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ABSTRACT

Reliable probability estimation is of crucial importance in many real-world appli-
cations where there is inherent uncertainty, such as weather forecasting, medical
prognosis, or collision avoidance in autonomous vehicles. Probability-estimation
models are trained on observed outcomes (e.g. whether it has rained or not, or
whether a patient has died or not), because the ground-truth probabilities of the
events of interest are typically unknown. The problem is therefore analogous to
binary classification, with the important difference that the objective is to esti-
mate probabilities rather than predicting the specific outcome. The goal of this
work is to investigate probability estimation from high-dimensional data using
deep neural networks. There exist several methods to improve the probabilities
generated by these models but they mostly focus on classification problems where
the probabilities are related to model uncertainty. In the case of problems with
inherent uncertainty, it is challenging to evaluate performance without access to
ground-truth probabilities. To address this, we build a synthetic dataset to study
and compare different computable metrics. We evaluate existing methods on the
synthetic data as well as on three real-world probability estimation tasks, all of
which involve inherent uncertainty: precipitation forecasting from radar images,
predicting cancer patient survival from histopathology images, and predicting car
crashes from dashcam videos. Finally, we also propose a new method for prob-
ability estimation using neural networks, which modifies the training process to
promote output probabilities that are consistent with empirical probabilities com-
puted from the data. The method outperforms existing approaches on most metrics
on the simulated as well as real-world data.

1 INTRODUCTION

We consider the problem of building models that answer questions such as: Will it rain? Will a
patient survive? Will a car collide with another vehicle? Due to the inherently-uncertain nature
of these real-world phenomena, this requires performing probability estimation, i.e. estimating the
probability of each possible outcome of the phenomenon of interest. Models for probability pre-
diction must be trained on observed outcomes (e.g. whether it rained, a patient died, or a collision
occurred), because the ground-truth probabilities are unknown. The problem is therefore analogous
to binary classification, with the important difference that the objective is to estimate probabili-
ties rather than predicting specific outcomes. In probability estimation, two identical inputs (e.g.
histopathology images from cancer patients) can potentially result in two different outcomes (death
vs. survival). In contrast, in classification the class label is usually completely determined by the
data (a picture either shows a cat or it does not).

The goal of this work is to investigate probability estimation from high-dimensional data using
deep neural networks. Deep networks trained for classification often generate probabilities, which
quantify the uncertainty of the estimate (i.e. how likely the network is to classify correctly). This
quantification has been observed to be inaccurate, and several methods have been developed to
improve it (Platt, 1999; Guo et al., 2017; Szegedy et al., 2016; Zhang et al., 2020; Thulasidasan
et al., 2020; Mukhoti et al., 2020; Thagaard et al., 2020), including Bayesian neural networks (Gal &
Ghahramani, 2016; Wang et al., 2016; Shekhovtsov & Flach, 2019; Postels et al., 2019). However,
these works restrict their attention almost exclusively to classification in datasets (e.g. CIFAR-
10/100 Krizhevsky (2009), or ImageNet (Deng et al., 2009)) where the label is not uncertain, and
therefore the uncertainty is completely tied to the model: it quantifies the confidence of the model
in its own prediction, not the probability of an event of interest.
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Figure 1: The probability-estimation problem. In probability estimation, we assume that each ob-
served outcome yi (e.g. death or survival in cancer patients) in the training set is randomly generated
from a latent unobserved probability pi associated to the corresponding data xi (e.g. histopathology
images). Training (left): Only xi and yi can be used for training, because pi is not observed. In-
ference (right): Given new data x, the trained network f produces a probability estimate p̂ ∈ [0, 1].

Probability estimation from high-dimensional data is crucial in medical prognostics (Wulczyn et al.,
2020), weather prediction (Agrawal et al., 2019), and autonomous driving (Kim et al., 2019). In or-
der to advance deep-learning methodology for probability estimation it is crucial to build appropriate
benchmark datasets. Here we build a synthetic dataset and gather three real-world datasets, which
we use to systematically evaluate existing methodology. In addition, we propose a novel approach,
which outperforms current state-of-the-art methods. Our contributions are the following:

• We introduce a new synthetic dataset for probability estimation where a population of people may
have a certain disease connected to age. The task is to predict the probability that they contract the
disease from a picture of their face. The data are generated based on the UTKFaces dataset (Zhang
et al., 2017a), which contains age information. The dataset contains multiple versions of the
synthetic labels, which are generated according to different distributions designed to mimic real-
world probability-prediction datasets. The dataset serves two objectives. First, it allows us to
evaluate existing methodology. Second, it enables us to evaluate different metrics in a controlled
scenario where we have access to ground-truth probabilities.

• We have used publicly available data to build probability-estimation benchmark datasets for three
real-world applications: (1) precipitation forecasting from radar images, (2) prediction of cancer-
patient survival from histopathology images, and (3) prediction of vehicle collisions from dashcam
videos. We use these datasets to systematically evaluate existing approaches, which have been
previously tested mainly on classification datasets.

• We propose Calibrated Probability Estimation (CaPE), a novel technique which modifies the train-
ing process so that output probabilities are consistent with empirical probabilities computed from
the data. CaPE outperforms existing approaches on most metrics on synthetic and real-world data.

2 PROBLEM FORMULATION: PROBABILITY ESTIMATION

The goal of probability estimation is to evaluate the likelihood of a certain event of interest, based
on observed data. The available training data consists of n examples xi, 1 ≤ i ≤ n, each associated
with a corresponding outcome yi. In our applications of interest, the input data are high dimensional:
each xi corresponds to an image or a video. The corresponding label yi is either 0 or 1 depending
on whether or not the event in question occurred. For example, in the cancer-survival application
xi is a histopathology image of a patient, and yi equals 1 if the patient survived for 5 years after
xi was collected. The data have inherent uncertainty: yi, the patient’s survival, does not depend
deterministically on the histopathology image (due e.g. to comorbidities and other health factors).
Instead, we assume that yi equals 1 with a certain probability pi associated with xi,, as illustrated in
Figure 1, because the input data provides key information about the patient’s survival chances.

At inference, a probability-estimation model aims to generate an estimate p̂ of the underlying proba-
bility p, associated with a new input data point x (e.g. the probability of survival for over 5 years for
new patients based on their histopathology data). To summarize, this is not a classification problem,
because the labels are not completely predictable. Instead, the goal is to predict the probability of
the outcome, which is critical in choosing a course of treatment for the patient.
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Figure 2: Calibration is not enough. Uncolored/colored markers denote y = 0/1 outcomes, re-
spectively. Blue/red stand for two classes with different associated ground-truth probabilities (1/4
and 3/4 respectively). (a) The model f retrieves the true probabilities, which requires discriminating
between inputs with low and high probability. (b) The model f has no discriminative power, it just
assigns the same probability to all outputs. However, the model is perfectly calibrated because out
of all outcomes assigned 0.5 by the model, the fraction that are equal to 1 is 50%.

3 EVALUATION METRICS

Probability estimation shares similar target labels and network outputs with binary classification.
However, classification accuracy is not an appropriate metric for evaluating probability-estimation
models due to the inherent uncertainty of the outcomes. This is illustrated by the example in Fig-
ure 2a where a perfect probability estimate would result in a classification accuracy of just 75%.1

Metrics when ground-truth probabilities are available. For synthetic datasets, we have access
to the ground truth probability labels and can use them to evaluate performance. Two reasonable
metrics are the mean squared error or `2 distance MSEp, and the Kullback–Leibler divergence KLp
between the estimated and ground-truth probabilities:

MSEp =
1

N

N∑
i=1

(p̂i − pi)2, and KLp =
1

N

N∑
i=1

(
p̂i log

(
p̂i
pi

)
+ (1− p̂i) log

(
1− p̂i
1− pi

))
. (1)

N is the number of data, and pi, p̂i are the ground-truth and predicted probabilities respectively.

