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Abstract

Low-dimensional embeddings are central to analyzing and visualizing high-1

dimensional data. However, widely adopted NE methods assume centralized2

access to all data an unrealistic constraint in privacy-sensitive, decentralized envi-3

ronments. We propose SENSE, a geometry-aware, privacy-preserving framework4

for global neighbor embedding without raw data exchange. SENSE reconstructs5

global structure using local distance measurements and structured matrix com-6

pletion, enabling embeddings that preserve both local and global geometry in7

Euclidean and hyperbolic spaces. It further integrates contrastive learning by deriv-8

ing cross-client positive and negative pairs from estimated similarities, effectively9

generalizing negative sampling under structural constraints. Experiments across10

diverse real-world datasets show that SENSE achieves embedding quality on par11

with centralized baselines, while offering strong privacy guarantees. Theoretical12

analysis provides formal bounds on reconstruction fidelity and privacy, establishing13

conditions under which structure and confidentiality are jointly preserved. 114

1 Introduction15

Neighbor embedding (NE) methods are widely used for dimensionality reduction (DR), enabling16

interpretable low-dimensional visualizations of high-dimensional data [51]. Techniques like t-17

SNE [53], UMAP [37], MDS [15], and PHATE [38] are effective for visualization [9], anomaly18

detection [46], and exploratory analysis [16]. These methods, however, assume centralized access to19

complete pairwise similarity matrices an assumption often violated in real-world settings. In domains20

such as healthcare [45], finance [8], and mobile networks [34], data is distributed across clients and21

subject to strict privacy constraints. In such settings, standard NE methods fail due to the absence of22

global distance information especially problematic for attraction-repulsion frameworks like t-SNE23

and UMAP [6, 56] that depend on complete similarity graphs to balance local and global structure.24

Recent work links NE with contrastive learning [10, 11], further emphasizing the importance of25

accurate pairwise similarities. In privacy-constrained regimes, however, such structure is either26

missing or only partially available, making decentralized contrastive NE a challenging problem.27

Related Work. Several approaches have been proposed to address this gap, but they fall short on28

scalability, privacy, or deployment realism. SMAP [57] offers strong privacy via encrypted multi-party29

computation, but its cryptographic overhead renders it impractical for large-scale use. FedNE [33]30

introduces a federated NE framework but lacks intrinsic privacy guarantees and incurs repeated server-31

client interactions, making it communication heavy. Methods like dSNE [48] and FdSNE [47] require32

full shared reference datasets for alignment, an unrealistic assumption in many settings, and diverge33

from standard FL protocols while also introducing high communication and privacy costs. More34

recently, MMD-based distribution alignment [43] has been used to generate synthetic shared data,35

but it assumes multi-sample clients and is fragile in single data sample per client scenarios common36

to IoT and mobile devices. Moreover, it risks adversarial corruption of synthesized distributions37

and introduces additional computational burden. To address these limitations, we propose SENSE,38
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Figure 1: Observed entries in the global distance matrix D under four SENSE configurations: (1) Pointwise-
Full, (2) Pointwise-Partial, (3) Multisite-Full, and (4) Multisite-Partial. These differ in the visibility of An-
chor–NonAnchor (A–NA) and NA–NA blocks, governed by client-level data locality and anchor access. Multisite
settings permit intra-client NA–NA observations (e.g., A1, A2, ..., C2), while Pointwise settings restrict each
client to a single NA (e.g., 1, 2, ..., 9). Full modes provide all NAs with access to the global anchor set (e.g.,
A–E), yielding complete A–NA blocks; Partial modes expose disjoint anchor subsets per client, resulting in
sparse and structured observations.

a unified, geometry-aware framework for privacy-preserving decentralized neighbor embedding.39

SENSE supports both Euclidean and hyperbolic geometries the latter being critical for embedding40

hierarchical structures in social and biological data [30, 36]. Unlike prior work, SENSE reconstructs41

global structure from sparse local distance observations using anchor-based measurements, without42

requiring raw data sharing, iterative communication, or centralized storage. The completed distance43

matrix is then used with classical NE methods, contrastive NE, and hyperbolic CoSNE [22].44

