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Abstract

Large language models (LLMs) integrated001
into multi-step agent systems enable complex002
decision-making processes across various ap-003
plications. However, their outputs often lack004
reliability, making uncertainty estimation cru-005
cial. Existing uncertainty estimation methods006
primarily focus on final-step outputs, which fail007
to account for cumulative uncertainty over the008
multi-step decision-making process and the dy-009
namic interactions between agents and their010
environments. To address these limitations,011
we propose SAUP (Situation Awareness Un-012
certainty Propagation), a novel framework that013
propagates uncertainty through each step of an014
LLM-based agent’s reasoning process. SAUP015
incorporates situational awareness by assigning016
situational weights to each step’s uncertainty017
during the propagation. Our method, compat-018
ible with various one-step uncertainty estima-019
tion techniques, provides a comprehensive and020
accurate uncertainty measure. Extensive ex-021
periments on benchmark datasets demonstrate022
that SAUP significantly outperforms existing023
state-of-the-art methods, achieving up to 20%024
improvement in AUROC.025

1 Introduction026

Large language models (LLMs) (Minaee et al.,027

2024) have demonstrated remarkable capabilities,028

and when integrated into agent systems (Wang029

et al., 2024), they enable complex decision-making030

processes and broader applications. However,031

while LLM-based agents are increasingly effective,032

their outputs are not always reliable, which can lead033

to significant issues, particularly in high-stakes en-034

vironments such as healthcare or autonomous sys-035

tems. This makes uncertainty estimation critical,036

as it evaluates the reliability of an agent’s deci-037

sions and outputs (Chang et al., 2024; Raiaan et al.,038

2024). Understanding and quantifying uncertainty039

is essential because it offers insight into potential040

system failures, providing a safeguard for sensi-041

tive applications. Current methods for estimating 042

uncertainty in LLM-based agents remain limited. 043

For example, UALA (Han et al., 2024) proposes 044

a one-step uncertainty measurement to estimate 045

the uncertainty of the final step before the agent 046

provides an answer. 047

A key challenge is that uncertainty accumulates 048

over time in multi-step processes, rather than in 049

isolated actions, and is further exacerbated in dy- 050

namic environments where external factors are un- 051

controllable. These interactions can significantly 052

impact the system’s overall uncertainty. Therefore, 053

robust methods that account for various informa- 054

tion sources and interaction complexities are nec- 055

essary to accurately capture the uncertainty across 056

an agent’s entire decision-making process. As il- 057

lustrated in Figure 1, in sensitive contexts, solely 058

observing the final step’s uncertainty may lead to 059

overconfidence in the outcome, resulting in adverse 060

consequences and highlighting the importance of 061

considering intermediate uncertainties and the qual- 062

ity of interaction between the agent and its environ- 063

ment. 064

To estimate LLM uncertainty, previous ap- 065

proaches focus mainly on the variance of the final 066

step’s output at the token, sentence, or semantic 067

level. Predictive entropy (Gal and Ghahramani, 068

2016; Gal et al., 2017), initially used in image data, 069

was extended to language models to predict un- 070

certainty in output tokens (Xiao and Wang, 2021). 071

While likelihood can also indicate uncertainty, (Ma- 072

linin and Gales, 2020) introduces Normalized En- 073

tropy, accounting for output length. (Kuhn et al., 074

2023) proposes semantic entropy, incorporating 075

linguistic invariances within shared meanings. (Ka- 076

davath et al., 2022; Yin et al., 2023) explore self- 077

assessment by LLMs to estimate uncertainty. How- 078

ever, these methods, designed for traditional one- 079

step QA, do not directly apply to LLM agents. 080

They face two key issues: first, they only consider 081

the final step’s uncertainty, ignoring the accumula- 082
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Question: I installed cameras outside my house and caught my neighbor 
entering my garage. Can I use the footage in court to sue my neighbor?

Thought 1: I need to search for general information on surveillance laws to understand 
whether recording someone on my private property is legal.
Action 1: Search [surveillance laws]
Observation 1: … Generally, homeowners can install cameras on their property for 
security purposes. However, some laws restrict recording in areas where individuals 
have a reasonable expectation of privacy, such as inside a neighbor’s home …

Thought 2:  Security camera footage is often used in court, especially 
when recorded legally. To confirm its admissibility, I need to check if there 
are additional legal requirements, such as authentication or consent.
Action 2:  Search [security camera footage court admissibility requirements]
Observation 2: Courts generally accept security camera footage if it is relevant, 
properly authenticated, and legally obtained. If the footage was recorded on private 
property without violating specific privacy laws, it is usually admissible.

