

000 BEYOND ENGLISH-CENTRIC TRAINING: HOW REIN- 001 FORCEMENT LEARNING IMPROVES CROSS-LINGUAL 002 REASONING IN LLMs 003

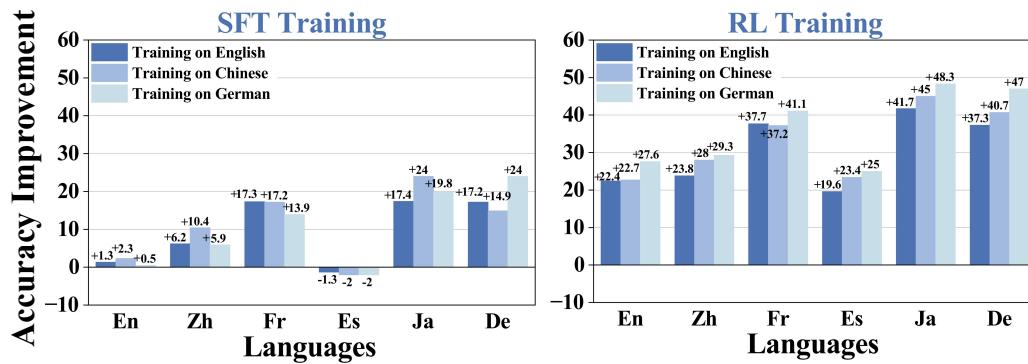
004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 Enhancing the complex reasoning capabilities of Large Language Models (LLMs)
013 attracts widespread attention. While reinforcement learning (RL) has shown su-
014 perior performance for improving complex reasoning, its impact on cross-lingual
015 generalization compared to Supervised Fine-Tuning (SFT) remains unexplored.
016 We present the first systematic investigation into cross-lingual reasoning general-
017 ization of RL and SFT. Using Qwen2.5-3B-Base as our foundation model, we con-
018 duct experiments on diverse multilingual reasoning benchmarks, including math
019 reasoning, commonsense reasoning, and scientific reasoning. Our investigation
020 yields two significant findings: (1) Tuning with RL not only achieves higher ac-
021 curacy but also demonstrates substantially stronger cross-lingual generalization
022 capabilities compared to SFT. (2) RL training on non-English data yields better
023 overall performance and generalization than training on English data, which is not
024 observed with SFT. Furthermore, through comprehensive mechanistic analyses,
025 we explore the underlying factors of RL’s superiority and generalization across
026 languages. Our results provide compelling evidence that RL enables the model
027 with more robust reasoning strategies, offering crucial guidance for more equi-
028 table and effective multilingual reasoning.
029
030

031 1 INTRODUCTION 032



046 Figure 1: SFT and RL performance improvement using English, Chinese and German training data
047 on the same base model, Qwen2.5-3B-Base. Performance improvements are measured relative to
048 the base model. We report the performance improvement in six language settings.
049

050 Multilingualism plays a significant role in human society and occupies a critical position in the
051 development of large language models (LLMs). With over 7,000 languages worldwide, each encap-
052 sulates unique cultural contexts and expressive modalities (Campbell & Grondona, 2008). LLMs
053 not only break down language barriers and facilitate cross-cultural communication, but also enable
equitable global Artificial Intelligence benefits (Howard & Ruder, 2018; Sharma et al., 2025).

With advances in LLMs reasoning (Hao et al., 2023; Yue et al., 2025), cross-lingual reasoning has received increasing attention (Wang et al., 2024a; Chai et al., 2025; Payoungkhamdee et al., 2025). Multilingual reasoning requires models to not only comprehend the semantic content of different languages, but also to possess the ability to perform logical inference and problem-solving across diverse linguistic environments (Alam et al., 2024). Current research demonstrates that while large-scale pre-trained language models have achieved remarkable progress in English comprehension and generation, significant performance gaps persist for other languages (Qiu et al., 2024). Consequently, enhancing multilingual reasoning capabilities and achieving effective cross-lingual generalization has emerged as a significant challenge (Pham et al., 2024; Hu et al., 2025).

Reinforcement Learning (RL) is considered a pivotal tool for enhancing reasoning capabilities (Wang et al., 2024b; Guo et al., 2025). Recent studies show that RL training exhibits superior performance on complex tasks such as mathematical and logical reasoning (Xie et al., 2025). Compared to Supervised Fine-tuning (SFT), Reinforcement Learning, through reward-guided mechanisms, enables models with more robust and generalizable reasoning strategies (Huan et al., 2025). Notably, researches reveal that RL not only significantly improves model performance, but also enables stronger *cross-task* generalization capabilities (Shao et al., 2024). In this work, we conduct the first investigation into whether RL exhibits strong generalization capabilities across languages in reasoning. Experimentally, we compare the performance of RL and SFT on diverse languages, exploring their performance across various languages to examine their *cross-lingual* generalization abilities. To fully reflect reasoning capability, we evaluate performance on diverse multilingual reasoning benchmarks, including math reasoning, commonsense reasoning, and scientific reasoning (Shi et al.; She et al., 2024; Son et al., 2025; Xuan et al., 2025; Qi et al., 2025).

The empirical investigation yields two notable findings: (1) As illustrated in Figure 1, RL demonstrates superior performance improvements compared to SFT, with enhanced cross-lingual generalization capabilities. Our results indicate that models trained with RL can more effectively transfer reasoning abilities learned in one language to another. This finding of cross-lingual reasoning is consistent with existing findings for cross-task transfer (Korkmaz, 2024; Huan et al., 2025; Cheng et al., 2025; Chu et al.). (2) Given that the pre-training corpora of most existing LLMs are predominantly English-centric (Morishita et al., 2024; Rytting & Wingate, 2021; Singh et al., 2024), the conventional expectation is that RL training with English data would maximally leverage the model’s potential (Yoon et al., 2024; She et al., 2024). However, as shown in Figure 1, our findings surprisingly reveal a counter-intuitive phenomenon: RL training using non-English data (such as Chinese and German) yields better cross-lingual reasoning performance and superior generalization than using English data. This contrasts with SFT, where no such phenomenon is observed, as performance remains comparable and, in some datasets, even shows an opposite trend.

To investigate underlying reasons for the findings, we conduct preliminary analyses: (1) First, we analyze whether the language used in reasoning is consistent with the language of input question. Our investigation reveals that language inconsistency serves as a potential factor of RL’s cross-lingual generalization, and the superiority of the non-English data in RL. (2) Second, we examine the role of sampling mechanisms in RL’s superior performance. We find that the sampling mechanism in RL explores sufficient and diverse solution paths, allowing models to learn more robust and generalizable strategies. (3) Third, we explore the semantic shift of the model after training. We find that the stability of the semantic space contributes to RL’s superior cross-lingual generalization. Our preliminary explorations provide insights for future research in multilingual reasoning.

The main contributions of this work are as follows:

- (1) We present the first systematic analysis of the differences between RL and SFT in cross-lingual reasoning generalization, filling an important gap in this research area.
- (2) We reveal two significant findings: 1) RL excels over SFT in cross-lingual generalization, and 2) Counterintuitively, non-English data is superior to English data for RL training. To our knowledge, we are the first to demonstrate that using non-English data for RL more effectively enhances performance and cross-lingual generalization, although most models are pre-trained mainly on English.
- (3) Through comprehensive analyses, we explore three potential factors underlying RL’s superiority: linguistic inconsistency in reasoning, sampling-driven policy optimization, and the semantic shift after training, which provides a crucial foundation for multilingual reasoning.

108
109
2 RELATED WORK110
111 **Multilingual Reasoning.** Multilingual reasoning is a challenging and representative task for eval-
112 uating the intelligence of large language models (Ahn et al., 2024; She et al., 2024; Yoon et al., 2024;
113 Chen et al., 2024). Shi et al. establish the foundation for this field by translating English mathemat-
114 ical problems from GSM8K (Cobbe et al., 2021) into multiple languages, creating the multilingual
115 benchmark MGSM (Shi et al.). To enhance multilingual reasoning capabilities, existing work pri-
116 marily employs prompting strategies. Qin et al. (2023) and Huang et al. (2023) propose a translate-
117 then-solve approach that first translates non-English questions into English before problem-solving,
118 achieving promising results on closed-source models like ChatGPT (Ouyang et al., 2022). However,
119 less attention has been paid to how different training paradigms affect the model’s intrinsic cross-
120 lingual generalization capabilities. Our work addresses this gap by comparing SFT and RL at the
121 model’s foundational level, demonstrating RL’s unique advantage in learning reasoning strategies
122 without relying on specific languages.123 **Supervised Fine-tuning For Reasoning.** Supervised fine-tuning (SFT) effectively enhances LLM
124 reasoning abilities by distilling expert-level chain-of-thought (CoT) examples (Huang et al., 2024).
125 Synthetic data generation is a key strategy: Large teacher models are used to generate solutions
126 for mathematical problems (Yue et al., 2023; Tang et al., 2024), enhancing the reasoning process.
127 Additionally, recent research examines the impact of data quality factors on the model performance
128 (Toshniwal et al., 2025; Yu et al., 2023; Ye et al., 2025). Beyond mathematics, other works (Kim
129 et al., 2023; Xu et al., 2024) expand reasoning tasks to larger domains, broadening the scope and
130 complexity of problem-solving in various fields. Although SFT is successful in enhancing rea-
131 soning, its learning approach is fundamentally based on imitating and memorizing given “expert”
132 trajectories (Ge et al., 2023), leading to overfitting to the language and pattern in the training data.
133 Our research differs from these works by focusing on the limitations of SFT in cross-lingual sce-
134 narios. By contrasting it with RL, we demonstrate that merely imitating high-quality CoT data is
135 insufficient for achieving the robust cross-lingual generalization that RL provides.136 **Reinforcement Learning For Reasoning.** Reinforcement learning (RL) has become a widely
137 adopted technique for post-training large language models (LLMs) to better align their outputs with
138 human preferences (Ouyang et al., 2022; Achiam et al., 2023). Recent studies extend its application
139 to enhancing reasoning abilities, encouraging longer, structured CoT traces and occasional break-
140 through moments (Jaech et al., 2024; Guo et al., 2025). These approaches treat chain-of-thought
141 (CoT) reasoning as an RL problem, utilizing various reward mechanisms such as final-answer cor-
142 rectness (Xie et al., 2025; Wen et al., 2025), verifier-based scoring (Gehring et al., 2025), and step-
143 level rewards (Zhang et al., 2025). While online RL approaches (Schulman et al., 2017; Shao et al.,
144 2024) are commonly used, high computational costs motivate the development of offline RL meth-
145 ods (Zhang et al., 2024; Yuan et al., 2025). Existing work primarily relies on English-centric data
146 in RL. In this work, we not only validate the effectiveness of RL in a multilingual setting but also
147 innovatively uncover the unique advantages of non-English training data within the RL framework.148
149
3 RL IMPROVES THE GENERALIZATION ACROSS LANGUAGES150
3.1 EXPERIMENTAL SETUP151 **Base Model and Datasets.** We adopt Qwen2.5-3B-Base (Yang et al., 2024) as the base model to
152 clearly explore the impact of RL and SFT. To further examine the generality of the observed phe-
153 nomena, we also include SmollM3-3B-Base (Bakouch et al., 2025) and Qwen2.5-7B-Base as the
154 additional base models for verification. The training datasets are translations of GSM8K (Cobbe
155 et al., 2021) and LUFFY (Yan et al., 2025). We use Qwen3-30B-A3B (Yang et al., 2025) to translate
156 the training data into other languages and utilize the DeepSeek-V3 (Liu et al., 2024)’s verification
157 to further guarantee the quality of the translation. The base model trained on MGSM8K (8K sam-
158 ples per language) is tested on MGSM and the base model trained on LUFFY (45K samples per
159 language) is tested on other datasets. To fully assess the reasoning ability, we evaluate the model on
160 multilingual reasoning benchmarks from four kinds of reasoning: MGSM (Shi et al.), MMath500,
161 and MAIME2024 (Son et al., 2025) for mathematical reasoning, MMLU-ProX-Lite (Xuan et al.,
162 2025) for commonsense reasoning, and MGPQA-D (Qi et al., 2025) for scientific reasoning, [Mul-](#)

162 Table 1: Performance of base, SFT, and RL models on MGSM. “Base” denotes Qwen2.5-3B-Base.
 163 “SFT (zh)” and “RL (zh)” indicate tuning on Chinese data. We report accuracy on 10 linguistic
 164 settings; Δ (RL–SFT) denotes the performance gap. Each value is averaged over six runs. “Avg”
 165 and “Gen” refer to the mean accuracy and generalization score, respectively.