Although anchor sharing is sometimes perceived as a constraint in decentralized settings [43], it45

serves as a robust, principled, and privacy-preserving coordination mechanism increasingly adopted46

in practice. When curated by a trusted server, anchors can be synthetic, anonymized, or sourced47

from public data completely decoupled from private client records. This mitigates leakage risks48

inherent to client-generated anchors, which are vulnerable to reconstruction or membership inference,49

especially in small or skewed-client regimes [43]. Server-curated anchors offer stability, auditability,50

and adversarial robustness, enabling secure global coordination without compromising privacy.51

This paradigm is already in use across real-world systems in healthcare [7, 27], genomics [35, 44],52

finance [2], and mobile/NLP applications [23, 32], illustrating that carefully designed anchor-based53

schemes are both secure and essential for scalable decentralized learning. Motivated by this, we argue54

that anchors should be treated as core architectural components rather than ad hoc artifacts. SENSE55

leverages anchor-based coordination in conjunction with tools from distance matrix completion,56

network localization, and low-rank recovery, providing formal guarantees for reconstructing global57

geometry from partial observations. When combined with contrastive learning, it further enhances58

alignment and expressiveness, bridging classical and modern NE paradigms. SENSE introduces the59

following key innovations:60

• Privacy by design: Estimates global structure using only local distance measurements, eliminating61

the need for encryption or differential privacy.62

• Communication-efficient and geometry-aware: Requires a single server–client interaction, and63

supports both Euclidean and hyperbolic spaces for modeling flat and hierarchical data.64

• Deployment flexibility: Operates under two regimes (Figure 1): SENSE-Pointwise for single-point65

clients (e.g., edge/mobile), and SENSE-Multisite for multi-sample clients (e.g., hospitals, banks).66

• Provable reliability: Offers theoretical guarantees on both privacy preservation and embedding67

fidelity, validated across diverse modalities and geometries.68

These properties make SENSE suitable for privacy-sensitive, structurally diverse domains. Hospitals69

can jointly visualize patient data without violating HIPAA/GDPR [50], banks can detect fraud70

patterns without sharing transactions [3], and mobile/IoT clients with a single sample can still71

contribute to global embeddings [4, 42]. Genomic labs can embed single-cell transcriptomes into72

a shared hyperbolic space that preserves cellular hierarchy and privacy [1, 52]. Crucially, SENSE73

also supports evolving data scenarios and dynamic client participation, new clients or data points74

can be integrated by estimating only their partial distances to a subset of existing entities, avoiding75

full re-computation and preserving global coherence with minimal overhead. This makes SENSE not76

only privacy-preserving and geometry-aware but also inherently scalable to dynamic and federated77

ecosystems.78
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2 Background and Problem Formulation.79

Neighbor Embedding (NE). Methods like t-SNE [53] and UMAP [10] embed high-dimensional80

data X = {xi}ni=1 ⊂ Rdh into a low-dimensional space Y = {yi}ni=1 ⊂ Rdℓ by preserving pairwise81

structure. These methods are distance-driven. They transform distances into similarities via kernels82

to preserve relational structure (see Appendix A.1, A.2). Let Ddh
ij = ∥xi− xj∥ and Ddℓ

ij = ∥yi− yj∥83

denote distances in the high- and low-dimensional spaces. These are mapped to similarities via kernel84

functions: Sdh
ij = f(Ddh

ij ), Sdℓ
ij = g(Ddℓ

ij ), where f and g are typically Gaussian, Laplacian, or85

Cauchy kernels. The general NE objective minimizes the divergence between the two similarity86

matrices:87

L(Y) =
∑
i,j

D(Sdh
ij , S

dℓ
ij ), (1)

where D is a divergence measure such as KL divergence or binary cross-entropy.88

Contrastive Neighbor Embedding. CNE [11] extends NE into the contrastive learning framework89

by training an encoder fθ to map xi to yi = fθ(xi) such that the neighborhood structure from a k-NN90

graph is preserved. CNE uses a distance-aware contrastive loss (see Def A.3 in Appendix), framed91

as a binary similarity matching problem. Let Sdh ∈ {0, 1}n×n denote ground-truth neighborhood92

indicators and Sdl denote kernel-based similarities in the embedding space. The loss is a weighted93

binary cross-entropy:94

L(Y) = −
∑
i,j

[
Sdh
ij logSdl

ij + b(1− Sdh
ij ) log(1− Sdl

ij )
]
. (2)

