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ABSTRACT
Two-tower models are widely adopted in the industrial-scale match-
ing stage across a broad range of application domains, such as
content recommendations, advertisement systems, and search en-
gines. This model efficiently handles large-scale candidate item
screening by separating user and item representations. However,
the decoupling network also leads to a neglect of potential informa-
tion interaction between the user and item representations. Current
state-of-the-art (SOTA) approaches include adding a shallow fully
connected layer(i.e., COLD), which is limited by performance and
can only be used in the ranking stage. For performance consider-
ations, another approach attempts to capture historical positive
interaction information from the other tower by regarding them as
the input features(i.e., DAT). Later research showed that the gains
achieved by this method are still limited because of lacking the guid-
ance on the next user intent. To address the aforementioned chal-
lenges, we propose a "cross-interaction decoupling architecture"
within our matching paradigm. This user-tower architecture lever-
ages a diffusion module to reconstruct the next positive intention
representation and employs a mixed-attention module to facilitate
comprehensive cross-interaction. During the next positive intention
generation, we further enhance the accuracy of its reconstruction
by explicitly extracting the temporal drift within user behavior se-
quences. Experiments on two real-world datasets and one industrial
dataset demonstrate that our method outperforms the SOTA two-
tower models significantly, and our diffusion approach outperforms
other generative models in reconstructing item representations.
Please find our open-source code repository at the following link:
https://anonymous.4open.science/r/T2Diff_ID296/README.md.
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1 INTRODUCTION
Recommender systems aim to enhance user experience and business
value by suggesting items of interest and driving user engagement
and satisfaction. In the industry scenario, a two-stage recommender
system, as shown in Figure 1(a), is extensively used for providing
users with personalized content with strict latency. The first stage
is called the matching stage, which narrows down the potential set
of candidates from a large corpus. The second stage, known as the
ranking stage [1, 10], selects the final results that the user might be
interested in.

The matching stage is a critical phase of recommender systems
where filters out the irrelevant candidates from billions of corpus

(a) (b)

Figure 1: Real-world two-stage recommender system. (a)The
two-stage architecture involves matching, which scores a
large number of items, and ranking, which further refines
the scoring for a smaller subset. (b) Intuitive view for accu-
racy and efficiency of matching and ranking method, where
the proposed matching method is derived from ranking and
optimized to a cross-interaction architecture.

quickly. Due to the high accuracy and low latency requirements of
the matching models, two-tower models [12, 21, 32, 34] become a
primary paradigm for candidate matching and support for efficient
top-k retrieval [25]. The Two-tower model consists of two separate
towers, one tower processes all the information about the query
(user, context), while the other tower processes information about
the candidates. The outputs of two towers are low-dimensional
embeddings, which are then multiplied for scoring candidate items.

Since the two-tower models trained independently, they can-
not leverage cross-features or interactions between user and item
features until the very end, which is referred to as "Late Interac-
tion" [16]. Recent research on fetching the interactive signals can
primarily be categorized into two approaches. One method trans-
forms the two-tower architecture into the single-tower structure
by adding a shallow fully connected layer (i.e., COLD [31] and
FSCD [20]), but the efficiency is still constrained and can only be
used in the ranking phase. The other method attempts to augment
the embedding input of each tower with a vector that captures
historical positive interaction information from the other tower(i.e.,
DAT [34]), recent research shows that the gains are still limited [17]
because of lacking the guidance on the next user positive intent. Cur-
rent SOTA approaches are difficult to balance model effectiveness
and inference efficiency. Figure 1(b) describes the aforementioned
models from the perspective of inference efficiency and prediction
accuracy.

To tackle the trade-off between efficiency and accuracy, we pro-
pose a generative cross-interaction decoupling architecture of the
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matching paradigm, named Unleashing the Potential of Two-Tower
Models: Diffusion-Based Cross-Interaction for Large-Scale Match-
ing (T2Diff). T2Diff has exceeded the limits of the two-tower archi-
tecture by extracting user-item cross features with the guidance of
target item restored by the diffusion module. Considering the per-
formance issues caused by the large-scale corpus in the matching
phase, instead of the single-tower structure, we employ a generative
method that reconstructs the user’s positive interactions contained
in the item tower through a diffusion model in the user tower. To
model the interactions between user and item features sufficiently,
a mixed-attention module is introduced to enhance the user’s posi-
tive interaction from the other tower. This mixed-attention module
extracts user representation more accurately by interacting with
the item information and the user’s historical behavior sequence.
The main contributions of this paper are as follows:

• We propose a new matching paradigm named T2Diff which
is a generative cross-interaction decoupling architecture that
emphasizes information interactions and unleashes the potential
of two-tower model with high accuracy and low latency.

• T2Diff introduces two key innovations: 1) a generative module to
reconstruct user’s next positive intention by applying diffusion-
based model, and 2) a mixed-attention mechanism [28, 37] to
address the challenge of the "Late Interaction" by facilitating
more complex and enriched user-item feature interactions at the
foundational level of the model architecture.

• T2Diff not only outperforms the baselines on both two real-world
datasets and one industrial dataset, but also demonstrates great
inferences efficiency.

