamic
object, we optimize a 4D representation of it to enable free-viewpoint rendering. It is worth not-
ing that in this stage, our objective is not simply reconstructing an object according to multi-view
observations. Although the design in Sec. 4.1 significantly alleviates the temporal inconsistency
problem, those synthesized “ground-truth” images still suffer from varying degrees of inconsistency
in color details. Therefore, we propose to optimize a 4D representation based on 3D Gaussian Splat-
ting (Kerbl et al., 2023) with additional insights into the robustness against texture inconsistencies
and semantic defects.

Canonical Gaussians & deformation field. Considering both performance and efficiency, we
build our 4D representation upon 4D Gaussian Splatting (4D-GS) (Wu et al., 2024a). 4D-GS uti-
lizes a deformation field to predict each Gaussian’s geometric offsets at a given timestamp relative
to a mean canonical state. This deformation field is composed of a multi-resolution HexPlane (Cao
& Johnson, 2023) and MLP-based decoders. For each Gaussian at a certain timestamp, the model
queries the Hexplane with a 4D coordinate (x-y-z-t) and decodes the obtained feature ft into the
position, rotation, and scaling deformation values. The entire dynamic scene is then jointly recon-
structed by optimizing both canonical Gaussians and the deformation field, enabling implicit global
interactions of visual information.

Color transformation against texture inconsistency. While vanilla 4D-GS is theoretically able
to model temporal inconsistencies through per-frame geometric deformation of Gaussians, it is hard
to optimize and leads to significant redundancy in Gaussian quantity (Guo et al., 2024b). Even
if all the inconsistencies are faithfully reconstructed, these unnatural variations in texture details
across time will result in significant degradation of visual performance. To address this problem,
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we want to disentangle such detailed texture inconsistencies from geometric deformation. Those
temporal differences can still be modeled as per-timestamp states, while one of them can be manually
selected to dominate the final temporal-consistent rendering. We choose a simple but effective way
that performs time-specific color transformation. Formally, a new color decoder denoted by Φc is
introduced as follows:

c = Φc(h,γ) = W c
t Φ

sh(h,γ) + bct , (4)

W c
t , b

c
t = MLP(ft), (5)

where h is the spherical harmonics coefficients of Gaussians, γ is the view direction, and Φsh

is the spherical harmonic decoder. W c
t and bct are weights and bias predicted by an extra MLP-

based color head from per-Gaussian time-specific feature ft from the HexPlane. Such kind of affine
transformation is competent in modeling texture inconsistencies caused by ambient occlusion and
other factors (Li et al., 2022; Darmon et al., 2024). During 4D rendering at test time, we take one
of the timestamps, e.g., the first frame, as the reference time and use the corresponding feature f0 to
get the Gaussian colors, thereby rendering texture-consistent 4D assets.

Multiscale rendering augmentation. Generally, for a reconstruction task, supervision with high-
resolution ground-truth images can provide more information about high-frequency details and ben-
efit the rendering quality. However, in our task, those synthesized images often have high-frequency
noises at specific views or timestamps. Training with them leads to meaningless view- and frame-
overfitting and adds more burden to later refinement. To address this issue, we propose a multiscale
augmentation strategy. During optimization, we randomly downsample the ground-truth images
within a reasonable ratio range. The rendering parameters of the Gaussian rasterizer are modified
accordingly, enabling multiscale supervision with the reconstruction loss.

4.3 STAGE III: REFINEMENT WITH DIFFUSION PRIORS

SDXL-Turbo

Text Prompt

Prompt Interrogate

Defective Images Refined Images

Figure 2: Illustration of diffusion refinement.

Videos produced by diffusion models often suffer
from semantic defects (Figure 2 left) and motion
blur. Fortunately, image-to-image diffusion mod-
els provide a strong prior to refine the semantic
details while preserving object identity and style.
We leverage these diffusion-refined images (Fig-
ure 2 right) to fine-tune our 4D representation fur-
ther. Specifically, we first render an image It,p
at the timestamp t and camera pose p. Then we
encode the image It,p into a VAE latent w, add
noise to the latent, and feed it into the diffusion
UNet for denoising. Finally, the refined image Î
is decoded from the denoised latent ŵ. Additionally, to account for per-view quality variations, we
introduce a pre-defined view-dependent weight f(p) to the reconstruction loss. Empirically, we se-
lect a sine scheduler for pose-dependent weight, formulated as f(p) = sin(π · d(xp, x0)), where x0

is the camera center of the first frame and d(·, ·) is the normalized L2 distance. In total, the diffusion
refinement loss Lref is formulated as

Lref = f(p) · (LL1(It,p, Î) + λ · LLPIPS(It,p, Î)), (6)

where LLPIPS(·, ·) is the perceptual loss and LL1(·, ·) is the pixel-wise L1 loss. To preserve the
coarse geometry and texture from Stage II, we use this loss to fine-tune the coarse deformation field
while keeping canonical Gaussians frozen. To avoid error accumulation and unstable supervision,
we conduct one-pass refinement: for each view/timestamp, the rendered image at the first iteration
are used as the input of diffusion, and the refinement output is shared with all the iterations later.
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Figure 3: Comparison with Animate124 (Zhao et al., 2023), Consistent4D (Jiang et al., 2024b),
and DreamGaussian4D (DG4D) (Ren et al., 2023) in three cases zelda, monkey-bike and
tiger-guitar (better zoom in). The first two columns show the animation results in the same
view, and the 3-5 columns demonstrate three other views.
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Input Image View 1 View 2