Key Challenges in Decentralized Settings. (C1) CNE, like NE, relies on a full similarity matrix, which95

is unavailable in privacy-sensitive, decentralized settings. (C2) Conventional distributed learning96

captures only intra-client structure, omitting crucial inter-client neighbor information. (C3) Clients97

lack access to global data, leading to incorrect kNN graphs and biased negative sampling, as true98

neighbors may reside on other clients.99

CO-SNE (for Hyperbolic Data). Hierarchical structures in social, biological, and knowledge100

graphs grow exponentially, making Euclidean embeddings unsuitable due to distortion of tree-like101

geometry. Hyperbolic space, with constant negative curvature, naturally models such growth and102

supports hierarchy-aware learning [19, 36, 40] (see Appendix A.3.1). Standard methods like t-SNE103

assume Euclidean geometry and distort global structure when applied to hyperbolic data, collapsing104

depth and relative positioning. CO-SNE [22] extends t-SNE to hyperbolic space (see Def A.4).105

It preserves both local and global structure using distance-aware kernels in hyperbolic geometry:106

Sdh
ij = f(dBn(xi, xj)), Sdl

ij = g(dB2(yi, yj)), where f is a hyperbolic normal kernel and g is a107

heavy-tailed hyperbolic Cauchy kernel. A regularization term also aligns global depth via norm108

matching. The full objective is:109

L(Y) = λ1 · D(Sdh , Sdl) + λ2

∑
i

(ρ(xi)− ρ(yi))
2, (3)

where ρ(x) = ∥x∥ and D is typically KL divergence.110

2.1 Problem Formulation111

We consider a decentralized system with M clients {C1, . . . , CM} coordinated by a central server112

owned by a private company, hospital, bank, or government agency. Each client Cm holds a private113

dataset Dm = {xm
i }

Nm
i=1 ⊂ Rdh , which remains local and disjoint, i.e., Dm ∩ Dm′ = ∅ for m ̸= m′.114

Let N =
∑M

m=1 Nm be the total number of data points, indexed globally by i ∈ [N ]. We consider two115

real-world configurations: A) SENSE-Pointwise, where each client holds a single sample xm ∈ Rdh ,116

and B) SENSE-Multisite, where each client holds a local dataset Xm = [xm
1 , . . . ,xm

Nm
] ∈ RNm×dh .117

Let D ∈ RN×N denote the full squared distance matrix. In Euclidean space, Dij = ∥xi − xj∥2; in118

hyperbolic space, it reflects squared distances in the Poincaré ball Bdh or Lorentz model Hdh (see119

Appendix A.3). Due to privacy constraints, only a subset of entries is observable. Let Ω ⊆ [N ]× [N ]120

be the set of observed indices, and define the projection operator PΩ : RN×N → RN×N as:121

[PΩ(D)]ij =

{
Dij , if (i, j) ∈ Ω,

0, otherwise.
(4)
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Goal 1 Our goal is to recover the full distance matrix D̂ ∈ RN×N from partial observations122

DΩ = PΩ(D) via structured matrix completion. Instead of estimating distances directly, we infer123

latent embeddings X̂ whose induced distances match the observed entries. This is done without124

access to raw features, relying solely on DΩ. Formally,125

D̂ = D(X̂) = argmin
X′
∥PΩ (D(X′))−DΩ∥

2
F , (5)

where D(X′) is the distance matrix induced by X′ under the chosen geometry (Euclidean or hyper-126

bolic). From D̂, we derive a global low-dimensional embedding Y = {yi}Ni=1 ⊂ Rdℓ with dℓ ≪ dh,127

preserving neighborhood structure.128

We use D̂ to find the similarities, defined in Eq. 6 and optimized via divergence D(Sdh , Sdℓ) (Eq. 1).129

Sdh
ij = exp

(
−D̂ij

2σ2

)
, Sdℓ

ij = g(∥yi − yj∥2), (6)

