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ABSTRACT

Classifiers built upon vision-language models such as CLIP have shown remark-
able zero-shot performance across a broad range of image classification tasks.
Prior work has studied different ways of automatically creating descriptor sets for
every class based on prompt templates, ranging from manually engineered tem-
plates over templates obtained from a large language model to templates built
from random words and characters. Up until now, deriving zero-shot classifiers
from the respective encoded class descriptors has remained nearly unchanged, i.e.,
classify to the class that maximizes cosine similarity between its averaged encoded
class descriptors and the image encoding. However, weighing all class descriptors
equally can be suboptimal when certain descriptors match visual clues on a given
image better than others. In this work, we propose AUTOCLIP, a method for auto-
tuning zero-shot classifiers. AUTOCLIP tunes per-image weights to each prompt
template at inference time, based on statistics of class descriptor-image similar-
ities. AUTOCLIP is fully unsupervised, has very low computational overhead,
and can be easily implemented in few lines of code. We show that AUTOCLIP
outperforms baselines across a broad range of vision-language models, datasets,
and prompt templates consistently and by up to 3 percent point accuracy.

1 INTRODUCTION

Classifiers built upon vision-language models (VLMs) such as CLIP (Radford et al., 2021) and CoCa
(Yu et al., 2022) have shown strong zero-shot transfer capabilities across various tasks. Such zero-
shot transfer is appealing since it allows for obtaining high-performing classifiers on novel domains
without the overhead of data acquisition and labelling. However, it has been observed that prompt
engineering plays a crucial role for obtaining strong zero-shot classifiers, that is: zero-shot classifiers
derived from VLMs need to be constructed based on a set of prompt templates (parameterized by
the class name) that cover potential variation of the domain. These prompt templates can be hand-
designed (Radford et al., 2021), generated by a large-language model (Menon & Vondrick, 2022),
or randomly generated (Roth et al., 2023).

Prompts can also be learned via test-time prompt tuning (TPT) (Shu et al., 2022; Zhao et al., 2023).
This approach makes the zero-shot classifier adaptable to the datum of interest, which is possible by
effectively leveraging the knowledge of the general-purpose VLM. Shu et al. (2022) tune prompts
so that the predictive entropy for a single image is minimized, while Zhao et al. (2023) maximizes
a CLIP reward. These prior TPT methods require the VLM’s image encoder to process several aug-
mentations for each image. Moreover, gradients with respect to the prompts require backpropagation
through the VLM’s text encoder, thereby substantially increasing the overall inference cost.

We propose to not tune the prompts but instead use a large set of predefined and fixed prompt tem-
plates and to adapt the weights of those prompt templates for each image at test-time. This approach
has the major advantage that adaptation takes place entirely in the embedding space without requir-
ing additional forward or backward passes through the VLM’s encoders, which significantly lowers
the test-time computation and memory overhead compared to prior TPT methods. Our work is sim-
ilar to Allingham et al. (2023) with the main advantage that our approach can adapt weights based
on single samples and without requiring access to the pre-training feature distribution.
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Figure 1: Conceptual Illustration of AUTOCLIP. CLIP’s zero-shot classifiers are based on a set
of prompt templates (“A photo of a <class name>”, “A drawing of a <class name>”, ...). Inserting
class names into these templates gives a set of class descriptors that are encoded into a joint embed-
ding space together with the respective image. Standard CLIP averages encoded class descriptors
into class queries qc, and classifies to the class that has maximal cosine similarity with the encoded
image. However, this ignores that some prompt templates describe the image of interest better than
others: for instance, when the image is a drawing, the template “A drawing of a <class name>”
results in stronger class descriptors than other templates and should thus be weighted higher when
computing class queries. AUTOCLIP determines such weights directly from class descriptor-image
similarities in the embedding space. Here, the car image is taken from Atkinson (2015).

We briefly summarize the standard way of constructing zero-shot classifiers from VLMs (see Figure
1 left). At first, a collection of prompt templates are instantiated for each class to form a set of class
descriptors (e.g., “A photo of a car”, and “A drawing of a car” are sample class descriptors of class
car). These descriptors are processed by the text encoder and the resulting encoded descriptors are
averaged to obtain the image-independent class queries (e.g. qcar). Besides, the image encoder pro-
cesses the input image to be classified to get the image encoding, which lies in the same embedding
space as class queries. The cosine similarity of the encoded image to every (averaged) class query
is computed, and the output prediction is assigned to the class with maximum similarity.