Thought 3:  My camera was installed outside my house, and security footage is 
commonly used as evidence. Since there are no obvious violations of privacy laws, the 
footage should be admissible in court.
Action 3:  Finish [Yes, the footage can be used in court] (Wrong Answer)

U
ncertainty

Figure 1: The overall uncertainty of an agent based on
large language models (LLMs). In this example, al-
though the large model ultimately arrived at the exact
answer, the high uncertainty during the intermediate rea-
soning process caused it to fail to consider critical legal
factors such as privacy laws and rules on admissibility
of evidence, leading to an incorrect result.

tion of uncertainty throughout the process; second,083

they overlook the reasoning process of LLM agents,084

which is critical in multi-step decision-making and085

the agent’s interaction with its environment.086

To address the challenges of uncertainty in multi-087

step processes within complex environments, we088

introduce SAUP (Situation-Awareness Uncertainty089

Propagation). SAUP comprehensively estimates090

uncertainty in LLM-based agents by propagating091

uncertainty through the multi-step reasoning and092

decision-making process. It builds upon frame-093

works like ReACT (Yao et al., 2022), which inte-094

grates LLMs’ reasoning into problem-solving by095

decomposing tasks into thinking, acting, and ob-096

serving steps. SAUP propagates uncertainties from097

the initial stages to the final step and aggregates098

them using a situation-weighting scheme, where099

each step’s uncertainty is weighted based on the100

agent’s situation, progress, and observation qual-101

ity. Since directly measuring an agent’s situation102

is challenging, we design effective surrogates that103

are adaptable to various scenarios.104

The primary contribution of this paper can be105

summarized as follows: Firstly, We propose SAUP,106

a simple yet effective pipeline for providing com-107

prehensive situation-aware uncertainty estimation108

in multi-step agents within complex environments.109

Unlike existing single-step uncertainty estimation110

methods, SAUP accounts for the agent’s situational111

context throughout problem-solving, rather than112

focusing solely on the final step. Secondly, To esti-113

mate the agent’s unobservable situation, we intro-114

duce surrogate methods, which excel in estimating115

situational uncertainty and offer potential applica- 116

tions in related fields. Lastly, We evaluate SAUP 117

on benchmark datasets such as HotpotQA (Yang 118

et al., 2018), StrategyQA (Geva et al., 2021), and 119

MMLU (Hendrycks et al., 2020). SAUP outper- 120

forms state-of-the-art methods, achieving up to a 121

20% improvement in AUROC, demonstrating its 122

effectiveness. 123

2 Related Works 124

2.1 LLM-based Agent 125

The reasoning capabilities of LLMs have prompted 126

researchers to explore their use as the core of agent 127

reasoning. Nakano et al. (Nakano et al., 2021) 128

made an early attempt to employ LLMs as agents 129

with web search and information retrieval capa- 130

bilities, transitioning LLMs from passive tools to 131

proactive agents interacting with complex environ- 132

ments. Subsequent works (Wang et al., 2021; Chen 133

et al., 2021) explored LLMs in code generation for 134

software development. Yao et al. (Yao et al., 2022) 135

introduced the ReAct pipeline, utilizing LLMs for 136

decision-making where agents retrieve external in- 137

formation before making decisions. This frame- 138

work, mirroring human decision-making, became 139

foundational for decision-making agents, inspiring 140

improvements by Shinn et al. (Shinn et al., 2023) 141

and Renze et al. (Renze and Guven, 2024) through 142

self-reflection. Li et al. (Li et al., 2023) proposed 143

CAMEL, which expanded the framework to enable 144

communication between agents, fostering collabo- 145

ration. Similarly, AutoGen (Wu et al., 2023) allows 146

agents to converse and collaborate with customiz- 147

able interactions in natural language and code. To 148

further enhance decision-making, Qiao et al. (Qiao 149

et al., 2023) incorporated tool-based monitoring to 150

refine agent behaviors. 151

2.2 Uncertainty in Large Language Models 152

LLMs dominate numerous fields, including as 153

agents (Zhao et al., 2023; Xi et al., 2023), but 154

targeted uncertainty estimation methods for LLM- 155

based agents remain unexplored. Existing tech- 156

niques focus on one-step output uncertainty, orig- 157

inating from traditional language models, such as 158

methods to improve model calibration (Xiao and 159

Wang, 2019, 2021; Jiang et al., 2021). Token-level 160

uncertainty estimation in "white-box" LLMs (Ma- 161

linin and Gales, 2020; Fomicheva et al., 2020; Dar- 162

rin et al., 2022; Duan et al., 2024) has advanced, 163

with Kuhn et al. (Kuhn et al., 2023) introducing 164
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semantic equivalence into these calculations. Ad-165