Figure 4: Qualitative results of our generated 4D objects. We present three consecutive frames
rendered from our 4D model from two different views.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Implementation details. In Stage I, we use SVD-img2vid-xl (Blattmann et al., 2023a) to generate
25-frame videos. For multi-view generation, we employ SV3Dp conditioned on a camera pose
sequence, i.e., 21 azimuth angles (360◦ evenly divided) and a fixed 0◦ elevation. All images are set to
a resolution of 576×576. In Stage III, we use SDXL-Turbo (Sauer et al., 2023b) with small strength
(0.167) to provide the diffusion prior. More reproduction details are included in Appendix C.1.

Evaluation metrics. Following previous methods (Ren et al., 2023; Zhao et al., 2023), we use
CLIP-I score that measures the cosine similarity of CLIP (Radford et al., 2021) embedding of the
given image and the rendered views. We use novel view synthesis metrics like PSNR, LPIPS, SSIM
between the given image and rendered results to measure the image quality. We also use FVD (Un-
terthiner et al., 2018) between reference video and 4D rendered video to assess the generated 4D
quality. In consideration of quantifying the temporal consistency, we adopt a recent proposed met-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Time 0 Time X

Independent
(α = 0)

+ S-EMA
(α = 0.3)

+ S-EMA
(α = 0.5)

+ S-EMA
(α = 0.1)

+ S-Res
(α = 0.5)

+ T-EMA
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+ S-Linear
(α = 0.5)

+ S-EMA
(α = 0.5)

Time 0 Time X

Reference Reference

Figure 5: Ablation on attention injection. Video generation results are shown with two cases at
time 0 and a timestamp X afterward. “S-” and “T-” stand for operations in spatial and temporal
attention layers of SV3D, respectively. “EMA” denotes the proposed KV latent blending with Ex-
ponential Moving Average. “Linear” denotes KV blending with only the first frame. “Res” denotes
injection on residual connection instead of KV. α is the blending weight. Different degrees of tem-
poral inconsistency can be observed in all settings except ours (S-EMA, α = 0.5).

Table 1: User study on image-to-4D methods. Each number represents the percentage of user
preference. Error bars correspond to the 95.6% confidence interval. Bold denotes the best result.

Method Overall Quality Ref. View Alignment 3D Appearance Motion Realism Motion Range

Animate124 (Zhao et al., 2023) 1.10 ±1.24 2.24 ±1.77 1.65 ±1.52 2.19 ±1.75 5.39 ±2.70
Consistent4D (Jiang et al., 2024b) 3.88 ±2.31 5.00 ±2.60 3.99 ±2.34 5.66 ±2.76 8.67 ±3.36
DreamGaussian4D (Ren et al., 2023) 11.27 ±3.78 12.17 ±2.91 10.29 ±3.63 15.42 ±4.32 39.96 ±5.83
EG4D (Ours) 83.75 ±4.41 80.59 ±4.73 84.07 ±4.37 76.73 ±5.05 45.98 ±5.93

ric, CD-FVD (Ge et al., 2024), which prefers temporal consistency instead of the per-frame quality.
It uses the features extracted by self-supervised video representation learning model, instead of pre-
trained I3D (Carreira & Zisserman, 2017) feature, to mitigate this content bias of FVD to a large
extent. We also conduct a user preference study to evaluate the 3D appearance, view alignment, mo-
tion realism, motion range, and overall quality. Details on user study can be found in Appendix C.3.

Baselines. We compare our results with the state-of-the-art open-sourced image-to-4D methods:
Animate124 (Zhao et al., 2023) and DreamGaussian4D (Ren et al., 2023). We also compare with
the state-of-the-art video-to-4D method Efficient4D (Pan et al., 2024) and Consistent4D (Jiang et al.,
2024b). For a fair comparison, we feed the SVD-generated videos (same as ours) to video-based
methods/DreamGaussian4D for direct video-to-4D generation.

5.2 RESULTS

Qualitative results. Figure 3 demonstrates three cases for comparison between our EG4D and the
baselines (Ren et al., 2023; Zhao et al., 2023; Jiang et al., 2024b). Our generated results present bet-
ter image-4D alignment and more realistic 3D appearance, especially in facial details. Animate124
can not generate image-aligned 4D models because of its strong text guidance. Consistent4D and
DreamGaussian4D produce models with over-saturated and non-realistic appearance (especially in
face) due to the inherent limitation of score distillation algorithm. Figure 4 shows detailed results
produced by EG4D. For each case, we present three temporal-continuous rendered frames from
two views. Note that our framework is not limited to SVD, which can hardly produce large mo-
tions. Our approach can seamlessly incorporate advanced I2V models such as AnimateAnyone (Hu,
2024), enabling larger and controllable motion synthesis.. More illustrative examples can be found
in Appendix E. Rendered videos are provided in the supplementary for better motion visualization.

Table 2: Quantitative results in Animate124 benchmark. Bold
denotes the best result.

