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ABSTRACT

Video Question Answering (VideoQA) is a task to predict a correct answer given
a question-video pair. Recent studies have shown that most VideoQA models rely
on spurious correlations induced by various biases when predicting an answer. For
instance, VideoQA models tend to predict ‘two’ as an answer without considering
the video if a question starts with “How many” since the majority of answers to
such type of questions are ‘two’. In causal inference, such bias (question type),
which simultaneously affects the input X (How many...) and the answer Y (two),
is referred to as a confounder Z that hinders a model from learning the true rela-
tionship between the input and the answer. The effect of the confounders Z can
be removed with a causal intervention P (Y |do(X)) when Z is observed. How-
ever, there exist many unobserved confounders affecting questions and videos,
e.g., dataset bias induced by annotators who mainly focus on human activities and
salient objects resulting in a spurious correlation between videos and questions.
To address this problem, we propose a novel framework that learns unobserved
confounders by capturing the bias using unanswerable questions, which refers to
an artificially constructed VQA sample with a video and a question from two dif-
ferent samples, and leverages the confounders for debiasing a VQA model through
causal intervention. We demonstrate that our confounders successfully capture the
dataset bias by investigating which part in a video or question that confounders
pay attention to. Our experiments on multiple VideoQA benchmark datasets show
the effectiveness of the proposed debiasing framework, resulting in an even larger
performance gap compared to biased models under the distribution shift.

1 INTRODUCTION

Video Question Answering (VideoQA) task is a multi-modal understanding task to find the correct
answer given a question-video pair, which requires an understanding of both vision and text modali-
ties along with causal reasoning. However, recent studies (Ramakrishnan et al., 2018; Cadene et al.,
2019) point out that the success of the VideoQA models is due to its reliance on spurious corre-
lations caused by bias instead of reasonable inference for answer prediction. In other words, the
models concentrate on the co-occurrence between the question (or video) and the answer based on
the dataset statistics and tend to simply predict the frequent answers. For instance, given a question
that starts with “How many”, a biased VideoQA model often blindly predicts ‘two’ as an answer as
depicted in Fig. 1b. Fig. 1a illustrates the statistics of MSVD-QA dataset, showing that the majority
of the answer to the “How many” questions are ‘two’. In this case, ‘question type’ is acting as a bias
simultaneously influencing the input question-video pair and the answer, which hinders the model
from learning a true relationship between the input and the answer.

In causal inference (Glymour et al., 2016), such variable, e.g., question type, affecting both the input
X and the answer Y is called a confounder Z, which interrupts finding a true causal relationship
between X and Y . The causal intervention P (Y |do(X)) intentionally cuts off the relation between
X and Z via do-calculus, which is also called ‘deconfounding’, to remove the effect of the con-
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founders1. Nevertheless, Z should be predefined to apply causal intervention but most confounders
are unobserved in the dataset and hard to be applied to the causal intervention.

(a)

Question : How many boys are 
standing in front of the 
burning car?

Answer : four
Baseline : two

(b)

Figure 1: Dataset statistics of MSVD dataset and an example of
the biased answer. (Left) The majority of answers to the “How
many” questions are ‘two’. (Right) The model outputs the biased
answer ‘two’ instead of the right answer ‘four’.

Therefore, we introduce learnable
confounder queries and train them
to capture the bias, and leverage
the learned confounders for debias-
ing through the causal intervention.
To achieve this, we force the model
to answer the unanswerable question.
An unanswerable question refers to
an artificially constructed VQA sam-
ple with a video and a question from
two different samples in a mini-batch,
along with an answer that corre-
sponds to either the video or the ques-
tion. When a model answers the
unanswerable question, the model in-
evitably learns the bias of the specific
modality that corresponds to the an-
swer since another modality is ran-
domly sampled and irrelevant to the
answer.

To summarize, we propose a novel framework Debiasing a Video Question Answering Model by
Answering Unanswerable Questions (VoidQ) with causal inference. In order to apply the causal
intervention P (Y |do(X)), we introduce learnable confounder queries. The proposed confounder
queries are trained to capture the bias by answering the unanswerable questions. Our framework
leverages the confounder queries and their outputs to debias our VQA model via causal interven-
tion. We validate our models on three benchmark VideoQA datasets (TGIF-QA, MSRVTT-QA,
and MSVD-QA) and demonstrate the effectiveness of our debiasing strategy. Also, ablation studies
reveal that the performance gap between conventional biased models and the proposed model gets
larger when the training and test distribution significantly differ, supporting the improved general-
ization ability by the proposed approach. Lastly, visualization of confounders via our variant of
Grad-CAM shows that the learned confounder queries adequately debias a VQA model by taking
into account falsely correlated keywords in questions or salient regions in videos.

To sum up, our contributions are as follows:

• We propose a novel debiasing framework for VideoQA model to predict correct answers
based on causal inference by removing the effect of the confounders.

• We also present a training scheme encouraging the learnable confounder queries to capture
the bias by forcing the model to answer the unanswerable questions.

• Our extensive experiments demonstrate that the proposed framework outperforms previous
models on various benchmark datasets, even with a larger margin under the distribution
shift where the biased models suffer significant performance degradation from.

• We verify that our confounders successfully capture the dataset bias by investigating which
parts in a video or which words in a question are utilized by confounder queries to correct
the predictions of a VQA model.

2 RELATED WORK

Video Question Answering (VideoQA). VideoQA is a task to infer a correct answer, given a
video and a question. While models for the VisualQA task focuses on spatial information of an
image (Antol et al., 2015; Yang et al., 2016), VideoQA requires reasoning over both temporal and
spatial dynamics, making it a more challenging task. Previous works have applied spatio-temporal
contextual attention to various scenarios (Jang et al., 2017; Xiao et al., 2022; Zhao et al., 2017).

1Additional descriptions about the causal inference are in Sec. 3.1
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Another line of research has proposed the end-to-end pretrained models on the large-scale dataset
to improve the performance of various downstream tasks including the VideoQA. Fu et al. (2021)
builds a additional cross-modal encoder as well as the video and text encoder and Wang et al. (2022)
introduce a token rolling operation to efficiently perform the temporal attention on the cross-modal
encoder. However, existing models still suffer from dataset bias (Ramakrishnan et al., 2018; Cadene
et al., 2019). Therefore, in this paper, we propose a debiasing framework for VideoQA to improve
generalization power by reducing the dataset bias even under a distribution shift.