Models	En	Zh	De	Es	Fr	Ja	Ru	Th	Sw	Bn	Avg	Gen
Base	63.4	48.3	33.5	57.7	38.9	19.5	30.3	17.6	7.3	1.2	31.8	0.0
SFT (En)	64.7	54.5	50.7	56.4	56.2	36.9	55.5	44.1	6.9	26.2	45.2	18.1
RL (En)	85.8	72.1	70.8	77.3	76.6	61.2	64.9	61.0	9.5	47.5	62.7	49.1
Δ (RL–SFT)	+21.1	+17.6	+20.1	+20.9	+20.4	+24.3	+9.4	+16.9	+2.6	+21.3	+17.5	+30.9
SFT (Zh)	65.7	58.7	48.4	55.7	56.1	43.5	56.6	45.8	7.5	30.5	46.9	20.4
RL (Zh)	86.1	76.3	74.2	81.1	76.1	64.5	78.1	64.9	10.3	48.3	66.0	52.6
Δ (RL–SFT)	+20.4	+17.6	+25.8	+25.4	+20.0	+21.0	+21.5	+19.1	+2.8	+17.8	+19.1	+32.3
SFT (De)	63.9	54.2	57.5	55.7	52.8	39.3	55.1	47.6	8.4	28.8	46.3	19.3
RL (De)	91.0	77.6	80.5	82.7	80.0	67.8	81.3	75.3	15.9	63.3	71.5	60.4
Δ (RL–SFT)	+27.1	+23.4	+23.0	+27.0	+27.2	+28.5	+26.2	+27.7	+7.5	+34.5	+25.2	+41.2

177
 178 [tilingual LogiQA](#) (Wang et al., 2024a) which emphasizes logical reasoning. Furthermore, we use
 179 [M-ifEval](#) (Dussolle et al., 2025) to test the multilingual instruction-following capabilities.

180 **Learning Algorithms and Evaluation Metrics.** We compare the performance of various tuning al-
 181 gorithms, including SFT and RL. Specifically, we use GRPO to explore the performance of RL. The
 182 final answer is explicitly distinguished and encapsulated with in a $\boxed{\cdot}$. To evaluate model
 183 performance, we calculate the accuracy of each reasoning dataset. We test 6 times for MMath500
 184 and MGSM, and 16 times for MAIME2024. This paper evaluates the reasoning capabilities of
 185 LLMs across ten languages: Bengali (Bn), Thai (Th), Swahili (Sw), Japanese (Ja), Chinese (Zh),
 186 German (De), French (Fr), Russian (Ru), Spanish (Es), and English (En). To measure the rela-
 187 tive improvement over the base model’s potential, we introduce a generalization score (Gen). This
 188 score is calculated by averaging the normalized gains across all test languages, which represents the
 189 model’s ability to capitalize on the potential for improvement in each language. For a given tuned
 190 model M_{tuned} , the generalization score is defined as:

$$Gen(M_{\text{tuned}}) = \frac{1}{|L|} \sum_{l \in L} \frac{\text{Acc}(M_{\text{tuned}}, l) - \text{Acc}(M_{\text{base}}, l)}{1 - \text{Acc}(M_{\text{base}}, l)}$$

193 where L is the set of evaluation languages, $\text{Acc}(M, l)$ is the accuracy of model M on language l ,
 194 and M_{base} is the base model before tuning.

196 **Implementation Details.** All experiments utilize full-parameter tuning during both the SFT and RL
 197 phases to enable a thorough evaluation of model capabilities. The SFT experiments are carried out
 198 within the LlamaFactory (Zheng et al., 2024) framework, employing a learning rate of 2×10^{-5} , a
 199 cosine learning rate scheduler, and a batch size of 32. For RL, the verl (Sheng et al., 2024) platform is
 200 used for implementation. To guarantee a fair comparison among different RL approaches, a uniform
 201 set of parameters is adopted: the learning rate is set to 1×10^{-6} , the rollout batch size to 512, and
 202 the sampling temperature to 1.0, along with a KL-divergence coefficient of 0.001. **Both SFT and**
 203 **RL experiments are conducted for 3 full epochs and then stop.** Furthermore, we employ zero-shot
 204 setting to assess models’ performance across various test datasets. To verify the robustness of our
 205 findings, we also provide 4-shots results in Table 16, which show consistent trends.

206 3.2 FINDING 1: RL EXHIBITS SUPERIOR CROSS-LINGUAL GENERALIZATION THAN SFT

208 **Significant performance improvement.** As shown in Table 1, RL consistently outperforms SFT
 209 across ten languages. The improvements range from +9.4 points (evaluating Russian when trained
 210 in English) to +34.5 points (evaluating Bengali when trained in German), with an overall average
 211 improvement of +17.5 to +25.2 points depending on the training language. This establishes a strong
 212 baseline for RL’s superiority. The complete results are provided in Appendix A.4.1.

213 **Robustness in cross-lingual transfer.** Notably, RL’s advantage is most prominent in cross-lingual
 214 transfer scenarios, suggesting it learns more robust reasoning strategies rather than optimizing for the
 215 training language. For instance, when trained on Chinese, RL not only excels on Chinese evaluation
 (+17.6 points over SFT) but also generalizes significantly better to typologically distant languages

216 Table 2: Performance of base, SFT, and RL models on MMath500. We report the accuracy score on
 217 6 linguistic settings.

Models	Zh	Fr	En	De	Ja	Es	Avg	Gen
Base	38.9	27.2	49.1	16.3	17.4	36.6	30.9	0.0
SFT (En)	33.6	56.3	59.7	56.0	18.1	57.2	46.8	22.1
RL (En)	53.7	55.8	62.7	50.9	54.2	56.6	55.7	34.6
Δ (RL-SFT)	+20.1	-0.4	+3.1	-5.1	+36.1	-0.6	+8.9	+12.5
SFT (Zh)	41.9	38.4	48.4	35.0	37.2	38.1	39.8	11.3
RL (Zh)	61.3	61.2	63.3	61.2	58.5	62.1	61.3	42.5
Δ (RL-SFT)	+19.5	+22.8	+14.9	+26.2	+21.3	+24.0	+21.5	+31.2
SFT (De)	31.7	30.7	38.0	33.5	19.4	30.3	30.6	-2.6
RL (De)	61.4	61.5	62.8	60.7	60.1	62.1	61.4	42.6
Δ (RL-SFT)	+29.7	+30.8	+24.8	+27.2	+40.7	+31.8	+30.8	+45.3

231 like German (+25.8 points) and Spanish (+25.4 points). The consistency of these improvements
 232 across diverse language pairs (e.g., English-Bengali: +21.3 points) indicates that RL fosters the
 233 development of multilingual reasoning capabilities.

234 **Coherent validation.** The validity of this conclusion is further strengthened by consistent results
 235 on the MMath500 dataset in Table 2. For example, when trained on Chinese data, the RL model
 236 achieves an average accuracy of 61.3%, substantially surpassing SFT’s 39.8% (a +21.5 point im-
 237 provement). This cross-dataset corroboration confirms that the enhanced generalization ability of
 238 RL is not an artifact of a single benchmark.

239 **Effective generalization across languages in other reasoning tasks.** The superiority of RL ex-
 240 tends beyond multilingual mathematical reasoning to challenging out-of-distribution tasks. **As**
 241 **shown in Table 3**, on benchmarks like MMLU-ProX-Lite and MGPQA-D, RL consistently main-
 242 tains positive generalization scores, while SFT models often exhibit negative transfer. For instance,
 243 on MMLU-ProX-Lite, an RL model trained on German data achieves a generalization score (Gen)
 244 of 30.8, starkly contrasting with SFT’s 8.0. This demonstrates that the robust reasoning represen-
 245 tations acquired via RL are highly transferable across both linguistic and task boundaries. Notably,
 246 this advantage holds even under a double-cross setting: when trained on mathematical data in Ger-
 247 man (De) and evaluated on a commonsense reasoning task in Chinese (Zh), RL achieves a +20.0
 248 point improvement over SFT.

249 **Comparison with Cold-Start.** To further validate the effectiveness of RL compared to the cold-start
 250 strategy, we conduct additional experiments using “SFT + RL” and “SFT (100 steps) + RL” settings.
 251 The detailed results are presented in Table 15. Surprisingly, we observe that directly applying RL
 252 generally yields performance superior to or comparable with the cold-start baselines. For instance,
 253 on MGSM, the average score for SFT+RL (De) is 52.6%, whereas RL (De) achieves 71.5%. This
 254 suggests that SFT might cause the model to converge prematurely to specific language patterns or
 255 local optima, thereby limiting RL’s capacity to explore better strategies for multilingual reasoning.

256 In summary, results from cross-lingual, cross-dataset, and cross-task evaluations robustly support
 257 that RL enables models with superior generalization in multilingual reasoning compared to SFT.

259 3.3 FINDING2: RL USING NON-ENGLISH TRAINING DATA YIELDS SUPERIOR PERFORMANCE 260 TO ENGLISH TRAINING DATA, WHILE SFT DOES NOT

262 **Superiority performance gains in non-English RL.** Analyzing the average performance, RL train-
 263 ing on non-English data systematically surpasses the English baseline. Specifically, RL trained
 264 on German achieves the highest average performance at 71.5%, followed by French (70.7%) and
 265 Japanese (70.9%), shown in Table 7 in Appendix A.4.1, all substantially exceeding English-based
 266 RL training (62.7%), with the German advantage being a significant +8.8 points.

267 Further more, the superiority is also pronounced in cross-lingual scenarios. For example, RL trained
 268 on German not only excels on German evaluation (80.5%) but also shows remarkable transfer to
 269 distant languages like Bengali (63.3% vs 47.5% for English, +15.8 pts) and Thai (75.3% vs 61.0%
 for English, +14.3 pts), indicating learning of transferable representations.