This work follows a similar zero-shot classification setup, except that we change how class queries
are computed. Instead of a simple average of the encoded class descriptors, we propose to take a
weighted average, wherein weights of the encoded class descriptors are automatically tuned for each
image separately. Weights are determined in a manner that prompt templates whose resulting class
descriptors are closer to the respective image embedding get higher weightage than those being less
similar (see Figure 1 right). Our approach is motivated by the intuition that prompt templates with
high similarity describe relevant properties of the image better than ones with lower similarity (see
Figure 6 for evidence supporting this intuition). We denote our method that automatically adapts
weights of the encoded class descriptors for each image as AUTOCLIP.

We empirically show that AUTOCLIP improves the performance of zero-shot classifiers across
many datasets, VLMs, and prompt strategies with little inference-time overhead. Note that AU-
TOCLIP is fully zero-shot as it does not require any supervision from the target task. Furthermore,
AUTOCLIP makes no assumptions on the underlying VLM and can thus be broadly applied, poten-
tially also to multi-modal models beyond VLMs such as ImageBind (Girdhar et al., 2023b).

Overall, our main contributions are as follows: we introduce AUTOCLIP (Section 3.2), a novel
procedure for constructing zero-shot classifiers from vision-language models. AUTOCLIP leverages
statistics of class descriptor-image similarities to automatically determine weights of the prompt
templates. We further discuss a method for automatically tuning AUTOCLIP’s step size such that
the entropy of the prompt template’s weights is controlled (Section 3.4). We propose a default
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entropy reduction factor, which is shared across all the experiments. By this, AUTOCLIP comes
essentially without free hyperparameters, which is important as hyperparameters cannot be tuned in
zero-shot settings. We evaluate AUTOCLIP on a large number of datasets, vision-language models,
and prompt templates (Section 4). We find that it improves performance on the vast majority (85%)
of settings, by 0.45 percent point accuracy on average, and by up to 3 percent point in some settings.
This benefit comes essentially for free with the only cost being a very small inference time overhead.

2 RELATED WORK

Vision-Language Pretraining. Deep learning with vision-language pretraining has enabled zero-
shot transfer capabilities, i.e., the resulting vision-language models (VLMs) are able to perform
zero-shot classification on vastly diverse unseen target datasets given only text prompts of individual
target classes. CLIP is one of the state-of-the-art VLMs pretrained on the well-curated WebImage-
Text dataset containing 400 millions image-text pairs using a contrastive loss (Radford et al., 2021).
In terms of datasets used, ALIGN requires less dataset preprocessing enabling training on a dataset
of over a billion image-text pairs (Jia et al., 2021). Florence (Yuan et al., 2021) expands models
to other common modalities (e.g., videos). In terms of the training loss, CoCa (Yu et al., 2022)
leverages an additional captioning loss allowing models to be used in generative applications. In our
work, we study how to optimally use text prompts of the target classes with these VLMs.

Prompt Construction. Conventionally, one or several manually designed text prompts per target
class are employed for zero-shot classification (Radford et al., 2021; Jia et al., 2021). Recent research
demonstrates that introducing additional prompts can improve overall performance. DCLIP (Menon
& Vondrick, 2022) generates additional prompts based on querying the large-language model GPT-3
(Brown et al., 2020). WaffleCLIP (Roth et al., 2023) has shown that classification performance can
be further boosted by appending random words or characters to predefined prompt templates. To
derive a zero-shot classifier, these works weight all text prompts uniformly. In contrast, we propose
an approach to adjust weights of individual prompts per input sample dynamically at test time.

Test-Time Adaptation. Our work can be considered as a test-time adaption approach for VLMs.
TENT (Wang et al., 2020) demonstrates that adapting models to minimize prediction entropy can
improve model performance at test time. In the context of VLMs, TPT (Shu et al., 2022) optimizes
prompts of target classes based on the entropy minimization objective. RLCF (Zhao et al., 2023)
demonstrates that minimizing the entropy objective can lead to overfitting under distribution shift
and proposes adaptation based on average CLIP scores. In contrast to these previous works, we do
not perform any adaptation of prompts or model parameters, but refine weights of individual (en-
coded) prompts, which is considerably cheaper in terms of computation and memory consumption.
Most similar to us is Zero-shot Prompt Ensembling (ZPE) (Allingham et al., 2023), which also deter-
mine prompt weights in embedding space. However, ZPE requires an entire batch of target domain
samples and the availability of image features that represent the feature distribution in pre-training
(“source domain”). In contrast, our work operates on single images in a source-free setting.