Calibration metrics. In real-world data, ground-truth probabilities are not available. In order to
evaluate the probabilities estimated by a model, we need to compare them to the observed probabil-
ities. To this end, we aggregate the examples for which the model output equals a certain value (e.g.
0.5), and verify what fraction of them have outcomes equal to 1. If the fraction is close to the model
output, then the model is said to be well calibrated.
Definition 3.1. A model f is well calibrated if

P (y = 1 | f(x) ∈ I(q)) = q, ∀ 0 ≤ q ≤ 1, (2)
where y is the observed outcome, f(x) is the probability predicted by model f for input x, and I(q)
is a small interval around q.

Model calibration can be evaluated using the expected calibration error (ECE) (Guo et al., 2017)
(note however that the definition Guo et al. (2017) is specific to classification). Given a probability-
estimation model f and a dataset of input data xi and associated outcomes yi, 1 ≤ i ≤ N , we
partition the examples into B bins, I1I2, · · · , IB , according to the probabilities assigned to the
examples by the model. Let Q1,. . . , QB−1 the B-quantiles of the set {f(x1), . . . , f(xN )}, we have
Ib := [Qb−1, Qb]∩{f(xi)}Ni=1 (setting Q0 = 0). For each bin, we compute the mean predicted and
empirical probabilities,

p(b)emp = E (y | f(x) ∈ Ib) =
1

|Ib|
∑

i∈Index(Ib)

yi, (3)

q(b) =
1

|Ib|
∑

i∈Index(Ib)

f(xi), (4)

1A perfect model (in terms of probability estimation), assigns 0.25 to the blue class and 0.75 to the red
class. To maximize classification accuracy, we predict when the model outputs 0.75 (red examples) and 0
when it outputs 0.25 (blue examples). However, 25% of red examples have an outcome of 0, and 25% of blue
examples have an outcome of 1. As a result, the model would only have 75% accuracy.
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Figure 3: Evaluating evaluation metrics. We use synthetic data to compare different metrics to
the gold-standard MSEp that uses ground-truth probabilities. Brier score is highly correlated with
MSEp, in contrast to the classification metric AUC and the calibration metrics ECE, MCE and KS-
Error. The graphs show the results of the proposed method CaPE, as well as the baselines described
in Section 6.3 on the Linear scenario (see Section 6.1. Other scenarios and a similar comparison
with KLp are included in Appendix D.)

where Index(Ib) = {i | f(xi) ∈ Ib}.

The pairs (q(b), p
(b)
emp) can be plotted as a reliability diagram, shown in the second row of Figure 4

and in Figure 6. ECE is then defined as

ECE =
1

B

B∑
b=1

∣∣∣p(b)emp − q(b)
∣∣∣ . (5)

Other metrics for calibration include the maximum calibration error (MCE) defined as

MCE = max
b=1,...,B

∣∣∣p(b)emp − q(b)
∣∣∣ ,

and the Kolmogorov-Smirnov error (KS-error) (Gupta et al., 2021), a metric based on the cumulative
distribution function, which is described in more detail in Appendix B.

Brier score. Crucially, a model without any discriminative power can be perfectly calibrated (see
Figure 2b). The Brier score is a metric designed to evaluate both calibration and discriminative
ability. It is the mean squared error between the predicted probability and the observed outcomes:

Brier =
1

N

N∑
i=1

(p̂i − yi)2. (6)

This score can be decomposed into two terms associated to calibration and discrimination ability, as
shown in Appendix C. Using the synthetic data in Section 6.1, where the ground-truth probabilities
are known, we show that Brier score is indeed a reliable proxy for gold-standard MSE metric based
on ground-truth probabilities MSEp, in contrast to calibration metrics such as ECE, MCE or KS-
error, and to classification metrics such as AUC (see Figure 3 and Appendix D).

4 PROPOSED METHOD: CALIBRATED PROBABILITY ESTIMATION (CAPE)
Prediction models based on deep learning are typically trained by minimizing the cross entropy
between the model output and the training labels (Goodfellow et al., 2016). This cost function is
a proper scoring rule, which means that it evaluates probability estimates in a consistent manner
and is therefore guaranteed to be well calibrated in an infinite-data regime (Buja et al., 2005), as
illustrated by Figure 4 (first column).

Unfortunately, in practice prediction models are trained on finite data. This is crucial in the case
of deep neural networks, because these models are highly overparametrized and therefore prone to
overfitting (Goodfellow et al., 2016). In classification, networks have been shown to be capable of
fitting arbitrary random labels (Zhang et al., 2017a). In probability estimation, we observe that neu-
ral networks indeed eventually overfit the observed outcomes completely. Moreover, the estimated
probabilities collapse to 0 or 1 (Figure 4, second column), a phenomenon that has also been reported
in classification (Mukhoti et al., 2020). However, calibration is preserved during the first stages of
training (Figure 4, third column). This is reminiscent of the early-learning phenomenon observed
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Figure 4: Miscalibration due to overfitting and how to avoid it. When trained on infinite data
(i.e. resampling outcome labels at each epoch according to ground-truth probabilities), models min-
imizing cross-entropy are well calibrated (first column). The top row shows results for the synthetic
Discrete scenario (see Section 6.1) (top). The bottom row shows results for the Linear scenario
(dashed line indicates perfect calibration). However, when trained on fixed observed outcomes, the
model eventually overfits and the probabilities collapse to either 0 or 1 (second column). This is
mitigated via early stopping (i.e. selecting the model based on validation cross-entropy loss), which
yields relatively good calibration (third column). The proposed Calibration Probability Estimation
(CaPE) method exploits this to further improve the model while ensuring that the output remains
well calibrated. Appendix A.3 shows plots for all synthetic data scenarios.

for classification from partially corrupted labels (Yao et al., 2020; Xia et al., 2020), where neural
networks learn from the correct labels before eventually overfitting the false ones (Liu et al., 2020).

Here, we propose to exploit the training dynamics of cross-entropy minimization through a method
that we name Calibrated Probability Estimation (CaPE). Our starting point is a model obtained
via early stopping using validation data on the cross-entropy loss. CaPE is designed to further
improve the discrimination ability of the model, while ensuring that it remains well calibrated. This
is achieved by alternatively minimizing the following two loss functions:

Discrimination loss: Cross entropy between the model output and the observed binary outcomes,

LD = −
N∑
i=1

[yi log(f(xi)) + (1− yi) log(1− f(xi))].

Calibration loss: Cross entropy between the output probability of the model and the empirical
probability of the outcomes conditioned on the model output:

LC = −
N∑
i=1

[
piemp log(f(xi)) + (1− piemp) log(1− f(xi))

]
,

where piemp is an estimate of the conditional probability P[y = 1|f(x) ∈ I(f(xi))] where I(f(xi))
is a small interval centered at f(xi). As explained in Section 3 if f(xi) is close to this value, then the
model is well calibrated. We consider two approaches for estimating piemp. (1) CaPE (bin) where we

divide the training set into bins, select the bin bi containing f(xi) and set piemp = p
(bi)
emp in equation 3.

(2) CaPE (kernel) where piemp is estimated through a moving average with a kernel function (see
Appendix E for more details). Both methods are efficiently computed by sorting the predictions
p̂i. The calibration loss requires a reasonable estimation of the empirical probabilities p(i)emp, which
can be obtained from the model after early learning. Therefore using the calibration loss from the
beginning is counterproductive, as demonstrated in Section J.
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Figure 5: Calibrated Probability Estimation prevents overfitting. Comparison between the learn-
ing curves of cross-entropy (CE) minimization and the proposed calibrated probability estimation
(CaPE), smoothed with a 5-epoch moving average. After an early-learning stage where both train-
ing and validation losses decrease, CE minimization overfits (first and second graph), with disastrous
consequences in terms of probability estimation (third and fourth graph). In contrast, CaPE prevents
overfitting, continuing to improve the model while maintaining calibration (see Figure 4).