Method CLIP-I ↑ PSNR ↑ SSIM ↑ LPIPS ↓ FVD↓ CD-FVD↓

Animate124 (Zhao et al., 2023) 0.8544 9.972 0.643 0.361 1904.1 2435.9
Consistent4D (Jiang et al., 2024b) 0.9214 14.17 0.767 0.225 736.02 1005.8
Efficient4D (Pan et al., 2024) 0.9358 20.38 0.822 0.179 753.11 891.33
DreamGaussian4D (Ren et al., 2023) 0.9227 9.039 0.637 0.512 801.10 816.23

EG4D (Ours) 0.9535 23.28 0.904 0.173 142.34 459.10

Quantitative results & User
study. Table 2 shows that our
method has the highest CLIP-
I score, which means the ren-
dered images are more semanti-
cally similar to the reference im-
age. In the novel view synthesis
metrics (PSNR, SSIM, LPIPS),
our results surpass the baselines by a very large margin, which highlight the advantage of pixel-wise
optimization of our 4D model over the score distillation. The substantial improvement of FVD and
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(a) Reconstruction quality comparison.

baseline + multiscale renderer

(b) Visual details illustration.

Figure 7: Effects of multiscale renderer. (a) demonstrates the training (solid line) / test (dashed
line) curve before (dark gray) and after (dark red) adding the multiscale renderer. Multiscale render-
ing avoids the meaningless overfitting of our model (lower training PSNR, but comparative or even
higher test PSNR). (b) shows one viewpoint of rendering for case astronaut-horse. The mul-
tiscale render effectively prevents the model from overfitting to noise introduced in video diffusions.

CD-FVD indicate that our framework produces 4D object with the best per-frame quality and tempo-
ral consistency. User study (Table 1) shows that the recipients are overwhelmingly inclined towards
the 4D results generated by our framework. Almost 80% of the participants think our method is
superior in overall quality, reference view consistency, 3D appearance, and motion realism. Mean-
while, our motion range is on par with the strongest baseline, which is further discussed in Sec. 6.

5.3 ABLATION STUDIES

w/o color trans.
+ color trans.

(render with f0)
+ color trans.

(render with f1)

Ti
m

e 
0

Ti
m

e 
1

Ti
m

e 
2

Figure 6: Effects of color transforma-
tion. Our color affine transformation ef-
fectively disentangles the texture variation
at different timestamps, enabling the ren-
dering of color-consistent dynamics with
arbitrary time-specific feature ft.

Attention injection. In Figure 5, we explore the ef-
fect of attention injection by generating videos (Stage I)
with different blending weight α and replacing our spa-
tial KV latent blending with three variants: 1) T-EMA:
similar KV blending is adopted but in temporal atten-
tion layers of SV3D, i.e., one frame is blended with all
views of the reference timestamp, which results in al-
most identical (static) results. 2) S-Res: the residual
term (skip connection) instead of KV latent is blended,
which leads to collapse results. 3) S-Linear: KV blend-
ing is used but only with the first frame. Without EMA,
the diffusion model shows degraded generating capabil-
ity for large motions departing from the reference frame
(luigi in Figure 5 right). Moreover, we observe that
the temporal consistency is highly sensitive to blending
weight α. For comparison, without any attention injec-
tion strategy (α = 0), views of different timestamps are
generated independently, leading to dramatic temporal
inconsistency in the back view of android (Figure 5
left). Our proposed spatial KV blending with EMA ef-
fectively improves the consistency when α is increased
to 0.5. Please refer to Appendix D for the dynamic at-
tenuation phenomenon when α > 0.5.

Color transformation. Figure 6 shows the effective-
ness of our proposed color transformation in Stage II.
Dynamic 3DGS typically models all the inter-frame texture diversity as part of time-specific defor-
mation. With color affine transformation, we manage to disentangle unwanted color inconsistencies
and render temporal-consistent texture details from whichever timestamp we select.

Multiscale renderer. Figure 7 shows the effectiveness of our multiscale renderer of Stage II. We
show the training and test PSNR during optimization in the left panel. It can be observed that the
multiscale renderer plays the role of a regularizer that effectively avoids model overfitting (lower
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(c) 

+ Iterative 
Refinement

(b) 

+ Score Distillation 
Refinement

(a)

+ GAN
Discriminator

(f) 

+ Our Refinement
w/o Refinement

(d) 

+ Mesh 
Extraction

(e) 

+ Video Temporal
Refinement

Figure 8: Ablation on different refinement methods. The leftmost column shows the image ren-
dered by 4D model after the second stage optimization for the case tiger-guitar. Panels (a)-(f)
demonstrate different refinement methods aimed at addressing the semantic defects. However, only
the one-pass refinement (ours) successfully adds facial details while keeping the original structure.

training PSNR and similar test PSNR). The qualitative result in the right panel illustrates that this
design avoids overfitting to the noise introduced by the video diffusions.