270 Table 3: Performance comparison on MMLU-ProX-Lite and MGPQA-D. “Avg” denotes the average
 271 score across languages (En/Zh/De), and “Gen” represents the generalization score.
 272

Model	MMLU-ProX-Lite					MGPQA-D				
	En	Zh	De	Avg	Gen	En	Zh	De	Avg	Gen
Base	9.2	2.4	3.6	5.0	0.0	21.1	20.0	20.7	20.6	0.0
SFT(En)	28.9	13.0	24.1	22.0	17.9	12.5	5.1	11.7	9.8	-13.7
RL(En)	40.6	31.6	25.6	32.6	29.1	30.0	23.5	25.2	26.2	7.0
Δ (RL-SFT)	+11.6	+18.6	+1.6	+10.6	+11.2	+17.4	+18.4	+13.5	+16.4	+20.7
SFT(Zh)	24.4	11.6	21.3	20.3	7.4	20.7	18.1	14.2	17.7	-3.7
RL(Zh)	40.8	35.0	34.4	36.7	33.4	25.0	27.3	28.3	26.9	7.8
Δ (RL-SFT)	+16.3	+23.4	+13.1	+16.4	+19.8	+4.3	+9.2	+14.1	+9.2	+11.5
SFT(De)	15.8	7.3	15.0	12.7	8.0	7.2	12.8	8.8	9.6	-13.9
RL(De)	39.9	27.2	35.5	34.2	30.8	26.2	27.2	25.3	26.2	7.1
Δ (RL-SFT)	+24.1	+20.0	+20.5	+21.5	+22.8	+19.0	+14.4	+16.6	+16.7	+21.0

284
 285
 286 **Similar phenomenon across diverse tasks.** The pattern is consistently validated on diverse benchmarks. On MMLU-Pro-X Lite, from Table 3, RL trained on Chinese achieves 36.7%, outperforming
 287 RL trained on English (32.6%). On MGSM, RL trained on German attains a generalization score of
 288 +41.2, significantly higher than RL trained on English (+30.9), confirming the robust and generalizable
 289 benefits of non-English RL training. [Moreover, as shown in Table 17 and Table 18](#), performance
 290 on [M-ifEval](#) and [Multilingual LogiQA](#), which assess instruction following and logical reasoning,
 291 consistently demonstrates that non-English RL yields superior cross-lingual generalization.
 292

293 **The Different Phenomenon observed in SFT.** This phenomenon appears exclusively with RL. In
 294 contrast, SFT results exhibit minimal variation across training languages, with Avg scores ranging
 295 from 46.3% on German to 47.6% on Japanese (see Table 7 in Appendix A.4.1). The performance
 296 differences remain within statistical noise, ruling out data quality as the sole explanation and high-
 297 lighting the critical role of the RL objective.

298 **Comparison with Mixed-Language Training.** To further investigate the performance of training
 299 on mixed languages, we use a mixture of English, Chinese, and German training data (Mix), ensuring
 300 the total data volume remains consistent. Table 14 shows that while RL (Mix) achieves com-
 301 petitive results (Average 68.1%), RL (De) still maintains the highest performance (Average 71.5%).
 302 This phenomenon indicates that some specific non-English languages can stimulate the model’s
 303 generalization potential in RL training more effectively than even mixing multiple languages.
 304
 305

306 3.4 SAME PHENOMENON ON ANOTHER BASE MODEL

308 In Table 4, we report the performance of SmoLM3-3B-Base under the same configuration of
 309 Qwen2.5-3B-Base. We find that our observations are consistently.
 310

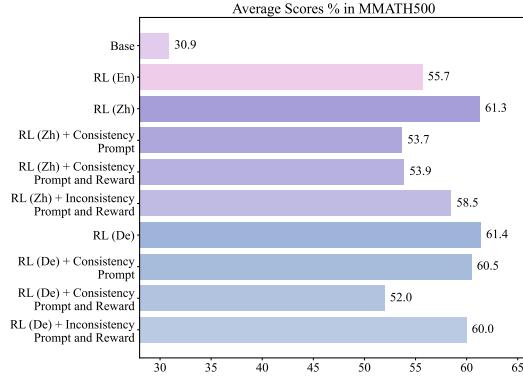
311 **Finding 1: RL exhibits superior cross-lingual generalization than SFT.** Across all training lan-
 312 guages, RL consistently and significantly outperforms SFT. The improvements are substantial, rang-
 313 ing from +11.7 points (evaluating Swedish when trained on German) to +34.7 points (evaluating
 314 Chinese when trained on German).

315 **Finding 2: RL using non-English training data yields superior performance to English training**
 316 **data, while SFT does not.** Similar to the trend observed on Qwen2.5-3B-Base, RL trained on non-
 317 English data surpasses RL trained on English. RL (De) reaches the highest average accuracy at 69.9
 318 and the strongest generalization score at 64.9. In contrast, SFT models remain far behind.

319 **To ensure the robustness of our findings across model scales, we further verify our conclusions on**
 320 **Qwen2.5-7B-Base.** As shown in Table 13, 7B model exhibits a trend highly consistent with the 3B
 321 model: (1) RL achieves significantly higher performance gains compared to SFT. (2) RL training on
 322 non-English data (e.g., German, Chinese) continues to demonstrate stronger cross-lingual general-
 323 ization capabilities than RL on English data. This provides compelling evidence that the superiority
 of non-English RL is not specific to small models but holds at larger parameter scales.

324 Table 4: Performance of base model, SFT, and RL tuning models on MGSM. Base denotes the
 325 original SmolLM3-3B-Base model. We report the accuracy score on 10 linguistic settings.
 326

Models	En	Zh	De	Es	Fr	Ja	Ru	Th	Sw	Bn	Avg	Gen
Base	29.3	17.1	24.3	27.3	26.9	18.1	24.1	13.0	4.0	5.7	19.0	0.0
SFT (En)	60.3	40.7	49.3	51.8	48.0	32.8	47.7	37.7	7.3	10.0	38.6	25.3
RL (En)	87.3	70.8	78.3	81.0	81.3	62.2	79.7	67.3	16.5	22.2	64.6	58.6
Δ (RL-SFT)	+27.1	+30.1	+28.9	+29.2	+33.3	+29.4	+32.0	+29.5	+9.1	+12.2	+26.1	+33.3
SFT (Zh)	58.9	51.5	50.5	54.9	54.9	39.3	48.7	43.7	9.2	11.7	42.3	30.0
RL (Zh)	88.6	77.1	79.3	82.5	80.9	71.1	82.4	76.2	20.1	28.5	68.7	63.4
Δ (RL-SFT)	+29.7	+25.6	+28.7	+27.6	+26.0	+31.8	+33.7	+32.5	+10.9	+16.9	+26.3	+33.4
SFT (De)	60.1	43.5	53.9	56.1	52.1	38.3	51.8	43.3	9.0	9.7	41.8	29.4
RL (De)	85.1	78.2	81.7	85.6	84.1	69.1	85.8	77.2	20.7	31.3	69.9	64.9
Δ (RL-SFT)	+24.9	+34.7	+27.7	+29.5	+31.9	+30.8	+34.0	+33.9	+11.7	+21.7	+28.1	+35.5



350 Figure 2: Scores on MMath500. The chart compares the average accuracy of different models.
 351 “RL (Zh)” indicates training on Chinese data.
 352

353 Table 6: Language consistency of models on
 354 MMath500. We test 6 times and report the average percentage of language consistency.
 355

Models	En (%)	Zh (%)	De (%)
Base	99.4	91.4	94.5
SFT (En)	98.6	99.3	83.7
RL (En)	99.9	89.0	96.2
SFT (Zh)	99.7	98.9	81.3
RL (Zh)	99.8	0.0	0.0
+ Consistency Prompt	99.3	99.6	97.3
+ Consistency Prompt and Reward	99.9	99.8	98.9
+ Inconsistency Prompt and Reward	99.7	0.0	8.1
SFT (De)	94.2	85.5	99.1
RL (De)	99.7	4.8	0.0
+ Consistency Prompt	99.8	52.4	0.0
+ Consistency Prompt and Reward	99.8	99.8	99.9
+ Inconsistency Prompt and Reward	99.6	0.0	0.0

356 4 MECHANICS ANALYSIS OF RL’S CROSS-LINGUAL GENERALIZATION

357 To investigate why RL exhibits stronger generalization than SFT, and why RL training on non-
 358 English data outperforms that on English, we present an abbreviated set of responses generated by
 359 RL-trained models on the test set in Table 5. The complete responses are provided in Appendix A.5.
 360 Our analysis reveals that when models are trained using German instructions during RL training, the
 361 resulting models do not strictly adhere to German when generating thinking and responses. Instead,
 362 they employ non-German or mixed languages for reasoning processes. This observation attracts our
 363 attention and leads us to propose a hypothesis: could this inconsistent language usage in reasoning
 364 contribute to the enhanced generalization observed in RL training?

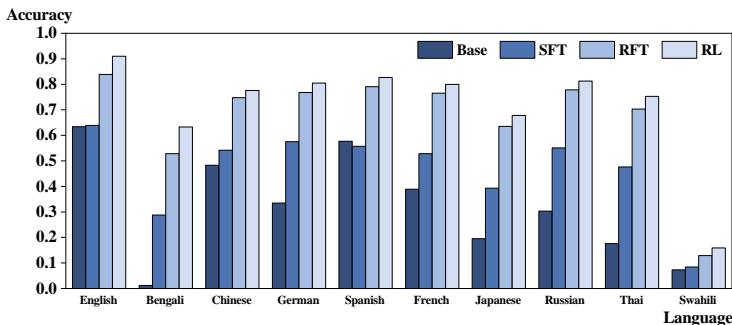
365 4.1 EXPLORATION OF LANGUAGE CONSISTENCY IN RL

366 To empirically validate this hypothesis, we conduct comparative experiments using two distinct
 367 approaches: (1) employing prompts that strictly constrain language usage, and (2) incorporating the
 368 language consistency reward that encourages the model to adhere to the language of the question
 369 into the RL training process. The details are as follows:

$$r_{\text{overall}} = 0.5r_{\text{acc}} + 0.5r_{\text{consistency}} \quad (1)$$

370 The language consistency reward $r_{\text{consistency}}$ is designed to explicitly encourage the model’s output
 371 language to match the input instruction’s language. We implement this using langid (Lui & Baldwin)
 372 as a language identifier to detect the primary language of the generated response. A positive reward
 373 is given for a match, and a penalty is applied otherwise.

374 We investigate the impact of language consistency by forcing the model to use a specific language
 375 during inference and observing performance changes. The results are presented in Figure 2 and
 376 Table 6, with a specific case study provided in Table 5.