ditionally, self-estimation of uncertainty in both166

"white-box" and "black-box" LLMs, accessed via167

APIs, has been explored (Kadavath et al., 2022;168

Yin et al., 2023; Chen et al., 2024). These methods169

focus on one-step uncertainty estimation, which170

can be integrated into the SAUP framework as the171

backbone for uncertainty assessments.172

3 SAUP: Situational Awareness173

Uncertainty Propagation174

We propose our pipeline, SAUP, with the goal of ac-175

curately estimating the overall agent’s uncertainty176

by comprehensively considering the uncertainty at177

each step and the corresponding situational weights,178

as described in Figure 3. In the following sections,179

we delve into the details, elucidating how we ag-180

gregate the uncertainty from each step and estimate181

the corresponding situational weights.182

3.1 Weighted Uncertainty Propagation183

Uncertainty Propagation. As depicted in Figure184

3, for each step i, the agent provides the think-185

ing/action with the corresponding uncertainty Ui186

based on the previous state Zi−1 and the question187

Q. Considering only the uncertainty of the last188

step as the overall uncertainty Uagent is unreason-189

able and not comprehensive. Instead, we should190

comprehensively consider and propagate the uncer-191

tainties of all steps. The simplest example is using192

an arithmetic mean of the uncertainty across the193

steps before the agent gives the final answer. For194

robustness against outliers, accurate reflection of195

central tendency, and consistency in proportional196

changes, the geometric mean or Root Mean Square197

(RMS) can be a better choice compared to the arith-198

metic mean.199

Situational Uncertainty Weights. Based on200

the intuitive logic of information flow and exper-201

imental observations, we have identified that the202

contribution of uncertainty at different steps to the203

overall agent uncertainty is not uniform. There-204

fore, in addition to the uniform aggregation scheme205

introduced earlier, it is essential to design a more206

comprehensive weighting aggregation scheme for207

overall uncertainty, tailored to the characteristics208

of the agent.209

During the process of obtaining the final answer,210

the LLM-based agent produces uncertainty. We211

refer to the contribution of the current step’s uncer-212

tainty to the overall uncertainty, due to the agent’s213

situation, as the situational weights. Situational 214

weights are determined by factors, such as devi- 215

ations from the appropriate logical path and the 216

quality of interactions between the agent and the 217

environment, which influence the correctness of the 218

final answer. These situational weights are variable 219

during the agent’s problem-solving process and its 220

interaction with the environment. Assume that the 221

uncertainty at step i is Ui and the corresponding 222

situational weight is Wi, the formula of weighted 223

uncertainty propagation is: 224

Uagent =

√√√√ 1

N

N∑
i=1

((WiUi)2) (1) 225

Here we choose the RMS as the propagation 226

method. In the practical application of SAUP, be- 227

sides the above linear term, we also utilize an extra 228

logical term for numerical stability. We designed 229

the SAUP formula based on the following consid- 230

erations. First, SAUP relies on a comprehensive 231

consideration of all steps of the agent based on 232

propagation. Second, by introducing situational 233

weights for the uncertainty of different steps, SAUP 234

allows for a more complete assessment of the im- 235

pact of specific steps on the overall uncertainty of 236

the agent. In the following section 3.2 and 3.3, 237

we will introduce the method for calculating the 238

uncertainty Ui and the situational weight Wi corre- 239

sponding to each step. 240

3.2 Single-Step Uncertainty Estimation 241

From equation 1, we can see that essentially, our 242

SAUP is compatible with all single-step uncertainty 243

estimation methods applicable to various scenarios, 244

including but not limited to the ones we mentioned. 245

SAUP is built upon these one-step methods. 246

In the practical implementation, we utilize the 247

normalized entropy (Malinin and Gales, 2020), 248

with some modifications to adapt it to the char- 249

acteristics of the React Agent pipeline. This choice 250

is based on the consideration that normalized en- 251

tropy has broad applicability. It can not only be 252

applied to open-source LLMs, such as LLAMA, 253

where complete logits of the output are accessi- 254

ble, but can also be utilized with LLMs that are 255

accessible only via API, such as the CHATGPT 256

series. In addition, it is computationally efficient 257

and demonstrates strong predictive performance 258

for single-step uncertainty estimation. 259

For step n and question Q, we denote the agent’s 260

thinking as Tn, and the corresponding action as 261
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Thinking ObservationAction AnswerQuestion

Multi-Step Agent

inquiry drift 

inference gap 

Situational Weight Estimation (CHMM)

Single-Step Uncertainty Estimation

Agent’s Uncertainty…

Figure 2: Overview of our proposed SAUP. The general pipeline of LLM-based multi-step agents is represented by
black arrows, which typically involves three behaviors: thinking, action, and observation. The process of uncertainty
propagation is represented by red arrows. For each step in the agent, off-the-shelf methods are used to estimate
the uncertainty at that step, while also generating a global inquiry drift Da and a local inference gap Do. Together,
these two components form continuous states that feed into CHMM for situational weight prediction. They, along
with single-step uncertainty, jointly derive the agent’s overall uncertainty.