Table 3: Ablation study

Method FVD↓ CD-FVD↓

w/o Stage III 179.93 448.57
w. Stage III 142.34 459.10

Refinement strategies. Figure 8 illustrates ablations of refinement by
comparing the visual details before and after applying various refine-
ment techniques. (a) Adversarial training: many previous works (Chen
et al., 2024; Roessle et al., 2023) leverage a GAN discriminator to opti-
mize neural fields. However, we observe that although the discriminator
loss converges quickly, the Gaussian points gradually diverge from the
object surface, resulting in rendered images turning black after several iterations. (b) SDS (score
distillation refinement): SDS seeks a single mode for text-aligned 4D representation, leading to un-
successful refinement. (c) Iterative refinement: InstructN2N (Haque et al., 2023) iteratively updates
the supervised dataset (each image is refined for multiple times, different from our one-pass refine-
ment) for 3D scene editing. In our task, the diverse outputs from diffusion model result in blurred
4D model under pixel-wise supervision. (d) Textured mesh extraction (Tang et al., 2024b): exper-
iments show that meshes extracted from 3D Gaussians are not watertight and smooth (Tang et al.,
2024b; Huang et al., 2024a), leading to incoherent appearance. (e) Video temporal refinement (Ren
et al., 2023): SVD prior alone is insufficient for structure preservation and detail refinement. (f)
One-pass refinement (Ours): in this way, the refined (supervised) images strike a balance between
detail restoration and preservation of structural integrity and consistency. This approach introduces
reasonable details in noisy or semantically defective regions. Temporal consistency is maintained
despite frame-by-frame inference, as input images are similar (two renderings of the same object).
The similarity of inputs and predefined text prompt ensure consistent noise directions and results
in converging outputs in the image-to-image diffusion process (Haque et al., 2023). Quantitative
ablation (Table 3) demonstrates that this stage preserves temporal consistency while significantly
enhancing per-frame image quality.

6 CONCLUSION AND DISCUSSION

Conclusion. In this paper, we propose EG4D, a novel framework for 4D generation from a sin-
gle image. This approach departs from previous score-distillation-based methodologies, promising
not only intrinsic immunity against problems like over-saturation but also capabilities for consistent
visual details and dynamics. We first equip the video diffusions with a training-free attention injec-
tion strategy to explicitly generate consistent dynamics and multi-views of the given object. Then a
coarse-to-fine 4D optimization scheme is introduced to further address practical challenges in syn-
thesized videos. Qualitative and quantitative results demonstrate that EG4D produces 4D objects
with more realistic and higher-quality appearance and motion compared with the baselines.

Limitations & Future work. One limitation is that our framework can not generate high-dynamic
motion due to the limited capability of the base image-to-video model (Blattmann et al., 2023a)
and the consistency-motion trade-off in our attention injection strategy. Another problem lies in the
multi-view diffusion model (Voleti et al., 2024), which currently struggles to apply precise camera
pose conditioning, leading to unsatisfactory reconstruction. One solution for dynamics is to leverage
more advanced video diffusions to generate high-quality and high-dynamic video frames. Future
work could also incorporate adaptive camera pose techniques (Fu et al., 2024; Smith et al., 2024) in
4D reconstruction to further improve the robustness.
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mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
arXiv preprint arXiv:1812.01717, 2018.

Cyrus Vachha and Ayaan Haque. Instruct-GS2GS: Editing 3D gaussian splats with instructions,
2024. URL https://instruct-gs2gs.github.io/.

Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin, Chris-
tian Laforte, Robin Rombach, and Varun Jampani. SV3D: Novel multi-view synthesis and 3D
generation from a single image using latent video diffusion. arXiv preprint arXiv:2403.12008,
2024.

Ziyu Wan, Despoina Paschalidou, Ian Huang, Hongyu Liu, Bokui Shen, Xiaoyu Xiang, Jing Liao,
and Leonidas Guibas. CAD: Photorealistic 3D generation via adversarial distillation. In CVPR,
2024.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificDreamer: High-fidelity and diverse text-to-3D generation with variational score distillation.
NeurIPS, 2023.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4D gaussian splatting for real-time dynamic scene rendering. In CVPR,
2024a.

Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson, Pratul P
Srinivasan, Dor Verbin, Jonathan T Barron, Ben Poole, et al. ReconFusion: 3D reconstruction
with diffusion priors. In CVPR, 2024b.

Zhongkai Wu, Ziyu Wan, Jing Zhang, Jing Liao, and Dong Xu. RaFE: Generative radiance fields
restoration. arXiv preprint arXiv:2404.03654, 2024c.

14

https://instruct-gs2gs.github.io/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yiming Xie, Chun-Han Yao, Vikram Voleti, Huaizu Jiang, and Varun Jampani. Sv4d: Dy-
namic 3d content generation with multi-frame and multi-view consistency. arXiv preprint
arXiv:2407.17470, 2024.

Dejia Xu, Hanwen Liang, Neel P Bhatt, Hezhen Hu, Hanxue Liang, Konstantinos N Plataniotis, and
Zhangyang Wang. Comp4D: LLM-guided compositional 4D scene generation. arXiv preprint
arXiv:2403.16993, 2024.

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene repre-
sentation and rendering with 4d gaussian splatting. In ICLR, 2024a.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024b.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. De-
formable 3D gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101, 2023.

Shengming Yin, Chenfei Wu, Huan Yang, Jianfeng Wang, Xiaodong Wang, Minheng Ni, Zhengyuan
Yang, Linjie Li, Shuguang Liu, and Fan Yang. NUWA-XL: Diffusion over Diffusion for eX-
tremely Long Video Generation. In ACL, 2023a.