378 Table 5: Case study of on MMath500. We present a case of German question.
379380 **Question:** Ein Matheclub veranstaltet einen Kuchenverkauf als Spendenaktion, um Geld für eine
381 bevorstehende Reise zu sammeln. Sie verkaufen 54 Kekse zu drei für \$1\$, und \$20\$ Cupcakes
382 zu \$2\$ pro Stück, und \$35\$ Brownies zu \$1\$ pro Stück. Wenn es den Matheclub \$15\$ gekostet
383 hat, diese Artikel zu backen, wie hoch war ihr Gewinn?
384385 **Answer:** 78
386387 **Base:**
388389 Da Kekse zu drei für \$1 verkaufen werden, müssen wir zahlenweise Kekse zählen. Es gibt
390 54 Kekse zu backen, und jeder Kuchen besteht aus drei Keksen. Also haben sie $54/3 = 18$
391 Kuchen zu backen. ... Da sie für die Backzeit 15 Dollar ausgeben, haben sie für den Verkauf
392 $146 - 15 = \$131$ eingenommen. Daher haben sie einen Gewinn von 131.
393394 **Reinforcement Learning (with German Data):**
395396 1. Calculate the revenue from Kekse: - They sold 54 Kekse at a rate of 3 Kekse for \$1. - The
397 number of sets of 3 Kekse in 54 is $\frac{54}{3} = 18$. - Revenue from Kekse = $18 \times 1 = 18$ dollars.
398399 ...
400401 5. Calculate the profit: - Cost to make the items = \$15. - Profit = Total revenue - Cost to make
402 the items - Profit = $93 - 15 = 78$ dollars.
403 Therefore, the profit is 78.
404405 **Reinforcement Learning (with German Data and with Consistency Reward):**
406407 Zuerst berechnen wir den Einnahmen von den Keksen. Da sie drei Kekse für \$1 verkaufen,
408 erhalten sie: $54 \div 3 = 18$ Doppelsätze, ... Da es ihnen \$15 gekostet hat, um die Artikel zu
409 backen, erhalten sie: $91 - 15 = 76$ Dollar Die Gewinnsumme beträgt 76.
410411 Figure 3: Model performance comparisons among the Base, SFT, RFT, and RL models on MGSM.
412 We use German data in LUFFY in SFT, RL, RFT for training.
413414 We observe two key aspects: (a) Language inconsistency serves as a potential source of cross-lingual
415 generalization capability, and (b) Building upon this mechanism, RL (De) exhibits greater language
416 inconsistency than RL (En), resulting in superior cross-lingual performance. These observations
417 suggest that the degree of flexibility in deviating from training language constraints may determine
418 the extent of cross-lingual generalization achieved by RL-trained models.
419420 **Language inconsistency enhances cross-lingual generalization.** Enforcing language consistency
421 significantly degrades performance. As demonstrated in Figure 2, both RL (Zh) and RL (De) models
422 achieve strong baseline performance (61.3% and 61.4%, respectively). However, when constrained
423 to use their training languages through prompting, performance drops substantially—RL (Zh) falls
424 to 53.7% and RL (De) to 60.5%. The degradation becomes even more pronounced when language
425 consistency rewards are applied, with RL (De) plummeting to 52.0%. This pattern strongly indicates
426 that enforced language consistency impairs cross-lingual reasoning capabilities.
427428 Table 6 reveals that unconstrained RL models show low consistency in their training
429 languages—both RL (Zh) and RL (De) achieve 0.0% consistency, indicating they spontaneously adopt
430 other languages during reasoning. Conversely, constrained models exhibit high consistency rates (up
431 to 99.9% for RL (De) with consistency rewards), but at the cost of reduced performance. This negative
432 correlation between language consistency and performance suggests that linguistic flexibility
433 enables models to leverage more powerful, multilingual reasoning modules.
434435 **Case analysis of the language inconsistency.** As shown in Table 5, When solving German question,
436 the unconstrained model (RL (De)) employs mixed English and German reasoning and reaches
437 correct solutions, while the consistency-constrained model, despite only reasoning in German, produces
438

432 flawed logical steps and wrong answers. This demonstrates that constraining models to specific lan-
 433 guages may inhibit access to more robust reasoning patterns established during pre-training.
 434

435 **Language inconsistency in non-English RL.** The performance comparison in Figure 2 shows that
 436 RL (De) achieves 61.4% average accuracy compared to RL (En)’s 55.7%. More importantly, RL
 437 (De) maintains strong performance across different target languages, while RL (En) shows more
 438 pronounced degradation in non-English tasks. This suggests that German-based training may pro-
 439 vide advantages for cross-lingual generalization.
 440

441 Different source languages yield distinct generalization patterns. The superior performance of RL
 442 (De) may stem from German’s grammatical complexity and its linguistic distance from other lan-
 443 guages, potentially encouraging the development of more multilingual reasoning strategies. In con-
 444 trast, English-based training might lead to more language-specific reasoning patterns that transfer
 445 less effectively across languages.
 446

447 **Language consistency in SFT.** Unlike RL models, SFT models exhibit high language consistency
 448 (e.g., SFT (Zh) maintains 99.7% consistency) due to their imitation-based training paradigm. While
 449 this consistency appears desirable, it actually constrains generalization by trapping models within
 450 language-specific thought patterns established during training, leading to impaired cross-lingual per-
 451 formance when facing problems in other languages.
 452

453 Furthermore, results in Figure 2 show that while encouraging inconsistency (RL + Inconsistency
 454 Prompt and Reward) yields better performance than enforcing consistency (RL + Consistency
 455 Prompt and Reward), allowing the RL model to autonomously select the language (RL) still achieves
 456 the best results. This suggests that while language inconsistency is a key factor in the superiority of
 457 RL, freely exploring reasoning paths without forced constraints is also crucial.
 458

459 4.2 EXPLORATION OF SAMPLING IN RL

460 To further investigate the source of RL’s advantage over SFT, we analyze the role of sampling in
 461 performance enhancement. We introduce Rejection Sampling Fine-Tuning (RFT) (Touvron et al.,
 462 2023) as an intermediate baseline between SFT and full RL. The RFT we use involves sampling
 463 multiple times from the model after RL training. It then fine-tunes the model using only the samples
 464 that yield the correct answer. This represents a more on-policy exploration mechanism than SFT.
 465

466 As shown in Figure 3, across all languages, accuracy increases progressively from the Base model to
 467 SFT, RFT, and finally to the RL-tuned model. Specifically, SFT achieves 46.3% average accuracy,
 468 RFT improves to 66.8%, and RL reaches 71.5%. This trend underscores the importance of the
 469 model’s exploration of solution paths in enhancing its reasoning abilities.
 470

471 **Better Performance with Data Aligned to the Model’s Distribution.** Although SFT follows a
 472 completely correct off-policy solution path, RFT data, more aligned with the model’s distribution,
 473 enables the model to explore reasoning chains better suited to its own configuration through sam-
 474 pling. This alignment helps the model capture reasoning patterns and optimization trajectories more
 475 effectively, allowing it to generalize beyond memorized solutions.
 476

477 **The Importance of Online Optimization in RL.** Compared to RFT, RL (GRPO in our experiments)
 478 continuously performs more on-policy sampling with both positive and negative examples during
 479 training. This not only further aligns the data with the model but also goes beyond mere imitation
 480 learning. As shown in Figure 5, RL consistently outperforms the other methods across all languages,
 481 demonstrating that the online policy optimization process in RL is more effective at enhancing the
 482 model’s generalizable reasoning than RFT.
 483

484 **Uncertainty Promotes Cross-Lingual Exploration.** To further investigate why RL training on
 485 German data yields superior transferability, we analyze the sampling diversity. We employ the base
 486 model to generate six responses for each question across different languages via sampling. We then
 487 calculate the Perplexity (PPL) and Self-Similarity (measured by BLEU scores among sampled re-
 488 sponds for each question) of the base model’s outputs across different languages. As shown in
 489 Table 11, German questions exhibit higher PPL (1.414) and the lowest Self-Similarity (0.425).
 490 This indicates that the model faces higher uncertainty when processing German questions. In the ex-
 491 ploration phase of RL, this uncertainty potentially prompts the model to step out of single-language
 492 constraints and explore reasoning paths in mixed languages or its dominant language (English).
 493

486
487
488
489
490
491
492
493
494
495

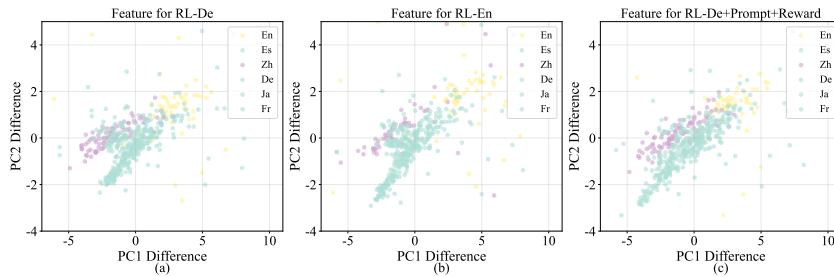


Figure 4: Feature of LLM’s hidden state of last layer, in training (dataset LUFFY) configuration of (a)RL-De, (b)RL-De+Prompt, and (c)RL-De+Prompt+Reward. “+Prompt” adds language control prompts, and “+Reward” adds a language consistency reward.

This process inadvertently activates stronger cross-lingual generalization capabilities. In contrast, the low perplexity in English questions limits this diversity during sampling. Furthermore, SFT tends to closely fit the language distribution, also limiting such exploration.

4.3 EXPLORATION OF MODEL SEMANTIC FEATURE SHIFT

To investigate why RL training with different languages yields varying generalization capabilities, we analyze the semantic feature shifts in learned representations.

Methodology. We extract final layer hidden states from base and RL-trained models when processing MMath500 test data across six languages. These representations are projected to 2D space using PCA, and we compute difference vectors: $\mathbf{h}_{diff} = \mathbf{h}_{RL} - \mathbf{h}_{Base}$.

Results. Figure 4 reveals distinct shift patterns across training configurations. RL-De exhibits the most concentrated distribution around the origin, indicating minimal deviation from base representations, while RL-En displays more scattered distributions. This ordering directly correlates with cross-lingual performance in Table 2. Similarly, language consistency interventions in RL-De progressively increase representational scatter: baseline RL-De maintains compact distributions, while RL-De+Prompt+Reward shows greater dispersion, mirroring the performance degradation pattern.

Interpretation. These findings suggest that pre-training establishes multilingual reasoning structures crucial for cross-lingual transfer (Hua et al., 2024; Merchant et al., 2020). Models preserving these structures through minimal representational drift maintain stronger generalization capabilities. Conversely, larger shifts disrupt universal reasoning mechanisms (Luo et al., 2025), explaining why RL’s linguistic inconsistency paradoxically enhances cross-lingual performance by preserving pre-trained reasoning structures (Lai et al., 2025).

5 CONCLUSION

We systematically investigated the differences between Reinforcement Learning and Supervised Fine-Tuning for enhancing cross-lingual reasoning and the generalization across languages. Multiple experiments demonstrate that RL not only achieves substantially higher accuracy than SFT but also exhibits superior cross-lingual generalization. Contrary to conventional cognition, we find that RL training on non-English data yields superior performance, challenging English-centric training. Our preliminary mechanistic analysis investigates the potential reasons for the superior cross-lingual generalization of RL from three perspectives: the linguistic inconsistency during the reasoning process, the unique explore-and-optimize sampling strategy, and the semantic shift after training. The understanding of these potential factors not only provides crucial insights into understanding RL’s advantages in multilingual reasoning but also establishes a foundation for effectively enhancing cross-lingual reasoning in the future.

540

6 ETHICS STATEMENT

541
 542 This study acknowledges several ethical implications of its investigation into cross-lingual reasoning
 543 in LLMs. Data and fairness concerns arise from potential biases in multilingual benchmarks,
 544 which may introduce performance disparities across languages. Our evaluations incorporate diverse
 545 linguistic settings and different multilingual reasoning tasks to mitigate such biases, though future
 546 work must further scrutinize cultural and linguistic influences on model behavior.