3 AUTOCLIP

We outline the common approach for building zero-shot classifiers for VLMs like CLIP in Section
3.1. Thereupon, we detail our proposed AUTOCLIP as an auto-tuned alternative in Section 3.2,
followed by describing how the required gradient can be calculated in closed-form in Section 3.3,
and finally explain how AUTOCLIP’s step size can be automatically determined in Section 3.4.

3.1 BACKGROUND: ZERO-SHOT CLASSIFIERS FOR VISION-LANGUAGE MODELS

Let us consider a classification task X 7→ C, where X corresponds to the input domain and C =
{c1, . . . , cC} is a set of C classes. We assume that there exists a pretrained VLM such as CLIP
that provides a joint embedding space E and corresponding embedding functions EX : X 7→ E that
maps input data x ∈ X into embedding space E and ET : T 7→ E that maps text into the same
embedding space E . Let there be K prompt templates t1, . . . tK : C 7→ D that map class name
c ∈ C to (textual) class descriptors d ∈ T . These prompt templates can be either manually designed
(Radford et al., 2021), generated by a large language model (Menon & Vondrick, 2022), or randomly
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Algorithm 1 Zero-Shot Classifier
1: d← {ti(cj) | i ∈ {1, . . . ,K}, j ∈ {1, . . . , C}} ▷ Generate K × C class descriptors
2: e(x) ← EX(x)/||EX(x)||2 ▷ Encode image of interest x with VLM
3: e

(d)
ij ← ET (dij)/||ET (dij)||2 ▷ Encode all class descriptors with VLM

4: wi ← 1/K ▷ Uniform prompt template weights
5: for j ∈ 1, . . . , C do
6: qj ←

∑K
i=1 wie

(d)
ij ▷ Class queries as average of classes’ descriptor encodings

7: sj ← e(x) · qj ▷ Compute cosine similarity between e(x) and class query qj
8: end for
9: j⋆ ← argmaxj sj ▷ Assign x to class cj⋆ with maximum similarity

generated (Roth et al., 2023). Algorithm 1 summarizes the standard zero-shot classifier for VLMs:
average the class descriptor encodings e(d) into class queries qj , then compute cosine similarities sj
between class query and encoded image e(x), and classify to the class that maximizes similarity.

3.2 AUTO-TUNING ZERO-SHOT CLASSFIERS

AUTOCLIP modifies step (4) in Algorithm 1. Instead of computing class queries as simple av-
erage of class descriptor encodings qj = 1/K

∑K
i=1 e

(d)
ij , AUTOCLIP uses a weighted average:

qj =
∑K

i=1 wie
(d)
ij with learnable w satisfying wi ≥ 0,

∑K
i=1 wi = 1, which we enforce by

reparametrizing w = softmax(ρ) and ρ ∈ RK . AUTOCLIP’s guiding intuition (see Figure 1) is to
assign higher weights wi to prompt templates ti that result in class descriptor encodings e

(d)
ij that

are more similar to the encoded image e(x), that is: ti with large e
(xd)
ij = e

(d)
ij · e(x) (j = 1, . . . , C).

This is inspired by the observation that class descriptors having higher similarity in the embedding
space describe the image better (according to contrastive pretraining objectives in typical VLMs).

When determining the template’s weights w, we have C descriptor-image similarities e(xd)ij for each
template ti. AutoCLIP needs to aggregate those C similarities across classes when assigning larger
weight to more relevant prompt templates. Intuitively, simply averaging all C similarities (“mean”
aggregation) ignores that, in the classification objective, we ultimately only care about classes that
result in the descriptors closest to e(x); however, taking only the class with highest similarity per tem-
plate into account (“max” aggregation) ignores inherent ambiguity in the image and was found to
be suboptimal (Roth et al., 2023). We propose a middle ground of aggregating via a smooth approx-
imation to the maximum function via logsumexpj(e

(xd)
ij ) = log

∑C
j=1 exp e

(xd)
ij . This logsumexp

aggregation takes all classes into account but assigns higher importance to more relevant classes
(ones resulting in higher similarities to the image x). AUTOCLIP then determines weights wi such
that logsumexpj(sj) = logsumexpj(

∑K
i=1 wie

(xd)
ij ) = logsumexpj(softmax(ρ) · e(xd):j ) gets in-

creased by one step of gradient ascent in the direction of ∇ρ logsumexpj(softmax(ρ) · e(xd):j ). We
note that − logsumexp has been interpreted as the energy function of a data point (for appropriately
trained classifiers) (Grathwohl et al., 2020); in this view, AUTOCLIP can be interpreted as minimiz-
ing the energy and maximizing the probability density p(x) of x under the zero-shot classifier.