Debiasing from the biased model. The first approach to alleviate the bias is to directly augment
the dataset to remove statistical ‘hints’ and enlarge the size and diversity of the training set. Gokhale
et al. (2020), Chen et al. (2020), and Kil et al. (2021) propose to augment input images or questions
to generate counterfactual or paraphrased QA pairs. On the other hand, there exist attempts to
learn the text or image bias through additional branches by training the branch only with a single
modality. Outputs from the biased branches are then utilized to debias training (Ramakrishnan
et al., 2018; Zhang et al., 2021; Cadene et al., 2019). However, these approaches require manually
designed heuristic rules or separate branches to capture bias from a specific modality. We propose a
novel unified debiasing framework that leverages the unanswerable questions, allowing the learnable
confounder queries to capture the biases related to both modalities without any heuristics.

Causal Inference. Causal inference, a method to find the true effect of a particular variable on a
target variable without being interrupted by any other variables, is being widely adopted in Visual
QA tasks. Previous works proposed augmenting the data to remove unwanted effects of a specific
variable by utilizing the Structural Causal Model (SCM) (Glymour et al., 2016) which defines causal
relationships between variables. Specifically, existing works generate counterfactual samples (Tang
et al., 2020; Abbasnejad et al., 2020; Yue et al., 2021) or negative samples (Wen et al., 2021; Teney
et al., 2020) to measure and remove an effect of a specific confounding variable. Besides, causal
intervention is also used to directly remove the effects of a predefined confounding variable that
hinders proper reasoning. Unfortunately, since the confounders are usually unobserved, most ex-
isting methods manually predefine the confounder sets as object classes (Zhang et al., 2020) or
verb-centered relation tuples from caption data (Nan et al., 2021) in order to conduct the causal
intervention. Unlike these works, we directly train the confounder queries so that they can capture
various types of bias, instead of manually predefining what confounder should be.

3 METHOD

Bias misleads the model to become reliant on spurious correlations, resulting in poor generalization
ability. Therefore, in this section, we propose a novel framework Debiasing a Video Question
Answering Model by Answering Unanswerable Questions (VoidQ) with causal inference. Firstly,
we briefly revisit the basic concepts of the VideoQA and causal inference. We then present the
debiasing framework with learnable confounder queries based on the causal intervention. Finally,
we introduce the training objective using unanswerable questions to let the confounder queries learn
the bias.

3.1 PRELIMINARIES

VideoQA. VideoQA is a task to predict the answer Ŷ given a question-video pair X = (xq, xv).
There are two types of tasks in the VideoQA: multi-choice question answering (MCQA) and open-
ended question answering (OEQA). For the MCQA, the model predicts the answer among five
options in general. Each option is concatenated with the question and the model calculates the
similarities between each concatenated text and the video to output the final prediction. In the
OEQA setting, the task is mostly converted to the classification task to predict the correct answer
among the predefined global vocab-set containing all the candidate answers. For simplicity, we will
explain concepts only with OEQA. Further details including MCQA are in the supplement. The
prediction Ŷ under the OEQA setting given a pair X = (xq, xv) can be written as:

Ŷ = P (Y |X) = h(f(X)), (1)

where f is a feature encoder and h is a classifier.

3



Under review as a conference paper at ICLR 2023

0. Crawls away. 
1. Follow the baby. 
2. Look into camera. 
3. Stand up. 
4. Push the toy car.

Q: What does the adult do 
after the baby starts crawling 
away? 

Answer

confounder encoderdata encoder

FFN FFN

tokenize

Question 

patchify

Input Video

Learnable Confounder QueriesContext Tokens

Figure 3: VoidQ Architecture. We construct tokenized text tokens xq and patchified video tokens xv from
input question and video, then concatenate them to form X and feed them into the data encoder f . Learnable
confounder queries Z are fed to the confounder encoder g, which are cross-attended with output features of f ,
i.e., X̃ . Z is trained to learn the dataset bias by minimizing Lconfounder between the ground truth and a biased
prediction Ŷg generated from Z̃ through hg . Causal intervention utilizing learned confounders Z and Z̃ is
applied to generate the final debiased prediction Ỹf from X̃ through hf .

(a) P (Y |X) (b) P (Y |do(X))

Figure 2: Causal Inference. X is a cause, Y is an
effect, and Z is a set of confounders.

Causal Inference. To train f and h in Eq. 1,
most previous approaches (Fan et al., 2019; Gao
et al., 2018; Jiang et al., 2020; Jiang & Han,
2020; Le et al., 2020) have adopted the standard
cross entropy (CE) loss as:

min
f,h

CE(Ŷ , Y ). (2)

Eq. 2 aims simply to minimize CE between the
ground-truth Y and the prediction Ŷ , in which
f and h naturally learn the spurious correlation
between X and Y .

To address this problem, some recent works (Tang et al., 2020; Zhang et al., 2020; Niu et al., 2021)
tried applying causal inference (Glymour et al., 2016) to alleviate the bias. As shown in Fig. 2a,
conventional approaches have calculated the likelihood P (Y |X) to predict the answer as:

P (Y |X) =
∑
z∈Z

P (Y |X, z)P (z|X). (3)

On the other hand, the predicted answer with causal intervention P (Y |do(X)) where the connection
between X and Z is cut-off is defined as:

P (Y |do(X)) =
∑
z∈Z

P (Y |X, z)P (z). (4)

Unlike in Eq. 3, the causal intervention removes the relation between X and Z, allowing the model
to reason about the real causation of X to Y by considering the prior P (z) instead of P (z|X) in
Eq. 4. Note that a set of confounders Z must be known in advance to calculate Eq. 4.

3.2 OVERALL ARCHITECTURE

VoidQ consists of two encoders. A data encoder f follows the Transformer (Vaswani et al., 2017)
encoder based on the self-attention mechanism. Unlike f , a confounder encoder g is composed of a
cross-attention layer followed by feed-forward networks (FFN). For the input of f , we concatenate
text tokens xq and visual tokens xv , i.e., X = (xq, xv) ∈ RN×D, where N is the number of input
tokens and D is the feature dimension. Then, the output feature X̃ can be calculated as:

X̃ = f(X) ∈ RN×D. (5)
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What is

the lion

doing?

What is a 

woman 

diving in?

CE
GCE

GCE

GCE

GCE

CE

Figure 4: Objective functions with unanswerable questions. The first letter in the superscripts of the four
outputs Ŷ (∗,∗)

g from g stands for the modality of an input from the pair X , i.e., Ŷ (q,∗)
g and Ŷ

(v,∗)
g denote outputs

from g given an input Xq = (xq, x
′
v) and Xv = (x′

q, xv), respectively. The second letter denotes the modality
an output is biased towards, which is also represented in color. Ŷ (∗,q) and Ŷ (∗,v) denotes that the output are
biased towards text and video, respectively.