547 Beyond technical limitations, societal impact requires careful consideration. While improved multilingual
 548 reasoning could enhance accessibility for non-English speakers, reducing barriers in education and
 549 professional settings, it also risks misuse—such as automated disinformation generation or
 550 harmful content propagation across languages. We advocate for responsible deployment, emphasizing
 551 robust safeguards, human oversight, and ongoing risk assessments to balance innovation with
 552 ethical constraints.

553

REFERENCES

554
 555 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 556 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 557 report. *arXiv preprint arXiv:2303.08774*, 2023.

558
 559 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
 560 for mathematical reasoning: Progresses and challenges. In *Proceedings of the 18th Conference*
 561 *of the European Chapter of the Association for Computational Linguistics: Student Research*
 562 *Workshop*, pp. 225–237, 2024.

563
 564 Firoj Alam, Shammur Absar Chowdhury, Sabri Boughorbel, and Maram Hasanain. Llms for low
 565 resource languages in multilingual, multimodal and dialectal settings. In *Proceedings of the 18th*
 566 *conference of the European chapter of the association for computational linguistics: tutorial*
 567 *abstracts*, pp. 27–33, 2024.

568
 569 Elie Bakouch, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, Lewis Tunstall, Carlos Miguel
 570 Patiño, Edward Beeching, Aymeric Roucher, Aksel Joonas Reedi, Quentin Gallouédec, Kashif
 571 Rasul, Nathan Habib, Clémentine Fourrier, Hynek Kydlicek, Guilherme Penedo, Hugo Larcher,
 572 Mathieu Morlon, Vaibhav Srivastav, Joshua Lochner, Xuan-Son Nguyen, Colin Raffel, Leandro
 573 von Werra, and Thomas Wolf. SmolLM3: smol, multilingual, long-context reasoner. <https://huggingface.co/blog/smollm3>, 2025.

574
 575 Lyle Campbell and Verónica Grondona. Ethnologue: Languages of the world. *Language*, 84(3):
 576 636–641, 2008.

577
 578 Linzheng Chai, Jian Yang, Tao Sun, Hongcheng Guo, Jiaheng Liu, Bing Wang, Xinnian Liang, Jiaqi
 579 Bai, Tongliang Li, Qiyao Peng, et al. xcot: Cross-lingual instruction tuning for cross-lingual
 580 chain-of-thought reasoning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 volume 39, pp. 23550–23558, 2025.

581
 582 Nuo Chen, Zinan Zheng, Ning Wu, Ming Gong, Dongmei Zhang, and Jia Li. Breaking language
 583 barriers in multilingual mathematical reasoning: Insights and observations. In *Findings of the*
 584 *Association for Computational Linguistics: EMNLP 2024*, pp. 7001–7016, 2024.

585
 586 Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
 587 Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning
 from a cross-domain perspective. *arXiv preprint arXiv:2506.14965*, 2025.

588
 589 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 590 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 591 model post-training. In *Forty-second International Conference on Machine Learning*.

592
 593 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

594 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
 595 In *arXiv preprint arXiv:2407.12011*, 2024.

596

597 Antoine Dussolle, A Cardeña, Shota Sato, and Peter Devine. M-ifeval: Multilingual instruction-
 598 following evaluation. In *Findings of the Association for Computational Linguistics: NAACL*
 599 2025, pp. 6161–6176, 2025.

600 Yubin Ge, Devamanyu Hazarika, Yang Liu, and Mahdi Namazifar. Supervised fine-tuning of large
 601 language models on human demonstrations through the lens of memorization. In *NeurIPS 2023*
 602 *Workshop on Instruction Tuning and Instruction Following*, 2023.

603 Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, and Gabriel Synnaeve.
 604 Rlef: Grounding code llms in execution feedback with reinforcement learning. In *Forty-second*
 605 *International Conference on Machine Learning*, 2025.

606

607 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 608 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 609 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

610 Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
 611 Reasoning with language model is planning with world model. *arXiv preprint arXiv:2305.14992*,
 612 2023.

613

614 Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
 615 In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics*
 616 (*Volume 1: Long Papers*), pp. 328–339, 2018.

617 Peng Hu, Sizhe Liu, Changjiang Gao, Xin Huang, Xue Han, Junlan Feng, Chao Deng, and Shujian
 618 Huang. Large language models are cross-lingual knowledge-free reasoners. In *Proceedings of the*
 619 *2025 Conference of the Nations of the Americas Chapter of the Association for Computational*
 620 *Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 1525–1542, 2025.

621 Tianze Hua, Tian Yun, and Ellie Pavlick. mothello: When do cross-lingual representation alignment
 622 and cross-lingual transfer emerge in multilingual models? *arXiv preprint arXiv:2404.12444*,
 623 2024.

624

625 Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-
 626 dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities?
 627 understanding transferability of llm reasoning. *arXiv preprint arXiv:2507.00432*, 2025.

628

629 Haoyang Huang, Tianyi Tang, Dongdong Zhang, Wayne Xin Zhao, Ting Song, Yan Xia, and
 630 Furu Wei. Not all languages are created equal in llms: Improving multilingual capability by
 631 cross-lingual-thought prompting. In *Findings of the Association for Computational Linguistics:*
EMNLP 2023, pp. 12365–12394, 2023.

632

633 Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yi-
 634 wei Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey–part 2: Surpassing o1-preview
 635 through simple distillation, big progress or bitter lesson? *arXiv preprint arXiv:2411.16489*, 2024.

636

637 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 638 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
preprint arXiv:2412.16720, 2024.

639

640 Seungone Kim, Se Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon Seo.
 641 The cot collection: Improving zero-shot and few-shot learning of language models via chain-of-
 642 thought fine-tuning. In *Proceedings of the 2023 Conference on Empirical Methods in Natural*
643 Language Processing, pp. 12685–12708, 2023.

644

645 Ezgi Korkmaz. A survey analyzing generalization in deep reinforcement learning. *arXiv preprint*
arXiv:2401.02349, 2024.

646

647 Song Lai, Haohan Zhao, Rong Feng, Changyi Ma, Wenzhuo Liu, Hongbo Zhao, Xi Lin, Dong
 648 Yi, Min Xie, Qingfu Zhang, et al. Reinforcement fine-tuning naturally mitigates forgetting in
 649 continual post-training. *arXiv preprint arXiv:2507.05386*, 2025.

648 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 649 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 650 *arXiv:2412.19437*, 2024.

651

652 Marco Lui and Timothy Baldwin. langid. py: An off-the-shelf language identification tool. In
 653 *Proceedings of the ACL 2012 system demonstrations*, pp. 25–30.

654

655 Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
 656 catastrophic forgetting in large language models during continual fine-tuning. IEEE, 2025.

657

658 Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and Ian Tenney. What happens to bert embed-
 659 dings during fine-tuning? *arXiv preprint arXiv:2004.14448*, 2020.

660

661 Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, and Yasuhiro Sogawa. Enhancing reason-
 662 ing capabilities of llms via principled synthetic logic corpus. *Advances in Neural Information*

663 *Processing Systems*, 37:73572–73604, 2024.

664

665 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 666 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 667 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 668 27730–27744, 2022.

669

670 Patomporn Payoungkhamdee, Pume Tuchinda, Jinheon Baek, Samuel Cahyawijaya, Can Udom-
 671 charoenchaikit, Potsawee Manakul, Peerat Limkonchotiwat, Ekapol Chuangsawanich, and Sarana
 672 Nutanong. Towards better understanding of program-of-thought reasoning in cross-lingual and
 673 multilingual environments. *arXiv preprint arXiv:2502.17956*, 2025.

674

675 Trinh Pham, Khoi Le, and Luu Anh Tuan. Unibridge: A unified approach to cross-lingual transfer
 676 learning for low-resource languages. In *Proceedings of the 62nd Annual Meeting of the Associa-
 677 tion for Computational Linguistics (Volume 1: Long Papers)*, pp. 3168–3184, 2024.

678

679 Jirui Qi, Shan Chen, Zidi Xiong, Raquel Fernández, Danielle S Bitterman, and Arianna Bisazza.
 680 When models reason in your language: Controlling thinking trace language comes at the cost of
 681 accuracy. *arXiv preprint arXiv:2505.22888*, 2025.

682

683 Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang, and Wanxiang Che. Cross-lingual prompting:
 684 Improving zero-shot chain-of-thought reasoning across languages. In *Proceedings of the 2023*

685 *Conference on Empirical Methods in Natural Language Processing*, pp. 2695–2709, 2023.

686

687 Xiaoyu Qiu, Yuechen Wang, Jiaxin Shi, Wengang Zhou, and Houqiang Li. Cross-lingual transfer
 688 for natural language inference via multilingual prompt translator. In *2024 IEEE International*

689 *Conference on Multimedia and Expo (ICME)*, pp. 1–6. IEEE, 2024.

690

691 Christopher Michael Rytting and David Wingate. Leveraging the inductive bias of large language
 692 models for abstract textual reasoning. In *Proceedings of the 35th International Conference on*

693 *Neural Information Processing Systems*, pp. 17111–17122, 2021.

694

695 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 696 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

697

698 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
 699 Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 700 language models. *arXiv preprint arXiv:2402.03300*, 2024.

701

702 Nikhil Sharma, Kenton Murray, and Ziang Xiao. Faux polyglot: A study on information disparity
 703 in multilingual large language models. In *Proceedings of the 2025 Conference of the Nations*

704 *of the Americas Chapter of the Association for Computational Linguistics: Human Language*

705 *Technologies (Volume 1: Long Papers)*, pp. 8090–8107, 2025.

706

707 Shuaijie She, Wei Zou, Shujian Huang, Wenhao Zhu, Xiang Liu, Xiang Geng, and Jiajun Chen.
 708 Mapo: Advancing multilingual reasoning through multilingual-alignment-as-preference opti-
 709 mization. In *Proceedings of the 62nd Annual Meeting of the Association for Computational*

710 *Linguistics (Volume 1: Long Papers)*, pp. 10015–10027, 2024.

702 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 703 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 704 *arXiv*: 2409.19256, 2024.

705 Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
 706 Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are multi-
 707 lingual chain-of-thought reasoners. In *The Eleventh International Conference on Learning Rep-*
 708 *resentations*.

709 Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David I Adelani, Jian Gang Ngu, Daniel
 710 Vila-Suero, Peerat Limkongchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, et al.
 711 Global mmlu: Understanding and addressing cultural and linguistic biases in multilingual eval-
 712 uation. *arXiv preprint arXiv:2412.03304*, 2024.

713 Guijin Son, Jiwoo Hong, Hyunwoo Ko, and James Thorne. Linguistic generalizability of test-time
 714 scaling in mathematical reasoning. *arXiv preprint arXiv:2502.17407*, 2025.

715 Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscales: Scaling instruction
 716 tuning for mathematical reasoning. In *International Conference on Machine Learning*, pp. 47885–
 717 47900. PMLR, 2024.

718 Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
 719 Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
 720 data. In *The Thirteenth International Conference on Learning Representations*, 2025.

721 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 722 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 723 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

724 Bin Wang, Zhengyuan Liu, Xin Huang, Fangkai Jiao, Yang Ding, Aiti Aw, and Nancy Chen. Seae-
 725 val for multilingual foundation models: From cross-lingual alignment to cultural reasoning. In
 726 *Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
 727 putational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 370–390,
 728 2024a.