For contrastive learning, we build binary similarities using k-nearest neighbors:130

Sdh
ij =

{
1, if j ∈ kNN(i; D̂),

0, otherwise,
Sdℓ
ij = ϕ(yi,yj) =

1

1 + ∥yi − yj∥2
, (7)

and minimize the contrastive loss (Eq. 2). For hierarchical data, we apply CO-SNE, treating D̂ as131

squared hyperbolic distances in the Poincaré model to compute similarities (Eq. 17 in Appendix).132

The embedding Y ⊂ Bdℓ is optimized using the CO-SNE loss (Eq. 3).133

Remark 1 Conventional FL methods (e.g., FedAvg) assume large local datasets, require multiple134

communication rounds, and expose gradients that risk privacy leaks [20, 62]. They also fail in135

pointwise settings where local training is infeasible. In contrast, SENSE reconstructs D̂ via privacy-136

preserving matrix completion and then optimizes NE, CNE, or CO-SNE objectives without sharing137

raw features.138

3 Proposed Framework: SENSE139

As described in Section 2.1, we consider two decentralized settings: SENSE-Pointwise and SENSE-140

Multisite. In both, each client holds private non-anchor (NA) data and accesses a shared anchor set141

A = {a1, . . . , aK} with feature matrix XA = [p1, . . . ,pK ]⊤ ∈ RK×dh . Anchors, broadcast by the142

server, may be global or client-specific (see Appendix A.8). Let X = {x1, . . . , xN} be the set of all143

private NA points, where N =
∑M

m=1 Nm. Each client computes squared distances between its NAs144

and accessible anchors:145

dm
i =

[
∥xm

i − p1∥2, . . . , ∥xm
i − pK∥2

]
,

and transmits these to the server, masking unshared local anchors. In Pointwise, each client contributes146

one NA-anchor vector, in Multisite, intra-client NA–NA distances may also be known. The global147

incomplete squared distance matrix D ∈ R(K+N)×(K+N) is partitioned as:148

D =

[
E F
F⊤ G

]
, (8)

where E is anchor–anchor, F is anchor–NA, and G is NA–NA. The observed subset is indexed by149

Ω ⊆ [K +N ]2, based on anchor visibility and client configuration. We consider four configurations:150

Pointwise-Full, Pointwise-Partial, Multisite-Full, and Multisite-Partial which differ in the extent151

of observed entries in F (anchor–NA) and G (NA–NA). These define distinct visibility patterns in152

Ω, summarized in Appendix Table 4 and illustrated in Figure 1, and determine which distances are153

available for structured matrix completion.154

To reconstruct the full matrix D̂, or specifically Ĝ, we apply geometry-specific solvers: anchored-155

MDS in Euclidean space (discussed in Sec 3.1) and LHydra [30] in hyperbolic space. The complete156

pipeline is outlined in Algorithm 1 in Appendix.157

Remark 2 In practice, F may be only partially visible due to bandwidth, privacy, or data limitations.158

SENSE is designed to operate under such conditions. Whether F is full or partial, structured matrix159

completion (in SENSE) enables accurate and privacy-preserving recovery of inter-client affinities.160
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3.1 SENSE via Anchored-MDS161

Classical MDS embeds N points by minimizing stress over a fully observed distance matrix D ∈
RN×N . The embedding X ∈ RN×dh minimizes:

σ(X) =
∑
i<j

(∥xi − xj∥ − δij)
2
,

where δij is the input Euclidean distance between points i and j. SMACOF solves this using162

a majorization-based surrogate [13], τ(X,Z) = C + tr(X⊤VX) − 2 tr(X⊤B(Z)Z), with the163

iterative update:164

X(k) = V†B(X(k−1))X(k−1). (9)

In SENSE, the full distance matrix D is not available, instead we work with a structured, incomplete
matrix of observed anchor–NA distances. Let the embedding be X = [XA XNA]

⊤, where XA and
XNA are anchor and NA embeddings, respectively. The stress is minimized over observed entries
only:

σ(X) = ∥PΩ(D(X)−D)∥2F ,

where PΩ projects onto the observed indices Ω, and D(X) computes pairwise distances. The165