For unobserved confounders, we additionally introduce a set of learnable confounder queries Z ∈
RM×D as an input of g, where M is the number of confounders and D is the feature dimension. We
also add two different modality encodings to inject information about each token’s modality so that
they could learn modality-specific bias. Concretely, a text-type encoding and a video-type encoding
are added to individual confounder queries Z[0 : M/2] and Z[M/2 : M ] The output of f , i.e., X̃ ,
is also used as an input of g and cross-attended with Z. In detail, Z is adopted as query, and X̃ is
used as key and value of the encoder g. Then, the output Z̃ can be written as:

Z̃ = {z̃|z̃ = g(X̃, z),∀z ∈ Z} ∈ RM×D. (6)

We additionally introduce two FFN hf and hg as prediction heads of f and g, respectively. In
short, the data encoder f and hf perform the main VideoQA task, while the confounder encoder g
and hg learn and encode the bias in confounder queries Z, which will later be removed via causal
intervention. The detailed objective functions to train each component are introduced in Sec. 3.3.
Fig. 3 illustrates the overall architecture of our proposed framework.

3.3 TRAINING OBJECTIVE

Debiased prediction. Conventional approaches used P (Y |X) in Eq. 3 as the output logit which
is simply calculated with an additional FFN h on the top of the encoder f , i.e., Ŷ = P (Y |X) =
h(f(X)). On the other hand, to remove the effect of confounders, we use a logit P (Y |do(X))
with causal intervention. Since P (Y |do(X)) is calculated with the Softmax function, it can be
approximated by Normalized Weighted Geometric Mean (NWGM) (Xu et al., 2015) as follows:

Ŷf = P (Y |do(X)) =
∑
z∈Z

P (Y |X, z)P (z) ≈ P (Y |
∑
z∈Z

(X + z)P (z)). (7)

Then, the debiased output Ŷf in Eq. 7 can be calculated with FFN hf :

P (Y |
∑
z∈Z

(X+z)P (z)) = hf

(∑
z∈Z

(
X̃ + z + g(X̃, z)

)
P (z)

)
= hf

(∑
z∈Z

(
X̃ + z + z̃

)
P (z)

)
,

(8)
where X̃ = f(X) as defined in Eq. 5. Note that CLS token from X̃ is used when calculating X̃ +
z+ z̃ in Eq. 8. In general, confounders are defined to be data-agnostic, i.e., each sample in a dataset
shares the same confounders. However, in Eq. 8, we consider not only data-agnostic confounders
Z but also data-modulated confounders Z̃. While debiasing the data-agnostic confounders leads t
o the model to alleviate dataset bias, by introducing additional data-modulated confounders Z̃, we
also mitigate in-sample spurious correlations, e.g., models tend to select the option which includes
the visually salient ‘object’ in the video as an answer. We then apply the standard CE loss to perform
the VideoQA task by using debiased logit with causal inference as:

Lcausal = CE(Ŷf , Y ). (9)
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Training confounders with unanswerable questions. To alleviate the effect of confounders as in
Eq. 7, it is important to let the confounder queries Z ∈ RM×D capture the bias during training. To
achieve this, we first construct two unanswerable questions i.e., Xq = (xq, x

′
v) and Xv = (x′

q, xv)
by pairing a text xq and video xv from a sample X with label Y with another video x′

v and text x′
q

from a different sample X ′ in mini-batch having label Y ′. We then force the model to predict Y or Y ′

from these unanswerable questions. Since the model is unable to predict the proper answer given the
unanswerable pair by relying only on the single modality but is forced to do so, the model inevitably
learns text or video bias. Therefore, the model gets to only consider the spurious correlations to
predict an answer. Fig. 4 shows the loss functions to train confounders with unanswerable questions.

In detail, two unanswerable pairs are forwarded to the encoder f and g with the confounders Z as:

X̃q, X̃v = f(Xq), f(Xv)

Z̃q, Z̃v = {z̃|z̃ = g(X̃q, z),∀z ∈ Z}, {z̃|z̃ = g(X̃v, z),∀z ∈ Z},
(10)

where Z̃q, Z̃v ∈ RM×D. In Eq. 10, Z̃q and Z̃v indicate that output features of confounders Z, which
are cross-attended with unanswerable pairs Xq and Xv , respectively. As mentioned above, since the
confounder is divided into two parts2 to learn the text and video bias, we feed both Z̃q and Z̃v , being
separated into two parts respectively, to the FFN layer hg to output modality-biased predictions as.

Z̃q,q, Z̃v,q, Z̃q,v, Z̃v,v = Z̃q[0 : M/2], Z̃v[0 : M/2], Z̃q[M/2 : M ], Z̃v[M/2 : M ]

Ŷ (q,q)
g , Ŷ (v,q)

g , Ŷ (q,v)
g , Ŷ (v,v)

g = hg(Z̃q,q), hg(Z̃v,q), hg(Z̃q,v), hg(Z̃v,v),
(11)

Here, the former letter in the superscript of Ŷ (∗,∗)
g denotes the input modality which comes from

the original pair X when constructing the unanswerable pair (e.g., An input question of Ŷ (q,∗)
g is

taken from Xq) and the latter denotes the modality an output would be biased towards. For instance,
Ŷ

(v,q)
g , an output of g given an input Xv = (x′

q, xv), is desired to be text-biased, while Ŷ (v,v)
g is also

an output of g given an input Xv = (x′
q, xv), but desired to be video-biased. In other words, Z̃(∗,q)

and Ŷ
(∗,q)
g denote text bias and a text-biased output from g. Similarly, Z̃(∗,v) and Ŷ

(∗,v)
g denote

video bias and a video-biased output from g.

Then, the loss function for training confounders to satisfy properties mentioned above is as follows:

Lconfounder = GCE(Ŷ (q,q)
g , Y ) + GCE(Ŷ (v,q)

g , Y ′) + GCE(Ŷ (q,v)
g , Y ′) + GCE(Ŷ (v,v)

g , Y ), (12)
where GCE is the Generalized Cross Entropy (Zhang & Sabuncu, 2018) loss which will be further
discussed below. For GCE(Ŷ (q,q)

g , Y ) in Eq. 12, Ŷ (q,q)
g is a text-biased output desired to match Y

given an input Xq = (xq, x
′
v), i.e., it is forced to learn the text bias regardless of the video, since the

question xq and the answer Y are from the same pair, while the irrelevant video x′
v is from another

sample in mini-batch. In the same way, GCE(Ŷ (q,v)
g , Y ′), where the input corresponding to Ŷ

(q,v)
g

is (xq, x
′
v), is encouraged to learn the video bias because x′

v and Y ′ are from the same pair. We can
therefore train the confounders to learn both text bias and video bias with unanswerable questions
in Eq. 12.