An. The observation On is the information gained262

from the environment through the action An. Let263

the LLM be denoted as Lθ, and the trajectory of264

the previous n− 1 steps as Zn−1, where Zn−1 =265

{(A1, T1, O1), . . . , (An−1, Tn−1, On−1)}. The266

LLM will output the response of thinking Tn and267

the action An together as:268

(Tn, An) = Lθ(Q,Zn−1). (2)269

the step uncertainty Un = UT
n + UA

n is designed270

as the combination of thinking uncertainty UT
n and271

action uncertainty UA
n . And here we consider Pre-272

dictive entropy (Kadavath et al., 2022) with the273

length normalization to estimate the thinking un-274

certainty and action uncertainty as follows:275

UR
n = H(Rn | Q,Zn−1)

= ERn [
1

|Rn|
− log P(Rn | Q,Zn−1)]

= ERn

[
1

|Rn|

Rn∑
ai

− log P (ai | Q,Zn−1, a0, · · · ai−1)

]
(3)276

where UR
n is the LLM response uncertainty (either277

UT
n or UA

n ), ai is the token of Rn, Rn is the LLM278

response (either Tn or An), H(·) is the entropy279

function, and P represent the probability.280

3.3 Agent Uncertainty Estimation281

Assigning weights Wi to each step’s uncertainty Ui282

in a multi-step reasoning process is crucial for accu-283

rate overall uncertainty estimation. In LLM-based284

agents, effective reasoning significantly influences285

decision-making. However, these agents may ex-286

hibit overconfidence, making it essential to evaluate287

their situational state properly. Since the situational 288

state is not directly observable, surrogate measures 289

are used to approximate it. One idea is to assign 290

greater weight to steps closer to the final answer 291

or to measure deviation from an ideal trajectory. 292

While these approaches have merit, they do not 293

fully capture the agent’s true situational state. 294

To address this limitation, we introduce learning- 295

based surrogate models to capture agents’ latent 296

situational dynamics. Our proposed SAUP-HMMD 297

leverages Hidden Markov Models (HMMs) (Baum 298

and Petrie, 1966) to learn stepwise transitions 299

and adaptively weight observations. HMMs 300

are particularly suitable due to their (1) mini- 301

mal data requirements and (2) computational ef- 302

ficiency, making them ideal under data constraints. 303

While LSTMs (Hochreiter, 1997) and Transform- 304

ers (Vaswani, 2017) excel at modeling temporal 305

dependencies, they require significantly more data 306

and computation. Although our framework sup- 307

ports various sequence models, HMMs serve as the 308

baseline for small datasets. Section 4.3 provides a 309

detailed performance comparison. 310

As a probabilistic framework for modeling se- 311

quential patterns, HMMs operate by estimating 312

latent system states through observable evidence, 313

governed by regular state transition dynamics. 314

Formally, a HMM is parameterized by follow- 315

ing core components: (i) the hidden state space 316

S = {s1, ..., sN} and observation space O = 317

{o1, ..., oM}, (ii) transition matrix A = [aij ] en- 318

coding P (sj |si), (iii) emission matrix B = [bij ] 319

characterizing P (ok|sj), and (iv) prior distribution 320

π = [πi] specifying initial state probabilities. 321
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Question: Can drinking coffee help with weight loss?

Thought / Action 1: Coffee contains caffeine, which is known to have effects on 
metabolism. I need to find out whether caffeine influences weight loss ( ). 
Observation 1: Caffeine can slightly boost metabolism and increase fat oxidation, …
Step Uncertainty: Low | Inquiry Drift: Low | Cumulative Uncertainty: Low

Thought / Action 2: Since caffeine affects metabolism, I should check if coffee itself 
has additional properties that contribute to weight loss ( ). 
Observation 2: Some studies suggest that black coffee, …
Step Uncertainty: Low | Inquiry Drift: Low | Cumulative Uncertainty: Low

Thought / Action 3: If coffee reduces appetite, I should check whether appetite 
suppression is an effective long-term weight loss strategy ( ). 
Observation 3: Appetite suppression can lead to short-term weight loss, … Many 
appetite suppressants lose effectiveness over time.
Step Uncertainty: Low | Inquiry Drift: Moderate | Cumulative Uncertainty: Moderate

Thought / Action 4: Since long-term weight loss requires a sustainable diet, I should 
check if coffee is commonly used in weight loss programs ( ).
Observation 4: Some commercial weight loss programs recommend coffee, …
Uncertainty: Low | Inquiry Drift: High | Cumulative Uncertainty: High

Thought / Action 5: Since coffee is included in weight loss programs and can suppress 
appetite, it must be an effective way to lose weight ( ).
Answer: Yes, drinking coffee is an effective way to lose weight. (Wrong Answer)

Uncertainty: Low | Inquiry Drift: Low | Cumulative Uncertainty: High

Question: Can drinking water help improve concentration?

Thought / Action 1: Since the brain is largely composed of water, hydration might be 
linked to cognitive function. I need to check if there is a connection between drinking 
water and concentration ( ). 
Observation 1: Some studies suggest that dehydration can impair cognitive function, 
including concentration and memory. However, the extent of this effect is still debated.
Uncertainty: Low | Inference Gap: Low | Cumulative Uncertainty: Low

Answer: No, drinking water does not improve concentration. (Wrong Answer)

Uncertainty: Low | Inference Gap: Low | Cumulative Uncertainty: High

Thought / Action 2: Since dehydration can impair concentration, I should check whether 
drinking water immediately improves focus ( ). 
Observation 2: Research indicates that drinking water can have short-term cognitive 
benefits, especially in dehydrated individuals. …
Uncertainty: Low | Inference Gap: Low | Cumulative Uncertainty: Low

Thought / Action 3: If it can, I should check whether it has a significant impact on 
attention levels compared to other methods ( ). 
Observation 3: Studies show that caffeine has a more immediate and noticeable 
impact on alertness and concentration compared to water. However, long-term hydration 
is still beneficial for cognitive performance.
Uncertainty: Low | Inference Gap: High | Cumulative Uncertainty: High

Thought / Action 4: Since caffeine improves concentration more than water, drinking 
water must not be an effective way to improve focus ( ). 