Yuyang Yin, Dejia Xu, Zhangyang Wang, Yao Zhao, and Yunchao Wei. 4DGen: Grounded 4D
content generation with spatial-temporal consistency. arXiv preprint arXiv:2312.17225, 2023b.

Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for
high-fidelity novel view synthesis. arXiv preprint arXiv:2409.02048, 2024.

Yifei Zeng, Yanqin Jiang, Siyu Zhu, Yuanxun Lu, Youtian Lin, Hao Zhu, Weiming Hu, Xun
Cao, and Yao Yao. Stag4d: Spatial-temporal anchored generative 4d gaussians. arXiv preprint
arXiv:2403.14939, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Ic-light github page, 2024.

Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong, Zhenguo Li, and Gim Hee Lee. Animate124:
Animating one image to 4D dynamic scene. arXiv preprint arXiv:2311.14603, 2023.

Yufeng Zheng, Xueting Li, Koki Nagano, Sifei Liu, Otmar Hilliges, and Shalini De Mello. A unified
approach for text- and image-guided 4D scene generation. In CVPR, 2024.

Zhizhuo Zhou and Shubham Tulsiani. SparseFusion: Distilling view-conditioned diffusion for 3D
reconstruction. In CVPR, 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix

In this appendix, we first present additional related works on 3D refinement (Appendix A). Then we
provide detailed network specifications (Appendix B). Next, To ensure reproducibility and facilitate
fair perceptual studies, we describe the experimental settings in detail (Appendix C). Finally, we
include extended ablation studies (Appendix D) and additional results (Appendix E) to demonstrate
the robustness and superiority of our methods across various settings.

A MORE RELATED WORKS

3D refinement with generative priors. To deal with view-inconsistency and low quality prob-
lems, many works (Wu et al., 2024c; Roessle et al., 2023; Chen et al., 2024; Wu et al., 2024b;
Haque et al., 2023; Vachha & Haque, 2024; Zhou & Tulsiani, 2023) take advantages from gen-
erative priors, e.g., adversarial training (Goodfellow et al., 2014) and score distillation sampling
(SDS) (Poole et al., 2023) to optimize the 3D representation. GANeRF (Roessle et al., 2023) refines
the rendered images with an image-conditional generator and leverages the re-rendered image con-
straints to guide the NeRF optimization in the adversarial formulation. InstructNeRF2NeRF (Haque
et al., 2023) uses the text-conditioned image generator, InstructPix2pix (Brooks et al., 2023), to
edit the image rendered by pre-trained NeRF in an iterative manner and updates the underlying 3D
representation with the edited images. ReconFusion (Wu et al., 2024b) uses the diffusion priors,
Zero-123 (Liu et al., 2023b), as a drop-in regularizer to enhance the 3D reconstruction performance,
especially for sparse-view scenarios. In contrast to directly optimizing the implicit representation,
another line of researches (Tang et al., 2024b; Ren et al., 2023) first extracts the explicit textured
mesh, and then refine the texture in UV-space with diffusion prior and differentiable rendering. In
particular, DreamGaussian4D leverages SVD as image-to-video prior to enhance the texture tem-
poral consistency. In our paper, in consideration of the artifacts generated in video diffusion, we
extend the refinement techniques to the 4D representation.

B NETWORK DETAILS

In this section, we unpack the core network design in Figure 1.

Attention injection. In Sec. 4.1, we exploit the attention injection strategy to alleviate the tem-
poral difference between multi-view diffusion models. Figure 9 illustrates its network details: in
each spatial attention layer, we replace the self-attention by simultaneously considering the current
z∗t and previous visual information with EMA.

Deformation field with color transformation. In Sec. 4.2, we use color affine transformation to
model the temporal texture variation. Figure 10 shows the detailed architecture of that. We first
query the time-specific feature ft from the learnable HexPlane (Cao & Johnson, 2023) with the
canonical Gaussian positions µ̄. After that, the geometric deformations of Gaussian properties (µ
location, r rotation, and s scale) are predicted with a lightweight decoder. Additionally, we use
the affine color transformation to model the temporal texture variations. Finally, these deformed
Gaussians are rendered into an image.

C ADDITIONAL EXPERIMENTAL SETTINGS

C.1 OPTIMIZATION DETAILS

We report the optimization of 4D Gaussian splatting for the purpose of reproduction. Basically, we
follow the training recipe from 4DGS (Wu et al., 2024a) in the coarse 4D reconstruction stage. In
the semantic refinement stage (Stage III), we fine-tune 4DGS for 5k steps with Adam optimizer.
The initial learning rate is set to 1e-4 with exponential decay. The weight λ in diffusion refinement
loss is set to 0.5. Our implementation is primarily based on the PyTorch framework and tested on a
single NVIDIA RTX 3090 GPU.
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Figure 9: Network details of Attention Injection. b⃝ denotes the EMA blending operator men-
tioned in Sec. 4.1. z∗t is the multi-view latent at current timestamp t, and zt is the blended latent.
Previous visual information is injected into the current latent by modifying the original spatial self-
attention mechanism.
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Figure 10: Network architecture of our 4D representation. µ̄, r̄, s̄ represents the canonical Gaus-
sian properties: 3D location, rotation and scale from the coarse stage training in 4DGS (Wu et al.,
2024a). The time-specific local feature ft is queried from the HexPlane (Cao & Johnson, 2023),
where the subscribe t means the time-specific property. Different from vanilla 4DGS, we employ
additional color affine transformation to obtain the time-specific color ct. The geometric deforma-
tions are predicted by a lightweight decoder. Finally, the time-specific Gaussians are rendered to
produce an image (right).