We can also amplify the bias and train the confounders to be more bias-toward by adopting GCE as:

GCE(p(x; θ), y) =
1− py(x; θ)

q

q
, (13)

where p(x; θ) is an output probability parameterized by θ, q ∈ (0, 1] is a smoothing parameter, and y
is a ground truth. The gradient of GCE loss is py(x; θ)q times larger than the gradient of the standard
CE loss, i.e., ∂GCE

∂θ = py(x; θ)
q · ∂CE

∂θ . Therefore, GCE loss leads the model to be biased by placing
larger weight on ‘easier’ samples with a high confidence score (Lee et al., 2021; Nam et al., 2020),
inducing the model to be overfitted to easy shortcuts. Further details of GCE are in the supplement.

Then, the final loss function of our proposed algorithm is as follows:
L = Lcausal + Lconfounder. (14)

At the inference phase, we only use Ŷf , the output of causal intervention for the prediction.

2the first M/2 confounders Z̃[0 : M/2] denotes text confounders and the latter M/2 confounders Z̃[M/2 :
M ] means video confounders
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Table 1: Comparison on TGIF-QA, MSVD-QA, and MSRVTT-QA. We report the accuracy for all datasets.
TGIF-Action and TGIF-Transition are MCQA and TGIF-Frame, MSVD-QA, and MSRVTT-QA are OEQA.

TGIF-QA MSVD-QA MSRVTT-QA
Method Action (MC) Transition (MC) Frame (OE) OE OE

ST-VQA (Jang et al., 2017) 62.9 69.4 49.5 - -
Co-Mem (Gao et al., 2018) 68.2 74.3 51.5 31.7 31.9
HCRN (Le et al., 2020) 75.0 81.4 55.9 36.1 35.6
HGA (Jiang & Han, 2020) 75.4 81.0 55.1 34.7 35.5
QueST (Jiang et al., 2020) 75.9 81.0 59.7 36.1 34.6
Bridge2Answer (Park et al., 2021) 75.9 82.6 57.5 37.2 36.9
ClipBERT (Lei et al., 2021) 82.9 87.5 59.4 - 37.4
VIOLET (Fu et al., 2021) 92.5 95.7 68.9 43.1 -
MASN (Seo et al., 2021a) 84.4 87.4 59.5 38.0 35.2
QESAL (Liu et al., 2021) 76.1 82.0 57.8 36.6 36.7
CoMVT (Seo et al., 2021b) - - - 39.5 42.6
IGV (Li et al., 2022) - - - 40.8 38.3
HD-VILA (Xue et al., 2022) 84.3 90.0 60.5 - 40.0
HRNAT (Gao et al., 2022) - - - 38.2 35.3
CASSG(Liu et al., 2022b) 77.6 83.7 58.7 36.5 36.1
HGQA (Xiao et al., 2022) 76.9 85.6 61.3 - 38.6
CMCIR(Liu et al., 2022a) 78.1 82.4 62.3 43.7 38.9
Mao et al. (2022) 84.6 90.1 62.5 - 41.6

VoidQ (Ours) 93.5 97.3 67.0 46.2 43.2

Prior probability P (z). As for the prior probability P (z), we introduce a learnable parameter
c ∈ RM , i.e., P (z) = Softmax(c). However, since a large variance of P (z) can make the training
unstable, we apply exponential moving average (EMA) on P (z) to stabilize the training. We also
apply Dropout (Srivastava et al., 2014) on P (z) and regularize a model from being overfitted on the
particular confounders.

4 EXPERIMENTS

In this section, we evaluate the performance of VoidQ for both MCQA and OEQA settings on three
benchmark VideoQA datasets: TGIF-QA, MSRVTT-QA, and MSVD-QA. In TGIF-QA, TGIF-
Action and TGIF-Transition are conducted under the MCQA setting, predicting the proper answer
among five options. For OEQA on TGIF-Frame, MSRVTT-QA, and MSVD-QA, we follow the con-
ventional settings (Fu et al., 2021; Lei et al., 2021) to construct the answer candidates. In detail, the
answer candidates of TGIF-Frame consist of 1,540 most frequent answers in the training set. Simi-
larly, 1,500 and 1,000 most frequent answers in the training set are selected as the answer candidates
for MSRVTT-QA, and MSVD-QA datasets. We also perform ablation studies to show that VoidQ is
robust and generalizes well under distribution shifts. Our extensive qualitative analyses demonstrate
that learnable confounder queries successfully capture the dataset bias, illustrated by our variant of
Grad-CAM. Descriptions of datasets and implementation details are in the supplement.

4.1 QUANTITATIVE RESULTS

TGIF-QA, MSVD-QA, and MSRVTT-QA. We compare VoidQ with previous VideoQA meth-
ods in Tab. 1. On TGIF-QA, VoidQ outperforms ClipBERT and VIOLET, which are foundation
models pretrained on the large-scale dataset, especially by a margin of 1.0% on TGIF-Action, and
1.6% on TGIF-Frame compared to VIOLET. The performance of VoidQ also improves by 0.6% on
MSRVTT-QA compared to CoMVT which is specifically designed for VideoQA tasks. On MSVD-
QA, VoidQ obtains a 2.5% improvement over CMCIR which also conducts causal intervention.

Ablation studies. Tab. 2 demonstrates the ablation studies in terms of the three components: con-
founder encoder g, unanswerable questions, and GCE loss. Without the unanswerable questions to
train confounders, adding a confounder encoder g degrades the performance from (a) 43.5% to (b)
41.9%. This result also evidences that the performance gain of VoidQ is not solely from increasing
the model complexity. On the other hand, row (c) shows that the unanswerable questions signif-
icantly improve performance by a margin of 3.2% compared to (b). Adopting GCE loss (d) also
leads to a further improvement in performance, since GCE loss helps the model better learn the
confounder Z by amplifying the dataset bias.
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Table 2: Ablation studies on MSVD. ‘-’ at g, the con-
founder encoder, denotes that we do not conduct the causal
intervention and use the conventional likelihood P (Y |X) for
the prediction. UQ denotes the unanswerable questions with
the standard CE loss. ‘✓’ on both UQ and GCE stands for
Lconfounder.

g UQ GCE MSVD MSRVTT→MSVD

(a) - - - 43.5 36.3
(b) ✓ - - 41.9 -
(c) ✓ ✓ - 45.1 -
(d) ✓ ✓ ✓ 46.2 41.0

0.1 0.2 0.3 0.4 0.5 0.6
JSD

3
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cc
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Figure 5: Distribution shift. X-axis: JSD
between the train and modified test sets. Y-
axis: Accuracy difference of the baseline
and ours.