We summarize AUTOCLIP in Algorithm 2. We initialize ρ = 0, which corresponds to an un-
weighted average of the class descriptor encodings (Line 4). Similar to Algorithm 1, we compute the
pairwise cosine similarities sj between encoded image e(x) and class queries qj (Line 5-8). Instead
of directly classifying to the class with maximum similarity to the image, AUTOCLIP updates the
class descriptor weights first. For this, the gradient g = ∇ρ logsumexpj(sj) is computed (Line 9),
an appropriate step size α is selected (Line 10, see Section 3.4), and ρ = α · g and w = softmax(ρ)
are updated (Line 11). Based on the new w, AUTOCLIP computes updated class queries qj and
class-image similarities (Line 12-15) and finally selects the class with maximum similarity for the
image (Line 16). We note that AUTOCLIP is permutation-invariant in the prompt templates ti.

We note that Line 5-11 could be repeated for several iterations with smaller step sizes; however pre-
liminary experiments indicate no advantage of doing more than one iteration. We call AUTOCLIP
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Algorithm 2 AUTOCLIP: Auto-Tuned Zero-Shot Classifier
1: d← {ti(cj) | i ∈ {1, . . . ,K}, j ∈ {1, . . . , C}} ▷ Generate K × C class descriptors
2: e(x) ← EX(x)/||EX(x)||2 ▷ Encode image of interest x with VLM
3: e

(d)
ij ← ET (dij)/||ET (dij)||2 ▷ Encode all class descriptors with VLM

4: ρ← 0; wi ← softmax(ρ) ▷ Uniform weights wi = 1/K
5: for j ∈ 1, . . . , C do
6: qj ←

∑K
i=1 wie

(d)
ij ▷ Class queries as weighted average of classes’ descriptor encodings

7: sj ← e(x) · qj ▷ Compute cosine similarity between e(x) and class query qj
8: end for
9: g ← ∇ρ log

∑C
j=1 exp(sj) ▷ Compute gradient (Section 3.3)

10: α← BISECT(softmax entropy(α · g)− β log2 K, 0, 1010) ▷ Determine stepsize (Section 3.4)
11: ρ← α · g; wi ← softmax(ρ) ▷ Update ρ with one gradient ascent step and step size α
12: for j ∈ 1, . . . , C do
13: qj ←

∑K
i=1 wie

(d)
ij ▷ Class queries as weighted average of classes’ descriptor encodings

14: sj ← e(x) · qj ▷ Compute cosine similarity between e(x) and class query qj
15: end for
16: j⋆ ← argmaxj sj ▷ Assign x to class cj⋆ with maximum similarity

“auto-tuned” because its weights w are automatically adapted for every input independently. More-
over, we note that in practice, models like CLIP scale e(xd) by a learned temperature (exponential
logit scale) τ to obtain well calibrated classifiers; we use the same temperature for scaling e(xd) in
the logsumexp aggregation (as there is no labelled data in a zero-shot setting on which a temperature
could be tuned).

3.3 CLOSED-FORM COMPUTATION OF GRADIENT

While∇ρ logsumexp(s) can be easily computed using automatic differentiation, we note that there
can be runtime environments for inference such as on edge devices where running automatic differ-
entiation is undesirable. For such cases, the gradient ∇ρ logsumexpj(sj) can also be computed in

closed-form:
(
∇ρ logsumexpj(sj)

)
i
=

∑K
k=1(

∑C
j=1 softmax(s)j · e(xd)ij ) ·wi(δik −wk), with δij

being the Kronecker delta function with δii = 1 and δij = 0 for i ̸= j.

3.4 AUTO-TUNING THE STEP SIZE

The only free hyperparameter of AUTOCLIP is the step size α. We note that in a zero-shot setting,
there is by definition no labeled data on which such free hyperparameters can be tuned. Because of
this, free hyperparameters need to be selected globally in a dataset-independent manner. However, a
global choice for the step size α is problematic since the scale of the gradient g = ∇ρ logsumexp(s)
depends on the dataset, and the step size would have to be adapted accordingly. We address this by
proposing a different parameterization in which the free hyperparameter is easily interpreted and
the step size α is a derived quantity. Specifically, we control the entropy of the query weights w,
entropy(w) = −

∑K
i=1 wi log2 wi. The standard, uniform weights have maximum entropy log2 K

and we set the target entropy to β · log2 K, where the entropy reduction factor β ∈ [0, 1] is the
new free hyperparameter that we set globally to β = 0.85. Intuitively, β → 1 corresponds to more
equally weighted prompt templates while β → 0 to selecting the prompt template with maximum
similarity. We present an ablation of the effect of β’s choice on AUTOCLIP in Figure 4.