2 RELATEDWORKS
Embedding-based Retrieval (EBR): A technique that uses em-
beddings to represent users and items, converting the retrieval
problem into a nearest neighbor (NN) search problem in the embed-
ding space [5, 14]. EBR models are widely applied in the matching
stage [11], which selects a list of candidates from a large corpus
based on the user’s historical behavior. Typically, EBR models con-
sist of two parallel deep neural networks for learning the encod-
ing of the users and items, which are trained separately and also
known as two-tower model [12, 32, 33]. This architecture has the
advantages of high throughput and low latency, while the ability
to capture the interactive signals between user and item represen-
tations is limited. To mitigate the problem, DAT [34] introduces a
adaptive-mimic mechanism which customizes an augmented vector
for each user and item, compensating for the lack of interactive
signals. However, later research [17] shows that the gain of only
introducing an augmented vector as the input features is limited.
Therefore, T2Diff leverages the mixed-attention module to extract
high-order feature interactions and user historical behaviors with
the target representations generated by diffusion module.
Session-based Recommendation and Interests Drift. Feng
𝑒𝑡 𝑎𝑙 . [3] have observed that user behaviors within each session
exhibit a high degree of homogeneity, yet they tend to drift across
different sessions. Zhou 𝑒𝑡 𝑎𝑙 . [36] have discovered that the accu-
racy of predicting the Click-Through Rate (CTR) is significantly
enhanced when the predictions are aligned with the trend of inter-
ests drift.

The Application of Generative Model in Sequential Recom-
mendation. VAEs [2, 8, 30] have been utilized to learn a latent
space representation of items and users, from which new sequences
can be generated. However, these kind of generative models might
oversimplify the data distribution, leading to a loss of information
and potentially less accurate representations. Diffusionmodels have
made remarkable success in many fields, including recommender
systems [18, 29], natural language processing [8, 13, 19], and com-
puter vision [9, 22, 24]. DiffuRec [18] made the first attempt to
apply diffusion modeling to SR and adopted a single embedding
to fetch a user’s multiple interests due to its ability of distribution
generation and diversity representation. While VAEs and diffusion
models applied in computer vision [8, 13, 19] typically rely on a
Kullback-Leibler divergence loss[KL-loss] to measure the difference
between the learned latent distribution and a prior distribution (of-
ten a Gaussian), DiffuRec opts for a cross-entropy loss during the
process of reconstructing the target item. In order to restore item
representation stably and accurately, T2Diff adopts a diffusion mod-
ule with Kullback-Leibler divergence loss[KL-loss]. This module
can accurately reconstruct the target item with low latency, provid-
ing a solid foundation for capturing cross-information within the
two-tower structure.

3 PRELIMINARY
In this section, we briefly introduce the components of our model
including diffusionmodels and U-Net as the preliminary knowledge.

3.1 Diffusion Models
Diffusion models can be divided into two stages, diffusion process
and reverse process. Fundamentally, Diffusion Models work by de-
stroying training data through the successive addition of Gaussian
noise in diffusion process, and then learning to recover the data by
reversing this noising process in reverse process.

In the diffusion process, the diffusion models add the Gaussian
noise successively to the original representations 𝑥0 via a Markov
Chain (i.e., 𝑥0 → 𝑥1 → ... → 𝑥𝑇 ) as follows:

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ) (1)

where N(𝑥 ; 𝜇, 𝜎2) is a Gaussian distribution with mean 𝜇 and vari-
ance 𝜎2. 𝛽𝑡 represents the amplitude of added Gaussian noise, with
higher values of 𝛽𝑡 indicating a higher level of introduced noise. 𝐼
is the identity matrix.

We can go in a closed form from the input data 𝑥0 to 𝑥𝑇 in a
tractable way and the posterior probability can be defined as:

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1) (2)

According to DDPM [9], with the help of reparameterization
trick, we can find that the posterior 𝑞(𝑥𝑟 |𝑥0) obey a Gaussian dis-
tribution. Let 𝛼𝑟 = 1− 𝛽𝑟 and 𝛼𝑟 = Π𝑟

𝑖=1𝛼𝑖 , then the Equation 2 can
be rewritten as

𝑞(𝑥𝑟 |𝑥0) = N(𝑥𝑟 ;
√
𝛼𝑟𝑥0, (1 − 𝛼𝑟 )𝐼 ) (3)

In the reverse process, we gradually denoise from the standard
Gaussian representation 𝑥𝑇 and approximate the real representa-
tion 𝑥0 (𝑖 .𝑒 .𝑥𝑇 → 𝑥𝑇−1 → ... → 𝑥0) in an iterative way. Specially,
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given the current restored representation 𝑥𝑡 and the original rep-
resentation 𝑥0, the next representation 𝑥𝑡−1 can be calculated as
follows:

𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥0) = N(𝑥𝑡−1; 𝜇̃𝑡 (𝑥𝑡 , 𝑥0), 𝛽𝑡 𝐼 ) (4)

𝜇̃𝑡 (𝑥𝑡 , 𝑥0) =
√
𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

𝑥0 +
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝑥𝑡 (5)

𝛽𝑡 =
1 − 𝛼𝑡−1
1 − 𝛼𝑡

𝛽𝑡 (6)

However, the original representation 𝑥0 is always unknown in
the reverse process, thus requiring a deep neural network to es-
timate 𝑥0. The reverse process is optimized by minimizing the
following variational lower bound (VLB).