C.2 REPRODUCTION, DATA AND CODE

We reproduced our baselines, including Animate124 (Zhao et al., 2023), DreamGaussian4D (Ren
et al., 2023), and Consistent4D (Jiang et al., 2024b), Efficient4D (Pan et al., 2024), using their
official code. Additionally, we have included the input images and SVD-generated videos in the
supplementary materials. Apart from the data provided by Animate124 and DreamGaussian4D, we
have added three more examples: android, chicken-basketball, and penguin. Code is
also available in the supplementary materials.

C.3 USER STUDY DETAILS

We provide details of the user preference study with two screenshots. Figure 21 illustrates the guide-
lines: each participant is asked to evaluate images and videos rendered by four different methods
across five metrics. Figure 22 shows the image and video samples presented to the participants.
After comparing the images (Figure 22(a)) rendered by different models, participants select the
method with the highest ”reference image consistency” and ”3D appearance”. After watching the
videos (Figure 22(b)) rendered by different models, participants select the method with the highest
”motion realism” and ”motion range”. Finally, they choose the method with the best overall quality.
We presented several cases to 47 participants and compiled the statistics. For statistical significance,
we make the assumption of multinomial distribution, and report the 2-sigma error bar (95.6% CI).
We use standard deviation for error bar calculation.
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Method Independent S-Res S-Linear T-EMA S-EMA (Ours)

CLIP-I ↑ (Radford et al., 2021) 0.9323 0.9136 0.9654 0.9962 0.9925
Flow Intensity↑ (Teed & Deng, 2020) - - 2.912 1.102 2.756

Table 4: Quantitative ablation on attention injection. We evaluate temporal consistency using
CLIP-I score between the first and subsequent frames (↑ higher is better), and motion range using
optical Flow Intensity (↑ larger indicates larger motion range when CLIP scores are comparable). ‘-’
means no reasonable results predicted by the optical flow estimator on video with noisy background.
Both ‘T-EMA’ and ‘S-EMA’ improve temporal consistency, but while ‘T-EMA’ results in nearly
static output, ‘S-EMA’ maintains substantial motion range. Qualitative results are shown in Figure 5.

w/o injection
(α = 0)

+ S-EMA
(α = 0.3)

+ S-EMA
(α = 0.5)

+ S-EMA
(α = 0.7)

+ S-EMA
(α = 0.1)

+ S-EMA
(α = 0.9)

Reference

Time 0 Time X

Figure 11: Qualitative sensitivity analysis on EMA blending weight of attention injection. As
the blending weight increases, the temporal consistency is significantly improved (similar white
textures and consistent leg geometry). However, the overly high (> 0.5) blending weight leads to
a very small motion range. To balance the motion range and temporal consistency, we choose the
EMA weight as α = 0.5. Video demonstration can be found in our supplementary materials.

D EXTENDED ABLATIONS

Quantitative ablation on attention injection. We conduct comprehensive experiments to evalu-
ate different variants of attention injection. Please refer to Figure 5 in the main paper for qualitative
results. Quantitative analysis is summarized in Table 4, demonstrating the impact of different atten-
tion injection variants on video temporal consistency and motion range. To quantify temporal con-
sistency, we compute the CLIP-I score between the first frame and subsequent frames. Our results
indicate that both ‘T-EMA’ and ‘S-EMA’ significantly improve temporal consistency (inter-frame
similarity), achieving higher CLIP-I scores compared to other variants. For motion range assess-
ment, we employ the flow intensity, calculated by average value of optical flow on adjacent frames.
When CLIP scores are comparable, larger flow intensity indicates a larger range of motion. The op-
tical flow is estimated with RAFT (Teed & Deng, 2020). ‘-’ means no reasonable results predicted
by the optical flow estimator on video with noisy background. Notably, ‘T-EMA’ yields a DINO
score approaching 1, suggesting minimal object movement. Among all variants examined, our pro-
posed ‘S-EMA’ uniquely achieves an optimal balance, maintaining high temporal consistency while
preserving substantial motion range.

Sensitivity analysis for attention injection weight. Figure 11 analyzes different EMA blending
weights α of attention injection in the spatial attention layers. It is obvious that the increasing blend-
ing weight benefits the temporal consistency in texture, e.g., similar white texture in the back and
consistent leg geometry. We also observe that overly high (> 0.5) blending weight significantly
attenuates the object motion range. This trade-off can be better illustrated by the videos provided
in the supplementary materials. Taking both motion range and temporal consistency into consid-
eration, we choose α = 0.5 as an appropriate blending weight without sacrificing the dynamics.
Figure 12 demonstrates the impact of different blending weights. As the weight increases, CLIP-I
score (image quality) improves while motion range becomes smaller, indicated by decreasing flow
intensity. CD-FVD will not be better due to the diminishing motion.