Algorithm 1 Pseudocode for CaPE
Require: f . early stopped model
Require: m . freq. of training with LC

Require: {xi, yi}Ni=1 . training set
Require: K(p, q) := exp

[
− (p− q)2 /σ2

]
. Gaussian kernel

for t = 1 to num epochs do
if t mod m = 0 then
p̂i ← f(xi), ∀i
Update piemp, ∀i, with BIN or KERNEL
L ← LC . compute discrimination loss

else
L ← LD . compute calibration loss

end if
f ← backprop with L . train with loss

end for

function BIN(B) . B-number of bins
I1, · · · IB ← partitions by quantile of {p̂j}Nj=1
Find b such that p̂i ∈ Ib
Index(Ib)← {j|p̂j ∈ Ib} . get indices in bin b
piemp ← 1

|Ib|
∑

i∈Index(Ib)
yi . empirical mean of bin b

end function

function KERNEL(r,K) . r-window size; kernel
Nr(i)← r-nearest neighbor of p̂i (output probability space)
Z ←

∑
p̂j∈Nr(i)

K (p̂i, p̂j) . normalization factor

piemp ←
∑

p̂j∈Nr(i)

K (p̂i, p̂j) yj/Z . kernel smooth

end function

CaPE is summarized in Algorithm 1. Figures 4 and 5 show that incorporating the calibration-loss
minimization step indeed preserves calibration as training proceeds (this is not necessarily expected
because CaPE minimizes a calibration loss on the training data), and prevents the model from
overfitting the observed outputs. This is beneficial also for the discriminative ability of the model,
because it enables it to further reduce the cross-entropy loss without overfitting, as shown in Figure 5.
The experiments with synthetic and real-world data reported in Section 6 suggest that this approach
results in accurate probability estimates across a variety of realistic scenarios.

5 RELATED WORK

Neural networks trained for classification often generate a probability associated with their predic-
tion which quantifies its uncertainty. These estimates are often found to be inaccurate (Mukhoti
et al., 2020; Guo et al., 2017). Techniques mitigating this issue are often described as calibration
methods, and broadly fall into three categories depending on whether they: (1) postprocess the
outputs of a trained model, (2) combine multiple model outputs, or (3) modify the training process.

Post-processing methods transform the output probabilities in order to improve calibration on held-
out data (Zadrozny & Elkan, 2001; Gupta et al., 2021; Kull et al., 2017; 2019). For example, Platt
scaling (Platt, 1999) fits a logistic function that minimizes the negative log-likelihood loss. Temper-
ature scaling (Guo et al., 2017) does the same with a temperature parameter augmenting the softmax
function. In contrast to these methods, CaPE enforces calibration during training, which has the
advantage of enabling further improvements in the discriminative abilities of the model.

Ensembling methods combine multiple models to improve generalization. Mix-n-Match (Zhang
et al., 2020) uses a single model, and ensembles predictions using multiple temperature scaling
transformations. Other methods (Lakshminarayanan et al., 2017; Maddox et al., 2019) ensemble
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Methods Linear Sigmoid Centered Skewed Discrete
(×10−2) MSEp KLp MSEp KLp MSEp KLp MSEp KLp MSEp KLp

Infinite Data* 1.13 2.81 5.35 14.86 0.20 0.41 0.22 0.92 1.52 3.64

CE early-stop 4.21 10.93 6.16 17.16 0.48 0.98 0.40 1.79 2.24 5.26
Temperature 2.71 6.70 6.13 17.05 0.48 0.98 0.40 1.75 2.20 5.12
Platt Scaling 2.48 6.06 5.78 16.12 0.41 0.83 0.39 1.71 2.06 4.82
Dirichlet Cal. 3.56 9.06 8.71 25.33 0.46 0.94 0.48 2.31 2.74 6.52
Mix-n-match 2.69 6.70 6.13 17.10 0.48 0.98 0.39 1.74 2.20 5.12
Focal Loss 4.13 10.51 6.89 19.51 0.48 0.97 1.27 11.61 2.92 6.76
Entropy Reg. 2.84 7.37 7.03 21.19 0.42 0.87 1.17 10.57 2.84 6.62
MMCE Reg. 2.22 5.65 5.33 15.03 0.44 0.90 0.54 2.43 2.08 4.90
Deep Ensemble 1.90 4.55 5.85 16.43 0.44 0.89 0.55 2.58 1.97 4.61

CaPE (bin) 1.83 4.46 5.29 14.59 0.38 0.78 0.40 1.72 1.83 4.31
CaPE (kernel) 1.81 4.41 5.22 14.47 0.40 0.81 0.39 1.70 1.85 4.36

Table 1: Results on synthetic data. Appendix A.1 shows a table with confidence intervals using
bootstrapping. * is a model trained with infinite data obtained by continuous label resampling.

multiple models obtained using different initializations. These approaches are compatible with the
proposed method CaPE; how to combine them effectively is an interesting future research direction.

Modified training methods can be divided into two groups. The first group smooths the target 0/1
labels in order to prevent output estimates from collapsing to 0/1 (Mukhoti et al., 2020; Szegedy
et al., 2016; Zhang et al., 2018; Thulasidasan et al., 2020). The second group, attaches additional
calibration penalties to a cross entropy loss (Kumar et al., 2018; Pereyra et al., 2017; Liang et al.,
2020). CaPE is most similar in spirit to the latter methods, although its data-driven calibration loss
is different to the penalties used in these techniques.

Datasets for evaluation The methods discussed in this section were developed for calibration in
classification, and tested on datasets such as CIFAR-10/100 (Krizhevsky, 2009), SVHN (Netzer
et al., 2011), and ImageNet (Deng et al., 2009) where the relationship between labels and input
data is completely deterministic. Here, we evaluate these methods on synthetic and real-world
probability-estimation problems with inherent uncertainty.

6 EXPERIMENTS

6.1 SYNTHETIC DATASET: FACE-BASED RISK PREDICTION

To benchmark probability-estimation methods, we build a synthetic dataset based on UTK-
Face (Zhang et al., 2017b), containing face images and associated ages. We use the age of the ith per-
son zi to assign them a risk of contracting a disease pi = ψ(zi) for a fixed function ψ : N→ [0, 1].
Then we simulate whether the person actually contracts the illness (label yi = 1) or not (yi = 0)
with probability pi. The probability-estimation task is to estimate the ground-truth probability pi
from the face image xi, which requires learning to discriminate age and map it to the corresponding
risk. We design ψ to create five scenarios, inspired by real-world data (see Appendix G)):

• Linear: Equally-spaced, inspired by weather forecasting: ψ(z) = z/100
• Sigmoid: Concentrated near two extremes: ψ(z) = σ(25(z/100− 0.29))
• Skewed: Clustered close to zero, inspired by vehicle-collision detection: ψ(z) = z/250
• Centered: Clustered in the center, inspired by cancer-survival prediction: ψ(z) = z/300 + 0.35
• Discrete: Discretized: ψ(z) = 0.2

[
1{z>20} + 1{z>40} + 1{z>60} + 1{z>80}

]
+ 0.1

6.2 REAL-WORLD DATASETS

We propose to use three open-source, real-world datasets to benchmark probability-estimation ap-
proaches (see Appendix H for further details on the datasets and experiments).
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Method Cancer Survival Weather forecasting Collision Prediction
(×10−2) AUC ECE Brier AUC ECE Brier AUC ECE Brier