𝐿𝑉𝐿𝐵 = 𝐸𝑞 (𝑥1 |𝑥0 ) [𝑙𝑜𝑔𝑝𝜃 (𝑥0 |𝑥1)] − 𝐷𝐾𝐿 (𝑞(𝑥𝑇 |𝑥0) | |𝑝𝜃 (𝑥𝑇 ))

−
𝑇∑︁
𝑡=2

𝐸𝑞 (𝑥𝑡 |𝑥0 ) [𝐷𝐾𝐿 (𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0) | |𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ))]

= 𝐿0 − 𝐿𝑇 −
𝑇∑︁
𝑡=2

𝐿𝑡−1

(7)

where 𝑝𝜃 (𝑥𝑡 ) = N(𝑥𝑡 ; 0, 𝐼 ) and 𝐷𝐾𝐿 (·) is the KL divergence.
Each KL divergence term in 𝐿VLB, with the exception of 𝐿0, in-

volves the comparison of two Gaussian distributions. As such, these
terms can be analytically computed in closed form. The term 𝐿𝑇 is
a constant during the training process, rendering it inconsequential
for optimization. This is because the distribution 𝑞 lacks trainable
parameters, and 𝑥𝑇 is simply Gaussian noise. For modeling 𝐿0, Ho
𝑒𝑡 𝑎𝑙 . utilize a separate discrete decoder that is derived from 𝑁 .
Following [9], 𝐿𝑉𝐿𝐵 can be simplified as a Gaussian noise learning
process, which can denoted as

𝐿𝑠𝑖𝑚𝑝𝑙𝑒 = 𝐸𝑡 ∈[1,𝑇 ],𝑥0,𝜖𝑡

[
| |𝜖𝑡 − 𝜖𝜃 (𝑥𝑡 , 𝑡) | |2

]
(8)

where 𝜖 ∼ N(0, 𝐼 ) is sampled from a standard Gaussian distribution,
and 𝜖𝜃 (·) represents an Estimator that can be learned by a deep
neural network.

3.2 U-Net
Originally developed by Olaf 𝑒𝑡 𝑎𝑙 . [23], U-Net represents a refine-
ment and expansion of the fully-connected network (FCN), initially
applied to image segmentation tasks. This structure is based on an
encoder-decoder architecture.

The encoder, or "contracting path," is a downsampling sequence
of convolutional and max-pooling layers for feature extraction
and spatial dimension reduction, respectively. This focuses the
network on key features and broader context. The decoder, the
"expanding path," is the upsampling reverse, featuring transposed
convolutional layers to restore spatial dimensions and support
precise segmentation. Skip connections enhance this process by
merging encoder feature maps with the decoder, preserving high-
resolution details and improving segmentation quality.

The U-Net architecture has since became a standard for biomed-
ical image segmentation, and its principles have been adapted for
various other fields such as high quality image synthesis [9].

4 METHOD
In this section, we first introduce the notations and background
related to T2Diff. We then detail the framework of our model, which
consists of a diffusion module and a mixed-attention module, as
shown in the Figure 2(a).

4.1 Notations and Problem Formulation
Suppose we have a set of usersU and a set of items M. We collect
the behavior sequence of each user and denote it as 𝑋𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∈ 𝑀 .
We tell each behavior of user 𝑢 ∈ U as 𝑥𝑢

𝑗
, where j represents

the 𝑗-𝑡ℎ item of the behavior sequence. For each user, suppose we
have 𝑛 historical behaviors, then index 𝑗 ∈ {1, 2, · · · , 𝑛 + 1} and
𝑋𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = [𝑥1, 𝑥2, · · · , 𝑥𝑛]. Building upon the concept presented
in [3], we aim to achieve a more refined modeling of user behavior
sequences by dividing them into two distinct parts based on the
time intervals that separate each action. Specifically, we divide the
ordered behavior sequence into the current session with the recent
𝑘 interacted behaviors denoted by 𝑋𝑠𝑒𝑠𝑠𝑖𝑜𝑛 = [𝑥𝑛−𝑘+1, · · · , 𝑥𝑛] and
historical behaviors denoted as 𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑦 = [𝑥1, 𝑥2, · · · , 𝑥𝑛−𝑘 ]. We
believe that the user’s behaviors within the most recent session are
temporally continuous, and reflect the user’s nearest intentions. Fi-
nally, the most important point, we unleash the two-tower model’s
potential by introducing the predicted next positive behavior 𝑥𝑛+1
from the true one 𝑥𝑛+1.

Embedding-based retrieval (EBR) methods encode user and item
features into embeddings by two independent deep neural networks.
The relevance of item M to user U is determined based on the
distance (most commonly, inner product) between user embedding
𝑒𝑢 and item embedding 𝑒𝑖 .

Our proposed T2Diff has two main parts: 1) A diffusion module
designed to identify drift in interests between adjacent behaviors
during the training phase, and to reintroduce next behavior during
the inference stage. 2) A session-based mixed-attention module that
extracts current interests from the latest session and the predicted
next behavior by applying a self-attention module and fetching
historical interests with a target-attention mechanism. The com-
bination of these two components enables a full cross-interaction
between the user’s behavior sequence and the next behavior.

