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ABSTRACT

Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection, enhanc-
ing detection capability via model fine-tuning with surrogate OOD data. However,
surrogate data typically deviate from test OOD data. Thus, the performance of
OE, when facing unseen OOD data, can be weakened. To address this issue, we
propose a novel OE-based approach that makes the model perform well for un-
seen OOD situations, even for unseen OOD cases. It leads to a min-max learning
scheme—searching to synthesize OOD data that leads to worst judgments and
learning from such OOD data for uniform performance in OOD detection. In our
realization, these worst OOD data are synthesized by transforming original surro-
gate ones. Specifically, the associated transform functions are learned implicitly
based on our novel insight that model perturbation leads to data transformation.
Our methodology offers an efficient way of synthesizing OOD data, which can
further benefit the detection model, besides the surrogate OOD data. We conduct
extensive experiments under various OOD detection setups, demonstrating the ef-
fectiveness of our method against its advanced counterparts. The code is publicly
available at: github.com/qizhouwang/doe.

1 INTRODUCTION

Deep learning systems in the open world often encounter out-of-distribution (OOD) data whose label
space is disjoint with that of the in-distribution (ID) samples. For many safety-critical applications,
deep models should make reliable predictions for ID data, while OOD cases (Bulusu et al., 2020)
should be reported as anomalies. It leads to the well-known OOD detection problem (Lee et al.,
2018c; Fang et al., 2022), which has attracted intensive attention in reliable machine learning.

OOD detection remains non-trivial since deep models can be over-confident when facing OOD
data (Nguyen et al., 2015; Bendale & Boult, 2016), and many efforts have been made in pursuing
reliable detection models (Yang et al., 2021; Salehi et al., 2021). Building upon discriminative
models, existing OOD detection methods can generally be attributed to two categories, namely, post-
hoc approaches and fine-tuning approaches. The post-hoc approaches assume a well-trained model
on ID data with its fixed parameters, using model responses to devise various scoring functions
to indicate ID and OOD cases (Hendrycks & Gimpel, 2017; Liang et al., 2018; Lee et al., 2018c;
Liu et al., 2020; Sun et al., 2021; 2022; Wang et al., 2022). By contrast, the fine-tuning methods
allow the target model to be further adjusted, boosting its detection capability by regularization (Lee
et al., 2018a; Hendrycks et al., 2019; Tack et al., 2020; Mohseni et al., 2020; Sehwag et al., 2021;
Chen et al., 2021; Du et al., 2022; Ming et al., 2022; Bitterwolf et al., 2022). Typically, fine-tuning
approaches benefit from explicit knowledge of unknowns during training and thus generally reveal
reliable performance across various real-world situations (Yang et al., 2021).

For the fine-tuning approaches, outlier exposure (OE) (Hendrycks et al., 2019) is among the most
potent ones, engaging surrogate OOD data during training to discern ID and OOD patterns. By mak-
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Figure 1: Comparison between OE, DRO, and DOE. Black boxes indicate support sets for surro-
gate/test OOD data. Intensities of color indicate the coverage of learning schemes—a deeper colored
region indicates the associated model can make more reliable detection therein. As we can see, OE
directly makes the model learn from surrogate OOD data, largely deviating from test OOD situa-
tions. DRO further makes the model perform uniformly well regarding sub-populations, and the
model can excel in the support set of the surrogate case. Moreover, DOE makes the model learn
from additional OOD data besides surrogate cases, covering wider OOD situations (exceeding the
support set) than that of OE and DRO. Thus, OOD detection capability increases from left to right.

ing these surrogate OOD data with low-confident predictions, OE explicitly enables the detection
model to learn knowledge for effective OOD detection. A caveat is that one can hardly know what
kind of OOD data will be encountered when the model is deployed. Thus, the distribution gap exists
between surrogate (training-time) and unseen (test-time) OOD cases. Basically, this distribution gap
is harmful for OOD detection since one can hardly ensure the model performance when facing OOD
data that largely deviate from the surrogate OOD data (Yang et al., 2021; Dong et al., 2020).

Addressing the OOD distribution gap issue is essential but challenging for OE. Several works are
related to this problem, typically shrinking the gap by making the model learn from additional OOD
data. For example, Lee et al. (2018a) synthesize OOD data that the model will make mistakes by
generative models, and the synthetic data are learned by the detection model for low confidence
predictions. However, synthesizing unseen is intractable in general (Du et al., 2022), meaning that
corresponding data may not fully benefit OE training. Instead, Zhang et al. (2023) mixup ID and
surrogate OOD data to expand the coverage of OOD cases; and Du et al. (2022) sample OOD data
from the low-likelihood region of the class-conditional distribution in the low-dimensional feature
space. However, linear interpolation in the former can hardly cover diverse OOD situations, and
feature space data generation in the latter may fail to fully benefit the underlying feature extractors.
Hence, there is still a long way to go to address the OOD distribution gap issue in OE.

To overcome the above drawbacks, we suggest a simple yet powerful way to access extra OOD data,
where we transform available surrogate data into new OOD data that further benefit our detection
models. The key insight is that model perturbation implicitly leads to data transformation, and the
detection models can learn from such implicit data by model updating after its perturbation. The
associated transform functions are free from tedious manual designs (Zhang et al., 2023; Huang
et al., 2023) and complex generative models (Lee et al., 2018b) while remaining flexible for syn-
thetic OOD data that deviate from original data. Here, two factors support the effectiveness of our
data synthesis: 1) implicit data follow different distribution from that of the original one (cf., Theo-
rem 1) and 2) the discrepancy between original and transformed data distributions can be very large,
given that our detection model is deep enough (cf., Lemma 1). It indicates that one can effectively
synthesize extra OOD data that are largely different from the original ones. Then, we can learn from
such data to further benefit the detection model.

Accordingly, we propose Distributional-agnostic Outlier Exposure (DOE), a novel OE-based ap-
proach built upon our implicit data transformation. The “distributional-agnostic” reflects our ulti-
mate goal of making the detection models perform uniformly well with respect to various unseen
OOD distributions, accessing only ID and surrogate OOD data during training. In DOE, we measure
the model performance in OOD detection by the worst OOD regret (WOR) regarding a candidate
set of OOD distributions (cf., Definition 2), leading to a min-max learning scheme as in equation 6.
Then, based on our systematic way of implicit data synthesis, we iterate between 1) searching im-
plicit OOD data that lead to large WOR via model perturbation and 2) learning from such data for
uniform detection power for the detection model.
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DOE is related to distributionally robust optimization (DRO) (Rahimian & Mehrotra, 2019), which
similarly learns from the worst-case distributions. Their conceptual comparison is summarized in
Figure 1. Therein, DRO considers a close-world setting, striving for uniform performance regarding
various data distributions in the support (Sagawa et al., 2020). However, it fails in the open-world
OOD settings that require detecting unseen data (cf., Section 5.3), which is the part of the test support
that is disjoint with the surrogate one in Figure 1(b). By contrast, our data transformation offers
an effective approach in learning from unseen data, considering the region’s uniform performance
beyond the support. Thus, DOE can mitigate the distribution gap issue to some extent, reflected by
the smaller disjoint region than the DRO case in Figure 1(c).

We conduct extensive experiments in Section 5 on widely used benchmark datasets, verifying the
effectiveness of our method with respect to a wide range of different OOD detection setups. For
common OOD detection, our DOE reduces the average FPR95 by 7.26%, 20.30%, and 13.97%
compared with the original OE on CIFAR-10, CIFAR-100, and ImageNet datasets. For hard OOD
detection, our DOE reduces the FPR95 by 7.45%, 7.75%, and 4.09% compared with advanced
methods regarding various hard OOD datasets.

2 PRELIMINARY

Let X ⊆ Rd denote the input space and Y = {1, . . . , C} the label space. We consider the ID
distribution DID defined over X × Y and the OOD distribution DOOD defined over X . In general,
the OOD distribution DOOD is defined as an irrelevant distribution whose label set has no intersection
with Y (Yang et al., 2021), which is unseen during training and should not be predicted by the model.

2.1 SOFTMAX SCORING

Building upon the model h ∈ H : X → RC with logit outputs, our goal is to utilize the scoring
function s : X → R in discerning test-time inputs given by DID from that of DOOD. Typically, if
the score value s(x) is greater than a threshold τ ∈ R, the associated input x ∈ X is taken as an
ID case, otherwise an OOD case. A representative scoring function in the literature is the maximum
softmax prediction (MSP) (Hendrycks & Gimpel, 2017), following

sMSP(x;h) = max
k

softmaxk h(x), (1)

where softmaxk(·) denotes the k-th element of a softmax output. Since the true labels of OOD
are not in the label space, the model will return lower scores for them than ID cases in expectation.