Question: What is the birthplace of the Senator…first of 62 districts in the State Senate?

Action 1:  for Senator who representsthe first of 62 districts in the StateSenate.
Observation 1: Could not find Senator whorepresents the first of 62 districts in theState 
Senate. Similar: ['United States Senate', ...
Uncertainty: Low | Inference Gap: Low | Inquiry Drift: Low
Deviation degree of this step's logic: Low | Cumulative Uncertainty: Low

Answer: Honolulu, Hawaii. (Wrong Answer)

Uncertainty: Low | Inference Gap: Low | Inquiry Drift: Low
Deviation degree of this step's logic: High | Cumulative Uncertainty: High

……

Action 3:  for birthplace of a Senator.
Observation 3: Could not find SirJohn Wedderburn 5th Baronet of Blackness …
Uncertainty: Low | Inference Gap: Low | Inquiry Drift: Moderate
Deviation degree of this step's logic: Moderate | Cumulative Uncertainty: Moderate

Action 4:  for Barack Obama.
Observation 4: Barack Hussein Obama (bornAugust 4, 1961) is an American 
politicianwho served as the 44th president of theUnited States from 2009 to ...

Uncertainty: Low | Inference Gap: High | Inquiry Drift: Moderate
Deviation degree of this step's logic: High | Cumulative Uncertainty: High
……

Action 6:  the previous findings and conclude the answer.

(a) (b) (c)

Figure 3: Examples for (a) inquiry drift, (b) inference gap and (c) the hidden states of CHMM. (a) and (b) respectively
illustrate that even when the single-step uncertainty remains low throughout the process, excessively high inquiry
drift and inference gap in certain steps provide additional situational information that increases the uncertainty of
those steps. This, in turn, causes the LLM’s reasoning process to deviate from the correct direction, ultimately
leading to an incorrect result. (c) illustrates how the hidden states of CHMM, influenced by both inquiry drift and
inference gap, affect the agent’s logical behavior.

Extending HMMs to continuous observation322

domains, Continuous HMMs (CHMMs) leverage323

Gaussian Mixture Models (GMMs) to model emis-324

sion probabilities within continuous feature spaces.325

We adopt CHMM as the backbone model for326

HMMD, where the hidden states are designed to327

assess the alignment between the large language328

model’s chain-of-thought reasoning and the origi-329

nal problem context. Specifically, we define three330

discrete hidden states: correct trajectory, moder-331

ately deviated trajectory, and highly deviated tra-332

jectory, capturing varying degrees of deviation in333

the reasoning process. To systematically quantify334

these deviations, we introduce two key distance335

metrics:336

• Inquiry Drift Da : Measures the semantic337

shift between the original question and the338

agent’s evolving thought-action-observation339

trajectory, capturing the global deviation340

across multiple reasoning steps.341

• Inference Gap Do : Captures the local transi-342

tion dynamics by quantifying the discrepancy343

between a thought and observation process344

within one step.345

These two metrics comprehensively characterize346

both long-term and short-term variations in the347

agent’s decision trajectory, offering a structured348

perspective on its situational awareness. To utilize349

Da and Do, we adopt two approaches: (1) directly350

computing plain distances using a RoBERTa (Liu,351

2019) model fine-tuned on SQuAD v2 (Rajpurkar352

et al., 2018), and (2) integrating the (Da, Do) pairs353

as observable variables into the CHMM framework,354

leveraging its latent structure to infer the hidden355

states, which in turn serve as situational weights. 356

This dual approach enhances the robustness of our 357

distance estimation by combining direct metric- 358

based evaluation with probabilistic inference. The 359

CHMM is trained via the Baum-Welch algorithm, 360

enabling a more structured assessment of reasoning 361

deviations. 362

The SAUP algorithm employs different surro- 363

gate configurations. We illustrate the SAUP using 364

distance as the surrogate in Algorithm 1. Initially, 365

uncertainty Un is computed for step n, along with 366

the corresponding distances Dan and Don . This 367

is repeated for N steps. Subsequently, based on 368

the surrogate choice, either plain or HMM-based, 369

the situational weights Wn are determined. Finally, 370

the uncertainties U and weights W are aggregated 371

to estimate the agent’s overall uncertainty Uagent. 372

4 Experiments 373

In this section, we evaluate the performance of 374

SAUP, aiming to answer the following questions: 375

Q1: Does SAUP outperform previous state-of-the- 376

art approaches for uncertainty estimation? Q2: 377

Given the comprehensive process of Uncertainty 378

Propagation, does SAUP provide more accurate un- 379

certainty estimation compared to single-step meth- 380

ods? Q3: Are the situational weights for specific 381

steps effective in improving overall uncertainty esti- 382

mation? Since obtaining precise situational weights 383

is impractical, we designed surrogates, including 384

distance-based and position-based methods. Are 385

these surrogates reliable for accurately assessing 386

the agent’s current situation? 387
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Algorithm 1 Situational Awareness Uncertainty
Propagation (SAUP)