CE early-stop 58.88 12.25 23.96 77.64 10.91 20.57 85.68 4.36 8.59
Temperature 58.88 12.07 23.73 77.64 8.66 20.21 85.68 4.56 8.51
Platt Scaling 58.91 10.28 23.33 77.65 6.97 19.53 85.76 3.04 8.23
Dirichlet Cal. 49.89 13.83 24.08 77.51 14.29 21.89 83.36 5.78 8.78
Mix-n-match 58.88 12.16 23.67 77.64 8.65 20.21 85.68 4.40 8.52
Focal Loss 55.02 12.15 23.31 76.18 8.32 20.27 82.21 9.07 9.82
Entropy Reg. 56.29 11.73 23.62 79.01 10.53 19.77 83.15 14.54 11.10
MMCE Reg. 48.45 11.84 23.73 76.69 8.46 20.12 85.18 2.94 8.48
Deep Ensemble 52.46 9.99 23.47 79.86 7.41 18.82 85.27 3.15 8.55

CaPE (bin) 61.44 12.31 23.20 78.99 5.16 18.37 85.70 3.16 8.18
CaPE (kernel) 61.22 9.48 23.18 79.00 5.08 18.39 85.95 3.22 8.13

Table 2: Results on cancer-survival prediction, weather forecasting, and collision prediction. Tables
with all the metrics described in Section 3 are provided in Appendix A.2

Survival of Cancer Patients. Histopathology aims to identify tumor cells, cancer subtypes, and
the stage and level of differentiation of cancer. Hematoxylin and Eosin (H&E)-stained slides are
the most common type of histopathology data used for clinical decision making. In particular,
they can be used for survival prediction (Wulczyn et al., 2020), which is critical in evaluating the
prognosis of patients. Treatments assigned to patients after diagnosis are not personalized and their
impact on cancer trajectory is complex, so the survival status of a patient is not deterministic. In
this work, we use the H&E slides of non-small cell lung cancers from The Cancer Genome Atlas
Program (TCGA)2 to estimate the the 5-year survival probability of cancer patients. The outcome
distribution is similar to the Centered scenario in our synthetic data.

Weather Forecasting. The atmosphere is governed by nonlinear dynamics, hence weather forecast
models possess inherent uncertainties (Richardson, 2007). Nowcasting, weather prediction in the
near future, is of great operational significance, especially with increasing number of extreme in-
clement weather conditions (Agrawal et al., 2019; Ravuri et al., 2021). We use the German Weather
service dataset3, which contains quality-controlled rainfall-depth composites from 17 operational
Doppler radars. We use 30 minutes of precipitation data to predict if the mean precipitation will
increase or decrease after one hour. Three precipitation maps from the past 30 minutes serve as an
input. The outcome distribution is similar to the Linear scenario in our synthetic data.

Collision Prediction. Vehicle collision is one of the leading causes of death in the world. Reliable
collision prediction systems are therefore instrumental in saving human lives. These systems predict
potential collisions from dashcam cameras. Collisions are influenced by many unknown factors,
and hence are not deterministic. Following Kim et al. (2019), we use 0.3 seconds of real dashcam
videos from YouTubeCrash dataset as input, and predict the probability of a collision in the next
2 seconds. The data are very imbalanced as the number of collisions is very low, so the outcome
distribution is similar to the Skewed scenario in our synthetic data.

6.3 BASELINES

We apply existing calibration methods developed for classification to probability estimation (as well
as cross-entropy minimization with early-stopping): (1) Three post-processing methods: Temper-
ature Scaling (Guo et al., 2017), Platt Scaling (Platt, 1999), and Dirichlet Calibration (Kull et al.,
2019) applied to the best CE model, (2) Two Ensemble Methods: Mix-n-Match (Zhang et al., 2020)
applied to best CE model, and Deep Ensemble (Lakshminarayanan et al., 2017) with 5 networks,
and (3) Three Modified Training methods: focal loss (Mukhoti et al., 2020), entropy-maximizing
loss (Pereyra et al., 2017), and MMCE regularization (Kumar et al., 2018). Appendix F provides
a detailed description. For our experiments on synthetic data, we also compare against a model
trained on an infinite amount of data by repeatedly sampling new outcomes from the ground-truth
probabilities at each epoch. This provides a best-case reference for each scenario.

2https://www.cancer.gov/tcga
3https://opendata.dwd.de/weather/radar/
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Figure 6: Reliability diagrams for real-world data. Reliability diagrams computed on test data for
cross-entropy minimization with early stopping, the proposed method (CaPE) and the best baseline
for each dataset. CaPE produces better calibrated outputs. Appendix A.3 shows additional diagrams.

7 RESULTS AND DISCUSSION

Table 1 shows that calibration methods developed for classification can be effective for probability
estimation. However, the performance of some methods is not consistent across all scenarios. For
instance, regularization with negative entropy, which penalizes very high/low confidence, performs
worse than CE when the ground-truth probability is close to 0 or 1. In contrast, methods that do
not make strong assumptions tend to generalize better to multiple scenarios (e.g. Platt scaling con-
sistently beats CE). The proposed method CaPE outperforms other techniques in most scenarios,
and even matches the performance of the infinite data baseline for the Sigmoid scenario. Finally, we
observe that the Skewed scenario is very challenging: most methods barely improve the CE baseline.

Table 2 compares the baseline methods and CaPE on the three real-world datasets. We present AUC,
ECE for 15 equally-sized bins, and Brier score, as complementary metrics since the underlying
ground-truth probabilities are unobserved. As discussed in Section 3, Brier score is the metric
that best captures the quality of probability estimates. CaPE has the lowest Brier score in all three
datasets, while also achieving lower ECE values and higher AUC values than the other methods. This
demonstrates that enforcing calibration during training also yields a more discriminative model. The
reliability diagrams in Figure 6 depict the probability estimates produced by CE, CaPE and the best
baseline method on the three datasets, demonstrating that CaPE produces a well-calibrated outputs.

Figure 6 also shows that each real-world dataset closely aligns with a particular synthetic scenario:
cancer survival with Centered; weather forecasting with Linear; collision prediction with Skewed.
This supports the significance of our synthetic benchmark dataset, and provides insights in the dif-
ferences among baseline models. For example, model averaging with deep ensemble performs well
on weather forecasting but has higher Brier scores than Platt scaling on the other two datasets (see
Appendix I for further analysis based on pathological stages). Accordingly, deep ensemble also
underperforms in the synthetic scenarios where ground-truth probabilities are clustered closely (Sig-
moid, Linear), but is effective for Linear. Finally, as in the synthetic Skewed scenario, all methods
had similar performance on the collision prediction task. This highlights the importance of consid-
ering different scenarios when evaluating methodology for probability estimation.

8 CONCLUSION

In this work we evaluate existing approaches to improve the output probabilities of neural net-
works on probability-estimation problems. To this end, we introduce a new synthetic benchmark
dataset designed to reproduce several realistic scenarios, and also gather three real-world datasets
relevant to medicine, climatology, and self-driving cars. In addition, we propose a novel approach
for probability-estimation via deep learning that outperforms existing approaches for most datasets.
An important application for probability estimation is in the context of survival analysis, which can
be recast as estimation of conditional probabilities (Lee et al., 2018; Shamout et al., 2020; Gold-
stein et al., 2021). An interesting research direction is to consider problems with several possible
uncertain outcomes (analogous to multiclass classification).
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A ADDITIONAL RESULTS

We present here supplementary results to the ones presented in Section 7.

A.1 FACE-BASED RISK PREDICTION

Full evaluation with confidence intervals derived using 1000 bootstraps for the five simulated sce-
narios are examined: Linear (Table.3); Sigmoid (Table.4); Centered (Table.5); Skewed (Table.6);
Discrete (Table.7). Note that all numbers are downscaled by 10−2 in the tables.