2.2 OUTLIER EXPOSURE

Unfortunately, for a normally trained model h(·), MSP may make over-confident predictions for
some OOD data (Liu et al., 2020), which is detrimental in effective OOD detection. To this end,
OE (Hendrycks et al., 2019) boosts the detection capability by making the model h(·) learn from the
surrogate OOD distribution Ds

OOD, with the associated learning objective of the form:

L(h) = EDID [ℓCE(h(x), y)]︸ ︷︷ ︸
LCE(h;DID)

+λEDs
OOD

[ℓOE(h(x))]︸ ︷︷ ︸
LOE(h;Ds

OOD)

, (2)

where λ is the trade-off parameter, ℓCE(·) is the cross-entropy loss, and ℓOE(·) is defined by
Kullback-Leibler divergence to the uniform distribution, which can be written as ℓOE(h(x)) =
−
∑

k softmaxk h(x)/C. Basically, the OE loss ℓOE(·) plays the role of regularization, mak-
ing the model learn from surrogate OOD data with low confident predictions. Since the model can
see some OOD data during training, OE typically reveals reliable performance in OOD detection.

Note that since we know nothing about unseen during training, the surrogate distribution Ds
OOD is

largely different from the real one DOOD in general. Then, the difference between surrogate and
unseen OOD data leads to the OOD distribution gap between training- (i.e., Ds

OOD) and test-time
(i.e., DOOD) situations. When deployed, the model inherits this data bias, potentially making over-
confident predictions for unseen OOD data that differ from the surrogate ones.

3



Published as a conference paper at ICLR 2023

3 OOD SYNTHESIS

The OOD distribution gap issue stems from our insufficient knowledge about (test-time) unseen
OOD data. Therefore, a direct approach is to give the model access to extra OOD data via data
synthesis, doing our best to fill the distribution gap between training- and test-time situations.

When it comes to data synthesis, a direct approach is to utilize generative models (Lee et al., 2018a),
while generating unseen is intractable in general (Du et al., 2022). Therefore, MixOE (Zhang et al.,
2023) mixup ID and surrogate OOD to expand the coverage of various OOD situations, and VOS (Du
et al., 2022) generates additional OOD in the embedding space with respect to low-likelihood ID re-
gions. However, the former relies on manually designed synthesizing procedures, which can hardly
cover diverse OOD situations. The latter generates OOD in low-dimensional space, which relies
on specific assumptions for ID distribution (e.g., a mixture of Gaussian) and hardly benefits the
underlying feature extractors to learn meaningful OOD patterns.

3.1 MODEL PERTURBATION FOR DATA SYNTHESIS

Considering previous drawbacks in OOD synthesis, we suggest a new way to access additional
OOD data, which is simple yet powerful. Overall, we transform the available surrogate OOD data to
synthesize new data that can further benefit our model. The associated transform function is parasitic
on our detection model, which is learnable without auxiliary deep models or manual designs.

The key insight is that perturbing model parameters have the same impact as transforming data,
where specific model perturbations indicate specific transform functions. For the beneficial data of
our interest (e.g., the worst OOD data), we can implicitly get them access by finding the correspond-
ing model perturbation. Updating the detection model thereafter, it can learn from the transformed
data (i.e., the beneficial ones) instead of the original inputs. Now, we formalize our intuition.

We study the piecewise affine ReLU network model (Arora et al., 2018), covering a large group of
deep models with ReLU activations, fully connected layers, convolutional layers, residual layers,
etc. Here, we consider the recursive definition of a L-layer ReLU network, following

z(l) = h(l)(W (l−1)z(l−1)) for l = 1, . . . , L, (3)

where W (l) ∈ Rnl×nl−1 is the l-th layer weights and h(l)(z) = max{0, t} the ReLU activation. We
have z(1) = x the model input and z(L) = h(x) the model output. If necessary, we write hW in
place of h with the joint form of weights W = {W (l)}Ll=1 that contains all trainable parameters.

Our discussion is on a specific form of model perturbation named multiplicative perturbation.
Definition 1 (Multiplicative Perturbation (Petzka et al., 2021)). For a L-layer ReLU network h(·),
its l-th layer is multiplicatively perturbed if W (l) is changed into

W (l)(I + αA(l)), (4)

where α > 0 is the perturbation strength and A(l) ∈ Rnl−1×nl−1 is the perturbation matrix. Fur-
thermore, the model h(·) is multiplicatively perturbed if all its layers are multiplicatively perturbed.

Now, we link the multiplicative perturbation of the l-th layer to data transformation in the associated
embedding space, summarized by the following proposition.
Proposition 1. Considering the data distribution D and the multiplicative perturbation regarding
the l-th layer of a ReLU network. Then, measuring in the feature space, multiplicative perturbation
is equivalent to data transformation. Further, the transformed data follows a new distribution D′

that is different from D if the eigenvalues of A(l) are greater than 0.

Therefore, model perturbation offers an alternative way to modify data and their distribution implic-
itly. Now, we generalize Proposition 1 for the multiplicative perturbation of the model, showing that
it can modify the data distribution in the original input space.
Theorem 1. Considering the data distribution D and an L-layer ReLU network. Measuring in the
input space X ⊆ Rd, multiplicative perturbation of the model is equivalent to data transformation
in the input space following distribution D′. Then, D′ and D are different if the eigenvalues of A(l)

are greater than 0 and W (l),† = W (l),−1 for l = 1, . . . , L.
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The proof of the above theorem directly leads to the following lemma, indicating that our data-
synthesizing approach can benefit from the layer-wise architectures of deep models.

Lemma 1. Considering a L-layer ReLU network with the multiplicative perturbation {A(l)
L }Ll=1 and

the associated transformed distribution D′
L. Then, there exists a L+1-layer ReLU network with the

multiplicative perturbation {A(l)
L+1}

L+1
l=1 and the associated transformed distribution D′

L+1, such
that the difference between D′

L+1 and D is no smaller than the difference between D′
L and D.

All the above proofs can be found in Appendix A, revealing that model perturbation leads to data
transformation. There are two points worth emphasizing. First, the distribution of transformed
data can be very different from that of the original data under the mild condition of non-negative
eigenvalues. Further, the corresponding transform function is complex enough with layer-wise non-
linearity, where deep models induce strong forms of transformations (regarding distributions).

4 DISTRIBUTIONAL-AGNOSTIC OUTLIER EXPOSURE

Our data synthesis scheme allows the model h(·) to learn from additional OOD data besides the
surrogate ones. Recalling that, we aim for the model to perform uniformly well for various unseen
OOD data. Then, a critical issue is what kinds of synthesized OOD can benefit our model the most.

To begin with, we measure the detection capability by the worst-case OOD performance of the
detection model, leading to the following definition of the worst OOD regret (WOR).

Definition 2 (Worst OOD Regret). For the detection model h(·), its worst OOD regret is

WOR(h) = sup
D∈DOOD

[
LOE(h;D)− inf

h′∈H
LOE(h

′;D)

]
, (5)

where DOOD denotes the set of all OOD distributions andH is the hypothesis space.

Minimizing the WOR upper bounds the uniform performance of the detection model for the OOD
cases. Therefore, synthetic OOD data that lead to WOR are of our interest, and learning from such
data can benefit our model the most. Note that we can also measure the detection capability by the
risk, i.e., supD∈DOOD

LOE(h;D), while we find that our regret-based measurement is better since it
further considers the fitting power of the model when facing extremely large space of unseen data.

4.1 LEARNING OBJECTIVE

The WOR measures the worst OOD regret with respect to the worst OOD distribution, suitable for
our perturbation-based data transformation that can lead to new data distributions (cf., Theorem 1).
Therefore, to empirically upper-bound the WOR, one can first find the model perturbation that leads
to large OOD regret and then update model parameters after its perturbation. Here, an implicit
assumption is that the associated data given by model perturbation (with surrogate OOD inputs) are
valid OOD cases. It is reasonable since the WOR in equation 5 does not involve any term to make
the associated data close to ID data in either semantics or stylish.

Then, we propose an OE-based method for uniformly well OOD detection, namely, Distributional-
agnostic Outlier Exposure (DOE). It is formalized by a min-max learning problem, namely,

LDOE(hW ;DID, D
s
OOD) = LCE(hW ;DID)+

λ max
P :||P ||≤1

[
LOE(hW+αP ;D

s
OOD)−min

W ′
LOE(hW ′+αP ;D

s
OOD)

]
︸ ︷︷ ︸

WORP(hW ;Ds
OOD)

, (6)

where WORP(hW ;Ds
OOD) is a perturbation-based realization for the WOR calculation. Several points

therein require our attention. First, ID data remain the same during training and testing, and the
distribution gap occurs only for OOD cases. Therefore, WOR is applied only to the surrogate OOD
data, and the original risk LCE(hW ;DID) is applied for the ID data. Furthermore, we adopt the
implicit data transformation to search for the worst OOD distribution, substituting the search space
of distribution DOOD by the search space of the perturbation, i.e., {P : ||P || ≤ 1}. Here, we adopt
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a fixed threshold of 1 since one can change the perturbation strength via the parameter α. Finally,
we adopt the additive perturbation W + αP which is easier to implement than the multiplicative
counterpart, and they are equivalent when assuming P = WA.