Initialize the N -Step LLM-based Agent
Lθ with the problem Q, and the Zn =
{(A1, T1, O1), (A2, T2, O2), . . . , (An, Tn, On)}.

for step n in the problem solving process do
The Uncertainty for current step UR

n ←
H(Rn | Q,Zn−1)
Dan ← Dis(Zn, Q)
Don ← Dis(An, On)
if using the CHMM as the surrogates then

Add the (Dan +Don) into the DL

else
Using the Plain-Distance as the surrogates
Wn ← Dan +Don

end if
end for
if using the CHMM as the surrogates then
(W1,W2, . . . ,WN )← H(DL) = H((Da1 +
Do1), . . . , (DaN +DoN ))

end if
The Uncertainty for the agent Uagent ←
SAUP ((U1,W1), (U2,W2), . . . , (UN ,WN ))
return Situational Awareness Agent Uncer-
tainty Uagent

4.1 Experimental Setup388

LLM-based Agent Framework. Our experiments389

focus on evaluating SAUP’s ability to improve390

uncertainty estimation for multi-step LLM-based391

agents. While various multi-step agents follow392

different pipeline designs, they generally adhere393

to the thinking-acting-observation workflow. We394

chose the React (Yao et al., 2022) framework, a395

widely-used agent model, for its alignment with396

this workflow.397

Backbone LLMs. We selected two categories398

of LLMs for the React agents: the open-source399

LLAMA3 (Dubey et al., 2024) series (8B and 70B400

models) with entropy access, and GPT-4o (Achiam401

et al., 2023) (available via API), which restricts402

internal information. This selection ensures broad403

coverage of real-world scenarios.404

Dataset and Task. We evaluated three challeng-405

ing agent-based QA tasks. The first, HotpotQA406

(Yang et al., 2018), focuses on multi-hop QA with407

diverse free-form answers. We randomly sampled408

2,000 questions from the development set, assessed409

by both human evaluators and ChatGPT. The sec-410

ond, MMLU (Hendrycks et al., 2020), involves 411

multiple-choice questions across diverse fields like 412

law and mathematics. Ten questions were sam- 413

pled per subtask from the test set. Lastly, Strat- 414

egyQA (Geva et al., 2021) requires implicit rea- 415

soning, evaluated with true/false questions from its 416

development set (229 questions). 417

Environment for External Information. LLM- 418

based agents often need external sources to solve 419

these tasks. For HotpotQA and StrategyQA, we 420

provided access to the Wikipedia API, which re- 421

trieves relevant entity-based information. For 422

MMLU, we used SerpAPI (SerpAPI, 2024) for 423

structured Google search results. 424

Baselines. We evaluated SAUP against sev- 425

eral uncertainty estimation methods. For entropy- 426

based approaches, we used predictive and seman- 427

tic entropy (Xiao and Wang, 2019; Kuhn et al., 428

2023). Likelihood-based methods (Malinin and 429

Gales, 2020) included plain likelihood and nor- 430

malized entropy, the latter accounting for token 431

length. We also implemented P(True) (Kadavath 432

et al., 2022; Yin et al., 2023), which prompts agents 433

to self-assess their confidence. 434

Evaluation Metrics. We used AUROC 435

(Bradley, 1997) to measure the ability of uncer- 436

tainty methods to distinguish between correct and 437

incorrect responses. Higher AUROC values indi- 438

cate better differentiation, with a perfect score of 439

1 representing complete distinction and 0.5 repre- 440

senting random chance. 441

4.2 Superior Discriminative Performance of 442

SAUP 443

In this section, we compare various uncertainty 444

measurement methods in assessing whether an 445

LLM-based agent’s final response to QA questions 446

is correct or incorrect. The evaluation involves 447

the following steps: (1) The agent, using the Re- 448

ACT framework, answers the QA questions; (2) 449

Multiple versions of our SAUP method and other 450

baseline uncertainty estimation methods calculate 451

uncertainty scores for each response; (3) Responses 452

are classified as correct (0) or incorrect (1); (4) AU- 453

ROC is calculated based on classification accuracy 454

and uncertainty scores. Ideally, incorrect answers 455

should correspond to higher uncertainty scores. 456

We employed several state-of-the-art LLMs, in- 457

cluding {LLAMA3 8B, LLAMA3 70B, GPT4O}, 458

and conducted evaluations on challenging datasets, 459

namely {StrategyQA, MMLU, HotpotQA}. Ta- 460

ble 1 presents the results, demonstrating that our 461
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Table 1: Results for SAUP. The best results and second best results are bold and underlined, respectively.