(a) (b)

(c) (d)
Figure 6: Qualitative results on MSVD. Confidence scores of the top-5 predicted answers using conventional
likelihood P (Y |X) and causal intervention P (Y |do(X)). Ground-truth answers are colored in red.

To show the generalizability of VoidQ, we also conduct experiments under the distribu-
tion/domain shift; we trained models on the MSRVTT training set and evaluated them on
the MSVD test set (MSRVTT→MSVD). Jensen-Shannon Divergence, i.e., JSD(P,Q) =
1
2 (DKL(P∥R) +DKL(Q∥R)) where R = 1

2 (P + Q), is adopted to quantify the label distribu-
tion distance between training and test sets. We observe that VoidQ provides a larger perfor-
mance gain when the distribution shift increases. Where both training and evaluating on MSVD,
JSD between the train and test set shows the relatively small value of JSD(trainMSVD, testMSVD)
0.07. VoidQ obtains a 2.7% improvement from (a) 43.5% to (d) 46.2% in such setting. Whereas,
the improvement increases to 4.7% when training on MSRVTT but evaluating on MSVD, where
JSD(trainMSRVTT, testMSVD) = 0.26.

We conduct additional experiments comparing model performances on the new test sets, including
the standard test set, constructed by intentionally removing samples from the test set if the answer
belongs in the top-1, 10, 20, 50, and 100 most frequent answer candidates. Such modification
demonstrates how much a model is statistically biased. If a model is highly biased towards the
dataset statistics, the model would perform worse when the frequent answers are removed. We com-
pare the performance of VoidQ against the base VideoQA model without any debiasing scheme,
which corresponds to (d) and (a) in Tab. 2, respectively. Fig. 5 illustrates the results of such ex-
periments. The performance gap between the base model and the proposed model increases as the
discrepancy between the train and test set enlarges. The performance gap of 2.7% between VoidQ
and the baseline when JSD is 0.08 dramatically increases up to 6.79% when JSD is a larger value,
0.61. Two experiments done under distribution shift prove that VoidQ well alleviates the statistical
bias, helping the model to successfully perform on the dataset that differs from the train set.

4.2 QUALITATIVE ANALYSES

How is the model debiased? Four examples in Fig. 6 illustrate how models’ predictions are
corrected via causal intervention P (Y |do(X)). Without the causal intervention, i.e, P (Y |X) =
hf (f(X)), the model is prone to answer questions based on a single modality. For instance, in
Fig. 6a, P (Y |X) predicts ‘two’ as the answer since about 84% answers to the ‘How many’ ques-
tions in the training set are ‘two’ without considering an input video. Another example in Fig. 6b
P (Y |X) predicts ‘animal’ or ‘panda’ as an answer, focusing on visually salient objects, overlook-
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How  many  men  are  

dancing  ?

How  many  men  are  

dancing  ?

Debiased Prediction : three
(a)

What  is  a  person 

giving  to  baby pandas  ?

What  is  a  person 

giving  to  baby pandas  ?

Debiased Prediction : milk
(b)

Figure 7: GradCAM on MSVD. We visualize ∇c
(X;Z̃)

Ŷ t
f and ∇(X;Z̃)Ŷ

t
f on two samples to show where the

confounders look at in the input.

ing the input question. However, after conducting the causal intervention P (Y |do(X)), output are
corrected to ‘three’ and ‘milk’ by thoroughly considering the previously neglected video and text
input, respectively. VoidQ also succeeds predicting the answer ‘ski’ in Fig. 6c, although the answer
‘play’ appeared 51 times more than ‘ski’ during training. Finally, Fig. 6d shows that VoidQ plau-
sibly predicts ‘stage’, overcoming the dataset bias that ‘side’ and ‘field’ are the two most frequent
answers to the ‘Where’ questions.

Where do the confounders look at? We investigate which parts in a video or which words in
a question are taken into account by confounder queries to debias the predictions of a VideoQA
model. To consider the gradient flows through Z̃, we modify GradCAM and Counterfactual Grad-
CAM (Selvaraju et al., 2017) denoted as∇(X;Z̃)Ŷ

t
f and∇c

(X;Z̃)
Ŷ t
f , respectively. They are computed

as:

∇(X;Z̃)Ŷ
t
f := ReLU

∑
z̃∈Z̃

∂Ŷ t
f

∂z̃
· ∂z̃
∂X

 , ∇c
(X;Z̃)

Ŷ t
f := ReLU

∑
z̃∈Z̃

−
∂Ŷ t

f

∂z̃
· ∂z̃
∂X

 , (15)

where t is the target label in question. ∇(X;Z̃)Ŷ
t
f illustrates where confounder Z̃ focused on to bol-

ster correct predictions. Conversely, ∇c
(X;Z̃)

Ŷ t
f reveals where confounder Z̃ focused on to suppress

falsely correlated cues that cause bias. Fig. 7 illustrates ∇(X;Z̃)Ŷ
t
f and ∇c

(X;Z̃)
Ŷ t
f on two examples

shown in Fig. 6a and 6b which contains text and video bias, respectively. Fig. 7a (left) reveals that
“How many” is strongly highlighted by ∇c

(X;Z̃)
Ŷ t
f , implying the phrase negatively influenced to

predict a correct answer. Interestingly, it matches our assumption that “How many” can be consid-
ered as the confounder leading a model to predict ‘two’ as the answer. On the other hand,∇(X;Z̃)Ŷ

t
f

highlights “dancing” most, meaning that VoidQ focuses on the right context to output the number
of ‘dancing men’. Similarly in Fig. 7b including video bias, ∇c

(X;Z̃)
Ŷ t
f and ∇(X;Z̃)Ŷ

t
f focus on

the ‘panda’ and ‘milk’ respectively, which matches our notion that looking at ‘panda’ in the video
hinders the model to predict correct answer looking at ‘milk’ in the video helps debiasing.