4.2 REALIZATION

We consider a stochastic realization of DOE, where ID and OOD mini-batches are randomly sam-
pled in each iteration, denoted by BID and Bs

OOD, respectively. The overall DOE algorithm is sum-
marized in Appendix B. Here, we emphasize several vital points.

Regret Estimation. The exact regret computation is hard since we need to find the optimal risk for
each candidate perturbation. As its effective estimation, following (Arjovsky et al., 2019; Agarwal
& Zhang, 2022), we calculate the norm of the gradients with respect to the risk LOE, namely,

WORG(hW ;Bs
OOD) = ||∇σ|σ=1.0LOE(σ · hW+αP ;B

s
OOD)||2. (7)

Intuitively, a large value of the gradient norm indicates that the current model is far from optimal,
and thus the corresponding regret should be large. It leads to an efficient indicator of regret.

Perturbation Estimation. The gradient ascent is employed to find the proper perturbation P for
the max operation in equation 6. In each step, the perturbation is updated by

P ← ∇PWORG(hW+αP ;B
s
OOD), (8)

with P initialized to 0. We further normalize P using PNORM = NORM(P ) to satisfy the norm
constraint. By default, we employ one step of gradient update as an efficient estimation for its value,
which can be taken as the solution for the first-order Taylor approximated model.

Stable Estimation. Equation 8 is calculated for the mini-batch of OOD samples, biased from the
exact solution of P that leads to the worst regret regarding the whole training sample. To mitigate
the gap, for the resultant PNORM, we adopt its moving average across training steps, namely,

PMA ← (1− β)PMA + βPNORM, (9)

where β ∈ (0, 1] is the smoothing strength. Overall, a smaller β indicates that we take the average
for a wider range of steps, leading to a more stable estimation of the perturbation.

Scoring Function. After training, we adopt the MaxLogit scoring (Hendrycks et al., 2022) in OOD
detection, which is better than the MSP scoring when facing large semantic spaces. It is of the form:

sML(x;h) = max
k

hk(x), (10)

where hk(·) denotes the k-th element of the logit output. In general, a large value of sML(x;h)
indicates the high confidence of the associated x to be an ID case.

5 EXPERIMENTS

This section conducts extensive experiments in OOD detection. In Section 5.1, we verify the su-
periority of our DOE against state-of-the-art methods on both the CIFAR (Krizhevsky & Hinton,
2009) and the ImageNet (Deng et al., 2009) benchmarks. In Section 5.2, we demonstrate the
effectiveness of our method for hard OOD detection. In Section 5.3, we further conduct an ab-
lation study to understand our learning mechanism in depth. The code is publicly available at:
github.com/qizhouwang/doe.

Baseline Methods. We compare our DOE with advanced methods in OOD detection. For post-hoc
approaches, we consider MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Maha-
lanobis (Lee et al., 2018c), Free Energy (Liu et al., 2020), ReAct (Sun et al., 2021), and KNN (Sun
et al., 2022); for fine-tuning approaches, we consider OE (Hendrycks et al., 2019), CSI (Tack et al.,
2020), SSD+ (Sehwag et al., 2021), MixOE (Zhang et al., 2023), and VOS (Du et al., 2022).

Evaluation Metrics. The OOD detection performance of a detection model is evaluated via two
representative metrics, which are both threshold-independent (Davis & Goadrich, 2006): the false
positive rate of OOD data when the true positive rate of ID data is at 95% (FPR95); and the area

6

https://github.com/QizhouWang/DOE


Published as a conference paper at ICLR 2023

Table 1: Comparison in OOD detection on the CIFAR and ImageNet benchmarks. ↓ (or ↑) indicates
smaller (or larger) values are preferred; a bold font indicates the best results in a column.

Methods CIFAR-10 CIFAR-100 ImageNet
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Post-hoc Approaches

MSP 53.77 88.40 76.73 76.24 75.32 76.96
ODIN 42.80 88.69 63.25 75.72 77.43 71.04

Mahalanobis 34.98 93.21 65.57 78.03 86.50 58.78
Free Energy 37.77 88.27 71.56 78.51 71.14 79.50

ReAct 58.22 82.21 69.94 78.21 70.31 81.42
KNN 34.56 93.43 50.24 86.73 64.75 80.91

Fine-tuning Approaches

OE 12.41 97.85 45.68 87.61 73.80 78.90
CSI 17.39 96.87 83.72 65.94 86.80 65.54

SSD+ 14.84 97.36 56.65 87.38 64.55 77.46
MixOE 13.55 97.59 52.04 86.46 74.36 77.28

VOS 31.55 91.56 73.43 79.98 87.87 61.36
DOE 5.15 98.78 25.38 93.97 59.83 83.54

under the receiver operating characteristic curve (AUROC), which can be viewed as the probability
of the ID case having greater score than that of the OOD case.

Pre-training Setups. For the CIFAR benchmarks, we employ the WRN-40-2 (Zagoruyko & Ko-
modakis, 2016) as the backbone model following (Liu et al., 2020). The models have been trained
for 200 epochs via empirical risk minimization, with a batch size 64, momentum 0.9, and initial
learning rate 0.1. The learning rate is divided by 10 after 100 and 150 epochs. For the ImageNet,
we employ ResNet-50 (He et al., 2016) with well-trained parameters downloaded from the PyTorch
repository following (Sun et al., 2021).

DOE Setups. Hyper-parameters are chosen based on the OOD detection performance on validation
datasets, which are separated from ID and surrogate OOD data. For the CIFAR benchmarks, DOE
is run for 10 epochs with an initial learning rate of 0.01 and the cosine decay (Loshchilov & Hutter,
2017). The batch size is 128 for ID cases and 256 for OOD cases. The number of warm-up epochs
is set to 5. λ is 1 and β is 0.6. For the ImageNet dataset, DOE is run for 4 epochs with an initial
learning rate of 0.0001 and cosine decay. The batch sizes are 64 for both ID and surrogate OOD
cases. The number of warm-up epochs is 2. λ is 1 and β is 0.1. For both the CIFAR and the ImageNet
benchmarks, σ is uniformly sampled from {1e−1, 1e−2, 1e−3, 1e−4} in each training step, which
allows covering a wider range of OOD situations than assigning fixed values. Furthermore, the
perturbation step is fixed to be 1.

Surrogate OOD datasets. For the CIFAR benchmarks, we adopt the tinyImageNet dataset (Le &
Yang, 2015) as the surrogate OOD dataset for training. For the ImageNet dataset, we employ the
ImageNet-21K-P dataset (Ridnik et al., 2021), which makes invalid classes cleansing and image
resizing compared with the original ImageNet-21K (Deng et al., 2009).

5.1 COMMON OOD DETECTION

We begin with our main experiments on the CIFAR and ImageNet benchmarks. Model perfor-
mance is tested on several common OOD datasets widely adopted in the literature (Sun et al., 2022).
For the CIFAR cases, we employed Texture (Cimpoi et al., 2014), SVHN (Netzer et al., 2011),
Places365 (Zhou et al., 2018), LSUN-Crop (Yu et al., 2015), and iSUN (Xu et al., 2015); for the Im-
ageNet case, we employed iNaturalist (Horn et al., 2018), SUN (Xu et al., 2015), Places365 (Zhou
et al., 2018), and Texture (Cimpoi et al., 2014). In Table 1, we report the average performance (i.e.,
FPR95 and AUROC) regarding the OOD datasets mentioned above. Please refer to Tables 4-5 and
8 in Appendix C for the detailed results.

CIFAR Benchmarks. Overall, the fine-tuning methods can lead to effective OOD detection in that
they (e.g., OE and DOE) generally demonstrate better results than most of the post-hoc approaches
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Table 2: Comparison of DOE and advanced methods in hard OOD detection. ↓ (or ↑) indicates
smaller (or larger) values are preferred; a bold font indicates the best results in a column.

Methods LSUN-Fix ImageNet-Resize CIFAR-100
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

KNN 25.76 95.00 40.65 86.30 64.50 86.32
OE 10.45 98.33 14.95 97.78 53.55 90.40
CSI 34.85 91.72 33.30 90.50 45.64 87.64

SSD+ 23.95 95.74 53.52 84.00 46.87 90.50
DOE 3.00 99.15 7.20 98.55 41.55 91.85

(e.g., Mahalanobis and KNN). Furthermore, compared with the OE-based methods (i.e., OE and
MixOE), other fine-tuning methods only show comparable, even inferior, performance in OOD de-
tection. Therefore, the OE-based methods that utilize surrogate OOD remain hard to beat among
state-of-the-art methods, even with its inherent OOD distribution gap issue.