With softmax entropy(α ·g) denoting the entropy of the weights w = softmax(α ·g), selecting the
step size α is now equivalent to solving for f(α) = 0 for f(α) = softmax entropy(α·g)−β·log2 K.
As softmax entropy(α · g) monotonically decreases with α, we use bisection on α ∈ [0, 1010] for
finding α with f(α) ≈ 0. We note that softmax entropy(0 · g) = log2 K and thus f(0) > 0 for
all β < 1; similarly, softmax entropy(α · g) ≈ 0 for α = 1010 in all settings we considered and
thus f(1010) < 0 for all β > 0, which together satisfies the prerequisites for running bisection. The
additional bisection has little overhead compared to the cost of encoding the image x with Ex (see
Section A.1 in the appendix for details).
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Figure 2: Accuracy improvement (∆ Accuracy) of AUTOCLIP over baseline zero-shot classifier
across models, datasets, and prompt ensembles, averaged over 7 runs.

6



AutoCLIP: Auto-tuning Zero-Shot Classifiers for Vision-Language Models

1 2 3 4 5
Severity

0.50

0.25

0.00

0.25

0.50
 A

cc
ur

ac
y

RN50

DCLIP
CLIP
WaffleCLIP

1 2 3 4 5
Severity

ViT-B-32

1 2 3 4 5
Severity

ViT-B-16

1 2 3 4 5
Severity

ViT-L-14

1 2 3 4 5
Severity

ViT-L-14
 (DataComp)

Figure 3: ImageNet-C accuracy improvement (∆ Accuracy) of AUTOCLIP over baseline zero-shot
classifier for K = 100 across models, corruption severity and prompt ensembles, averaged over
corruptions and 7 runs.

CLIP CLIP CLIP CLIP DataComp CoCa
RN50 ViT-B-32 ViT-B-16 ViT-L-14 ViT-L-14 ViT-L-14

CUB200 47.75 (+0.5) 52.84 (+0.7) 57.12 (+1.3) 64.43 (+0.7) 84.79 (+0.8) 73.90 (+0.6)
EuroSAT 34.95 (-1.2) 46.16 (-0.7) 55.93 (+1.4) 55.09 (+0.6) 65.09 (+1.8) 54.77 (-0.4)
Food101 80.26 (+1.4) 84.13 (+1.3) 88.85 (+0.9) 93.71 (+0.4) 94.52 (+0.3) 90.46 (+0.4)
Oxford Pets 83.09 (+2.6) 85.63 (+2.9) 85.89 (+1.9) 91.64 (+0.9) 92.82 (+0.9) 92.03 (+1.2)
ImageNet 60.42 (+0.6) 63.80 (+0.6) 68.70 (+0.5) 75.89 (+0.3) 79.07 (+0.0) 75.63 (+0.2)
ImageNetV2 53.44 (+0.4) 56.49 (+0.8) 62.54 (+0.6) 70.17 (+0.4) 72.21 (+0.2) 68.08 (+0.1)
ImageNetR 29.32 (+0.9) 51.04 (+1.0) 59.13 (+1.0) 73.98 (+0.4) 78.85 (+0.6) 75.59 (+0.8)

Table 1: Accuracy of AUTOCLIP (and ∆ Accuracy to baseline zero-shot classifier in parenthesis)
for K = 100 WaffleCLIP prompt templates across models and datasets, averaged over 7 runs.

4 EXPERIMENTS

Experimental Setting In this section, we compare AUTOCLIP to standard zero-shot classifiers
on a wide range of zero-shot image classification benchmarks and a variety of settings. We con-
duct experiments on the datasets CUB200 (Welinder et al., 2010), EuroSAT (Helber et al., 2019),
Food101 (Bossard et al., 2014), Oxford Pets (Parkhi et al., 2012), ImageNet (Russakovsky et al.,
2015), ImageNetV2 (Kornblith et al., 2019), ImageNet-R (Hendrycks et al., 2021), and ImageNet-C
(Hendrycks & Dietterich, 2019). We study six different vision-language models: from CLIP (Rad-
ford et al., 2021), we use ResNet-50 (RN50) (He et al., 2015) and vision transformer (ViT-B/32,
ViT-B/16, and ViT-L/14) model variants (Dosovitskiy et al., 2021). Moreover, we use the ViT-L/14
model variant from DataComp (Gadre et al., 2023) and the one trained with CoCa (Yu et al., 2022).