5 CONCLUSION

In this work, we propose a novel debiasing framework for VideoQA, dubbed VoidQ, which trains
confounder queries by answering unanswerable questions and utilizes the trained confounders to
remove the dataset bias via causal intervention. Concretely, we adopt causal intervention to cut-off
the relation between confounders Z and input X so that the model predicts the correct answer Y
with bias removed. Since the causal intervention is not applicable when confounders are unobserved,
we additionally introduce a training scheme that leverages unanswerable questions to let learnable
confounder queries capture the dataset bias. We demonstrate the effectiveness of our method by
validating the proposed architecture on various benchmark datasets, and provide qualitative analyses
showing that confounders are well learned to capture the dataset bias and properly removed.
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(a) Structural Causal Model (b) The definition of do(X)

Figure 8: Illustration of Structural Causal Model (SCM) and do-calculus definition.

A APPENDIX

B ADDITIONAL PRELIMINARIES

B.1 CAUSAL INFERENCE

Structural Causal Model (SCM). SCM is a statistical model representing the causal relationship
between variables in the graph structure Glymour et al. (2016). In the causal graph, each variable
is denoted by nodes, and ‘causation’ between two different variables is denoted by a directed edge
between nodes. Fig. 8a illustrates an example of SCM representation in graph form. The edge X →
Y in the graph implies that X is the ‘cause’ of Y . Also, Z in the graph represents a ‘confounder’,
which simultaneously affects both X and Y , therefore making it difficult to find a true effect of X on
Y . Such confounder induces the spurious correlation between X and Y through the backdoor path
between X and Y . A backdoor path is formally defined as any path from X to Y that starts with
an arrow pointing to X (Yang et al., 2021), such as X ← Z → Y in 8a. To find out the true causal
relationship between X and Y , the causal intervention with do-calculus P (Y |do(X)) is applied to
cut-off the relationship Z → X , as illustrated in 8b, therefore removing the spurious correlation
induced by Z. Backdoor adjustment is a widely adopted approach to deconfound the effect of the
confounders Z using the do-calculus, which we further concretize in the very following section.

The backdoor adjustment. Given a directed acyclic graph consisting of X , Y , and Z as in 8a,
backdoor adjustment can be applied to reveal the true causal effect of the X on Y given the con-
founder Z. By Bayes’ theorem, P (Y |X) can be expressed as follows:

P (Y |X) =
∑
z∈Z

P (Y |X,Z = z)P (Z = z|X). (16)

The causal intervention with do-calculus P (Y |do(X)) mentioned in the previous section is then
formally defined as below:

P (Y |do(X)) =
∑
z∈Z

P (Y |X,Z = z)P (Z = z). (17)

Through the backdoor adjustment, the true causal relationship between X and Y , which is denoted
as P (Y |do(X)) is measured without any effect of the confounder Z.

Normalized Weighted Geometric Mean (NWGM). To approximate P (Y |do(X)), we use
NWGM. Before dealing with NWGM, we first revisit the definition of Weighted Geometric Mean
(WGM). Given a discrete variable X and its distribution P (X), the expectation of f(x) is defined
as:

Ex[f(x)] =
∑
x∈X

f(x)P (x). (18)

The Weighted Geometric Mean (WGM), an approximation of Ex[f(x)] is defined as follows:

WGM(f(x)) =
∏
x∈X

f(x)P (x). (19)
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If the activation function of f(x) is a composition of a function g(x) followed by an exponential
function, i.e., f(x) = exp(g(x)), Eq. 19 can be reformulated as:

WGM(f(x)) =
∏
x∈X

exp[g(x)]P (x) =
∏
x∈X

exp[g(x)P (x)]

= exp(
∑
x∈X

g(x)P (x)) = exp{Ex[g(x)]}.
(20)

Interpreting WGM in the perspective of deep learning, f(x) can be regarded as a neural network
whose last activation function is the softmax function. Therefore, Xu et al. (2015) and Yang et al.
(2021) approximate the expectation of the f(x) using the WGM as follows:

Ex[f(x)] ≈WGM(f(x)) = exp{Ex[g(x)]} (21)

To guarantee that output logits can be interpreted as a probability, NWGM, a normalized version of
WGM, is applied so that the sum of output logits adds up to one, and it is formally defined as:

NWGM(f(x)) =

∏
x exp(g(x))

P (x)∑
j

∏
x exp(g(x))

P (x)

=
exp(Ex[f(x)])∑
j exp(Ex[f(x)])

= Softmax(Ex[f(x)])

(22)

Adopting the WGM defined above to our model, P (Y |do(X)) can be approximated as below, where
P (Y |X, z) = Softmax(g(X, z)) ∝ exp(g(X, z)):

P (Y |do(X)) = Ez[P (Y |X, z)]

= Ez[exp(g(X, z))]

≈ exp(Ez[g(X, z)])

= exp{
∑
z∈Z

(f(X) + z + z̃)P (z)}.

(23)

where g(X, z) = f(X) + z + z̃. Then, we apply NWGM to normalize Eq. 23 as to get final
deconfounded prediction probabilities P (Y |do(X)) as follows:

P (Y |do(X)) ≈ Softmax(Ez[g(X, z)])

= Softmax{
∑
z∈Z

(f(X) + z + z̃)P (z)}. (24)

B.2 GENERALIZED CROSS ENTROPY (GCE) LOSS

GCE. GCE loss was first proposed as a generalized loss taking advantage of both Mean Absolute
Error (MAE) loss, and Categorical Cross Entropy (CCE) loss by Zhang & Sabuncu (2018). Given
an input x, the ground truth one-hot vector y, and the set of parameters θ of the classifier f , MAE
and CCE loss are formally defined as below in the common case where the softmax is followed by
the classification layer:

LMAE(f(x; θ), y) = ||y − f(x; θ)||1

LCCE(f(x; θ), y) = −
C∑

j=1

yj log fj(x; θ),
(25)

where C denotes the number of target classes, yj and fj denote the j-th element of y and the j-th
prediction of f . The gradient of loss functions with respect to parameter θ is as follows:

∂LMAE(f(x; θ), y)

∂θ
= −∇θfy(x; θ)

∂LCCE(f(x; θ), y)

∂θ
= − 1

fy(x; θ)
∇θfy(x; θ),

(26)
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where fy denotes the element of the output logit corresponding to the ground-truth label. As for-
mulated in Eq. 26, CCE emphasizes samples with larger 1/fy(x; θ), or smaller fy(x; θ). On the
contrary, MAE equally treats every sample with the same weight. The fact that MAE does not place
a larger weight on difficult samples makes MAE robust to noisy labels, but it also makes training
difficult since every sample is treated equally so that challenging examples are not learned enough.
In contrast, optimizing a model using CCE is easier due to larger weights being given to challenging
samples. However, CCE is sensitive to noisy labels, since the model could easily be overfitted to
such noisy samples which are intrinsically difficult due to label noise. Then GCE loss can be viewed
as a generalization between MAE and CCE loss, and is formally defined as below:

LGCE(f(x; θ), y) =
1− py(x; θ)

q

q
, (27)

where q ∈ (0, 1] is a smoothing parameter. The gradient of LGCE with respect to θ is as follows:
∂LGCE(f(x; θ), y)

∂θ
= fy(x; θ)

q(− 1

fy(x; θ)
∇θfy(x; θ)) = fy(x; θ)

q ∂LCCE

∂θ

= −fy(x; θ)q−1∇θfy(x; θ) = fy(x; θ)
q−1 ∂LMAE

∂θ
.