Further, the DOE’s improvement in OOD detection is notable compared to OE and MixOE, with
7.26 and 8.40 better results on the CIFAR-10 dataset, and with 20.30 and 26.66 better results on
the CIFAR-100 dataset. Note that the tiny-ImageNet dataset is adopted as the surrogate OOD data,
which is largely different from the considered test OOD datasets. Thus, we emphasize that the
improvement of our method is due to our novel distributional-robust learning scheme, mitigating the
OOD distribution gap between the surrogate and the unseen OOD cases.
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Figure 2: The scoring densities of OE and DOE on
CIFAR-100 dataset, where the MaxLogit is employed.

We emphasize that the improvement of
our DOE compared with that of OE is
not dominated by our specific choice of
scoring strategy. To verify this, we con-
duct experiments with OE and DOE and
then employ the MaxLogit scoring after
model training. Figure 2 illustrates the
scoring densities with (a) OE and (b) DOE
on the CIFAR-100 dataset, where we con-
sider two test-time OOD datasets, namely,
Texture and SVHN. Compared with that of
OE, the overlap regions of DOE between
the ID (i.e., CIFAR-10) and the OOD (i.e.,
Texture and SVHN) distributions are re-
duced. It reveals that even with the same
scoring function (i.e., MaxLogit), DOE can still improve the model’s detection capability compared
with the original OE. Therefore, we state that the key reason for our improved performance is our
novel learning strategy, learning from extra OOD data that can benefit the model. Please refer to
Appendix C for their detailed comparison.

ImageNet Benchmark. Huang & Li (2021) show that many advanced methods developed on the
CIFAR benchmarks can hardly work for the ImageNet dataset due to its large semantic space with
about 1k classes. Therefore, Table 1 also compares the results of DOE with advanced methods on
ImageNet. As we can see, similar to the cases with CIFAR benchmarks, the fine-tuning approaches
generally reveal superior results compared with the post-hoc approaches, and DOE remains effective
in showing the best detection performance in expectation. Overall, Table 1 demonstrates the effec-
tiveness of DOE across widely adopted experimental settings, revealing the power of our implicit
data search scheme and distributional robust learning scheme.

5.2 HARD OOD DETECTION

Besides the above test OOD datasets, we also consider hard OOD scenarios (Tack et al., 2020), of
which the test OOD data are very similar to that of the ID cases in style. Following the common
setup (Sun et al., 2022) with the CIFAR-10 dataset being the ID case, we evaluate our DOE on three
hard OOD datasets, namely, LSUN-Fix (Yu et al., 2015), ImageNet-Resize (Deng et al., 2009), and
CIFAR-100. Note that data in ImageNet-Resize (1000 classes) with the same semantic space as
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Table 3: Effectiveness of implicit data transformation and distributional robust learning. ↓ (or ↑)
indicates smaller (or larger) values are preferred; a bold font indicates the best results in a row.

Implicit Data Transformation Distributional Robust Learning DOE OE
All-ones Gaussian Uniform χ2 WD AT

FPR95 ↓ 38.30 32.78 32.50 46.93 42.85 45.24 25.38 45.68
AUROC ↑ 92.67 91.25 91.55 89.17 90.51 90.45 93.97 87.61

tiny-ImageNet (200 classes) are removed. We compare our DOE with several works reported to
perform well in hard OOD detection, including KNN, OE, CSI, and SSD+, where the results are
summarized in Table 2. As we can see, our DOE can beat these advanced methods across all the
considered datasets, even for the challenging CIFAR-10 versus CIFAR-100 setting. To some extent,
it may indicate that our implicit data synthesis can even cover some hard OOD cases, and thus our
DOE can lead to improved performance in hard OOD detection.

5.3 ABLATION STUDY

Our proposal claims two key contributions. The first one is the implicit data transformation via
model perturbation, and the second one is the distributional robust learning scheme regarding WOR.
Here, we design a series of experiments to demonstrate their respective power.

Implicit Data Transformation. In Section 3.1, we demonstrate that model perturbation can lead to
data transformation. Here, we verify that other realizations (besides searching for WOR) can also
benefit the model with additional OOD data. We employ perturbation with fixed values of ones (all-
ones) and two types of random noise, namely, Gaussian noise with 0 mean and I covariance matrix
(Gaussian) and uniform noise over the interval [−1, 1] (Uniform) (cf., Appendix B). We summarize
their results on CIFAR-100 in Table 3 (Implicit Data Transformation). Compared to MSP and OE
without model perturbation, all the forms of perturbation can lead to improved detection, indicating
that our implicit data transformation is general to benefit the model with additional OOD data.

Distributional Robust Learning. In Section 4, we employ the implicit data transformation for
uniform performance in OOD detection. As mentioned in Section 1, DRO (Rahimian & Mehrotra,
2019) also focuses on distributional robustness. Here, we conduct experiments with two realizations
of DRO, with χ2 divergence (χ2) (Hashimoto et al., 2018) and Wasserstein distance (WD) (Kwon
et al., 2020) (cf., Appendix B). We also consider the adversarial training (AT) (Madry et al., 2018b)
as a baseline method, which can also be interpreted from the lens of DRO.

We summarize the related experiments on CIFAR-100 in Table 3 (Distributional Robust Learning).
For two traditional DRO-based methods (i.e., χ2 and WD), they mainly consider the cases where the
support of the test OOD data is a subset of the surrogate case. This close-world setup fails in OOD
detection, and thus they reveal unsatisfactory results. Though AT also makes data transformation,
its transformation is limited to additive noise, which can hardly cover the diversity of unseen data.
In contrast, our DOE can search for complex transform functions that exploit unseen, having large
improvements compared to all other robust learning methods.

6 CONCLUSION

Our proposal makes two key contributions. The first is the implicit data transformation for OOD
synthesis, based on our novel insight that model perturbation leads to data transformation. Synthetic
data follow a diverse distribution compared to original ones, rendering the target model to learn from
unseen data. The second contribution is a distributional-robust learning method, building upon a
min-max optimization scheme in searching for the worst regret. We demonstrate that learning from
the worst regret in OOD detection can demonstrate better results than the risk-based counterpart.
Accordingly, we propose DOE to mitigate the OOD distribution gap issue inherent in OE-based
methods, where the extensive experiments verify our effectiveness. Our two contributions may not
be limited to the OOD detection field. We will explore their usage scenarios in other areas, such as
OOD generalization, adversarial training, and distributionally robust optimization.
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A PROOFS

This section provides the detailed proofs for our theoretical claims in the main text.

A.1 PROOF OF PROPOSITION 1

Proof. To make the derivation clear, we adopt the equivalent form for our recursive definition of the
model in equation 3, following:

h(l+1)(W (l)z(l)) = h(l+1)(z(l);W (l)). (11)

Then, by multiplicatively perturbing the l-th layer of the model, we have

h(l+1)
(
z(l);W (l)(I + αA(l))

)
=max

{(
W (l)(I + αA(l))

)
z(l), 0

}
=max

{
W (l)

(
(I + αA(l))z(l)

)
, 0
}

=h(l+1)
(
(I + αA(l))z(l);W (l)

)
.

(12)

Therefore, measuring in feature spaceZ(l), multiplicative perturbation modifies the original features
z(l) by an affine transformation I + αA(l). Assuming that the original data are i.i.d. drawn from
the distribution with the probability density function (pdf) fZ(l)(z(l)), then the transformed data are
i.i.d. drawn from the distribution with the pdf fZ′(l)(z′(l)) = fZ(l)(z(l))

∣∣I + αA(l)
∣∣−1

.

Using the KL-divergence to measure the discrepancy between the original feature distribution and
the transformed feature distribution, we have

DKL(fZ(l) ||fZ′(l)) = Ef
Z(l) (z(l)) log

fZ(l)(z(l))

fZ′(l)(z′(l))
= log

∣∣∣I + αA(l)
∣∣∣ . (13)

Without loss of generality, we assume K different eigenvalues for the matrix A(l). Then, by the
Jordan matrix decomposition, we can write A(l) = T (l),−1J (l)T (l). Therein, J (l) is of the form:

J(λ1)
J(λ2)

· · ·
J(λk)

· · ·
J(λK)

, (14)

and J(λk) is the k-th Jordan block (of size nk × nk) corresponding to the k-th eigenvalue of the
matrix A(l). Then, we have

∣∣I + αA(l)
∣∣ = ∣∣T (l),−1(I + αJ (l))T (l)

∣∣ = ∣∣I + αJ (l)
∣∣. Since J (l) is

an upper triangular matrix, we can write
∣∣I + αJ (l)

∣∣ =
∏K

k=1(αλk + 1)nk . Accordingly, if the
eigenvalues of the matrix A(l) are all greater than 0 and α > 0, we have

∣∣I + αA(l)
∣∣ > 1 and

DKL(fZ(l) ||fZ′(l)) > 0. Therefore, the distributions fZ(l) and fZ′(l) are different regarding the KL
divergence. Thus we complete our proof.