Linear ECE MCE KS Brier MSEp KLp
Infinite Data 4.14±0.81 12.07±3.29 2.24±0.88 18.97±0.33 1.14±0.04 2.82±0.11

CE early-stop 12.32±0.83 21.79±1.97 12.16±0.83 21.82±0.51 4.21±0.15 10.94±0.36
Temperature 5.7±0.74 13.82±2.71 2.36±0.74 20.47±0.37 2.73±0.11 6.75±0.25
Platt Scaling 4.29±0.77 10.94±2.55 1.3±0.45 20.18±0.36 2.48±0.09 6.07±0.22
Dirichlet Cal. 7.38±1.12 22.58±7.24 3.78±0.46 21.32±0.33 3.56±0.13 9.08±0.29
Focal Loss 5.34±0.68 13.31±2.67 3.56±0.85 21.99±0.28 4.13±0.11 10.52±0.28
Mix-n-match 5.46±0.84 12.9±2.51 1.92±0.44 20.43±0.35 2.7±0.11 6.72±0.24
Entropy Reg. 5.7±0.74 13.52±1.67 4.94±0.9 20.42±0.3 2.58±0.09 6.65±0.21
MMCE Reg. 4.89±0.74 12.57±2.27 1.92±0.46 20.04±0.38 2.24±0.08 5.68±0.2
Deep Ensemble 4.26±0.72 11.33±2.38 1.95±0.61 19.88±0.32 1.9±0.07 4.55±0.18

CaPE (bin) 4.58±0.75 11.85±2.49 1.71±0.51 19.68±0.36 1.78±0.07 4.35±0.16
CaPE (kernel) 4.62±0.62 12.25±2.31 1.65±0.38 19.71±0.34 1.74±0.07 4.3±0.17

Table 3: Performance on Face-based Risk Prediction. Linear scenario.

Sigmoid ECE MCE KS Brier MSEp KLp
Infinite Data 6.4±0.71 20.63±3.44 2.74±0.45 16.28±0.44 5.34±0.2 14.82±0.51

CE early-stop 6.19±0.75 17.0±3.68 5.86±0.8 16.68±0.42 6.16±0.17 17.16±0.48
Temperature 5.57±0.71 15.32±3.09 5.02±0.83 16.58±0.34 6.13±0.17 17.09±0.43
Platt Scaling 3.45±0.68 10.32±2.79 1.3±0.43 16.33±0.34 5.78±0.19 16.15±0.47
Dirichlet Cal. 14.5±1.15 25.68±3.02 4.67±0.32 19.21±0.43 8.64±0.26 25.18±0.58
Focal Loss 4.65±0.7 11.84±2.78 2.66±0.77 16.96±0.34 6.86±0.21 19.46±0.5
Mix-n-match 5.65±0.76 15.32±3.41 5.09±0.94 16.6±0.36 6.12±0.17 17.08±0.46
Entropy Reg. 9.51±0.79 18.77±2.38 7.26±0.78 17.17±0.31 7.02±0.17 21.16±0.42
MMCE Reg. 4.67±0.76 13.63±2.59 2.5±0.53 15.9±0.51 5.35±0.18 15.06±0.49
Deep Ensemble 5.17±0.74 16.12±3.11 2.04±0.44 16.39±0.45 5.86±0.22 16.46±0.6

CaPE (bin) 3.78±0.6 11.96±2.59 2.22±0.7 15.84±0.43 5.17±0.2 14.27±0.49
CaPE (kernel) 3.9±0.75 11.73±2.79 2.05±0.54 15.85±0.41 5.16±0.2 14.34±0.49

Table 4: Performance on Face-based Risk Prediction. Sigmoid scenario.
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Centered ECE MCE KS Brier MSEp KLp
Infinite Data 4.29±0.74 12.38±2.92 2.68±0.8 24.22±0.13 0.2±0.01 0.41±0.01

CE early-stop 5.76±0.84 15.32±3.07 4.19±1.02 24.68±0.08 0.48±0.01 0.98±0.03
Temperature 6.09±0.82 15.83±2.91 4.74±0.96 24.74±0.06 0.48±0.01 0.98±0.03
Platt Scaling 4.57±0.76 11.85±2.5 2.79±0.85 24.62±0.08 0.41±0.01 0.83±0.03
Dirichlet Cal. 4.84±1.15 13.13±7.61 2.16±0.86 24.7±0.1 0.46±0.01 0.94±0.03
Mix-n-match 6.05±0.83 15.71±2.92 4.68±0.98 24.74±0.06 0.48±0.01 0.98±0.02
Focal Loss 5.09±0.83 13.4±2.87 3.44±1.02 24.8±0.05 0.48±0.01 0.97±0.03
Entropy Reg. 5.02±0.86 12.69±3.42 3.27±0.96 24.74±0.06 0.45±0.01 0.92±0.03
MMCE Reg. 5.56±0.86 13.59±2.65 2.71±0.93 24.7±0.08 0.44±0.01 0.9±0.03
Deep Ensemble 4.84±0.78 12.39±2.52 2.64±0.71 24.69±0.07 0.44±0.01 0.89±0.03

CaPE (bin) 4.73±0.82 11.81±2.54 2.07±0.6 24.56±0.11 0.38±0.01 0.78±0.03
CaPE (kernel) 5.41±0.87 12.71±2.5 2.39±0.78 24.59±0.11 0.4±0.01 0.81±0.03

Table 5: Performance on Face-based Risk Prediction. Centered scenario.

Skewed ECE MCE KS Brier MSEp KLp
Infinite Data 2.7±0.46 7.64±2.14 1.05±0.39 11.0±0.51 0.22±0.01 0.92±0.03

CE early-stop 3.07±0.57 7.88±1.88 1.28±0.41 11.18±0.5 0.4±0.01 1.79±0.06
Temperature 3.14±0.49 7.92±1.84 1.12±0.33 11.22±0.47 0.4±0.02 1.76±0.06
Platt Scaling 2.99±0.53 7.73±1.59 1.07±0.37 11.1±0.54 0.39±0.01 1.72±0.06
Dirichlet Cal. 3.04±0.73 7.81±2.43 0.97±0.3 11.22±0.42 0.47±0.02 2.31±0.07
Focal Loss 8.29±0.67 14.93±1.43 6.16±0.67 12.01±0.41 1.28±0.03 1.63±0.66
Mix-n-match 2.99±0.53 7.78±1.78 1.08±0.32 11.18±0.49 0.4±0.01 1.75±0.05
Entropy Reg. 7.67±0.57 14.43±1.5 5.2±0.71 11.94±0.45 1.18±0.03 10.74±0.65
MMCE Reg. 3.68±0.59 10.94±2.76 1.47±0.31 11.14±0.44 0.54±0.02 2.44±0.08
Deep Ensemble 2.87±0.5 7.21±1.63 1.36±0.44 11.28±0.5 0.55±0.02 2.58±0.07

CaPE (bin) 3.29±0.5 8.18±1.51 1.17±0.34 11.07±0.47 0.4±0.02 1.73±0.06
CaPE (kernel) 3.16±0.5 8.14±1.58 1.09±0.33 11.17±0.53 0.39±0.01 1.69±0.06

Table 6: Performance on Face-based Risk Prediction. Skewed scenario.