(28)

Therefore, LGCE additionally weights each sample by fy(x; θ)
q times compared to CCE loss,

weighting difficult samples less. Also, it weights each sample by fy(x; θ)
q−1 times compared to

MAE loss, giving larger weight to difficult examples compared to MAE loss. If q is properly cho-
sen, GCE can therefore act as a generalized loss that is more robust than CCE and easier to train
than MAE, achieving a balanced trade-off between two losses.

GCE Loss in Computer Vision. By the fact that GCE loss gives smaller weights to ‘difficult’
examples compared to conventional CCE loss, Lee et al. (2021) and Nam et al. (2020) propose
capturing bias in the model by leveraging GCE loss to train a ‘biased network’, which is overfitted
to easy samples, which corresponds to ‘bias’ or ‘spurious correlation’ existing in the dataset. Both
works train the model with GCE loss to achieve the model to be biased by focusing on the “easier”
samples compared to the conventional CCE.

B.3 GRADCAM

The standard GradCAM (Selvaraju et al., 2017) of prediction Ŷ t
f with respect to input X can be

calculated as:

∇X Ŷ t
f := ReLU

(
∂Ŷ t

f

∂X

)
= ReLU

(
∂Ŷ t

f

∂X̃
· ∂X̃
∂X

+
∂Ŷ t

f

∂Z̃
· ∂Z̃
∂X

)
, (29)

since the information of input X is divided into two streams, i.e., X̃ and Z̃, and merged to make
the prediction Ŷ t

f . Here, t is the target label in question so visualization of Eq. 29 illustrates which
parts in the input affect predicting the label t. However, Eq. 29 takes into account the gradient flows
through both X̃ and Z̃ although we want to know only the flows through confounders Z̃ to visualize
where the confounders look at. So we define and visualize the gradient through Z̃ as:

∇(X;Z̃)Ŷ
t
f := ReLU

(
∂Ŷ t

f

∂Z̃
· ∂Z̃
∂X

)
= ReLU

∑
z̃∈Z̃

∂Ŷ t
f

∂z̃
· ∂z̃
∂X

 , (30)

which is consistent with Eq. 15 of the main paper. Here, ∂Ŷf

∂Z̃
means how much Z̃ affects the

prediction Ŷ t
f and ∂Z̃

∂X means what the confounder Z̃ looks at in the input X , so∇(X;Z̃)Ŷ
t
f indicates

what the confounder Z̃, affecting the prediction Ŷ t
f , looks at in the input X . Compared to∇(X;Z̃)Ŷ

t
f ,

by simply adding a negative sign, Counterfactual GradCAM∇c
(X;Z̃)

Ŷ t
f is defined as:

∇c
(X;Z̃)

Ŷ t
f := ReLU

∑
z̃∈Z̃

−
∂Ŷ t

f

∂z̃
· ∂z̃
∂X

 , (31)

meaning that where confounder Z̃ focuses on to suppress the prediction Ŷ t
f .
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Algorithm 1 Overall Algorithm
Inputs: sample {X = (xq, xv), Y }, negative sample {X ′ = (x′

q, x
′
v), Y

′}, confounder queries Z,
number of confounder queries M
Parameters: prior probability c, data encoder f , confounder encoder g, FFN {hf , hg}

1: Xq, Xv ← (xq, x
′
v), (x

′
q, xv)

2: X̃, X̃q, X̃v ← f(X), f(Xq), f(Xv)

3: Z̃, Z̃q, Z̃v ← {z̃|z̃ = g(X̃, z),∀z ∈ Z}, {z̃|z̃ = g(X̃q, z),∀z ∈ Z}, {z̃|z̃ = g(X̃v, z),∀z ∈ Z}
4: Ŷf ← hf

(∑
z∈Z

(
X̃ + z + z̃

)
cz

)
▷ cz is a prior probability of z

5: Z̃q,q, Z̃q,v, Z̃v,q, Z̃v,v ← Z̃q[0 : M/2], Z̃q[M/2 : M ], Z̃v[0 : M/2], Z̃v[M/2 : M ]

6: Ŷ
(q,q)
g , Ŷ

(q,v)
g , Ŷ

(v,q)
g , Ŷ

(v,v)
g ← hg(Z̃q,q), hg(Z̃q,v), hg(Z̃v,q), hg(Z̃v,v)

7: Lcausal ← CE(Ŷf , Y )

8: Lconfounder ← GCE(Ŷ (q,q)
g , Y ) + GCE(Ŷ (q,v)

g , Y ′) + GCE(Ŷ (v,q)
g , Y ′) + GCE(Ŷ (v,v)

g , Y )
9: L ← Lcausal + Lconfounder

10: return L

C EXPERIMENTAL SETTINGS

C.1 DATASET

We validate the proposed model on four benchmark datasets: TGIF-QA (Li et al., 2016; Jang et al.,
2017), MSVD-QA (Chen & Dolan, 2011; Xu et al., 2017), and MSRVTT-QA (Xu et al., 2016;
2017). TGIF-QA consists of 103,913 QA pairs from 56,720 GIFs and includes three multiple-
choice VideoQA tasks: repetition count, repeating action, and state transition, along with an open-
ended frameQA task reasoning on a single frame. MSVD-QA and MSRVTT-QA are both open-
ended VideoQA datasets with descriptive QA tasks, while MSRVTT-QA consists of more complex
and longer 10,000 trimmed videos and larger 243,000 QA pairs compared to MSVD-QA with 1,970
trimmed videos and 50,500 QA pairs.

C.2 IMPLEMENTATION DETAILS.