A.2 PROOF OF THEOREM 1

Proof. We consider an induction proof, justifying that: the multiplicative perturbation with A(l) ∈
Rnl×nl of any layer in l = 1, . . . , L can be transformed into an equivalent multiplicative perturbation
with Ā(l−1) ∈ Rnl−1×nl−1 in the (l − 1)-th layer. Moreover, |Ā(l−1)| > 0 if |A(l)| > 0. Then, one
can transform the multiplicative perturbation of the model to an equivalent form in the input space.
Since the determinant of the equivalent perturbation is greater than 0, by applying Proposition 1, we
conclude that multiplicative perturbation can lead to data transformation in the original input space.

To find the equivalent perturbation matrix Ā(l−1) in the (l − 1)-th layer regarding the original one
A(l) in the l-th layer, we solve the following equation:

W (l)(I + αA(l))h(l)(W (l−1)z(l−1)) = W (l)h(l)(W (l−1)(I + αĀ(l−1))z(l−1)). (15)
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If [z(l−1)]i ̸= 0 in each dimension, equation 15 can be rewritten as

A(l)h(l)(W (l−1)z(l−1)) = h(l)′(W (l−1)z(l−1))W (l−1)Ā(l−1)z(l−1), (16)
by applying the Taylor Theorem for the right-hand side1. Then, since the ReLU activation is applied,
we solve the equivalent formulation for equation 16, following,

A(l)W (l−1) = W (l−1)Ā(l−1). (17)
Then, the solution of Ā(l−1) is W (l−1),†A(l)W (l−1) with † being the Moore-Penrose inverse.

We justify that the multiplicative perturbation in the l-th layer can be transformed to that of the
(l − 1)-th layer. Therefore, the equivalent perturbation Ā(l−1) and the original perturbation in the
(l − 1)-th layer can formulate a joint perturbation ¯̄A(l−1), namely, I + α ¯̄A(l−1), with

¯̄A(l−1) = Ā(l−1) +A(l−1) + αA(l−1)Ā(l−1). (18)

Now, we justify that ¯̄A(l−1) can also lead to distributional transformation. If W (l−1),† = W (l−1),−1

(Here, we implicitly assume that nl−1 = nl−2) and the eigenvalues of the matrix A(l) are all greater
than 0, then we know that the eigenvalues of the matrix Ā(l−1) are all greater than 0. Again, we have∣∣I + αĀ(l−1)

∣∣ > 1. Then, the joint perturbation ¯̄A(l−1) satisfies:∣∣∣I + α ¯̄A(l−1)
∣∣∣ =∣∣∣(I + αA(l−1))(I + αĀ(l−1))

∣∣∣ (19)

=
∣∣∣I + αA(l−1)

∣∣∣ ∣∣∣I + αĀ(l−1)
∣∣∣ (20)

>
∣∣∣I + αA(l−1)

∣∣∣ (21)

>1. (22)

By induction, the multiplicative perturbation of the model can be approximated by the input trans-
formation. By applying Proposition 1, we know that x and the perturbation-based transformed
counterpart follow the different data distributions. Thus we complete our proof.

A.3 PROOF OF LEMMA 1

Proof. For the L + 1-layer ReLU network, we assume its model parameters and the model pertur-
bation are the same as that of the corresponding layers for the L-layer ReLU network (except for the
L+1-th layer). Then, by inspecting equation 20, the perturbation from the L+1-th layer can make
the perturbation matrices for the L + 1-layer network no smaller than that of the L-layer network
regarding each layer (including the input space) of the joint multiplicative perturbation. Thus, we
complete our proof.

A.4 EXCESS RISK BOUND

We further derive the learning bound of DOE. Here, we make the standard assumptions for our
learning problem. First, we assume that the Rademacher Complexity Rn(H) of H is bounded,
i.e., there is a CH such that Rn(H) ≤ CH/

√
n, holding for ReLU models. Further, the CE loss

is bounded by ACE and is LCE Lipschitz continuous; the OE loss is bounded by AOE and is LOE
Lipschitz continuous. To ease notation, we also define

ϵ(C,L,A) = 2CL+A

√
log 1/δ

2
. (23)

We are now ready to state the upper bound for the worst-case population performance of our DOE.
Theorem 2. Given ID and surrogate OOD training sample SID and SOOD, we write the optimal
solution as h∗

W = argminhW∈H LDOE(hW;DID, D
s
OOD) and the empirical counterpart as ĥW =

argminhW∈H LDOE(hW;SID, S
s
OOD). Then, under above assumptions, w.p. at least 1− δ, we have

LDOE(ĥW;DID, D
s
OOD) ≤ LDOE(h

∗
W;DID, D

s
OOD)

+ (2 + 4λ)ϵ(CH, L,A)/
√
min{|SID|, |Ss

OOD|}, (24)

where L = max{LCE, LOE} and A = max{ACE, AOE}.
1With the usual adjustments that the equations only hold almost everywhere in parameter space.
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Proof. We apply the Rademacher Bound for LCE and LOE, given that w.p. at least 1− σ, we have

|LCE(hW;DID)− LCE(hW;SID)| ≤ ϵ(CH, LCE, ACE)/
√
|SID|, (25)

|LOE(hW;DOOD)− LOE(hW;SOOD)| ≤ ϵ(CH, LOE, AOE)/
√
|SOOD|, (26)

for all hW ∈ H. When the hypothesis spaceH is large enough, we have

h∗
W = argmin

hW∈H
LCE(hW ;DID) = argmin

hW∈H
max

P :||P ||≤ρ
RegretOE(hW+αP ;D

s
OOD). (27)

Accordingly, by the definition of LCE(h
∗
W;DID), for any ϵ > 0, there exists hϵ

W such that
LCE(h

ϵ
W;DID) ≤ LCE(h

∗
W;DID) + ϵ. Thus, using LCE(ĥW;SID) ≤ LCE(h

ϵ
W;SID), we can write

LCE(ĥW;DID)− LCE(h
∗
W;DID)

=LCE(ĥW;DID)− LCE(h
ϵ
W;SID) + LCE(h

ϵ
W;SID)− LCE(h

∗
W;DID) (28)

≤LCE(ĥW;DID)− LCE(h
ϵ
W;SID) + ϵ (29)

=LCE(ĥW;DID)− LCE(ĥW;SID) + LCE(ĥW;SID)− LCE(h
ϵ
W;DID) + ϵ (30)

≤LCE(ĥW;DID)− LCE(ĥW;SID) + LCE(h
ϵ
W;SID)− LCE(h

ϵ
W;DID) + ϵ (31)

≤2 sup
h∈H
|LCE(h;DID)− LCE(h;SID)|+ ϵ. (32)

Since equation 25 holds for hW ∈ H and ϵ > 0, we have

LCE(ĥW;DID) ≤ LCE(h
∗
W;DID) + 2ϵ(CH, LCE, ACE)/

√
|SID|. (33)

For any hW ∈ H, we also have

sup
P :||P ||≤ρ

Regretα,P
OE (ĥW ;Ds

OOD)

≤ sup
P :||P ||≤ρ

[
LOE(ĥW+αP ;SOOD)−min

W∗
LOE(hW∗+αP ;SOOD)

]
+

2ϵ(CH, LOE, AOE)√
|SOOD|

(34)

≤ sup
P :||P ||≤ρ

[
LOE(ĥW+αP ;SOOD)−min

W∗
LOE(hW∗+αP ;SOOD)

]
+

2ϵ(CH, LOE, AOE)√
|SOOD|

(35)

≤ sup
P :||P ||≤ρ

[
LOE(hW+αP ;SOOD)−min

W∗
LOE(hW∗+αP ;SOOD)

]
+

2ϵ(CH, LOE, AOE)√
|SOOD|

(36)

≤ sup
P :||P ||≤ρ

[
LOE(hW+αP ;DOOD)−min

W∗
LOE(hW∗+αP ;DOOD)

]
+

4ϵ(CH, LOE, AOE)√
|SOOD|

(37)

≤ sup
P :||P ||≤ρ

Regretα,P
OE (hW ;Ds

OOD) +
4ϵ(CH, LOE, AOE)√

|SOOD|
, (38)

indicating that

sup
P :||P ||≤ρ

Regretα,P
OE (ĥW ;Ds

OOD) ≤ sup
P :||P ||≤ρ

Regretα,P
OE (h∗

W ;Ds
OOD) +

4ϵ(CH, LOE, AOE)√
|SOOD|

.

(39)
Combining equation 33 and equation 39, we complete our proof.

The theorem states that the empirical solution leads to a promising detection capability in expec-
tation, which considers the uniform OOD performance via the WOR. The critical point is that the
original surrogate OOD is still very important (i.e., the small sample size of SOOD leads to loose
excess bound), even if our method can synthesize additional OOD data.