Discrete ECE MCE KS Brier MSEp KLp
Infinite Data 4.23±0.74 11.16±2.5 1.45±0.49 20.38±0.35 1.52±0.05 3.63±0.12

CE early-stop 6.7±0.86 18.62±3.52 2.61±0.53 21.91±0.36 2.24±0.08 5.27±0.17
Temperature 6.12±0.87 16.82±3.56 3.37±0.86 21.76±0.35 2.21±0.08 5.15±0.18
Platt Scaling 4.7±0.72 11.69±2.44 1.67±0.51 21.44±0.32 2.06±0.08 4.83±0.17
Dirichlet Cal. 7.13±0.86 22.67±5.08 3.18±0.68 22.1±0.34 2.74±0.1 6.53±0.22
Focal Loss 5.7±0.75 13.68±2.32 4.62±0.91 21.77±0.28 2.92±0.09 6.77±0.21
Mix-n-match 6.27±0.76 16.83±2.95 3.47±0.93 21.77±0.33 2.21±0.08 5.14±0.18
Entropy Reg. 6.69±0.87 15.38±2.43 6.03±1.13 21.79±0.31 2.84±0.08 6.62±0.19
MMCE Reg. 3.96±0.7 10.4±2.4 1.51±0.47 21.12±0.35 2.09±0.08 4.92±0.18
Deep Ensemble 4.76±0.74 11.49±2.23 2.04±0.61 21.17±0.31 1.97±0.08 4.61±0.17

CaPE (bin) 5.41±0.74 14.45±3.15 2.24±0.59 21.33±0.36 1.81±0.08 4.28±0.18
CaPE (kernel) 4.96±0.8 12.97±2.63 2.18±0.58 21.21±0.42 1.84±0.08 4.35±0.17

Table 7: Performance on Face-based Risk Prediction. Discrete scenario.
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A.2 SUPPLEMENTARY METRICS ON REAL-WORLD DATASET

We present here additional metrics on the real world data: Cancer Survival (Table 8); Climate Fore-
casting (Table 9); Collision Prediction (Table 10).

Methods (×10−2) AUC ECE MCE NLL Brier KS

CE Early-stop 58.88 12.25 25.35 67.92 23.96 6.44
Temperature 58.88 12.07 24.65 67.11 23.73 6.92
Platt Scaling 58.91 10.28 27.69 66.11 23.33 4.91
Dirichlet Cal. 49.89 13.83 35.52 67.57 24.08 6.00
Mix-n-match 58.88 12.16 24.52 66.89 23.67 7.18
Focal loss 55.02 12.15 26.34 65.92 23.31 6.38
Entropy Reg. 56.29 11.73 30.81 66.49 23.62 6.83
MMCE Reg. 48.45 11.84 37.36 66.83 23.73 3.64
Deep Ensemble 52.26 9.99 28.30 66.22 23.47 5.02

CaPE (bin) 61.44 12.31 25.27 65.75 23.20 2.59
CaPE (kernel) 61.22 9.48 32.40 65.70 23.18 3.70

Table 8: Baselines with full metrics for cancer survival

Methods (×10−2) AUC ECE MCE NLL Brier KS

CE Early-stop 77.64 10.91 25.50 59.97 20.57 11.03
Temperature 77.64 8.66 23.56 58.77 20.21 7.41
Platt Scaling 77.65 6.97 16.47 57.38 19.53 3.26
Dirichlet Cal. 77.51 14.29 30.09 62.83 21.89 5.21
Mix-n-match 77.64 8.65 23.58 58.77 20.21 7.39
Focal Loss 76.18 8.32 21.25 59.01 20.27 4.45
Entropy Reg 79.01 10.53 20.72 57.83 19.77 5.00
MMCE Reg 76.69 8.46 19.73 59.25 20.12 7.31
Deep Ensemble 79.86 7.41 18.24 55.28 18.82 7.57

CaPE (bin) 78.99 5.16 15.09 79.00 18.37 2.34
CaPE (kernel) 79.00 5.08 13.28 54.32 18.39 2.34

Table 9: Baselines with full metrics for weather prediction

Methods (×10−2) AUC ECE MCE NLL Brier KS

CE Early-stop 85.68 4.36 19.87 31.67 8.59 1.54
Temperature 85.68 4.56 16.79 30.36 8.52 2.9
Platt Scaling 85.76 3.04 12.39 29.42 8.23 1.52
Dirichlet Cal. 83.36 5.78 18.13 30.90 8.77 1.60
Mix-n-match 85.68 4.40 17.41 30.25 8.52 2.60
Focal Loss 82.21 9.07 19.85 34.41 9.82 8.72
Entropy Reg 83.15 14.54 21.27 38.74 11.10 13.44
MMCE Reg. 85.18 2.94 8.95 30.65 8.48 2.44
Deep Ensemble 85.27 3.15 16.53 30.20 8.54 2.01

CaPE (bin) 8.57 3.16 12.21 30.61 8.18 2.13
CaPE (kernel) 85.95 3.22 13.32 30.44 8.13 2.10

Table 10: Baselines with full metrics for collision prediction
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A.3 ADDITIONAL RELIABILITY DIAGRAM

We present here additional reliability curves to the ones illustrated in Figure 6
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Figure 7: The reliability diagrams of all the baselines on real-world datasets. We train all base-
line methods on each of the datasets and plot the empirical probability(y-axis) against predicted
probability(x-axis). The axis labels are removed due to space constraints.
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We present here additional reliability curves for the different synthetic data scenarios, mentioned in
Figure 4.

B KOLMOGOROV-SMIRNOV ERROR

We derive the KS-error, mentioned in Section 3.

For a calibrated estimator
P[y = 1|f(x) ∈ I(q)] = q, ∀0 ≤ q ≤ 1,

for some small interval I(q) around q.

Hence
P[y = 1, f(x) ∈ I(q)] = P[f(x) ∈ I(q)]q, ∀0 ≤ q ≤ 1

. Similarly to the Kolmogorov-Smirnov (KS) test for distribution functions, we can recast this
property in integral form

φ1(σ) =

σ∫
0

P[y = 1, f(x) ∈ I(q)]dq, φ2(σ) =

σ∫
0

P[f(x) ∈ I(q)]qdq

We can evaluate φ1, φ2 from a finite sample (xi, yi), i = 1 . . . n,

φ1(σ) =
1

n

n∑
i=1

1(yi = 1, f(xi) ≤ σ), φ2(σ) =
1

n

n∑
i=1

1(f(xi) ≤ σ)f(xi)

The KS error is defined as
KS = max

1≤σ≤1
|φ1(σ)− φ2(σ)|

φ1, φ2 can be efficiently computed by sorting the data points with respect to their confidence scores
f(xi). The KS error has the advantage of being independent of binning configurations, unlike ECE
and MCE.

C BRIER SCORE DECOMPOSITION

We present here a decomposition of the Brier score into two components, discussed in Section 3.

The Brier score can be interpreted as a sum of two terms, calibration and refinement. Assume the
network can output one of K distinct possible predictions, i.e., p̂ ∈ {q̂1, . . . , q̂K}.
Denote Sk, the set of all inputs with output pk and q̄k the empirical probability over Sk, i.e.,

Sk = {x|f(x) = q̂k}, |Sk| = nk, q̄k =
1

nk

∑
xi∈Sk

yi

Then we can write

Brier =
1

N

N∑
i=1

(p̂i − yi)2 =
1

N

K∑
k=1

nk(q̂k − q̄k)2 +
1

N

K∑
k=1

nkq̄k(1− q̄k),

The first term on the RHS, calibration, is similar to MSEp, with the empirical probabilities q̄k sub-
stituting for the true labels. The second term, refinement, is an estimate of the confidence in deter-
mining q̄k. It is related to the area under curve (AUC), which measures to the achievable accuracy of
the network as a classifier. The term is smaller as the prediction classes fi tend towards 0 or 1. Thus,
this term penalizes empirically calibrated predictors, with low discriminative power, as in Figure 2b.

17



Under review as a conference paper at ICLR 2022

Linear

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0
Em

pi
ric

al
 p

ro
ba

bi
lit

y
pi

pi

Infinite Data

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Overfitting

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Early Stopping

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

CaPE

Sigmoid

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Em
pi

ric
al

 p
ro

ba
bi

lit
y

pi

pi

Infinite Data

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Overfitting

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Early Stopping

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

CaPE

Centered

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Em
pi

ric
al

 p
ro

ba
bi

lit
y

pi

pi

Infinite Data

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Overfitting

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Early Stopping

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

CaPE

Skewed

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Em
pi

ric
al

 p
ro

ba
bi

lit
y

pi

pi

Infinite Data

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Overfitting

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Early Stopping

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

CaPE

Discrete

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0

Em
pi

ric
al

 p
ro

ba
bi

lit
y

pi

pi

Infinite Data

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Overfitting

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

Early Stopping

0.0 0.5 1.0
Predicted probability

0.0

0.5

1.0 pi

pi

CaPE

Figure 8: Reliability diagrams for different synthetic data scenarios. We can see that CaPE out-
performs early stopping, prevents overfitting, and achieves a performance on par with training on
infinite resampled data.
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Figure 9: The comparison between MSEp and other metrics on synthetic data. Brier score presents
the most consistent correlation with MSEp.