HotpotQA MMLU StrategyQAMethod
LLAMA3 8B LLAMA3 70B GPT4O LLAMA3 8B LLAMA3 70B GPT4-O LLAMA3 8B LLAMA3 70B GPT4-O

Predictive Entropy 0.631 0.617 N.A. 0.531 0.585 N.A. 0.542 0.589 N.A.
Likelihood 0.653 0.622 0.764 0.550 0.592 0.610 0.525 0.591 0.641

Normalised Entropy 0.664 0.635 0.772 0.555 0.579 0.607 0.554 0.557 0.710
P(True) 0.601 0.618 0.749 0.528 0.560 0.588 0.533 0.577 0.689

Semantic Entropy 0.702 0.669 N.A. 0.548 0.605 N.A. 0.599 0.610 N.A.

SAUP-Learned 0.771 0.755 0.778 0.669 0.638 0.626 0.787 0.783 0.809

Table 2: Results for SAUP with various Surrogates. The best results and second best results are bold and underlined,
respectively.

HotpotQA MMLU StrategyQAMethod
LLAMA3 8B LLAMA3 70B GPT4O LLAMA3 8B LLAMA3 70B GPT4-O LLAMA3 8B LLAMA3 70B GPT4-O

SAUP-P 0.723 0.739 0.797 0.634 0.636 0.614 0.668 0.641 0.734
SAUP-D 0.762 0.726 0.773 0.660 0.619 0.624 0.755 0.809 0.806

SAUP-PD 0.759 0.745 0.782 0.651 0.625 0.619 0.732 0.756 0.785

SAUP-HMMD(Learned) 0.771 0.755 0.778 0.669 0.638 0.626 0.787 0.783 0.809

SAUP method, consistently achieves higher AU-462

ROC scores across all datasets compared to state-463

of-the-art methods. These findings indicate that464

SAUP offers superior performance in distinguish-465

ing between correct and incorrect agent responses466

based on uncertainty estimation, leading to impor-467

tant conclusions.468

Figure 4: The Performance Comparison of Learned-
based Surrogates with Various S2S Backbone Models

4.3 In-Depth Dissection of SAUP469

Given the superiority of our proposed SAUP, we470

further dissect its performance by addressing the471

following questions. This analysis highlights the472

advantages of SAUP in various aspects and offers473

insights into its applicability and performance un-474

der different conditions.475

Q1: Is the uncertainty measurement of the in-476

ternal steps beneficial for the overall uncertainty477

measurement of the agent?478

Yes, measuring uncertainty at each internal step479

significantly contributes to a more accurate overall480

uncertainty estimation. By considering intermedi-481

ate uncertainties, we capture the cumulative effect482

of uncertainty propagation throughout the interac-483

tion process. As shown in Table 1, SAUP-based484

methods consistently outperform traditional single-485

step methods in AUROC scores across datasets and486

models. The internal step uncertainties provide 487

meaningful information that, when aggregated, en- 488

hance the overall uncertainty measurement. Even 489

basic uncertainty propagation methods, such as al- 490

gorithmic averaging or root mean square (RMS), 491

used to aggregate the uncertainty across all steps, 492

have demonstrated significant improvements over 493

single-step baselines, as shown in Table 3. 494

Q2: What is the quality of the surrogates, and 495

how do they benefit the overall uncertainty mea- 496

surement? 497

High-quality surrogates ensure that situational 498

weights accurately reflect each step’s impact on 499

the overall uncertainty. We propose the Position 500

Surrogate (SAUP-P), which assigns greater weight 501

to steps closer to the final answer, and the Plain 502

Distance Surrogate (SAUP-D), which uses only the 503

plain distance. The Hybrid Surrogate (SAUP-PD) 504

combines both approaches with a factor for better 505

balance. As shown in Table 2 and Table 3, different 506

surrogates improve AUROC scores compared to 507

simple uncertainty propagation baselines, which 508

assign equal weights to all steps. In addition, the 509

HMMD-based (learned) surrogate outperforms oth- 510

ers by a clear margin, validating its effectiveness in 511

capturing the agent’s situational context. 512

Q3: Can SAUP demonstrate its superiority in 513

separating correct and incorrect results? 514

Yes, SAUP provides more discriminative uncer- 515

tainty scores, leading to higher AUROC values 516

across datasets and models, as evidenced in Ta- 517

ble 1. The step-by-step propagation of uncertainty 518

allows SAUP to capture the accumulation of uncer- 519

tainty throughout the reasoning process, enabling 520

better separation of correct and incorrect results. 521

In addition, we performed a visualization anal- 522

ysis on the StrategyQA dataset (Figure 5). The 523
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Table 3: Results for Simple Uncertainty Propagation. The best results and second best results are bold and
underlined, respectively.