Additionally, we study three ways of generating prompt templates: 1) using the 80 manually de-
signed templates from Radford et al. (2021) (CLIP), 2) templates based on querying a large-language
model (DCLIP) (Menon & Vondrick, 2022), and 3) templates that append random words or char-
acters to predefined prompt templates (WaffleCLIP) (Roth et al., 2023). We vary the number of
templates from K = 4 to K = 500; if there is a fixed number of templates available such as in
CLIP/DCLIP, templates are sampled with replacement. To account for randomness in the template
construction/sampling, we report results averaged over 7 runs. We base our implementation on
https://github.com/ExplainableML/WaffleCLIP from Roth et al. (2023) and highly
appreciate their code release under a permissible license. We report the difference of accuracy of
AUTOCLIP compared to the baseline zero-shot classifier with uniform prompt template weights
(”∆ Accuracy”). Absolute performance across different datasets and VLMs is shown in Table 1
(and in Table 2 and Table 3 in the appendix).

Results We present the main results in Figure 2. Overall, the figure contains 990 different combi-
nations comparing AUTOCLIP with the baseline; AUTOCLIP is better in 840 cases (≈ 85%) and on
average it is better by 0.45 percent point accuracy. We also observe a trend that for larger number of
prompt templates K, the advantage of AUTOCLIP (∆ Accuracy averaged across datasets, models
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Figure 4: Ablation on target entropy rate β. Shown is the accuracy improvement (∆ Accuracy) of
AUTOCLIP over baseline zero-shot classifier for a CLIP ViT-B-16, and 100 WaffleCLIP prompt
templates, averaged over 7 runs.

and CLIP/DCLIP/WaffleCLIP) increases: from ∆ = 0.06 for K = 4 over ∆ = 0.33 for K = 10
and ∆ = 0.49 for K = 50 to ∆ = 0.57 for K = 200. When aggregating over models, datasets and
number of prompt templates, AUTOCLIP achieves the largest average improvement for WaffleCLIP
(∆ = 0.61), but still improves for CLIP (∆ = 0.40) and DCLIP (∆ = 0.29). Taken together, the
findings indicate that AUTOCLIP benefits from larger (increased K) and more diverse (WaffleCLIP)
sets of prompt templates.

When comparing different vision-language models, AUTOCLIP brings the biggest benefit for CLIP
ViT-B-16 (∆ = 0.68) and the smallest one for CoCa ViT-L-14 (∆ = 0.19), with all other mod-
els having average ∆ between 0.36 and 0.52. Comparing different datasets, AUTOCLIP performs
strongest on Oxford Pets (∆ = 1.15) and worst on EuroSAT (∆ = −0.24). We note that EuroSAT
is the only setting on which AUTOCLIP hurts performance on average; on all other datasets, AU-
TOCLIP improves performance: ∆(CUB200) = 0.5, ∆(Food101) = 0.52, ∆(ImageNet) = 0.17,
∆(ImageNetV2) = 0.2, and ∆(ImageNetR) = 0.71.

In Figure 3, we present results on ImageNet-C for WaffleCLIP with K = 100 for different severities
and averaged across corruptions. AUTOCLIP consistently improves performance for the smaller
vision-language models (RN50, ViT-B-32, ViT-B-16) and sees a minor drop of performance for the
two ViT-L-14 variants. Averaged across all models, corruptions, and severities, AUTOCLIP im-
proves performance by ∆ = 0.11. We provide plots for each corruption separately for WaffleCLIP
prompt templates in the appendix in Figure 8. The biggest average benefit of AUTOCLIP is obtained
for the low-frequency corruptions “saturate” (∆ = 0.22), “brightness” (∆ = 0.22), and “contrast”
(∆ = 0.23); the smallest average benefit for “shot-noise” (∆ = 0.05) and “snow” (∆ = 0.06).

Ablations We ablate AUTOCLIP’s choice of the target entropy rate β (which defaults to 0.85)
and the objective function (defaults to logsumexp). In Figure 4, we observe that AUTOCLIP’s
performance for most datasets does not depend strongly on the specific choice of the target entropy
rate β as ∆ Accuracy stays relatively constant in the range β ∈ [0.7, 0.9]. This is a desirable
property as in a zero-shot setting without labeled data, tuning β per dataset would be infeasible.
For two datasets (Oxfort Pets and EuroSAT), our default value of β = 0.85 was suboptimal and
a considerably smaller choice of β = 0.7 would have obtained considerably better results. Also
on average, β = 0.7 performs favorably and we recommend this choice for future work on other
datasets and tasks.