Number of Gaussians. In Figure 13, we show the number of Gaussians before and after adding
the multiscale renderer. Guo et al. (Guo et al., 2024b) observed that visual overfitting often leads
to redundant Gaussian splats in dynamic scene reconstruction, which is hard to optimize and causes
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Figure 12: Quantitative sensitivity analysis on EMA blending weight of attention injection.
Higher blending weights improve temporal consistency but excessive values restrict motion range
indicated by lower flow intensity. We select α=0.5, achieving well balance between motion range
and temporal consistency, with the best CD-FVD score.

4.5e+4

5.5e+4

6.5e+4

7.5e+4

0 5k 10k 15k 20k 25k 30k

Number of 
Gaussians

step

baseline

+ multiscale

Figure 13: Additional ablation on the multiscale renderer. With the multiscale rendering aug-
mentation in Stage II (darkred), the number of Gaussians declines significantly.

unsatisfying rendering results. With the multiscale renderer, we observe a significant decline of
Gaussian points, in addition to the dropped training PSNR reported in Figure 7.

Additional results for diffusion refinements. In Figure 14, the effectiveness of our diffusion
refinement is illustrated with zoomed-in details. It can be observed that the facial and hand details
become finer and Gaussian noises are removed after the refinement stage.

E EXTENDED RESULTS

Dynamics of our results. For the best demonstration of our 4D model dynamics, please refer to
the supplementary materials where you can find videos generated by our 4D model. Figure 15 has
illustrated more examples beyond SVD-generated videos, and show the scalability and generaliz-
ability of our framework. The panel (a) uses video rendered from Objaverse (Deitke et al., 2023)
dataset, a large-scale 3D dataset that also contains some animation models. Figure 15 (b) shows
the 4D generation results from in-the-wild videos from the Consistent4D benchmark; In panel (c),
we leverage the pose-conditioned character video generation model, AnimateAnyone (Hu, 2024), as
our video model in our framework.
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Coarse 3D+ Diffusion Prior

View 1 View 2

Coarse 3D + Diffusion Prior

Figure 14: Ablation on diffusion refinement. The left and right panels depict two different view of
renderings with the case anya. The results after adding the diffusion refinement show finer facial
and hand details with less noisy Gaussians.
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Figure 15: Extended results rendered by our EG4D based on semantic/large motion of synthetic/real-
world objects. The input data includes (a) single-view rendering from Objaverse (Deitke et al., 2023)
objects, (b) in-the-wild videos from Consistent4D (Jiang et al., 2024b), and (c) character motions
generated by pose-conditioned video diffusion, AnimateAnyone (Hu, 2024).

Qualitative comparison with Efficient4D. We compare our results with another baseline Effi-
cient4D (Pan et al., 2024), which uses 4DGS (Yang et al., 2024a) as reconstruction backbone. Con-
sistent with quantitative results in main paper Figure 2, the 4D results generated by our method have
higher view consistency and temporal consistency.
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Figure 16: Qualitative comparison with another baseline, Efficient4D (Pan et al., 2024).

Method CLIP-I ↑ PSNR ↑ SSIM ↑ LPIPS ↓ FVD↓ CD-FVD↓
SV4D (Xie et al., 2024) 0.9459 22.57 0.852 0.196 138.81 311.06
EG4D (Ours) 0.9535 23.28 0.904 0.173 142.34 459.10

Table 5: Quantitative comparison with a training-based method, SV4D (Xie et al., 2024).

Comparison with training-based methods. Recent works (Liang et al., 2024; Jiang et al.,
2024a; Xie et al., 2024) have advanced multi-view video diffusion through training on large-scale
4D datasets, demonstrating significant improvements in 4D generation quality. Notably, Ani-
mate3D (Jiang et al., 2024a) extends AnimateDiff (Guo et al., 2024a) to generate spatiotemporally
consistent multi-view videos of static 3D objects. We compare our method with SV4D (Xie et al.,
2024), as shown in Figure 17 and Table 5. While SV4D achieves better temporal consistency, our
approach exhibits superior image fidelity and view-consistency. This is evident in examples like
luigi and zelda, where SV4D produces overly bright faces lacking detail and shading. This
suggests that while SV4D performs well on its training set, it may have limited generalization capa-
bility on out-of-distribution (O.O.D.) samples.

More discussion about training-based methods. Our framework offers two key advantages over
training-based methods like Diffusion4D and SV4D: First, our approach is training-free, leverag-
ing off-the-shelf video and multi-view diffusion models without modifications. This allows rapid
adoption of advances in either model type to generate 4D content efficiently, eliminating the need
for expensive training on large-scale 4D datasets. Second, our method maintains dataset indepen-
dence and directly benefits from improvements in video diffusion. Regarding motion of 4D object,
advanced video diffusion models like CogVideoX (Yang et al., 2024b) would enable more dynamic
and diverse animations. For 3D content, multi-view diffusion for 3D scene, e.g.ViewCrafter (Yu
et al., 2024), would provide possibility for 4D scene generation.
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Figure 17: Comparison with Training-based method, SV4D (Xie et al., 2024). Benefited from
the dataset-independency, we achieve higher view-consistency compared to SV4D in O.O.D data.

Input Image 4D Rendering

Figure 18: 4D generation results with complex image prompts. Figure down is luigi relighted
by IC-Light (Zhang et al., 2024), and Figure above is image prompt from DreamCraft3D (Sun et al.,
2023).