4.2 Diffusion Module
Referring to the bottom of Figure 2(a), the input of the diffusion
module is the complete user’s behaviors 𝑋𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and the next
positive behavior 𝑥𝑛+1, which fed into the diffusion process and
transformed into the standard Gaussian distribution. The output is
the predicted next positive behavior 𝑥𝑛+1 restored from a sample
of standard Gaussian distribution, which is expected to be the same
as 𝑥𝑛+1 in the reverse process.

𝑥𝑛+1 = Diffusion(𝑋𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑥𝑛+1) (9)

Regarding the drift preparation step illustrated on the upper left
of Figure 2(b), assuming there are 𝑛 user historical behaviors and
1 next behavior, concatenating these behaviors in time series we
can get 𝑋1:𝑛+1. One necessary step is to obtain the drift between
adjacent behaviors. We employ sliding windows to derive 𝑋1:𝑛
and 𝑋2:𝑛+1 separately, from those we calculate the element-wise
subtraction of 𝑋2:𝑛+1 from 𝑋1:𝑛 , resulting in 𝑑1:𝑛 or 𝑧0, to which we
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(a) (b)

Figure 2: (a): The main architecture of T2Diff includes a mixed-attention module and a diffusion module. The forward slash
character used to connect the diffusion module and embedding layer indicates stop-gradient. (b): The details of the diffusion
module, which adopts different processes for training and inference. For each reverse step in the diffusion module, we utilize a
Unet approximator.

add noise.
𝑋1:𝑛+1 = concat( [𝑋𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , 𝑥𝑛+1]) (10)

𝑧0 = 𝑑1:𝑛 = 𝑋2:𝑛+1 − 𝑋1:𝑛 (11)
We believe that diffusion and reverse from drift between adjacent
behaviors is much easier than from the original user behavior se-
quence 𝑋1:𝑛 . The effectiveness of this approach will be demon-
strated by experiments in Section 5.1.4.

4.2.1 Diffusion Process. During the training process, we ran-
domly add 𝑟 steps of Gaussian noise to a batch of data, which
can be achieved by 1 step from 𝑞(·), according to Equation 3. The
step-index 𝑟 is randomly selected from Uniform distribution [1,𝑇 ],
where 𝑇 is the upper limit of the diffusion step. We have devised
an exponential noise schedule 𝛽 to introduce noise incrementally,
showcasing its novelty in Section 5.1.5. The procedure of a single
diffusion step can be represented by Equation 12-14:

𝑟 ∼ Uniform({1,...,T}) (12)

𝛽𝑟 = 𝑎 · 𝑒𝑏𝑟 (13)

𝑧𝑟 =
√
𝛼𝑟𝑧0 +

√
1 − 𝛼𝑟𝜖

∼ 𝑞(𝑧𝑟 |𝑧0)
(14)

where a, b, T are hyper-parameters, 𝜖 ∼ N(0, 𝐼 ). Next, we choose
U-Net as the backbone of our approximator to recover its unbiased
estimation 𝑧0. The traditional U-Net architecture comprises an en-
coder, a decoder, and skip connections, facilitating the generation
of an output that keeps dimensional congruence with the input.
One of the salient advantages of utilizing U-Net lies in its convolu-
tional kernels, which can capture user interest drift over time. This

feature significantly augments the model’s capacity for discerning
intricate user interest patterns within the original input sequence
and effectively reconstructing them from a noised input, denoted
as 𝑧𝑟 .

Algorithm 1 Diffusion Process(Training)
1: Inputs:
2: User Historical Sequence: 𝑋𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 or 𝑋1:𝑛
3: Next Behavior: 𝑥𝑛+1
4: 𝑋1:𝑛+1 = concat( [𝑋𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , 𝑥𝑛+1])
5: 𝑧0 = 𝑋2:𝑛+1 − 𝑋1:𝑛 // drift preparation
6: 𝑟 ∼ Uniform({1,...,T})
7: 𝑧𝑟 ∼ 𝑞(𝑧𝑟 |𝑧0)
8: 𝑧0 = U-Net(concat( [𝑧𝑟 , 𝑋1:𝑛]))
9: parameter update : 𝐿𝐾𝐿 (𝑧0, 𝑧0)
10: 𝑥𝑛+1 = Slice(𝑧0 + 𝑋1:𝑛) // drift utilization
11: return 𝑥𝑛+1

Notably, conditional diffusion models incorporate additional in-
formation as input, such as the class label 𝑐 . In our context, the
user’s original behavior sequence 𝑋1:𝑛 is rich in information re-
garding interest drift and is accessible during both the training and
inference phases. Consequently, 𝑋1:𝑛 is employed as a conditional
factor to direct the reverse direction of the approximator.