We motivated the choice of logsumexp as AUTOCLIP’s aggregation/objective function in Section
3.2 as striking a good compromise between max and mean aggregation. In Figure 5, we empirically
confirm that the logsumexp aggregation performs favorably compared to max/mean aggregation
on all datasets. Moreover, it also outperforms entropy aggregation, which is a popular choice for
test-time adaption (Wang et al., 2020; Shu et al., 2022).

In Figure 6, we show the prompt template weights (K = 30) obtained by AUTOCLIP on 500
Food101 samples. Samples are structured in 10 blocks of 50 samples each, where each block cor-
responds to one class. Prompt template weights are relatively similar for instances belonging to the
same (unknown) class but vary substantially across classes. Some templates like the ones starting
with “A tattoo of...” or ”A origami of...” get consistently low weights as the images of the Food101
dataset do not look like tattoos or origami, while templates starting with “A photo of...” tend to get
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Figure 5: Comparison of different objective functions for auto-tuning. Shown is the accuracy im-
provement (∆ Accuracy) of AUTOCLIP over baseline zero-shot classifier for a ViT-B-16, and 100
WaffleCLIP prompt templates, averaged over 7 runs.

Figure 6: Illustration of prompt template weights w on 500 samples from the Food101 dataset, with
blocks of 50 samples belonging to the same (unknown) class. CLIP backbone is a ViT-B-16 and 30
DCLIP prompt templates are used.

higher weights, as Food101 contains mostly actual photos. Note that the weight distribution looks
different on other datasets like ImageNet-R, with higher weights for “artistic” prompts (see Figure
7 in the appendix). Overall, this confirms that AUTOCLIP can adapt the zero-shot classifier on the
fly to properties of the respective image.

5 CONCLUSION

We have proposed AutoCLIP, a method for improving zero-shot classifiers on vision-language mod-
els. AutoCLIP automatically tunes per-image weights of prompt templates before aggregating them
into class queries. AutoCLIP improves performance over standard zero-shot classifiers on the vast
majority of settings, with only minimal inference-time overhead. We believe that due to its simplicity
and low cost, AutoCLIP has the potential to be broadly applied in conjunction with vision-language
models. For future work, it will be exciting to explore if AutoCLIP can also benefit other zero-shot
tasks built on top of multi-modal modals such as object detection with OWL-ViT (Minderer et al.,
2022) or multi-modal prompting with ImageBind (Girdhar et al., 2023a).
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Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
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A APPENDIX

A.1 INFERENCE TIME OVERHEAD OF AUTOCLIP

In this paragraph, we provide some measurements on inference time overhead by AUTOCLIP. We
provide numbers for the case of a ViT-L-14 on the Oxford Pets dataset. Here, encoding an image
takes 12.64ms on a V100 (minimum over 100 images). The baseline “averaging” zero-shot classi-
fiers takes additional 0.08ms (average over 640 samples) on top to classify a sample. AUTOCLIP
takes additional 1.54ms (average over 640 samples) for classification when running bisection for
autotuning the step size. For a fixed step size, the overhead of AUTOCLIP is 0.45ms. Thus, AUTO-
CLIP with autotuning raises inference time from 12.64ms to 14.18ms. In contrast, TPT (Shu et al.,
2022) and RLCF (Zhao et al., 2023), which did not report compute or memory requirements, require
encoding multiple image augmentations. TPT states ”We augment a single test image 63 times using
random resized crops and construct a batch of 64 images, including the original one.”, which means
that the image encoding time (for instance the 12.64ms from above) is increased by a factor of 64x,
plus additional overhead for backpropagating through the text encoder, which likely brings the in-
ference time per sample close to 1s (or more if multiple test-time adaptation steps are conducted).
We note that for bisection, we use an independent call to scipy.optimize.bisect (Virtanen
et al., 2020) (maxiter=100, xtol=1e-2, rtol=1e-2). A batched variant of bisection could speed-up
many workloads.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

We present additional experimental results. Table 2 and Table 3 show the absolute performance of
AUTOCLIP on different datasets and VLMs for DCLIP and CLIP prompt templates, respectively,
similar to Table 1 in the main paper for WaffleCLIP templates. Figure 7 illustrates prompt weights
on the ImageNetR dataset. Figure 8 contains results of AUTOCLIP in terms of ∆ Accuracy on
ImageNetC for every corruption seperately.