15



Published as a conference paper at ICLR 2023

Algorithm 1 Distribution-agnostic Outlier Exposure (DOE).
Input: ID and OOD samples from DID and Ds

OOD, resp;
PMA = 0;
for ns = 1 to num step do

Sample BID and Bs
OOD from ID and surrogate OOD, resp;

P = 0;
if ns > num warm then

for np = 1 to num pert do
WORG(hW ;Bs

OOD) = ||∇σ|σ=1.0LOE(σ · hW+αP ;B
s
OOD)||2;

P ← ∇PWORG(hW+αP ;B
s
OOD);

end for
PMA ← (1− β) · PMA + β · NORM(P );
W ←W − lr · ∇W [LCE(hW ;BID) + λLOE(hW+αPMA ;B

s
OOD)];

else
W ←W − lr · ∇W [LCE(hW ;BID) + λLOE(hW ;Bs

OOD)];
end if

end for
Output: detection model hW (·).

B ALGORITHM DESIGNS

We summarize details of algorithm designs for a set of related learning schemes.

B.1 DISTRIBUTIONAL ROBUSTNESS AND DISTRIBUTION GAP

Overall, to demonstrate why our distributional-robust learning scheme can mitigate the OOD distri-
bution gap, we consider the following two situations: (1) the true OOD distribution contains all the
different OOD situations; and (2) the capacity of implicit data transformation is large enough.

For the first situation, we assume that the true OOD distribution contains all the different OOD situ-
ations, i.e., all samples with labels out of the considered label space. It is a reasonable consideration
since we do not know what kinds of OOD data will be encountered during the test, and thus all the
different OOD situations can be encountered. In this case, the surrogate and the (associated) implicit
OOD data are subsets of the true OOD distribution since they do not have overlapped semantics with
the ID distribution. Then, compared with OE that learns only from surrogate OOD data, our DOE
can further benefit from implicit OOD data. It can enlarge the coverage of OOD situations since
implicit data follows new data distributions over the surrogate OOD distribution (cf., Theorem 1).

For the second situation, we assume that the capacity of implicit data transformation is large enough
to cover sufficiently many OOD cases. This is also a reasonable assumption since the transforma-
tion’s capacity can benefit from layer-wise architectures (cf., Lemma 1), and deep models (which
contain many layers) are typically adopted in OOD detection. Accordingly, although we do not
know precisely what is the true OOD distribution, we can upper-bound the worst OOD performance
to guarantee uniform performance of the model under various test situations (cf., Theorem 2). When
the capacity is large enough (covering many test OOD situations), DOE performs well under these
unseen test OOD data, thus mitigating the OOD distribution gap.

B.2 DOE

Algorithm 1 summarizes a stochastic realization of our DOE. The overall algorithm is run for
num step steps, with num warm epochs of warm-up in employing the original OE. Then, in each
training step, we first calculate the perturbation P regarding the OOD mini-batch for num pert
steps, and the normalized results are used to update the moving average PMA. With the resultant
perturbation PMA for the OE loss, we update the model via one step of mini-batch gradient descent.
After training, we apply the MaxLogit scoring in discerning ID and OOD cases.
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B.3 WORST RISK-BASED DOE

Our proposed DOE searches for the model perturbation that leads to WOR, which is the worst regret-
based realization. In our main text, we state its superior to the risk-based counterpart in Section 4,
with the experimental verification in Section 5.3. For integrity, we further describe the realization of
the worst risk-based DOE, named DOE-risk.

Similar to our proposed DOE, DOE-risk can also be formalized by a min-max learning problem:

LDOE(hW ;DID, D
s
OOD) = LCE(hW ;DID) + λ max

P :||P ||≤1
LOE(hW+αP ;D

s
OOD). (40)

Then, for its stochastic realization, one step of gradient ascent is employed for the perturbation with
respect to the mini-batch, namely,

P ← ∇P |P=0LOE(hW+αP ;B
s
OOD). (41)

All other parts follow the realization of the original DOE. After training, we also employ the
MaxLogit scoring in discerning ID and OOD data.

B.4 IMPROVED OE WITH PREDEFINED PERTURBATION

We consider several implicit data transformations with the predefined perturbations in Section 5.3.
Here, we briefly summarize their realizations.

All-ones Matrices. For the perturbation matrices with fixed values, we employ the simple all-ones
matrices, namely, Pone = {I(l)}Ll=1, with I(l) ∈ Rnl−1×nl−1 for l = 1, . . . , L being the all-ones
matrix. Then, the associated learning objective can be written as:

LOE-one(hW ;DID, D
s
OOD) = LCE(hW ;DID) + λLOE(hW+αPone ;D

s
OOD). (42)

Gaussian Noise. When adopting Gaussian noise for random perturbation, we have Pgau =

{N (l)}Ll=1, with the elements drawn from Gaussian distribution with 0 mean and 1 standard de-
viation. Then, the associated learning objective is of the form

LOE-gau(hW ;DID, D
s
OOD) = LCE(hW ;DID) + λLOE(hW+αPgau ;D

s
OOD). (43)

Uniform Noise. Similarly, one can adopt uniform noise for random perturbation, which we denote
by Puni = {U (l)}Ll=1. The elements of U (l) are drawn from the uniform noise over the interval
[−1, 1]. Then, the associated learning objective is

LOE-uni(hW ;DID, D
s
OOD) = LCE(hW ;DID) + λLOE(hW+αPuni ;D

s
OOD). (44)

B.5 DRO

The distirbutionally robust optimization (DRO) (Rahimian & Mehrotra, 2019) is a traditional tech-
nique to make the model perform uniformly well. In OE, one can utilize DRO by replacing the
original OE risk in equation 2 with its distributional robust counterpart, namely,

LDRO(h;DID, D
s
OOD) = LCE(h;DID) + λ sup

Dw
OOD∈U(Ds

OOD)

LOE(h;D
w
OOD)︸ ︷︷ ︸

LDRO
OE (h;Ds

OOD)

, (45)

where U(Ds
OOD) is the ambiguity set. Basically, U(Ds

OOD) constrains the difference between the
surrogate OOD distribution Ds

OOD and its worst counterpart Dw
OOD. In expectation, equation 45

makes the training procedure cover a wide range of potential test OOD distributions in U(Ds
OOD),

guaranteeing its uniform performance by bounding the worst OOD risk derived by Dw
OOD.

The ambiguity set U(Ds
OOD) is defined by {Dw : Divf (D

w||D) ≤ ρ} with Divf (·) the f -
divergence and ρ the constraint. For the worst OOD distribution that leads to the worst OOD risk,
a weighting-based searching scheme can be derived for the empirical counterpart of equation 45,
following the form of re-weighted empirical risk, namely,

sup
p

∑
pℓOE(h(x)) s.t. p ∈ {p | p ∈ ∆ and Df (p||1) ≤ ρ}. (46)
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However, due to this equivalent re-weighting scheme, DRO actually assumes that the support of test-
time OOD data is among that of the training situation. This assumption is violated in OOD detection
since the surrogate OOD data can be largely different from the unseen situations, i.e., their support
sets can be greatly different. Therefore, traditional DRO cannot lead to much improved results
compared with original OE, which we demonstrate by the experimental results in Section 5.3. Note
that some DRO methods (Krueger et al., 2021) try to search for worst distributions that go beyond
the support set of training data. However, they rely on more than one training domain, which is not
directly applicable in OOD detection.

χ2-divergence DRO. Hashimoto et al. (2018) define the ambiguity set by the χ2 divergence, given

by Dχ2(P ||Q) =
∫ (

dP
dQ − 1

)2

dQ. They assume that data distribution can be written as the joint

form of the sub-populations, i.e., Ds
OOD =

∑
k∈[K] αkD

s,k
OOD. Then, one can derive the dual form of

the LDRO
OE (h;Ds

OOD) in equation 46 with respect to the χ2 divergence, namely,

inf
η∈R

{
(2(1/αmin − 1)2 + 1)1/2

(
EDs

OOD

[
max {ℓOE(h(x))− η, 0}2

])1/2

+ η

}
, (47)

where αmin = mink αk. Then, Hashimoto et al. suggest that for deep models that rely on stochastic
gradient descent, one can utilize the dual objective in equation 47, leading to the learning objective
of the form:

Lχ2

(h;DID, D
s
OOD) = LCE(h;DID) + λEDs

OOD

[
max {ℓOE(h(x))− η, 0}2

]
, (48)

where η is treated as a hyperparameter. Overall, equation 48 ignores all data points that suffer less
than η-levels of loss values, while large loss above η are upweighted due to the square operation.