D METRIC COMPARISON

We present here the correlation between different calibration and accuracy metrics and metrics that
have access to the ground truth probabilities, MSEp and KL-divergence, eveluated over all five
scenarios in our Face-based Risk Prediction synthetic dataset, referred to in Section 3.

E ESTIMATION OF EMPIRICAL PROBABILITY IN CAPE

We describe in further detail the two ways to estimate the conditional probability P[y = 1|f(x) ∈
I(q)], introduced in Section 4.
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Figure 9: Comparison between KLp and other metrics on synthetic data. Brier score presents the
most consistent correlation with KLp.

We wish to estimate the conditional probability of an output y given a network prediction f(x),
P[y = 1|f(x) ∈ I(q)] We can approximate the probability by averaging over points p̂ ∈ I(q),

P[y = 1|f(x) ∈ I(q)] ≈ 1

|I(q)|
∑
p̂∈I(q)

P[y = 1|f(x) = p] (7)

An empirical estimate of P[y = 1|f(x) ∈ I(q)] would be

P[y = 1|f(x) ∈ I(q)] ≈ 1

|Index(I(q))|
∑

f(xi)∈I(q)

yi, (8)

where Index(Iq) = {i|f(xi) ∈ I(q)}.
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Alternatively, we can use kernel estimation:

P[y = 1|f(x) ∈ I(q)] ≈ 1

Z

∑
p̂∈I(q)

P[y = 1|f(x) = p̂] · exp

(
− (p− q)2

σ2

)
, (9)

where Z =
∑
p∈I(q) exp

(
− (p−q)2

σ2

)
is the normalization factor. An empirical estimate of the

conditional probability would then be

P[y = 1|f(x) ∈ I(q)] ≈ 1

Z

∑
f(xi)∈I(q)

yi exp

(
− (f(xi)− q)2

σ2

)
. (10)

Based on these two approximation methods, we can design an algorithm to estimate piemp.

Bin We divide our data into B bins of equal size. Q1, . . . , QB are the data B-quantiles. We wish
to estimate P[y = 1|f(x) ∈ [Qb−1, Qb]], b = 1, . . . , B,Q0 = 0. Denote Ib := [Qb−1, Qb] ∩
{f(xi)}Ni=1, set of all predictions in [Qb−1, Qb], and Index(Ib) = {i|f(xi) ∈ Ib}. We have,

P[y = 1|f(x) ∈ [Qb−1, Qb]] ≈ p(b)emp =
1

|Ib|
∑

i∈Index(Ib)

yi

We assign p(b)emp to all data points i in the b-th quantile

piemp = p(b)emp ∀i ∈ Index(Ib)

Kernel In this case we use kernel estimation:

piemp =

∑
k∈NN(i,r)K (i, k) yk∑
k∈NN(i,r)K (i, k)

. (11)

NN(i, r) defines r data points whose predictions are nearest to p̂i = f(xi). K(i, j) is the Gaussian
kernel

K(i, j) = exp

(
− (p̂i − p̂j)2

σ2

)
,

with hyperparameter σ.

F CALIBRATION BASELINES

This section includes a review of the baseline methods, discussed in Section 6

Post-processing Postprocessing for calibration requires finding a function f : [0, 1] → [0, 1],
that augments the output of a the neural network p̂i → f(p̂i) in order to achieve better calibration
properties

• Platt scaling (Platt, 1999) optimizes f on validation set within the following family,

f1(p̂i) = σ
(
WT p̂i + b

)
(12)

where W ∈ R2, b ∈ R and σ is the Sigmoid function. The non-probabilistic predictions
of a classifier are used as features for a logistic regression model, which is trained on the
validation set to return probabilities.

• Temperature scaling (Guo et al., 2017) is a single parameter variant of Platt Scaling where
we only change the temperature of the softmax to obtain the calibrated probabilities.

f(p̂i) = Softmax (p̂i/T ) (13)
where T ∈ R minimizes the negative log-likelihood of validation set.

• Beta/Dirchlet calibration (Dir-ODIR) (Kull et al., 2017; 2019) assumes that the probabili-
ties can be parametrized by a Beta/Dirchlet distribution i.e.

fj ∼ Beta(α(j), β(j)) (14)
Assume the prior to be p(y = j) = πj , πj ∈ [0, 1], we have P (y|fj) ∝ πjfj , and then
α(j), β(j) are estimated by maximizing the posterior.
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Ensembling These calibration methods simultaneously train several neural networks from end to
end, varying parameters in the training process. The final output is some function of all the different
outputs.

• Mix-n-Match (Zhang et al., 2020) improves calibration by ensembling parametric and non-
parametric calibrators. Denote the temperature scaling function with g(ŷi, T ). Then Mix-
n-Match ensembles different temperatures

fj(p̂i) = w1gj(p̂i, T ) + w2gj(p̂i, 0) + w3gj(p̂i,∞) (15)
After ensembling the parametric temperature scaling, Mix-n-Match applies non-parametric
isotonic regression.

• Deep ensemble (Lakshminarayanan et al., 2017) trains M copies of the neural network
with different initialization. The probability estimation is the average of all single model
estimations

p(yi | xi) =
1

M

M∑
j

pθj (yi | xi) (16)

Modified training These calibration methods train the neural networks from end to end, modify-
ing the training process to improve calibration.

• Confidence penalty (Pereyra et al., 2017) Penalizeslow entropy output distributions (confi-
dence penalty). Label smoothing improve state-of-the-art models across benchmarks.

L(θ) = −
∑
i

log pθ(yi|xi)− βH(pθ(yi|xi)) (17)

• Focal loss (Mukhoti et al., 2020) maximizes entropy while minimizing the KL divergence
between the predicted and the target distributions. It also regularizes the weights of the
model to avoid overfitting.

L(θ) = −
∑
i

(1− pθ(yi|xi))γ log pθ(yi|xi), γ ∈ R. (18)

• Kernel MMCE (Kumar et al., 2018) is a reproducing kernel Hilbert space (RKHS) kernel
based measure of calibration that is efficiently trainable, alongside the negative likelihood
loss. Given data samples D = {(ci, ri)}mi=0, where ci = χ{ŷi=yi} and ri = P(ci = 1|ŷi),
MMCE is computed on samples D as following,

MMCE2(D) =
∑
i,j

(ci − ri)(cj − rj)k(ri, rj)

m2
(19)

where k(ri, rj) is a kernel function. MMCE is optimized together with the cross entropy
loss as a regularization term. The strength of calibration can be adjusted by a scale λ ∈ R.

L(θ) = −
∑
i

log pθ(yi|xi) + λ
(
MMCE2(D)

) 1
2 (20)

G SYNTHETIC DATA EXPERIMENTS

We use ResNet-18 model for all our experiments with synthetic data.

The synthetic data is split into training, validation, and test sets with 16641, 4738, and 2329 samples,
respectively. The training and validation sets contain only images xi and 0-1 labels yi for training
and tuning the model. In order to evaluate the performance of the model for probability estimation,
the held-out test set contains the ground truth probabilities pi, in addition to xi and yi. Note that we
do not use the ground-truth probability labels pi values during training or inference - we only use
them to compare the performance of different models.

Ground Truth Probability Generation The ground truth probability associated with example i
is simulated by pi = ψ(zi) where zi is age of the person.
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Figure 10: Illustration of the function ψ(z) used to generate the different synthetic-data scenarios.