𝑧0 = U-Net(concat( [𝑧𝑟 , 𝑋1:𝑛])) (15)

4.2.2 Reverse Process. Following the application of Diffusion
Models in Computer Vision [9, 22, 24], even if we start reversing
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next behavior from a sample of standard Gaussian noise 𝑧𝑇 ∼
N(0, 𝐼 ), it is possible to recover the drift between the last behavior
𝑥𝑛 and the next behavior 𝑥𝑛+1 with the guidance of original user
behavior 𝑋1:𝑛 . In each reverse step, we obtain 𝑧0 from the U-Net ap-
proximator with learnable parameters, denoted as 𝑓𝜃 , and combine
it with 𝑧𝑡 to get 𝑧𝑡−1 via 𝑝 (·). After applying the reparameterization
trick, a single reverse step presents as follows:

𝑧0 = 𝑓𝜃 (𝑧0 |𝑧𝑡 , 𝑋1:𝑛)
= U-Net(concat( [𝑧𝑡 , 𝑋1:𝑛]))

(16)

𝑧𝑡−1 = Fusion(𝑧𝑡 , 𝑧0)

= 𝜇̃𝑡 (𝑧𝑡 , 𝑧0) + 𝛽𝑡𝜖′

∼ 𝑝 (𝑧𝑡−1 |𝑧𝑡 , 𝑧0)
(17)

where 𝜖′ ∼ N(0, 𝐼 ). After T reverse steps, the output 𝑧0 is still
an intermediate one. Therefore, in the drift utilization step, we add
it to 𝑋1:𝑛 , and obtain the last behavior as predicted next behavior
𝑥𝑛+1, as shown on the lower left of Figure 2(b).

𝑥𝑛+1 = Slice(𝑧0 + 𝑋1:𝑛) (18)

where Slice(𝑥) = 𝑥 [−1]. The reverse process of the diffusion mod-
ule is illustrated in Algorithm 2.

Algorithm 2 Reverse Process (Inference)
1: Inputs:
2: User Historical Sequence: 𝑋𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 or 𝑋1:𝑛
3: Gaussian Sampling: 𝑧𝑇 ∼ N(0, 𝐼 )
4: for 𝑡 = 𝑇, ..., 1 do
5: 𝑧0 = U-Net(concat( [𝑧𝑡 , 𝑋1:𝑛]))
6: 𝑧𝑡−1 = Fusion(𝑧𝑡 , 𝑧0)
7: end for
8: 𝑥𝑛+1 = Slice(𝑧0 + 𝑋1:𝑛) // drift utilization
9: return 𝑥𝑛+1

4.3 Mixed-attention Module
To overcome the issue of "Late Interaction" in the two-tower model,
we propose a mixed-attention mechanism that facilitates intricate
feature interactions by engaging multi-layer user representations
with the reconstructed user’s recent positive item representation
obtained by the diffusionmodule in Section 4.2. In the realm of short-
video recommendation, user consumption behaviors demonstrate
temporal continuity. We consider that the last session contains
the user’s recent positive intention, and to to enhance the cross-
interactions between historical sequences and the next positive
item representation, we concatenate 𝑋𝑠𝑒𝑠𝑠𝑖𝑜𝑛 and 𝑥𝑛+1 along the
temporal dimension. In our approach, we deploy the encoder com-
ponent of the transformer architecture [28] and average pooling to
generate current interests embedding ℎ𝑠 for "Early Interaction".

ℎ𝑠 = avg(Transfomer(concat( [𝑋𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑥𝑛+1]))) (19)

To further exploit the benefit of cross-interaction, following [37],
we use ℎ𝑠 as guidance to extract similar information from the user’s
historical behaviors 𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑦 . In the activation units, the historical
behavior embeddings 𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑦 , the current interests embedding ℎ𝑠 ,
and their outer product are provided as the inputs for generating

attention weights𝐴ℎ𝑖𝑠𝑡𝑜𝑟𝑦 , as illustrated in Figure 3. Finally, ℎ𝑡 and
ℎ𝑠 will collectively determine the user embedding 𝑒𝑢 .

𝑎 𝑗 =
FFN(concat( [𝑥 𝑗 , 𝑥 𝑗 − ℎ𝑠 , 𝑥 𝑗 ∗ ℎ𝑠 , ℎ𝑠 ]))∑𝑛−𝑘
𝑖=1 FFN(concat( [𝑥𝑖 , 𝑥𝑖 − ℎ𝑠 , 𝑥𝑖 ∗ ℎ𝑠 , ℎ𝑠 ]))

(20)

ℎ𝑙 = 𝑓 (ℎ𝑠 , [𝑥1, 𝑥2, · · · , 𝑥𝑛−𝑘 ]) =
𝑛−𝑘∑︁
𝑗=1

𝑎 𝑗𝑥 𝑗 (21)

𝑒𝑢 = FFN(concat( [ℎ𝑙 , ℎ𝑠 )]) (22)
where 𝑎 𝑗 is the 𝑗-𝑡ℎ element of 𝐴ℎ𝑖𝑠𝑡𝑜𝑟𝑦 . Considering the temporal
dependencies within a session and the correlations of behavioral
patterns across sessions, we introduce the time lag between the
target behavior and historical behaviors as a critical feature.

Figure 3: The detailed implementation of activation units
used for target-attention.

4.4 Model Optimization
In each diffusion step, we derive 𝑧0 directly from 𝑧𝑟 , where 𝑧0 and 𝑧0
both represent the mean of the distribution by reparameterization.
Therefore, the simplified version of 𝐿𝑉𝐿𝐵 from Equation 7 can be
rewritten as follows, denoted as 𝐿𝐾𝐿 .

𝐿𝐾𝐿 = 𝐸𝑟 ∈[1,𝑇 ],𝑥0,𝜇𝑟

[
| |𝜇𝑟 − 𝜇𝜃 (𝑧𝑟 , 𝑟 ) | |2

]
(23)

With the help of 𝐿𝐾𝐿 , we can reduce the difference between 𝑧0
and 𝑧0 and renew the parameters in the approximator by gradient
descent. The diffusion process of the diffusion module is illustrated
in Algorithm 1.