729 Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
 730 Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. *arXiv preprint*
 731 *arXiv:2412.10400*, 2024b.

732 Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
 733 Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
 734 incentivizes correct reasoning in base llms. *arXiv preprint arXiv:2506.14245*, 2025.

735 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 736 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 737 learning. *arXiv preprint arXiv:2502.14768*, 2025.

738 Guowei Xu, Peng Jin, Ziang Wu, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. Llava-cot: Let
 739 vision language models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

740 Weihao Xuan, Rui Yang, Heli Qi, Qingcheng Zeng, Yunze Xiao, Aosong Feng, Dairui Liu, Yun
 741 Xing, Junjue Wang, Fan Gao, et al. Mmlu-prox: A multilingual benchmark for advanced large
 742 language model evaluation. *arXiv preprint arXiv:2503.10497*, 2025.

743 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 744 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

745 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 746 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 747 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

748 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 749 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 750 *arXiv:2505.09388*, 2025.

756 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 757 for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.
 758

759 Dongkeun Yoon, Joel Jang, Sungdong Kim, Seungone Kim, Sheikh Shafayat, and Minjoon Seo.
 760 Langbridge: Multilingual reasoning without multilingual supervision. In *Proceedings of the 62nd*
 761 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 762 7502–7522, 2024.

763 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
 764 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 765 for large language models. *arXiv preprint arXiv:2309.12284*, 2023.

766 Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Boji Shan, Zeyuan Liu, Jia
 767 Deng, Huimin Chen, Ruobing Xie, et al. Advancing llm reasoning generalists with preference
 768 trees. In *The Thirteenth International Conference on Learning Representations*, 2025.

769

770 Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhua Chen.
 771 Mammoth: Building math generalist models through hybrid instruction tuning. *arXiv preprint*
 772 *arXiv:2309.05653*, 2023.

773

774 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 775 inforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 776 *preprint arXiv:2504.13837*, 2025.

777 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
 778 Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
 779 relative policy optimization. *arXiv preprint arXiv:2503.12937*, 2025.

780

781 Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference opti-
 782 mization: Improving chain-of-thought reasoning in llms. *Advances in Neural Information Pro-*
 783 *cessing Systems*, 37:333–356, 2024.

784

785 Yaowei Zheng, Richong Zhang, Junhao Zhang, Ye Yanhan, Ye Yanhan, and Zheyuan Luo. Llamafac-
 786 tory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual*
 787 *Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*,
 pp. 400–410, 2024.

788

789 A APPENDIX

790 A.1 USE OF LLM

791 During the preparation of this work, large language models (e.g., ChatGPT) were used for English
 792 writing refinement and minor assistance in code debugging. All ideas, experiments, and analyses
 793 are solely by the authors.

794 A.2 EXPERIMENTAL SETTINGS

795 A.2.1 RFT SETTINGS

800 In the RFT experiments, we sample from the RL-trained model on the training set with a temperature
 801 of 1.0 and top-p of 0.95. For each prompt, we sample 10 times and filter for responses with correct
 802 answers for fine-tuning. We strictly control the RFT training data volume to be consistent with SFT.
 803

804 A.2.2 PROMPTS FOR GENERATING TRANSLATED GSM8K TRAINING DATASETS

805 Here is the prompts for generating translated GSM8K training datasets.

806 TRANSLATION_PROMPT_TEMPLATE = """You are a professional math
 807 translation assistant. Please translate the following English
 808 math problem into {target_language}, maintaining the mathematical
 809 expressions and formatting.

```

810
811 Requirements:
812 1. Maintain the format of the mathematical calculation process
813 (e.g., <<48/2=24>>)
814 2. Maintain the format of the final answer (e.g., #### 72)
815 3. The translation should be accurate and natural.
816 4. Keep the numbers and mathematical symbols unchanged.
817
818 Original question:
819
820 Original answer:
821 Please translate the question and answer separately,
822 using the following format:
823 {{ "translated_question": "Translated question",
824 "translated_answer": "Translated answer"
825 }
826 Please return the result in JSON format, using the
827 {target_language} language, and do not add any additional text.
828 """
829
830 A.2.3 PROMPTS FOR GENERATING TRANSLATED LUFFY TRAINING DATASETS
831
832 Here is the prompts for generating translated LUFFY training datasets.
833
834 TRANSLATION_PROMPT_TEMPLATE = """You are a professional math
835 translation assistant. Please translate the following content
836 into {target_language}, preserving mathematical expressions,
837 LaTeX formulas, and special formatting.
838 Requirements:
839 1. Keep all mathematical formulas and LaTeX expressions
840 intact (e.g., $24 \mathrm{km} $, \boxed{}, etc.)
841 2. Keep the <think> and </think> tags intact
842 3. The translation should be accurate and natural.
843 4. Keep numbers and mathematical symbols intact.
844
845 Original content:
846 {content}
847 Please return the translated {target_language} content
848 directly in the format
849 {{ "translated_content": "Translated content"
850 }
851 Do not add any additional explanatory text.
852 """
853
854 A.3 TRANSLATION DETAILS
855
856 To ensure high translation quality, we implement an automated verification mechanism during the translation
857 process. Instances that fail this verification are re-generated until they met the quality standards.
858
859 To further verify translation quality, we sample translation examples from each language and use DeepSeek-
860 V3.2 (Liu et al., 2024), Deepseek-R1 (DeepSeek-AI, 2024), and GPT-4o (Achiam et al., 2023) as judges
861 to conduct a head-to-head quality comparison between our translations and the validated MGSM8K-Instruct
862 dataset (Chen et al., 2024). We utilize the first 20 strictly aligned examples from MGSM8K-Instruct (20 per
863 language) to conduct a direct comparison with our corresponding translated data. The results are shown in
864 Table 12. Our translation data has a win rate comparable to MGSM8K-Instruct (Average Wins: Ours 47.2% vs
865 MGSM8K 45.0%), demonstrating the high quality of our training data, which is comparable to the high-quality
866 MGSM8K-Instruct dataset.

```

864
865

A.4 RESULTS DETAILS

866
867

A.4.1 LANGUAGE USAGE STATISTICS

868
869
870
871
872
873
874
875
876
877
878
879

To further understand the model’s behavior, we also analyze the language usage statistics detailed in Table 19. We conduct a detailed language analysis on MMath500 by randomly sampling 100 questions for each language (En, Zh, De, Es, Fr, Ja). For each question, we sample 6 responses and calculate the rank score of language usage to analyze the distribution. We report the scores for the primary languages (En, Zh, De, Es, Fr, Ja) rank scores across different models. Specifically, for each response, we use DeepSeek-v3.2 (Liu et al., 2024) to annotate the primary languages used, identifying up to 3 languages per response. The scoring rules are as follows: (1) Rank 1 language receives a score of 1. (2) Rank 2 language receives a score of 1/2. (3) Rank 3 language receives a score of 1/3. (4) If only one primary language is identified, it receives a score of 1. Results show that the Base Model’s language usage is relatively balanced. After SFT and RL training, the usage of English significantly increases. RL-trained models (especially RL-Zh and RL-De) show a significant increase in the usage of English (or English-mixed language) when answering non-English questions. The RL training process enables the model to adaptively learn and select suitable languages for complex reasoning, rather than passively adhering to the input language. With the Inconsistency Analysis, this diversity and adaptive selection capability confer better performance to RL, facilitating more effective Cross-Lingual Transfer.

880
881
882
883
884
885

Table 7: Performance of base model, SFT, and RL tuning models on MGSM. Base denotes the original Qwen2.5-3B-Base model. SFT (zh) and RL (zh) mean we tune the base model in Chinese data through SFT and RL, respectively. We report the accuracy score on 10 linguistic settings. Δ (RL-SFT) represents the performance difference between RL and the corresponding SFT score. Each score represents the average accuracy over six measurements. Avg represents the average of the scores of 10 language settings and Gen represents the generalization score.

Models	En	Zh	De	Es	Fr	Ja	Ru	Th	Sw	Bn	Avg	Gen
Base	63.4	48.3	33.5	57.7	38.9	19.5	30.3	17.6	7.3	1.2	31.8	0.0
SFT (En)	64.7	54.5	50.7	56.4	56.2	36.9	55.5	44.1	6.9	26.2	45.2	18.1
RL (En)	85.8	72.1	70.8	77.3	76.6	61.2	64.9	61.0	9.5	47.5	62.7	49.1
Δ (RL-SFT)	+21.1	+17.6	+20.1	+20.9	+20.4	+24.3	+9.4	+16.9	+2.6	+21.3	+17.5	+30.9
SFT (Zh)	65.7	58.7	48.4	55.7	56.1	43.5	56.6	45.8	7.5	30.5	46.9	20.4
RL (Zh)	86.1	76.3	74.2	81.1	76.1	64.5	78.1	64.9	10.3	48.3	66.0	52.6
Δ (RL-SFT)	+20.4	+17.6	+25.8	+25.4	+20.0	+21.0	+21.5	+19.1	+2.8	+17.8	+19.1	+32.3
SFT (De)	63.9	54.2	57.5	55.7	52.8	39.3	55.1	47.6	8.4	28.8	46.3	19.3
RL (De)	91.0	77.6	80.5	82.7	80.0	67.8	81.3	75.3	15.9	63.3	71.5	60.4
Δ (RL-SFT)	+27.1	+23.4	+23.0	+27.0	+27.2	+28.5	+26.2	+27.7	+7.5	+34.5	+25.2	+41.2
SFT (Es)	63.9	54.7	54.3	62.7	54.0	41.1	58.1	46.5	9.5	31.1	47.6	21.6
RL (Es)	89.3	77.8	78.0	82.1	77.3	68.9	80.3	72.7	13.4	53.7	69.4	57.5
Δ (RL-SFT)	+25.4	+23.1	+23.7	+19.4	+23.3	+27.8	+22.2	+26.2	+3.9	+22.6	+21.8	+35.9
SFT (Fr)	64.8	53.7	51.3	58.8	57.9	40.9	57.1	46.5	8.9	29.9	47.0	20.6
RL (Fr)	89.3	78.9	77.5	82.3	81.1	70.9	81.1	73.1	13.3	59.1	70.7	59.3
Δ (RL-SFT)	+24.5	+25.2	+26.2	+23.5	+23.2	+30.0	+24.0	+26.6	+4.4	+29.2	+23.7	+38.7
SFT (Ja)	64.4	56.5	50.5	58.2	53.6	51.3	54.3	45.6	8.1	33.7	47.6	21.1
RL (Ja)	88.1	79.1	78.8	81.5	79.3	72.7	81.7	72.4	14.1	61.7	70.9	59.2
Δ (RL-SFT)	+23.7	+22.6	+28.3	+23.3	+25.7	+21.4	+27.4	+26.8	+6.0	+28.0	+23.3	+38.1
SFT (Ru)	64.8	54.9	53.5	56.7	55.1	39.5	57.3	44.9	10.4	29.8	46.7	20.0
RL (Ru)	87.5	76.6	78.5	79.9	78.8	69.6	80.3	73.5	12.5	57.8	69.5	57.1
Δ (RL-SFT)	+22.7	+21.7	+25.0	+23.2	+23.7	+30.1	+23.0	+28.6	+2.1	+28.0	+22.8	+37.1