Wasserstein DRO. The ambiguity set with the Wasserstein distance has also attracted much atten-
tion in the literature. Specifically, Wasserstein distance is given by

Wr(P,Q) =

(
inf

O∈J(P,Q)

{∫
Z×Z
||ζ − ζ̃||rdO(ζ, ζ̃)

})1/r

. (49)

However, the direct calculation for the Wasserstein DRO is intractable, and Kwon et al. (2020)
propose a simple learning method that leads to its effective approximation. Specifically, if the loss
function is differentiable and its gradient is Holder continuous, one can optimize the following
surrogate objective as an effective approximation for the optimal solution of Wasserstein DRO:

LWDRO(h;DID, D
s
OOD) = LCE(h;DID) + λ (LOE(h;DOOD) + EDOOD ||∇xℓOE(h(x))||) . (50)

Please refer to (Kwon et al., 2020) for an in-depth discussion.

B.6 AT

Adversarial training (AT) (Madry et al., 2018a) directly modifies input features that lead to increased
risk, which can also be interpreted from the lens of distributional robust learning (Sinha et al., 2018).
For OE, one can modify features for surrogate OOD data by adding adversarial noise, namely,

δp ← Proj
[
δp + κsign

(
∇δpℓOE(h(x+ δp))

)]
, (51)

where κ controls the magnitude of the perturbation, Proj is the clipping operation for the valid δp,
and sign is the signum function. Equation 51 iterates for several steps and δp is typically initialized
by random noise.

Applying the adversarial noise for surrogate OOD data, the resultant learning objective is

LAT(h;DID, D
s
OOD) = LCE(h;DID) + λEDs

OOD
[ℓOE(h(x+ δp))] . (52)

AT can be viewed as a direct way of data transformation. However, as demonstrated in Section 5.3,
the associated transformation function is simpler than our DOE. Therefore, the performance of AT
is inferior to our DOE.
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Table 4: Comparison of DOE and advanced methods on CIFAR-10 dataset. ↓ (or ↑) indicates smaller
(or larger) values are preferred; a shaded row of results indicate the best method in previous post-hoc
(or fine-tuning) methods; and a bold font indicates the best result in a column.

Method SVHN LSUN iSUN Texture Places365 Average ID ACCFPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
Post-hoc Approach

MSP 65.60 81.23 23.05 96.74 56.55 89.59 61.45 87.47 62.20 86.95 53.77 88.40 94.28
ODIN 55.30 83.65 8.55 98.48 36.95 92.66 54.00 84.34 59.20 84.33 42.80 88.69 94.28

Mahalanobis 9.35 98.00 45.15 92.90 37.15 93.54 11.80 97.92 71.45 83.68 34.98 93.21 94.28
Free Energy 55.40 76.92 3.65 99.21 31.65 93.26 52.80 84.20 45.35 87.77 37.77 88.27 94.28

ReAct 76.95 74.91 0.95 99.21 64.15 83.19 81.00 72.59 68.05 81.16 58.22 82.21 94.28
KNN 31.29 95.01 26.84 95.33 29.48 94.28 41.21 92.08 44.02 90.47 34.56 93.43 94.28

Fine-tuning Approach

OE 4.30 99.12 0.85 99.76 11.45 98.17 17.35 97.03 28.10 95.17 12.41 97.85 94.58
CSI 20.48 96.63 6.18 98.78 5.49 98.99 21.07 96.27 33.73 93.68 17.39 96.87 94.33

SSD+ 0.28 99.10 4.07 98.71 35.96 95.28 8.90 98.34 25.00 95.40 14.84 97.36 95.46
MixOE 22.35 96.21 1.25 99.68 7.75 98.65 17.15 96.75 19.25 96.68 13.55 97.59 94.79

VOS 35.20 91.57 6.15 98.85 26.95 93.65 49.35 85.06 40.10 88.69 31.55 91.56 95.45
DOE 2.65 99.36 0.00 99.89 0.75 99.67 7.25 98.47 15.10 96.53 5.15 98.78 94.18

Table 5: Comparison of DOE and advanced methods on the CIFAR-100 dataset. ↓ (or ↑) indicates
smaller (or larger) values are preferred; a shaded row of results indicate the best method in post-hoc
(or fine-tuning) methods; and a bold font indicates the best results in the a column.

Method SVHN LSUN iSUN Texture Places365 Average ID ACCFPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
Post-hoc Approach

MSP 80.90 75.19 51.25 87.93 85.35 73.48 83.40 71.94 82.75 72.66 76.73 76.24 73.98
ODIN 70.75 72.57 63.38 76.55 60.23 74.83 60.31 76.96 61.61 77.72 63.25 75.72 73.98

Mahalanobis 58.45 86.54 99.80 52.40 34.70 92.96 44.40 90.13 80.50 68.14 65.57 78.03 73.98
Free Energy 89.70 73.09 16.90 96.96 86.45 75.20 82.75 73.76 82.00 73.56 71.56 78.51 73.98

ReAct 79.10 81.73 8.50 98.46 92.55 64.78 85.30 73.58 84.25 72.47 69.94 78.21 73.98
KNN 49.73 88.06 31.94 93.81 37.11 91.86 48.30 87.96 84.16 71.96 50.24 86.73 73.98

Fine-tuning Approach

OE 55.15 85.62 11.65 96.92 48.40 87.90 47.35 87.02 65.85 80.57 45.68 87.61 75.33
CSI 62.96 84.75 96.47 49.28 95.91 52.98 78.30 71.25 85.00 71.45 83.72 65.94 74.30

SSD+ 13.30 97.45 82.55 86.03 38.74 91.69 71.24 82.52 77.41 79.20 56.65 87.38 75.91
MixOE 83.80 74.26 20.10 96.26 54.20 87.24 55.80 86.13 46.30 88.39 52.04 86.46 75.81

VOS 60.22 88.57 85.45 83.62 50.57 88.80 80.65 74.22 90.30 64.73 73.43 79.98 73.55
DOE 19.20 96.43 4.15 99.02 12.80 97.65 32.75 91.88 58.00 84.87 25.38 93.97 74.51

C FURTHER EXPERIMENTS

This section provides further experiments to demonstrate the effectiveness of our proposal.

C.1 CIFAR BENCHMARKS

We first summarize the main experiments in Table 4-5 on CIFAR benchmarks for the common OOD
detection. A brief version can also be found in Table 1 in the main text. Overall, our DOE reveals
superior performance on average regarding both the evaluation metrics of FPR95 and AUROC.
However, when it comes to individual test-time OOD datasets, our DOE may not work best in all
situations (e.g., KNN on OOD dataset Places365 and ID dataset CIFAR-100). We emphasize that it
does not challenge the generality of our proposal since DOE has demonstrated stable improvements
for the original OE. Here, the interesting point is that if we can further benefit the OE from the latest
progress in OOD scoring, one can further improve the performance of our method in effective OOD
detection, which requires our future study.

Now, we compare OE and DOE on CIFAR benchmarks with five individual trails in Table 6, where
we report the mean results and the standard deviation. As we can see, our DOE not only leads to
improved average performance in OOD detection, and the results are more stable than that of the
original OE. The superiority of DOE in stability may lie in the fact that the target model can learn
from more data than the OE case, further demonstrating the effectiveness of our proposal.

Also, we compare the performance of OE and DOE when using the MSP scoring and the MaxLogit
scoring, of which the experiments are summarized in Table 7. Regarding both the cases with differ-
ent scoring functions, our DOE always achieve superior performance than that of the OE, demon-
strating that our proposal can genuinely mitigate the OOD distribution gap issue in OOD detec-
tion. Further, comparing the results across different scoring strategies, we observe that using the
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Table 6: Comparison of DOE and OE on CIFAR benchmarks with 5 individual trails. ↓ (or ↑)
indicates smaller (or larger) values are preferred; and a bold font indicates the best results in the
corresponding column.

Method SVHN LSUN iSUN Texture Places365
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

OE 2.91±
0.60

99.34±
0.08

0.46±
0.13

99.80±
0.03

9.05±
1.56

98.45±
0.20

18.08±
0.88

96.91±
0.11

28.02±
0.68

95.01±
0.08

DOE 2.66±
0.10

99.41±
0.01

0.15±
0.01

99.91±
0.01

1.26±
0.11

99.48±
0.04

7.40±
0.27

98.32±
0.02

15.42±
0.42

96.33±
0.03

CIFAR-100

OE 55.48±
1.46

86.99±
0.99

12.28±
0.95

86.76±
0.19

44.38±
2.75

88.54±
0.90

47.57±
1.42

86.93±
0.21

65.05±
1.27

80.83±
0.23

DOE 28.47±
0.35

95.45±
0.02

5.27±
0.18

98.51±
0.01

22.28±
0.92

96.36±
0.10

40.00±
0.54

91.34±
0.06

50.70±
0.27

88.42±
0.03

Table 7: Comparison of DOE and OE on CIFAR and ImageNet benchmarks with the MSP scoring
and the MaxLogit scoring. ↓ (or ↑) indicates smaller (or larger) values are preferred; and a bold font
indicates the best results in the corresponding column.