Model architecture. We adopt the Transformer (Vaswani et al., 2017) architecture with 12 layers
for both the data encoder f and the confounder encoder g. Concretely, for the data encoder f ,
visual tokens Xv and text tokens Xq are concatenated with an additional [CLS] token to form an
input X = (xq, xv) ∈ RN×D. To build xv , we sample 3 frames per single input video. Each
frame has a spatial resolution of 224×224, and is patchified into 14×14 patches with the size of
16×16 for each. For text token xq , we set 40 as the max length of the input text sequence. An
input text is then tokenized to have a hidden dimension of D = 768. After concatenating xq and
xv , modality encoding is added to input tokens having corresponding modalities. When conducting
cross-attention in g, we apply a stop-gradient operation to X̃ so that it could not be affected by
Lconfounder. Also, we use M = 128 for the number of confounder query tokens.

Training details. For training, the initial learning rate is set to 10−4 with cosine decay and warmup
applied until 10% of the total training step is done. We train the models with AdamW (Loshchilov
& Hutter, 2017) optimizer with a weight decay rate of 0.01. The probability of confounder dropout
is 0.15. Our backbone encoders are pretrained on Webvid (Bain et al., 2021), YT-Temporal
180M (Zellers et al., 2021), HowTo100M (Miech et al., 2019), CC3M (Sharma et al., 2018),
CC12M (Changpinyo et al., 2021), COCO (Lin et al., 2014), VisualGenome (Krishna et al., 2017),
and SBU (Ordonez et al., 2011) as in Fu et al. (2021) and Wang et al. (2022). All the experiments
are conducted on 4 × Tesla A100 GPUs.

MCQA details. We concatenate each option and the question and insert the [SEP] token between
them to construct the text token sequence. To efficiently calculate Lconfounder, we only take into ac-
count two negative pairs (Xq, Y ) and (Xv, Y

′) instead of four negative pairs including (Xq, Y
′) and
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(a) TGIF-Action

(b) TGIF-Transition

(c) TGIF-Frame

Figure 9: Qualitative results on TGIF. Confidence scores of the top-5 predicted answers using conventional
likelihood P (Y |X) and causal intervention P (Y |do(X)). Ground-truth answers are colored in red.

(Xv, Y ), i.e., Lconfounder = GCE(Ŷ (q,q)
g , Y )+GCE(Ŷ (v,q)

g , Y ′). This is because it is cumbersome to
forward all the combinations of negative pairs including concatenated text token sequences for each
option.

D OVERALL ALGORITHM

The overall algorithm to train our proposed framework is formulated in Alg. 1.

E FURTHER QUALITATIVE ANALYSES

E.1 DEBIASED PREDICTION

Fig. 9 illustrates how models’ predictions are corrected via causal intervention P (Y |do(X)). We
discuss the detected biases for three representative question types in TGIF.

TGIF-Action. As shown in Fig. 9a, the model tends to predict ‘shake head’ without considering the
visual context before the causal intervention. On the other hand, the prediction is corrected to ‘rub
something with fingers’ after the causal intervention. We believe that this case is biased to text since
the ‘shake head’ co-occurs 141 times more than ‘rub’ with the word ‘man’ in the question. Here,
the word ‘man’ serves as the confounder inducing the text bias.

TGIF-Transition. Fig. 9b shows the text bias. In this case, the ‘smile’ & ‘man’ pair co-occurs 169
times more than ‘dump’ & ‘man’ pair, which leads the model to predict ‘smile’ only considering
the text. However, after the causal intervention with P (Y |do(X)), the model predicts the answer
correctly.
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(a) TGIF-Transition

(b) TGIF-Frame

Figure 10: GradCAM on TGIF. We visualize ∇c
(X;Z̃)

Ŷ t
f and ∇(X;Z̃)Ŷ

t
f on two samples to show where the

confounders look at in the input.

TGIF-Frame. Fig. 9b illustrates the video-biased case. P (Y |X) is likely to focus on the visually
salient object ‘cat’ without considering the question. By applying causal intervention, the video
bias is alleviated and the prediction is corrected to ‘paw’ from ‘cat’ considering both the video and
question.

E.2 GRADCAM VIUSALIZATION

In the main paper, using variants of GradCAM, we have investigated which words in a question or
which parts in a video are taken into account by confounder queries to debias the predictions of
VideoQA model with GradCAM ∇(X;Z̃)Ŷ

t
f and Counterfactual GradCAM ∇c

(X;Z̃)
Ŷ t
f for MSVD.

For TGIF-QA, Fig. 10a shows the same QA pair with Fig.e 9b, which is biased to the text. The
word ‘man’ is strongly highlighted by counterfactual GradCAM ∇c

(X;Z̃)
Ŷ t
f implying it negatively

influences to predict the correct answer. On the other hand, GradCAM ∇(X;Z̃)Ŷ
t
f focuses on the

word ‘bucket’ to output a correct answer ‘dump ice water on himself’. This is consistent with our
observation that the word ‘man’ is considered as the text confounder hindering the model from
predicting correctly. In Fig. 10b, the video-biased QA pair come from Fig. 9c, Counterfactual
GradCAM ∇c

(X;Z̃)
Ŷ t
f shows that the object ‘cat/kitten’ which is visually salient object in the video

hinders the model to predict the proper answer. However, GradCAM ∇(X;Z̃)Ŷ
t
f focuses on the

object ‘paw’ in the video so the model correctly predicts the answer. This indicates that the object
‘cat’ serves as the video confounder in the video-biased sample.

F FURTHER ABLATION STUDIES

F.1 CONFOUNDER QUERIES Z

As shown in Tab. 3, the performance slightly decreases by 0.8% when only using the text con-
founder queries. On the other hand, the performance decreases by 1.9% when only using the video
confounder queries. This indicates that the dataset has a stronger text bias than video.
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Table 3: Ablation study on the type of confounders. Z[0 : M ], Z[0 : M/2], and Z[M/2 : M ] refer to entire
confounder queries, text confounder queries, and video confounder queries, respectively.

Z[0 : M ] Z[0 : M/2] Z[M/2 : M ]

MSVD 46.4 45.2 44.5

F.2 NUMBER OF CONFOUNDER QUERIES

As shown in the Tab. 4, the model performs best when the number of confounders is near 64 or 128.
In our experiments, we used 128 confounder queries.

Table 4: Ablation study on the number of confounder queries.

4 8 16 32 64 128 256 512 1024

MSVD 44.8 45.0 45.7 46.3 46.4 46.4 46.2 46.1 45.4
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