906

907

908

909

910

911

912

913

914

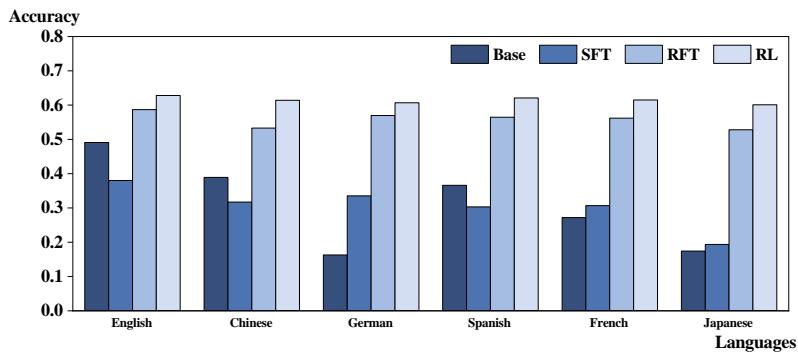
915

916

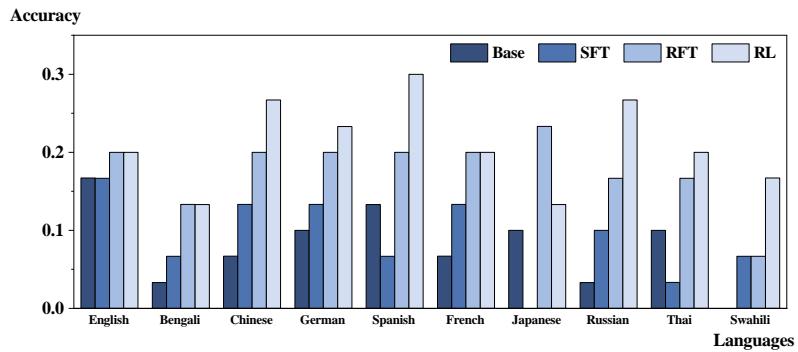
917

918
919
920
921
922 Table 8: Performance of base model, SFT, and RL tuning models on MAIME2024. Base denotes the
923 original Qwen2.5-3B-Base model. SFT (zh) and RL (zh) mean we tune the base model in Chinese
924 data through SFT and RL, respectively. We report the Pass@16 score on 10 linguistic settings. Δ
925 (RL-SFT) represents the performance difference between RL and the corresponding SFT score.
926

Models	Zh	Fr	En	De	Ja	Es	Ru	Th	Bn	Sw	Average
Base	6.7	6.7	16.7	10.0	10.0	13.3	3.3	10.0	3.3	0.0	8.0
SFT (Zh)	20.0	6.7	13.3	6.7	10.0	13.3	10.0	20.0	6.7	3.3	11.0
RL (Zh)	26.7	30.0	23.3	26.7	26.7	23.3	23.3	26.7	20.0	10.0	23.7
Δ (RL-SFT)	+6.7	+23.3	+10.0	+20.0	+16.7	+10.0	+13.3	+6.7	+13.3	+6.7	+12.7
SFT (De)	13.3	13.3	16.7	13.3	0.0	6.7	10.0	3.3	6.7	6.7	9.0
RL (De)	26.7	20.0	20.0	23.3	13.3	30.0	26.7	20.0	13.3	16.7	21.0
Δ (RL-SFT)	+13.4	+6.7	+3.3	+10.0	+13.3	+23.3	+16.7	+16.7	+6.6	+10.0	+12.0



(a) A comparison of performance on MMath500.



(b) A comparison of performance on MAIME2024.

965 Figure 5: Model performance comparisons among the Base, SFT, RFT, and RL models. We use
966 German data in LUFFY in SFT, RL, RFT for training.
967
968
969
970
971

972
 973 Table 9: Performance of models on MMath500. “RL (zh)” denotes the model trained with Rein-
 974 force Learning on Chinese data. “+ Consistency Prompt” indicates the addition of language
 975 control prompts during both the training and the inference. “+ Consistency Prompt and Reward”
 976 further incorporates a language consistency reward into the training objective. “+ Inconsistency
 977 Prompt and Reward” incorporates the inconsistency prompt and inconsistency reward into the train-
 978 ing objective. We report the accuracy score on 6 linguistic settings. We test 6 times and report the
 979 average accuracy scores and pass@k scores.

Models	Zh	Fr	En	De	Ja	Es	Average
Average Scores							
Base	38.9	27.2	49.1	16.3	17.4	36.6	30.9
RL (En)	53.7	55.8	62.7	50.9	54.2	56.6	55.7
RL (Zh)	61.3	61.2	63.3	61.2	58.5	62.1	61.3
+ Consistency Prompt	53.3	54.9	59.7	42.2	55.1	56.8	53.7
+ Consistency Prompt and Reward	56.2	54.2	62.9	45.5	48.2	56.4	53.9
+Inconsistency Prompt and Reward	59.9	56.1	61.6	57.6	57.7	58.2	58.5
RL (De)	61.4	61.5	62.8	60.7	60.1	62.1	61.4
+ Consistency Prompt	56.0	61.3	63.8	60.8	59.0	61.9	60.5
+ Consistency Prompt and Reward	51.9	52.1	62.4	49.3	41.6	54.6	52.0
+Inconsistency Prompt and Reward	59.1	60.1	62.4	60.1	57.5	60.9	60.0
Pass@6 Scores							
Base	67.9	60.9	75.8	48.1	44.9	69.3	61.2
RL (En)	74.7	77.2	78.8	73.9	75.4	77.6	76.3
RL (Zh)	78.4	76.2	81.4	78.0	75.2	77.8	77.8
+ Consistency Prompt	73.9	76.8	77.0	72.7	74.5	77.2	75.4
+ Consistency Prompt and Reward	74.1	73.7	81.4	72.7	70.9	76.2	74.8
+Inconsistency Prompt and Reward	77.8	76.6	78.8	76.8	77.2	76.2	77.2
RL (De)	78.4	78.8	79.0	76.4	77.8	78.8	78.2
+ Consistency Prompt	77.8	79.4	80.4	77.8	77.8	79.2	78.7
+ Consistency Prompt and Reward	74.1	73.9	79.0	72.9	65.3	76.2	73.6
+Inconsistency Prompt and Reward	78.6	77.6	80.4	78.4	76.8	77.8	78.3

1000
 1001 To complement Figure 4, Table 10 reports the quantitative measurements of representational movement under
 1002 different RL configurations. Specifically, “Model Center Distance” denotes the distance between each model’s
 1003 representation center and the base model center, while “Model Shift Distance” denotes the distance between
 1004 the model’s shift center and the zero point. These measurements provide quantitative evidence supporting the
 1005 representational patterns illustrated in the figure.

1006 Table 10: Numerical results corresponding to Figure 4, reporting the model center distance and shift
 1007 distance under different RL configurations.

Config	Model Center Distance	Model Shift Distance
RL-En	2.255	41.332
RL-Zh	1.815	41.294
RL-De	1.753	41.241
RL-De+Prompt	1.891	41.286
RL-De+Prompt+Reward	1.908	41.652

1026

1027

1028 Table 11: Sampling of the Base Model on different language questions. We calculate the average
1029 Perplexity of responses, and Self-Similarity among responses for each question of six sampling
1030 times.

1031

1032

1033

1034

	En	Zh	De	Fr	Ja	Es
Perplexity	1.186	1.248	1.414	1.332	1.440	1.267
Self-Similarity	0.621	0.505	0.425	0.448	0.433	0.534

1035

1036

1037

1038

Table 12: The translation quality comparison between ours and MGSM8K-Instruct.

1039

1040

1041

1042

1043

1044

1045

1046

Languages	Ours Wins Ratio (%)	MGSM8K-Instruct Wins Ratio (%)	Ties Ratio (%)	Fleiss' Kappa
Zh	63.3	33.3	3.3	0.726
De	46.7	48.3	5.0	0.817
Fr	40.0	50.0	10.0	0.885
Ja	48.3	46.7	5.0	0.756
Es	36.7	46.7	16.7	0.731
Ru	48.3	45.0	6.7	0.762
Average	47.2	45.0	7.8	0.779

1047

1048

1049

1050

1051

Table 13: Performance of base model, SFT, and RL tuning models on MGSM. Base denotes the
original Qwen2.5-7B-Base model.

1052

Models	En	Zh	De	Es	Fr	Ja	Ru	Th	Sw	Bn	Avg	Gen
Base	75.9	50.9	56.6	68.2	62.9	50.2	64.5	48.1	4.5	39.7	52.2	0.0
SFT (En)	71.8	63.5	62.5	66.3	63.3	51.1	68.3	58.4	13.1	45.2	56.4	6.8
RL (En)	90.9	82.2	84.1	84.9	82.1	73.8	85.1	79.3	19.2	68.3	75.0	52.2
Δ (RL-SFT)	+19.1	+18.7	+21.6	+18.6	+18.8	+22.7	+16.8	+20.9	+6.1	+23.1	+18.6	+45.4
SFT (Zh)	70.7	64.7	62.1	63.5	59.8	52.5	61.7	54.7	13.0	41.8	54.4	1.8
RL (Zh)	92.7	83.9	82.0	85.1	83.7	75.1	83.9	78.1	19.3	68.1	75.2	53.0
Δ (RL-SFT)	+22.0	+19.2	+19.9	+21.6	+23.9	+22.6	+22.2	+23.4	+6.3	+26.3	+20.8	+51.2
SFT (De)	67.5	59.9	62.7	64.0	57.7	48.9	61.5	54.6	13.9	41.5	53.2	-1.6
RL (De)	92.3	83.7	84.2	86.3	83.5	76.3	88.5	82.8	20.9	71.1	77.0	56.7
Δ (RL-SFT)	+24.8	+23.8	+21.5	+22.3	+25.8	+27.4	+27.0	+28.2	+7.0	+29.6	+23.8	+58.3

1062

1063

1064

1065

1066

1067

Table 14: Performance of base model, SFT, and RL tuning models on MGSM. Base denotes the
original Qwen2.5-3B-Base model. Mix means using the mixture of English, Chinese and German
data to tune the base model.

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Models	En	Zh	De	Es	Fr	Ja	Ru	Th	Sw	Bn	Avg	Gen
Base	63.4	48.3	33.5	57.7	38.9	19.5	30.3	17.6	7.3	1.2	31.8	0.0
SFT (En)	64.7	54.5	50.7	56.4	56.2	36.9	55.5	44.1	6.9	26.2	45.2	18.1
RL (En)	85.8	72.1	70.8	77.3	76.6	61.2	64.9	61.0	9.5	47.5	62.7	49.1
SFT (Zh)	65.7	58.7	48.4	55.7	56.1	43.5	56.6	45.8	7.5	30.5	46.9	20.4
RL (Zh)	86.1	76.3	74.2	81.1	76.1	64.5	78.1	64.9	10.3	48.3	66.0	52.6
SFT (De)	63.9	54.2	57.5	55.7	52.8	39.3	55.1	47.6	8.4	28.8	46.3	19.3
RL (De)	91.0	77.6	80.5	82.7	80.0	67.8	81.3	75.3	15.9	63.3	71.5	60.4
SFT (Mix)	65.3	55.9	52.9	56.3	53.0	42.9	53.2	47.1	7.6	29.8	46.4	19.6
RL (Mix)	87.9	75.4	77.1	79.0	79.3	64.1	78.2	69.7	12.6	57.7	68.1	55.2

1080

1081 Table 15: The performance of the base model, SFT, RL, and cold-start tuning models on MGSM.
 1082 “Base” denotes the original Qwen2.5-3B-Base model. “SFT + RL” refers to first fine-tuning the
 1083 base model with SFT, followed by reinforcement learning (RL) tuning using the same dataset. “SFT
 1084 (100 steps) + RL” indicates that the base model is first fine-tuned with SFT for 100 steps, and then
 1085 further tuned with RL.