Following the general principles of loss function in the recom-
mender systems, a softmax loss 𝐿𝑇𝑂𝑊𝐸𝑅 is utilized to bring the
user embedding 𝑒𝑢 close to the target item embedding 𝑒𝑖 while
far away from the remaining irrelevant item embeddings 𝑒𝑚∈M ,
which is denoted as

𝐿𝑇𝑂𝑊𝐸𝑅 = − log
𝑒𝑥𝑝 (𝑒𝑢 · 𝑒𝑖 )

Σ𝑚∈M𝑒𝑥𝑝 (𝑒𝑢 · 𝑒𝑚) (24)

Enabled by the loss function 𝐿𝑇𝑂𝑊𝐸𝑅 , the sparse embedding table
undergoes thorough training, thereby establishing a robust founda-
tion for the diffusion process training. The total loss can be denoted
as

𝐿𝑇𝑂𝑇𝐴𝐿 = 𝐿𝑇𝑂𝑊𝐸𝑅 + 𝜆𝐿𝐾𝐿 . (25)
where 𝜆 is a hyper-parameter, usually set to 1 or 10. Because the opti-
mization direction of the approximator within the diffusion module
is inconsistent with that of traditional recommender systems, which
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will easily lead to a situation where gradients counteract each other,
so we employ a stop-gradient mechanism to isolate the gradient
updates of the diffusion module, effectively enhancing the optimiza-
tion efficiency of both the approximator and the tower parameters,
as shown on the bottom of Figure 2(a).

5 EXPERIMENTS
In this section, we conduct experiments on two benchmark datasets
frequently utilized in the research community and a large-scale
industrial dataset consisting of one million users from an online
short-video platform. In detail, we try to answer the following
questions:

•How effective is the proposed method compared to other SOTA
two-tower sequential recommendation models? Q1

• What are the distinct contributions of the individual modules
within our proposed model, including the diffusion module for
the reconstruction of the next behavior and the mixed-attention
module that facilitate efficient cross-interaction? Q2

• How should the hyper-parameters of the diffusion module
be selected to strike a balance between accuracy and efficiency,
particularly with respect to the noise generation schedule 𝛽 and
the upper limit of diffusion step 𝑇 ? Q3

5.1 Offline Evaluation
5.1.1 Datasets. We conduct extensive offline experiments over two
public datasets, KuaiRand and ML-1M. The number of users, items
and interactions are displayed in the Table 1.

Table 1: Statistics of the datasets

Dataset #Users #Items #Interactions

KuaiRand 25,828 108,025 6,492,153
ML-1M 6,040 3,648 643,979

KuaiRand [4] is a publicly available dataset collected from the
logs of the recommender system in Kuaishou. Following [35], we
extract user-items interactions from main recommendation sce-
nario where the "tab" field equals one and treat clicked items as
relevant to user.

ML-1M [6] consists of over one million anonymous ratings of
about 3648 movies made by 6040 MovieLens users, which is widely
used in other sequential-aware methods, such as Caser [27] and
SASRec [15]. All the movies watched by a user are considered
relevant.

For both datasets, we focus on positive samples for training pur-
poses, specifically clicksed items in KuaiRand and watched items in
ML-1M. Additionally, we exclude users with interaction frequencies
below five to ensure a more robust training dataset.

5.1.2 Evaluation Metrics and Baselines. To emulate real-world sce-
narios, for each method, a candidate set of K most relevant items
is generated. Then, we utilize 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and Mean Reciprocal
𝑅𝑎𝑛𝑘 (𝑀𝑅𝑅)@𝐾 to evaluate the offline effectiveness, which are
widely applied in recommender systems. K is set to 2 and 20 for
ML-1M dataset and 10 and 100 for KuaiRand dataset. To guarantee
a fair and equitable comparison, we employ the open-source code

from respective paper to train and infer on our datasets, performing
each experiment ten times to ensure reliability and consistency.

We compare it with the following SOTA baselines:
• SASRec [15] introduces self-attention mechanism to quickly

generate user embedding.
• Caser [27] uses convolutional layers and max-pooling opera-

tion to capture local and global patterns in the sequence.
• GRU4Rec [7] employs multiple GRU units to effectively cap-

ture the complex relationships in a user historical behavior se-
quence.

• Bert4Rec [26] introduces the Cloze objective and bidirectional
transformer structure to accomplish target prediction.

• ContrastVAE [30] employs a two-branched VAE framework
guided by ContrastELBO to address the challenge for sparsity of
user-item interations.

• STOSA [2] devises a novel Wasserstein Self-Attention module
to characterize item-item position-wise similarity in the sequence.

• DiffuRec [18] employs diffusion models to accomplish item
representation construction and uncertainty injection for sequence
recommendation.

• DAT+ [34] integrates a Adaptive-Mimic Mechanism (AMM)
to mitigate the lack of information interaction. In the experiment
setting, we employ AMM base on regular two-tower architecture.

In summary, SASRec, Caser, GRU4Rec and Bert4Rec are repre-
sentative examples of traditional two-tower models. DAT is dis-
tinguished by its item-augmented approach within the same ar-
chitectural framework. Furthermore, ContrastVAE, STOSA, and
DiffuRec are recognized as generative models that innovate upon
the two-tower paradigm.