Label distribution After determining the probability pi using ψ(z), the label yi is sampled from
a Bernoulli distribution parametrized by pi, so that it takes the value 1 with probability pi. The
distributions of yi under five different scenarios are illustrated in Fig.11.
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Figure 11: Histograms of the outcomes (yi) for the different synthetic-data scenarios.
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H REAL-WORLD DATA AND EXPERIMENT DETAILS

We present here supplementary information for the real-world datasets used in our experiments.

Cancer Survival Histopathological features are useful in identification of tumor cells, cancer sub-
types, and the stage and level of differentiation of the cancer. Hematoxylin and Eosin (H&E)-stained
slides are the most common type of histopathology data and the basis for decision making in the clin-
ics. With these properties, H&E are used for mortality prediction of cancer (Wulczyn et al., 2020).
In this experiment, we use the H&E slides of non-small cell lung cancers from The Cancer Genome
Atlas Program (TCGA)4 to predict the 5-year survival. The dataset has 1512 whole slide images
from 1009 patients, and 352 of them died in 5-years. We split the samples by patients and source
institutions into training, validation, and test set, which has 1203, 151, and 158 samples respectively.

The whole slide images contain numerous pixels, so we cropped the slides into tiles at 20x mag-
nification with 1/4 overlapping, resized them to 299 × 299 with bicubic interpolation, and filtered
out the tiles with more than 85% area covered by the background. The representations of each tile
are trained with self-supervised momentum contrastive learning (MoCo) (Chen et al., 2020), and
the slide-level prediction is obtained from a multiple-instance learning network (Ilse et al., 2018)
trained with the binary label of survival in 5 years.

Weather Forecasting We use the German Weather service dataset5, which contains quality-
controlled rainfall-depth composites from 17 operational Doppler radars. Three precipitation maps
from the past 30 minutes serve as an input. The training labels are the 0/1 events indicating whether
the mean precipitation increases (1) or not (0).

The German Weather service (DWD - Deutshce Wetter Dienst) dataset https://opendata.
dwd.de/weather/radar/ contains quality-controlled rainfall-depth composites from 17 op-
erational DWD Doppler radars. It has a spatial extent of 900x900 km, and covers the entirety of
Germany. Data exists since 2006, with a spatial and temporal resolution of 1x1 km and 5 minutes,
respectively. The dataset has been used to train RainNet, a pricipitation nowcasting model (Ayzel,
2020).

The network architecture is ResNet18, with 3 input channels and 2 output channels. The input to
the network are 3 precipitation maps which cover a fixed area of 300km×300 km in the center of
the grid (300× 300 pixels), set 10 minutes apart. The training, validation and test datasets consist of
20000, 6000 and 3000 samples, respectively, all separated temporally, over the span of 15 years.

Collision Prediction Vehicle collision is one of the leading causes of death in the world. Reliable
collision prediction systems which can warn drivers about potential collisions can save a significant
number of lives. A standard way to design such a system is to train a convolutional model for
identifying if a particular vehicle in the dash-cam video feed might collide with the car in next few
seconds. More formally, at time t = T the system tries to predict if any car in the video might
collide with our given car in time t ∈ [T, T + Tlook-ahead]. Each labelled training sample consists of
features X = (XT−δ, XT−2δ, . . . , XT−dδ) and a binary label Y ∈ {0, 1} denoting if an accident
will occur in t ∈ [T, T + Tlook-ahead]. Each Xt is a tensor with 4 channels where the first 3 channels
corresponds to an RGB image of the dashcam view at time t = t, and the fourth channel consists of
a mask with a bounding box on a particular vehicle of interest. In this work, we use YouTubeCrash
dataset (Kim et al., 2019) to train and test our model, which uses δ = 0.1s,Tlook-head = 18δ = 1.8s,
and d = 3. Following Kim et al. (2019) we used a VGG-16 network architecture.

The dataset contains 122 accident scenes, and 2096 non-accident scenes, which after feature extrac-
tion gives us 2096 positive samples, and 11486 negative samples (the dataset is severely imbalanced,
and similar to the Skewed situation in Section 6.1). We further split the dataset into train (6453 sam-
ples for label 0, and 1023 samples for label 1), validation (2348 samples for label 0, and 545 samples
for label 1), and test (2685 samples for label 0, and 528 samples for label 1) sets. The samples in
train, validation and test sets are generated from disjoint scenes/dashcam videos.

4https://www.cancer.gov/tcga
5https://opendata.dwd.de/weather/radar/
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I ANALYSIS OF CANCER SURVIVAL RESULTS

I II III/IV
Pathological stage

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 P
ro

ba
bi

lit
y

CE Early Stop
DeepEns
CaPE (kernel)

Figure 12: Estimated probability of survival grouped by pathological stages. The plot shows median,
samples between 25th to 75th percentile in the box, samples between 0th and 100th percentile on
the line, and the outliers as dots. Deep ensemble produces similar probability estimates for patients
across all the stages; CE is more discriminative but has a very large variance; CaPE achieves a
trade-off between the two baselines.

For cancer survival prediction, we visualize the estimated probabilities on the test set in different
pathological stages in Figure 12. In general, patients in earlier stages should have higher prob-
abilities of survival. Deep ensemble produces similar probability estimates for all stages (i.e the
model is less discriminative). Cross-entropy minimization (CE) is more discriminative, but has very
wide confidence intervals. CaPE is more discriminative than deep ensemble, while having narrower
confidence intervals than CE.

J CALIBRATING FROM THE BEGINNING

CaPE exploits a calibration-based cost function to improve its probability estimates without over-
fitting. The empirical probabilities in this loss are computed from the model itself. Consequently,
applying this strategy from the beginning of training can be counterproductive, because the model
predictions are essentially random. This is demonstrated in the following table, which compares
CaPE with a model trained using the calibration loss from the beginning (in the same way as CaPE,
alternating with cross-entropy minimization).

Methods Linear Sigmoid Centered Skewed Discrete
(×10−2) MSEp KLp MSEp KLp MSEp KLp MSEp KLp MSEp KLp

Bin (start) 2.59 6.81 8.07 22.10 0.48 0.98 0.51 2.37 2.74 6.36
Kernel (start) 2.23 5.68 7.60 21.15 0.54 1.10 0.68 2.84 2.40 5.63

Bin (CaPE) 1.83 4.46 5.29 14.59 0.38 0.78 0.40 1.72 1.83 4.31
Kernel (CaPE) 1.81 4.41 5.22 14.47 0.40 0.81 0.39 1.70 1.85 4.36

Table 11: Comparison between CaPE and a model that uses the calibration loss from the beginning
(in the same way as CaPE, alternating with cross-entropy minimization) on synthetic data.
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K COMPARISON OF REAL-WORLD DATASETS WITH DIFFERENT SCENARIOS
OF THE SIMULATED DATASET

Figure 13 illustrates the similarity between the empirical probability curves of different real-world
datasets and the different scenarios of our synthetic dataset. For the cancer survival dataset, the
empirical probabilities are clustered in the center (0.4-0.6) similar to the Centered scenario. For the
weather forecasting dataset, the probabilities are uniformly distributed across 0.1-0.8 similar to the
Linear scenario. For the collision prediction dataset, the majority of the data points are clustered in
the lower probability region which makes it similar to the Skewed scenario.
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Figure 13: Comparison of reliability diagrams for real-world data with different scenarios of
simulated data. For the cancer survival dataset, the empirical probabilities are clustered in around
(0.4-0.6), similar to the Centered scenario. For the weather forecasting dataset, the probabilities
are uniformly distributed across 0.1-0.8, similar to the Linear scenario. For the collision prediction
dataset, the majority of the output probabilities are clustered in the lower probability region, similar
to the Skewed scenario.
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