HotpotQA MMLU StrategyQAMethod
LLAMA3 8B LLAMA3 70B GPT4O LLAMA3 8B LLAMA3 70B GPT4-O LLAMA3 8B LLAMA3 70B GPT4-O

Arithmetic Mean 0.695 0.676 0.781 0.621 0.596 0.609 0.576 0.611 0.711
Geometric Mean 0.713 0.714 0.785 0.614 0.591 0.610 0.601 0.627 0.714

RMS 0.717 0.728 0.782 0.624 0.615 0.612 0.584 0.629 0.723

SAUP-Learned 0.771 0.755 0.778 0.669 0.638 0.626 0.787 0.783 0.809
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Figure 5: Visualization analysis of one-step methods (left), simple uncertainty propagation methods (middle) and
SAUP (right) on the StrategyQA dataset. Detailed explanations of this figure are provided in the Q3 of Section 4.3.

X-axis represents the steps taken, and the Y-axis524

shows normalized uncertainty values. Red points525

indicate incorrect answers, and blue points indicate526

correct answers. SAUP (right) shows the clearest527

separation between correct and incorrect answers,528

outperforming the one-step (left) and simple uncer-529

tainty propagation methods (middle), highlighting530

its advantage in uncertainty estimation.531

Q4: Is the HMM reasonable, and how does its532

performance change with different dataset sizes?533

Why not use gradient-based models like RNNs or534

Transformers?535

Learned-based surrogates rely on manually an-536

notated data. During training, we map data groups537

Dan and Don to the agent’s situational context,538

enabling SAUP to infer states in unseen scenar-539

ios. We use a Hidden Markov Model (HMM) in540

the main experiment, but also explore LSTM and541

Transformer models, analyzing their theoretical542

and experimental advantages.543

Theoretical Perspective: HMMs are efficient544

and interpretable, ideal for limited data but weak545

in modeling long-range dependencies. LSTMs cap-546

ture temporal dependencies better but require more547

data and resources. Transformers handle both local548

and global dependencies effectively but are compu-549

tationally expensive and data-intensive.550

Experimental Comparison: On the Strate-551

gyQA dataset, we evaluated HMM-based, LSTM-552

based, and mini-size Transformer-based surrogates553

varying training dataset sizes. Figure 4 shows that554

HMMs perform well with smaller datasets, while555

LSTMs and Transformers improve with more data.556

However, Transformer-based surrogates require im-557

practically large datasets for uncertainty measure- 558

ment tasks, making them less suitable. 559

HMMs are practical for uncertainty propagation 560

in LLM-based agents due to their simplicity and 561

efficiency, particularly with limited data. LSTMs 562

are viable alternatives when data and computational 563

resources are sufficient, while Transformers are 564

generally not feasible for most scenarios. 565

Q5: Does the question difficulty influence the 566

effectiveness of uncertainty propagation? 567

Yes, complex questions lead to longer, nuanced 568

decision-making, increasing uncertainty accumu- 569

lation. SAUP’s situational awareness framework 570

excels in such cases, effectively propagating uncer- 571

tainty at each step. As shown in Table 1, SAUP’s 572

advantage is most evident in more challenging 573

datasets like StrategyQA, with greater AUROC im- 574

provements. 575

5 Conclusion 576

In this paper, we propose Situational Awareness Un- 577

certainty Propagation (SAUP), a novel framework 578

for estimating uncertainty in LLM-based multi- 579

step agents. Unlike traditional methods focused 580

on single-step uncertainty, SAUP propagates uncer- 581

tainty across all reasoning steps while integrating 582

situational awareness. Experiments on challenging 583

datasets show that SAUP outperforms state-of-the- 584

art methods, achieving up to 20% improvements in 585

AUROC scores, demonstrating its effectiveness in 586

enhancing reliability for complex decision-making. 587

This research underscores the importance of multi- 588

step uncertainty estimation and situational aware- 589

ness in ensuring the trustworthy deployment of 590

LLM-based agents. 591
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6 Limitations592

Despite the effectiveness of SAUP in improv-593

ing uncertainty estimation for multi-step LLM-594

based agents, several limitations remain. First, the595

learning-based surrogate version of SAUP relies on596

manually annotated datasets for situational weights,597

which is time-consuming, costly, and may not gen-598

eralize well to very complex scenarios—especially599

when manual labels are still prone to errors. Ad-600

ditionally, the complexity of diverse environments601

could exacerbate the difficulty in ensuring accurate602

situational labeling. Second, the SAUP framework603

assumes that uncertainty at each step can be ac-604

curately captured. Although this is beyond the605

scope of our study, errors in single-step uncertainty606

estimation can compromise the propagation of un-607

certainty, thereby diminishing the benefits of the608

SAUP framework. Future work should focus on609

developing more robust situational weight estima-610

tion methods that reduce dependence on manually611

annotated datasets—potentially leveraging LLM-612

generated labels—to enhance SAUP’s applicability613

and reliability across diverse use cases.614
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