4D Generation with complex image prompt. Apart from the images/videos from Animate124
and Consistent4D benchmark, we experiment our methods in more complex image prompt from
DreamCraft3D (Sun et al., 2023). For images with complex background (Figure down) and with ex-
treme lighting (Figure up), we find that our method can produce results with high view-consistency,
image fidelity and substantial motion range. Two generated videos are included in the supplementary
material.

Efficiency. Our framework takes approximately 1 hour and 15 minutes on average for each 4D
object generation in a single NVIDIA RTX 3090. Specifically, Stage I requires about 20 minutes
for video and multi-view generation; Stage II, involving 4D Gaussian Splatting optimization, takes
around 25 minutes; and the refinement process takes about 30 minutes. In previous works, Con-
sistent4D (Jiang et al., 2024b) and Animate124 (Zhao et al., 2023) take about 2.5 and 9 hours,
respectively, for 4D generation. Notably, DreamGaussian4D (Ren et al., 2023) achieves extremely
short optimization time of 7 minutes. Diffusion4D (Liang et al., 2024) and SV4D (Xie et al., 2024)
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Text Prompt:
“ninja,  white background, 
standing, toy, cartoon, 3D 

model, high quality”

Generated Image

View 1 View 2

View 3 View 4

Figure 19: Text-to-4D results. We feed a text prompt (left top) into SDXL Podell et al. (2024)
to generate a ninja image (left bottom). This image can be transformed into 4D objects with our
framework, presenting indirect text-to-4D application. The right panel shows multi-view renderings
of the 4D model.

train a diffusion network to generate the multi-view multi-frame image matrix. We have comparable
inference time since both methods share similar pipeline of multi-view video generation and 4D rep-
resentation optimization. However, they need to take huge computational expense for training. In
contrast to optimization-based approaches, L4GM (Ren et al., 2024) uses feed-forward network to
direct predict the Gaussian sequences within several minutes. Our optimization time falls between
these, but our framework offers superior view consistency, 3D appearance, and motion quality. Since
Stage I appears to be one of the efficiency bottlenecks, future work should focus on incorporating
efficient sampling for video diffusion models to boost speed.

Multi-view results of our results. Figure 23 shows the multi-view results of our 4D model, which
is a supplement of Figure 4. Due to the page limit of the main paper, we only show two views of
the 4D model there, which is not enough to illustrate the 3D appearance of our model. To this end,
we render our model in more views: 0◦, 90◦, 135◦, 180◦, 225◦, and 270◦. The rendered multi-view
images show that our method can produce images with high 3D consistency and satisfactory quality.

More visual comparisons. Figure 24 provides additional visual comparisons with our baselines,
continuing from Figure 3 in the main paper. We use three additional cases: luigi, anya, and
chicken-basketball. The first two columns show animation results from the same view,
while column 3 to 5 display three different views. The last column presents a zoomed-in image of
the final rendered view. Multi-view videos for visual comparison can be found in the supplementary.

More applications. Benefiting from our explicit generation, we can easily adapt EG4D to both
text-to-4D and video-to-4D tasks. Figure 19 shows the generation results of the text-to-4D. We first
feed an example text prompt into SDXL (Podell et al., 2024) to get the high-resolution image. Then
this image is transformed into a 4D model with our framework. Figure 20 shows the results of the
video-to-4D. We just skip the dynamic generation step and start with our view synthesis pipeline.
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Input Video

View 1 View 2

View 3 View 4

Figure 20: Video-to-4D results. Our framework can be seamlessly extended to video-to-4D gen-
eration. The right panel shows the renderings of our 4D model from four viewpoints. This bird
video is taken from Consistent4D (Jiang et al., 2024b).

First of all, thank you all for participating!

Our task is to generate a 4D model from a given image, and then render it at arbitrary view/time.

Please compare the generation results produced by different methods and answer the following questions.

First, please compare the images produced by four methods and select one method that you think provide 
the best results.

◆ Which method's results have better consistency with the given image? 
• Focus on consistency instead of quality

◆ Which method's results have the best 3D appearance?
• Focus on esthetics and view-consistency

Then, please compare the videos produced by those methods.

◆ Which method produces the most natural motion?
◆ Which method produces the largest range of motion?

Finally,

◆ Please select the method that shows the best overall quality!

Figure 21: Screenshot of our user study guidelines. Each participant is asked to evaluate the
images and videos rendered by 4 different methods with 5 metrics, i.e., reference view consistency,
3D appearance, motion realism, motion range, and overall quality.

(a) Screenshot of the image evaluation. (b) Screenshot of the video evaluation.

Figure 22: Screenshot of our user study content. Each participant is provided with several images
and videos rendered by different methods.
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Input Image View 

Figure 23: Multi-view results of our models. This figure is a supplement of Figure 4 in the main
paper. The 6 columns show the images rendered by our model in different views: 0◦, 90◦, 135◦,
180◦, 225◦, and 270◦. Multi-view renderings demonstrate the geometry/texture consistency and
promising quality of our 4D representation.
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Figure 24: More comparison examples with the SOTA results in three cases luigi, anya and
chicken-basketball (better zoom in).
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