5.1.3 Comparisons with SOTA. (Q1). Due to the sheer volume of
data in the KuaiRand dataset, it is challenging for the model to rank
the target item within a smaller candidate set, which consequently
results in relatively poorer overall performance when compared to
the ML-1M dataset. To simplify the presentation, the results on the
KuaiRand dataset will be multiplied by 10. The detailed quantitative
comparison results is shown in Table 2.

Among all traditional two-tower recommendation baselines,
DAT+ outperforms others on some metrics, suggesting that it is
beneficial to introduce additional interactions for two-tower model.
However, DAT ignores the temporal relationship within the user
historical behaviors, which limits the extent of performance im-
provement. In contrast, our proposed T2Diff effectively reconstructs
target item representation by accounting for the temporal drift
within user sequences, thereby achieving superior performance.

ContrastVAE and STOSA both utilize the Variational AutoEn-
coder (VAE) framework tomodel user behavior sequences. However,
these models rely on two distinct embedding representations to cap-
ture the mean and variance, complicating the optimization process.
DiffuRec utilizes diffusion model to introduce target information,
but often struggles to achieve good performance due to ignoring the
temporal relationship between target items and the users’ historical
sequence of actions.

In comparison to the best baseline, our proposed T2Diff demon-
strates a significant enhancement in recall and MRR, specifically
by 23.39% and 32.39%, respectively, on the ML-1M dataset, and by
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Table 2: Performance comparison on ML-1M and KuaiRand with other SOTA methods. The best results of all methods are
highlighted in bold font and the best results of the baselines are underlined. ’Improvement’ is the relative improvement against
the best baseline performance. All the performance gains are statistically significant at 𝑝 < 0.05. ’Params’ denotes parameters.
’Infer Time’ is the inference time consumption per sample, test on 5 Tesla T4 GPUs.

Dataset Ml_1M KuaiRand(×1e-1) Params
(MB)

Infer Time
(ms)Method Recall MRR Recall MRR

2 20 2 20 10 100 10 100
SASRec 0.05779 0.15564 0.04515 0.05717 0.03796 0.21192 0.01631 0.01991 0.126 0.56
Caser 0.05808 0.15709 0.04259 0.05769 0.04076 0.19544 0.01653 0.01981 0.182 0.64

GRU4Rec 0.06070 0.16564 0.04503 0.05753 0.03909 0.21304 0.01492 0.01880 0.119 0.60
Bert4Rec 0.06272 0.20559 0.04589 0.06532 0.04041 0.19902 0.01465 0.01898 0.126 0.57
DAT+ 0.05988 0.25785 0.04506 0.07140 0.04334 0.20760 0.01320 0.01624 0.127 0.54

ContrastVAE 0.06023 0.15203 0.04436 0.05764 0.04195 0.21155 0.01605 0.02024 0.126 0.63
STOSA 0.05905 0.16008 0.04454 0.05705 0.03745 0.21365 0.01678 0.01991 0.244 0.56
DiffuRec 0.06076 0.14971 0.04288 0.05469 0.04349 0.22614 0.01708 0.02028 0.146 0.65

Mixed-attention 0.06308 0.26017 0.04826 0.07452 0.04502 0.23990 0.01735 0.02310 0.126 0.59
W/O DP 0.07233 0.25198 0.05683 0.07996 0.05014 0.24200 0.01694 0.02142 0.187 0.68

T2Diff(Ours) 0.07738 0.27727 0.06076 0.08730 0.05505 0.25294 0.02106 0.02475 0.187 0.68
Improvement +23.39% +7.53% +32.39% +22.27% +26.58% +11.85% +23.32% +22.09% —— ——

17.78% and 11.69%, respectively, on the KuaiRand dataset. It demon-
strates that reconstructing target item is an effective strategy for
addressing the "Late Interaction" problem, which significantly en-
hances the model’s performance and elevates the target item to a
desirable rank within the candidate set.

Additionally, we compare the computational complexity of our
proposed T2Diff with other SOTA methods. As demonstrated in
Table 2, T2Diff achieves superior performance without a substantial
increase in parameters. Furthermore, diffusion models are often
associated with longer inference times, which can limit their appli-
cability in real-world recommendation scenarios. To address this,
we also calculate the inference time of various models, as presented
in Table 2. Compared to other SOTA methods, T2Diff maintains
stable performance while keeping competitive time complexity.

5.1.4 Ablation experiments. (Q2). In this section, we will delineate
the specific contributions of eachmodule. Table 2 shows the ablation
results on both datasets. Our model surpasses all baselines with
the mere inclusion of the mixed-attention module. Furthermore,
by incorporating diffusion module, our model achieve significant

Figure 4: This figure delineates the distribution of similarities
between 𝑧0 and 𝑧0 across the diffusion process. The horizon-
tal axis represents cosine similarity, while the vertical axis
corresponds to the number of iterations.

improvements on both datasets, with recall rates increasing by
22.67% on ML-1M, and by 25.90% on KuaiRand, respectively.

Furthermore, the importance of fetching user interest drift can
be evaluated by removing the drift preparation (DP) step. As shown
in Table 2, our experimental results demonstrate that the inclusion
of the DP step significantly improved our model’s performance on
both datasets. These findings provide further evidence to support
the notion that modeling user interest drift is vital for accurate
prediction of user’s preferred items.