1086

Models	En	Zh	De	Es	Fr	Ja	Ru	Th	Sw	Bn	Avg	Gen
Base	63.4	48.3	33.5	57.7	38.9	19.5	30.3	17.6	7.3	1.2	31.8	0.0
SFT (En)	64.7	54.5	50.7	56.4	56.2	36.9	55.5	44.1	6.9	26.2	45.2	18.1
RL (En)	85.8	72.1	70.8	77.3	76.6	61.2	64.9	61.0	9.5	47.5	62.7	49.1
SFT + RL (En)	63.1	55.8	56.3	55.3	57.5	42.7	53.0	45.8	7.0	30.3	46.7	19.7
SFT (100 steps) (En)	59.3	50.5	44.9	50.1	47.3	28.1	48.9	37.2	6.8	20.7	39.4	8.7
SFT (100 steps) + RL (En)	49.3	58.9	37.9	23.9	20.5	51.1	23.3	21.7	6.8	33.1	32.7	-5.5
SFT (Zh)	65.7	58.7	48.4	55.7	56.1	43.5	56.6	45.8	7.5	30.5	46.9	20.4
RL (Zh)	86.1	76.3	74.2	81.1	76.1	64.5	78.1	64.9	10.3	48.3	66.0	52.6
SFT + RL (Zh)	76.3	67.8	61.7	65.9	64.0	55.4	63.1	53.1	8.3	34.5	55.0	34.5
SFT (100 steps) (Zh)	60.5	48.9	43.3	49.3	47.2	32.8	48.8	37.0	5.8	18.2	39.2	8.4
SFT (100 steps) + RL (Zh)	84.1	70.5	70.7	74.3	70.6	62.2	72.1	61.5	10.2	45.8	62.2	46.1
SFT (De)	63.9	54.2	57.5	55.7	52.8	39.3	55.1	47.6	8.4	28.8	46.3	19.3
RL (De)	91.0	77.6	80.5	82.7	80.0	67.8	81.3	75.3	15.9	63.3	71.5	60.4
SFT + RL (De)	67.9	53.5	66.0	62.7	60.6	51.0	61.9	53.5	9.9	38.9	52.6	28.8
SFT (100 steps) (De)	61.1	50.4	49.6	52.6	49.7	34.7	49.0	41.1	6.9	22.7	41.8	12.3
SFT (100 steps) + RL (De)	82.1	73.5	74.3	74.7	73.8	58.8	74.2	62.3	12.5	47.3	63.4	47.7

1099

1100

1101

1102 Table 16: Performance of base model, SFT, and RL tuning models on MGSM in the 4-shots setting.
 1103 Base denotes the original Qwen2.5-3B-Base model.

1104

Models	En	Zh	De	Es	Fr	Ja	Ru	Avg	Gen
Base	69.3	58.7	26.5	54.8	38.4	34.3	41.5	46.2	0.0
SFT (En)	64.9	52.6	51.2	53.5	53.6	37.6	53.9	52.5	7.5
RL (En)	85.5	69.9	73.9	76.4	75.9	59.9	72.0	73.4	49.2
Δ (RL-SFT)	+20.6	+17.3	+22.7	+22.9	+22.3	+22.3	+18.1	+20.9	+41.7
SFT (Zh)	58.0	58.6	47.3	54.6	51.0	41.2	51.7	51.8	5.6
RL (Zh)	86.8	75.0	70.6	79.8	75.5	62.1	79.3	75.6	54.1
Δ (RL-SFT)	+28.8	+16.4	+23.3	+25.2	+24.5	+20.9	+27.6	+23.8	+48.5
SFT (De)	64.2	56.9	54.4	54.0	48.3	38.7	52.1	52.7	8.0
RL (De)	90.5	76.8	80.1	82.9	80.5	68.9	80.7	80.1	62.3
Δ (RL-SFT)	+26.3	+19.9	+25.7	+28.9	+32.2	+30.2	+28.5	+27.4	+54.3

1116

1117

1118

1119 Table 17: Performance of base model, SFT, and RL tuning models on M-ifeval under strict scores.
 1120 Base denotes the orginal Qwen2.5-3B-Base model.

1121

Models	En	Es	Fr	Ja	Avg	Gen
Base	40.1	46.0	40.6	23.9	37.6	0.0
SFT (En)	34.2	44.5	40.9	21.2	35.2	-3.9
RL (En)	40.1	46.0	41.5	23.5	37.7	0.2
Δ (RL-SFT)	+5.9	+1.5	+0.6	+2.2	+2.5	+4.1
SFT (Zh)	36.9	40.9	35.7	21.2	33.7	-6.6
RL (Zh)	40.8	44.5	43.2	31.0	39.9	3.0
Δ (RL-SFT)	+3.8	+3.6	+7.5	+9.7	+6.2	+9.7
SFT (De)	32.7	37.2	29.0	23.5	30.6	-12.1
RL (De)	41.4	39.4	44.9	29.7	38.8	1.2
Δ (RL-SFT)	+8.6	+2.2	+15.9	+6.2	+8.2	+13.4

1134
1135
1136
1137
1138
11391140 Table 18: Performance of base, SFT, and RL models on multilingual LogiQA. Language codes:
1141 En = English, Zh = Chinese, Es = Spanish, Vi = Vietnamese, Id = Indonesian, Ms = Malay, Fil =
1142 Filipino.1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Model	En	Zh	Es	Fil	Id	Ms	Vi	Avg	Gen
Base	35.2	27.8	35.2	1.1	3.4	4.0	15.9	17.5	0.00
SFT (En)	42.0	38.6	35.2	24.4	38.6	31.3	34.1	34.9	19.4
RL (En)	48.9	52.3	42.0	35.2	47.2	38.6	42.6	43.8	30.4
Δ (RL-SFT)	+6.8	+13.6	+6.8	+10.8	+8.5	+7.4	+8.5	+8.9	+11.1
SFT (Zh)	47.7	43.8	43.8	28.4	44.9	37.5	23.3	38.5	24.1
RL (Zh)	55.1	59.1	46.0	31.3	41.5	39.8	44.3	45.3	33.1
Δ (RL-SFT)	+7.4	+15.3	+2.3	+2.8	-3.4	+2.3	+21.0	+6.8	+9.0
SFT (De)	45.5	27.8	35.2	14.2	21.6	25.6	11.4	25.9	9.3
RL (De)	52.3	61.4	44.3	35.8	44.9	46.0	48.3	47.6	35.3
Δ (RL-SFT)	+6.8	+33.5	+9.1	+21.6	+23.3	+20.5	+36.9	+21.7	+26.0

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
11671168 Table 19: Language usage scores on MMath500. We randomly sample 100 questions per language
1169 from MMath500 and analyze 6 sampled responses for each question. The scores are calculated based
1170 on the rank of language usage within the responses. We report results for the primary languages (En,
1171 Zh, De, Es, Fr, Ja) across different models.1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Model	En	Zh	De	Es	Fr	Ja
Base	0.228	0.163	0.160	0.161	0.141	0.190
SFT (En)	0.668	0.175	0.001	0.000	0.000	0.297
RL (En)	0.294	0.230	0.161	0.159	0.153	0.196
SFT (Zh)	0.309	0.420	0.077	0.092	0.097	0.350
RL (Zh)	0.873	0.090	0.040	0.015	0.076	0.020
SFT (De)	0.533	0.150	0.336	0.068	0.062	0.234
RL (De)	0.819	0.112	0.073	0.010	0.021	0.096

1188 A.5 CASE STUDY
11891190 Table 20: Case study on MMath500. We select the German question to show the case.
11911192 **Question:** Ein Matheclub veranstaltet einen Kuchenverkauf als Spendenaktion, um Geld für eine
1193 bevorstehende Reise zu sammeln. Sie verkaufen 54 Kekse zu drei für \$1\$, und \$20\$ Cupcakes
1194 zu \$2\$ pro Stück, und \$35\$ Brownies zu \$1\$ pro Stück. Wenn es den Matheclub \$15\$ gekostet
1195 hat, diese Artikel zu backen, wie hoch war ihr Gewinn?
1196**Answer:** 781197 **Base:**1198 Da Kekse zu drei für \$1 verkaufen werden, müssen wir zahlenweise Kekse zählen. Es gibt
1199 54 Kekse zu backen, und jeder Kuchen besteht aus drei Keksen. Also haben sie $54/3 = 18$
1200 Kuchen zu backen. Zudem haben sie 20 Cupcakes zu backen und 35 Brownies zu backen. Die
1201 Matheclub hat also insgesamt $18 + 20 + 35 = 73$ Artikel zu backen. Sind sie zu backen, hat es
1202 ihnen $73 \times 2 = \$146$ gekostet. Da sie für die Backzeit 15 Dollar ausgeben, haben sie für den
1203 Verkauf $146 - 15 = \$131$ eingenommen. Daher haben sie einen Gewinn von 131.1204 **Reinforcement Learning (with German Data):**1205 1. Calculate the revenue from Kekse: - They sold 54 Kekse at a rate of 3 Kekse for \$1. - The
1206 number of sets of 3 Kekse in 54 is $\frac{54}{3} = 18$. - Revenue from Kekse = $18 \times 1 = 18$ dollars.
1207 2. Calculate the revenue from Cupcakes: - They sold 20 Cupcakes at \$2 each. - Revenue from
1208 Cupcakes = $20 \times 2 = 40$ dollars.
1209 3. Calculate the revenue from Brownies: - They sold 35 Brownies at \$1 each. - Revenue from
1210 Brownies = $35 \times 1 = 35$ dollars.
1211 4. Calculate the total revenue: - Total revenue = Revenue from Kekse + Revenue from Cupcakes
1212 + Revenue from Brownies - Total revenue = $18 + 40 + 35 = 93$ dollars.
1213 5. Calculate the profit: - Cost to make the items = \$15. - Profit = Total revenue - Cost to make
1214 the items - Profit = $93 - 15 = 78$ dollars.
1215 Therefore, the profit is 78.1216 **Reinforcement Learning (with German Data and with Consistency Reward):**1217 Zuerst berechnen wir den Einnahmen von den Keksen. Da sie drei Kekse für \$1 verkaufen,
1218 erhalten sie: $54 \div 3 = 18$ Doppelsätze, $18 \times 2 = 36$ Dollar Für die Cupcakes erhalten sie:
1219 $20 \div 2 = 10$ Stück, $10 \times 2 = 20$ Dollar Für die Brownies erhalten sie: $35 \div 1 = 35$ Stück,
1220 $35 \times 1 = 35$ Dollar Die Gesamtsumme ihrer Einnahmen beträgt: $36 + 20 + 35 = 91$ Dollar
1221 Da es ihnen \$15 gekostet hat, um die Artikel zu backen, erhalten sie: $91 - 15 = 76$ Dollar Die
1222 Gewinnsumme beträgt 76.1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241