Method
CIFAR-10 CIFAR-100 ImageNet

MaxLogit MSP MaxLogit MSP MaxLogit MSP
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OE 11.07 97.98 12.41 97.85 35.95 92.42 45.68 87.61 71.25 79.18 73.80 78.90
DOE 5.15 98.78 7.83 98.46 25.38 93.97 30.50 92.75 59.83 83.54 65.20 80.83

MaxLogit scoring leads to better results than using the MSP scoring. Therefore, we choose the
MaxLogit scoring in our DOE.

C.2 IMAGENET BENCHMARKS

Table 8 lists the detailed experiments on the ImageNet benchmark. Overall, our DOE achieves
superior performance on average against all the considered baselines. Further, for the cases with
iNaturalist and Places365, which are believed to be the challenging OOD datasets on the ImageNet
situation, our DOE also achieve considerable improvements against all other advanced methods. It
demonstrates that our DOE can also work well for challenging detection scenarios with extremely
large semantic space and complex data patterns.

C.3 TRAINING FROM SCRATCH WITH DOE

Table 9: Comparison of OE and DOE when training
from scratch on CIFAR benchmarks.

from scratch CIFAR-10 CIFAR-100
FPR95 AUROC FPR95 AUROC

OE 15.46 95.77 46.02 88.14
DOE 5.85 98.52 26.47 93.16

This section further considers the training
setup of training from scratch, where we
mainly focus on the detection performance
of OE and DOE on CIFAR benchmarks.
Specifically, the models are trained for 150
epochs for OE and DOE via stochastic gra-
dient descent. We fix the learning rate to
be 0.1, divided by 10 per 30 epochs. For
DOE, the warmup epochs are set to be 90.
All other hyperparameters follow the same
setup as in Section 5. We summarize the experimental results in Table 9. As we can see, our DOE
can still improve OE by a large margin, revealing that our method is general in applying for the setup
of training from scratch.

C.4 WORST OOD REGRET AND WORST OOD RISK

Another issue related to distributional robustness is our definition of the worst OOD distribution. It
is defined by the OOD regret LOE(h;D)− infh′∈H LOE(h

′;D), where we claim its superiority than
its risk counterpart, i.e., LOE(h;D) (cf., Appendix B).
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Table 8: Comparison of DOE and advanced methods on ImageNet dataset. ↓ (or ↑) indicates smaller
(or larger) values are preferred; a shaded row of results indicate the best method in post-hoc (or fine-
tuning) methods; and a bold font indicates the best results in the corresponding column.

Method iNaturalist SUN Places365 Texture Average ID ACCFPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
Post-hoc Approach

MSP 72.98 77.22 80.89 74.24 76.69 77.81 70.73 78.58 75.32 76.96 74.55
ODIN 63.85 77.78 89.98 61.80 88.00 67.17 67.87 77.40 77.43 71.04 74.55

Mahalanobis 95.90 60.56 95.42 45.33 98.90 44.65 55.80 84.60 86.50 58.78 74.55
Free Energy 69.10 77.39 82.36 76.08 76.15 80.23 56.97 84.32 71.14 79.50 74.55

ReAct 56.11 84.94 82.79 75.87 75.00 80.72 70.37 82.16 70.31 81.42 74.55
KNN 65.40 83.73 75.62 77.33 79.20 74.34 40.80 86.45 64.75 80.91 74.55

Fine-tuning Approach

OE 78.31 75.23 80.10 76.55 70.41 81.78 66.38 82.04 73.80 78.90 75.51
CSI 75.85 82.63 90.62 47.83 94.90 44.62 85.85 87.11 86.80 65.54 74.27

SSD+ 59.60 85.54 75.62 73.80 83.60 68.11 39.40 82.40 64.55 77.46 78.80
MixOE 80.51 74.30 74.62 79.81 84.33 69.20 58.00 85.83 74.36 77.28 74.62

VOS 94.83 57.69 98.72 38.50 87.75 65.65 70.20 83.62 87.87 61.36 74.43
DOE 55.87 85.98 80.94 76.26 67.84 83.05 34.67 88.90 59.83 83.54 75.50

Table 10: Roubst learning with worst
OOD regret and worst OOD risk.

Methods DOE-regret DOE-risk

FPR95 ↓ 25.74 30.33
AUROC ↑ 94.25 94.01

Table 10 summarizes the results on the CIFAR-100
dataset in comparison between searching for the worst
OOD regret (DOE-regret) and the worst OOD risk (DOE-
risk). Therein, both realizations can improve results com-
pared with the original OE. However, the regret-based
DOE can reveal better results than the risk-based one,
with 4.59 further improvement in FPR95. Here, the worst
regret can better indicate the worst OOD distribution than
the risk counterpart, and thus the DOE-regret, as employed in Algorithm 1, demonstrates superior
results in Table 10.

C.5 EFFECT OF HYPER-PARAMETERS

We study the effect of hyper-parameters on the final performance of our DOE, where we consider the
trade-off parameter λ, the perturbation strength α, the smoothing strength β, the perturbation steps
num pert, and the warm-up epochs num warm. We also study the case of sub-model perturbation,
where the model perturbation is only applied to a part of the whole model. All the above experiments
are conducted on the CIFAR-100 dataset.

As one can see from the Tables 11- 14, our DOE is pretty robust to different choices of the hyper-
parameters (i.e., λ, β, num pert, and num warm), and the results are superior to the OE across
most of the hyper-parameter settings. However, a proper choice of the hyper-parameters can truly in-
duce improved results in effective OOD detection, reflecting that all the introduced hyper-parameters
are useful in our proposed DOE. In Table 15, we further demonstrate that randomly selected α (from
the candidates) reveals superior performance than assigning fixed values. Note that random selec-
tion can cover a wider range of OOD situations than that of fixed values. Then, since the model can
learn from more implicit OOD data, the capability of the model in OOD detection is better than the
case with fixed values.

Finally, we show the experimental results with sub-model perturbation in Table 16, where only a part
of the model is perturbed in our DOE. Here, we separate the WRN-40-2 into 3 blocks, following the
block structure in (Zagoruyko & Komodakis, 2016). As we can see, perturbing the whole model can
reveal superior performance than the cases with sub-model perturbation. It can be explained by our
Lemma 1 in that perturbing the whole model can benefit the data transformation from the layer-wise
structure of deep models most. Then, with the more flexible form of transform function, perturbing
the whole model can reveal better results than the cases with sub-model perturbation since the model
can learn from more diverse (implicit) OOD data.
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Table 11: DOE on
CIFAR-100 with vari-
ous λ.

FPR95 AUROC

0.1 41.43 90.82
0.5 32.35 93.66
1.0 25.80 93.77
1.5 27.59 94.20
2.0 25.52 94.35
2.5 25.84 94.34
3.0 26.04 94.31
3.5 25.60 94.32
4.0 25.96 94.28
4.5 26.35 94.23

Table 12: DOE on
CIFAR-100 with vari-
ous β.

FPR95 AUROC

0.1 23.52 94.48
0.2 24.31 64.36
0.3 23.12 94.47
0.4 23.90 94.41
0.5 24.79 94.25
0.6 25.11 94.22
0.7 26.37 93.95
0.8 28.12 93.71
0.9 30.23 93.19
1.0 27.25 93.77

Table 13: DOE on
CIFAR-100 with vari-
ous num pert.

FPR95 AUROC

1 25.59 94.50
2 24.90 94.83
3 26.75 94.22
4 25.37 94.41
5 24.62 94.83
6 25.37 94.40
7 24.60 94.38
8 25.80 94.15
9 24.83 94.71

10 24.54 94.88

Table 14: DOE on
CIFAR-100 with vari-
ous num warm.

FPR95 AUROC

1 25.50 94.09
2 25.21 93.94
3 24.81 94.03
4 23.96 94.39
5 25.50 94.11
6 26.18 93.79
7 26.02 94.49
8 29.01 94.07
9 36.05 92.19
10 35.33 92.89

Table 15: DOE on CIFAR-100 with various α.

candidate α FPR95 AUROC

{1e−1} 53.20 86.49
{1e−2} 27.29 94.04
{1e−3} 31.75 93.71
{1e−4} 32.72 93.63

{1e−1, 1e−2} 36.14 91.21
{1e−2, 1e−3} 28.56 94.17
{1e−3, 1e−4} 34.35 93.49

{1e−1, 1e−2, 1e−3} 27.59 94.20
{1e−2, 1e−3, 1e−4} 30.83 93.69

{1e−1, 1e−2, 1e−3, 1e−4} 25.20 94.33

Table 16: DOE on CIFAR-100 with sub-model
perturbation.

Perturbed Block FPR95 AUROC

Block 1 35.76 93.82
Block 2 32.88 93.73
Block 3 32.50 93.54

Block 1-2 27.29 94.06
Block 2-3 31.89 93.63

Block 1 and Block 3 28.07 94.04
Whole Model 25.25 94.47
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