To further substantiate the corrective impact of the diffusion
module during the diffusion and subsequent reverse processes,
we tracked the cosine similarity between 𝑧0 and 𝑧0 throughout
the reverse process. As depicted in Figure 4, the diffusion module
demonstrated satisfactory performance in reversing 𝑧𝑟 back to 𝑧0
after adequate amount of iterations.

Figure 5: The figure displays three distinctive noise genera-
tion schedules for the diffusion process.

5.1.5 Verification of Hyper-parameters Selection for the Diffusion
Module. (Q3). To enhance the effectiveness of the Diffusion module,
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we undertake an investigation into the diffusion process by replac-
ing various noise injection methods and optimizing the number
of steps. The detailed description of our experiments is provided
below.

Validation of 𝛽 design. We conduct a comprehensive analysis
of the impact of various noise generation methods. Specifically, we
carry out a comparative study among three different approaches,
called linear schedule, logarithmic schedule, and exponential sched-
ule. The specific form of the function curve is shown in Figure
5. As shown in Table 3, our finding reveals that the exponential
schedule, which is applied in our model, outperforms the popular
linear schedule utilized in the previous DiffuRec [18] studies. This
approach can better satisfy the needs of the diffusion model for
uniformly perturbing the inputs at each step, leading to improved
performance and reliability of our results.

Table 3: Ablation studies of different methods to improve the
noise level in diffusion process on ML-1M dataset.

𝛽 schedule recall@2 recall@20 mrr@2 mrr@20
linear 0.07686 0.27519 0.05950 0.08677
log 0.07256 0.25151 0.05767 0.08137

exp(ours) 0.07738 0.27727 0.06076 0.08730

Validation of the maximum step in diffusion module.We
conduct an ablation study to ascertain the optimal diffusion step
𝑇 for our model. Experiments were conducted with 𝑇 set to 10, 50,
and 200. As shown in Table 4, an increased diffusion step yielded
progressively better performance for our proposed T2Diff model.
Notably, while a diffusion step of 200 yielded the optimal MRR, fur-
ther increments in𝑇 dose not proportionally enhance performance
over the 𝑇 = 50. Furthermore, elevating the diffusion step to 200
from 50 significantly amplified the inference time per sample by
238%, which could impede the practical utility of T2Diff in indus-
trial settings. Consequently, we have elected to set the diffusion
step count at 50 for both industrial applications and all subsequent
experiments detailed in this paper.

Table 4: Ablation studies ofmaximum steps in diffusionmod-
ule on ML-1M dataset.

steps recall@2 recall@20 mrr@2 mrr@20 Infer Time
(ms)

10 0.0769 0.2724 0.0592 0.0852 0.22
50(ours) 0.0774 0.2773 0.0608 0.0873 0.68
200 0.0771 0.2715 0.0623 0.0885 2.30

5.2 Live A/B Experiment
To validate the effectiveness of the proposed matching framework
named T2Diff, we conducted a week-long online A/B test (from
March 27 to April 3, 2024) on a prominent large-scale short-video
platform. The test involved over three million users, who were part
of the experimental cohort. Within the experiment group, T2Diff is
utilized as one of the potential candidate sources during the match-
ing stage. We carry out a comparison between the engagement

rates of items selected from our source and those from other two-
tower matching methods within the experiment. As evidenced in
Table 5, the proposed approach exhibits superior performance over
the other candidate sources. Furthermore, Figure 6 demonstrates
the live experiment results. On the x-axis is the date, and on the
y-axis is the relative difference of a metric in percentage between
the experiment and control. Relative to the control, the experiment
group with T2Diff improves the average App usage duration by
+0.143% with a 95% confidence interval of (+0.02%, +0.26%).

Table 5: A Comparison of Online Engagement Rates for Rec-
ommended Items between a regular two-tower matching
method, DiffuRec and Our Approach: Analysis of Effective
View Rate (EVR), Follow Rate (FTR), Average Played Dura-
tion (Play)

Metrics EVR(%) FTR(%) Play(s)

Regular Two-tower 17.2% 0.45% 11.4s
DiffuRec 21.9% 0.60% 15.26s
Ours 24.6% 0.67% 20.96s

Improvement +10.98% +11.67% +37.42%

Figure 6: Live experiment results. On the x-axis is the date;
on the y-axis is the relative difference in percentage between
the experiment and control.

6 CONCLUSION
In this paper, we propose a novel matching paradigm, T2Diff, which
represents a significant advancement in generative cross-interaction
decoupling architectures. This paradigm unleashes the potential of
two-tower model by fetching the cross information between user
and item representations which surmounts the challenge of "Late
Interactions". T2Diff incorporates a generative module for precise
reconstruction of the user’s impending positive intention and intro-
duces a mixed-attention mechanism to capture interactive signals
based on the positive intention generated by the diffusion module.
Moreover, the application of the diffusion model in matching stage
to restore the target information offers expanded possibilities for
generative retrieval methods. Extensive offline and online experi-
ments demonstrate that T2Diff outperforms the SOTA two-tower
retrieval models significantly, while numerous ablation studies val-
idate the accuracy of our model design.
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