In Figure 9, we show an additional comparison of AUTOCLIP to a stronger baseline which is based
on TopR aggregation. In this TopR aggregation, for each image R prompt templates are selected
whose resulting encoded class descriptors have maximum average cosine similarity to the encoded
image. We note that choosing R is non-trivial in a zero-shot setting due to the lack of labelled
validation data. In the figure, we compare AUTOCLIP against this TopR-CLIP for K = 100 DCLIP
prompt template, across the same VLMs and datasets as in Figure 2. We provide results for different
choices of R: overall, for the best choice of R = 20, AUTOCLIP is better on 86% of the cases and
by 0.40 percent point accuracy on average.

CLIP CLIP CLIP CLIP DataComp CoCa
RN50 ViT-B-32 ViT-B-16 ViT-L-14 ViT-L-14 ViT-L-14

CUB200 47.75 (+0.1) 53.00 (+0.4) 57.82 (+0.3) 64.57 (+0.3) 85.38 (+0.4) 73.69 (+0.1)
EuroSAT 36.39 (-1.2) 45.88 (-2.2) 59.22 (+2.5) 57.89 (+0.8) 60.08 (-0.7) 57.15 (-1.2)
Food101 79.12 (+0.9) 83.43 (+0.7) 88.53 (+0.5) 93.14 (+0.4) 93.89 (+0.2) 89.77 (+0.3)
Oxford Pets 85.92 (+1.3) 87.11 (+1.0) 88.53 (+0.9) 94.08 (+0.6) 94.00 (+0.4) 93.54 (+0.4)
ImageNet 60.62 (+0.3) 63.89 (+0.2) 69.10 (+0.3) 75.92 (+0.1) 79.02 (+0.0) 75.41 (+0.0)
ImageNetV2 53.60 (+0.3) 56.73 (+0.5) 62.22 (+0.2) 70.01 (+0.1) 71.95 (-0.0) 67.91 (-0.0)
ImageNetR 28.14 (+1.3) 49.51 (+1.6) 58.37 (+1.7) 73.12 (+0.6) 78.06 (+0.7) 73.73 (+1.1)

Table 2: Accuracy of AUTOCLIP (and ∆ Accuracy to baseline zero-shot classifier in parenthesis)
for K = 100 DCLIP prompt templates across models and datasets, averaged over 7 runs.
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CLIP CLIP CLIP CLIP DataComp CoCa
RN50 ViT-B-32 ViT-B-16 ViT-L-14 ViT-L-14 ViT-L-14

CUB200 47.00 (+0.3) 52.36 (+0.7) 56.99 (+1.2) 63.94 (+0.5) 85.52 (+1.1) 73.99 (+0.1)
EuroSAT 32.28 (-3.7) 44.78 (-1.3) 56.76 (+0.4) 52.96 (+1.8) 61.94 (+1.4) 51.58 (-1.7)
Food101 79.69 (+1.1) 83.64 (+0.9) 88.83 (+0.6) 93.33 (+0.2) 94.55 (+0.3) 90.36 (+0.3)
Oxford Pets 84.30 (+1.7) 85.20 (+2.0) 88.42 (+0.9) 93.24 (+1.2) 93.79 (+1.3) 92.67 (+1.3)
ImageNet 59.90 (+0.2) 63.31 (+0.3) 68.43 (+0.2) 75.38 (+0.1) 79.29 (+0.1) 75.79 (+0.2)
ImageNetV2 52.98 (+0.5) 56.00 (+0.4) 62.12 (+0.2) 69.56 (-0.1) 72.09 (+0.0) 67.90 (-0.0)
ImageNetR 27.11 (+0.9) 47.74 (+0.9) 56.28 (+1.1) 71.30 (+0.4) 78.26 (+0.5) 74.51 (+0.9)

Table 3: Accuracy of AUTOCLIP (and ∆ Accuracy to baseline zero-shot classifier in parenthesis)
for K = 100 CLIP prompt templates across models and datasets, averaged over 7 runs.

Figure 7: Illustration of prompt template weights w on 500 samples from the ImageNetR dataset,
with blocks of 50 samples belonging to the same (unknown) class. CLIP backbone is a ViT-B-16
and 30 DCLIP prompt templates are used.
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Figure 8: ImageNetC Accuracy improvement (∆ Accuracy) of AUTOCLIP over baseline zero-shot
classifier for WaffleCLIP across models, corruptions, averaged over 7 runs.
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Figure 9: Accuracy improvement (∆ Accuracy) of AUTOCLIP with K = 100 DCLIP prompt
templates over TopR zero-shot classifier with different values of R across models, averaged over
datasets and 7 runs.
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