SMACOF updates are restricted to Ω, with:166

Vij =


|{j : (i, j) ∈ Ω}|, i = j

−1, (i, j) ∈ Ω, i ̸= j

0, otherwise
, Bij(X) =


− δij

∥xi−xj∥
, (i, j) ∈ Ω, i ̸= j

−
∑

k ̸=i, (i,k)∈Ω

Bik, i = j

0, otherwise

We partition V and B as defined in Eq. 10, where VAA, BAA ∈ RK×K , VAN , BAN ∈ RK×N , and167

VNN , BNN ∈ RN×N :168

V =

[
VAA VAN

V⊤
AN VNN

]
, B =

[
BAA BAN

B⊤
AN BNN

]
(10)

The update rule for NA embeddings becomes:169

X
(k)
NA = V†

NN

(
BNNX

(k−1)
NA +B⊤

ANPΩ(XA)−V⊤
ANPΩ(XA)

)
. (11)

This projection-aware update ensures XNA uses only observed/available distances, enabling privacy-170

preserving global embedding under any SENSE configuration. The projection operator PΩ acts171

as a binary mask over observed entries. While V and B are derived from Ω, we apply PΩ to XA172

in Eq. (11) to retain only anchors with observed anchor–NA distances. This avoids leakage from173

inaccessible anchors and ensures privacy-compliant updates. Pseudocode is provided in Appendix A.7.174

Furthermore, to preserve privacy, the number of shared anchors K must be limited. Theorems 3.1,175

3.2 (Euclidean) and Lemma 1 (hyperbolic) characterize how K relates to embedding dimension dh176

across SENSE configurations, establishing conditions for faithful reconstruction.177

Theorem 3.1 Let X = {x1, . . . ,xN} ⊂ Rdh be the set of NA data points, and let A =178

{a1, . . . ,aK} ⊂ Rdh be the set of K anchor points. Suppose we observe the pairwise Euclidean179

distances {∥xi−aj∥}i∈[N ],j∈[K] between each NA and all anchors. If the number of anchors satisfies180

K < dh, then the original NA features {xi}Ni=1 cannot be exactly reconstructed from these distances,181

guaranteeing the privacy of the individual client data.182

Proof. Deferred in Appendix, check A.2.183

SENSE supports multiple configurations, which critically influence embedding fidelity and privacy.184

Theorem 3.2 formalizes privacy guarantees when only partial anchor–NA distances (block F ) are185

available, covering both pointwise and multisite regimes. 1) SENSE-Pointwise: Each client j ∈ [N ]186

holds a single private point xj ∈ Rdh and accesses a subset of anchors indexed by Ij ⊆ [K]. The187

corresponding anchor set is Aj = {ai}i∈Ij , comprising: (i) global anchors AG = {a1, . . . ,aMG
},188

shared across all clients, and (ii) local anchors A(j)
L , unique to client j. The total number of anchors189

observed is rj = |Ij | = MG+M
(j)
L . 2) SENSE-Multisite: Each client m ∈ [M ] holds a local dataset190
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X (m) = {xm,1, . . . ,xm,nm} ⊂ Rdh , where N =
∑M

m=1 nm. Each point xm,i observes distances191

to (i) a shared global anchor set AG, and (ii) a local anchor set A(m)
L exclusive to client m. Let192

Im,i = IG ∪ I(m)
L be the index set of accessible anchors, with rm,i = |Im,i| denoting the number193

observed.194

Theorem 3.2 Let X = {x1, . . . ,xN} ⊂ Rdh be the set of all non-anchor (NA) points across195

all clients, where each xi computes squared distances only to a subset of accessible anchors196

Ai = {aj}j∈Ii
, with |Ii| = ri. If ri < dh for all i ∈ [N ], then exact recovery of each xi is197

impossible. The inverse map from anchor distances to features is non-unique, preserving privacy198

under both pointwise and multisite configurations.199

Proof. Defered in Appendix, check A.1.200

Lemma 1 Let {x1, . . . , xK+N} ⊂ Hdh be K anchors and N non-anchor points in hyperbolic space201

with curvature −κ. Suppose only blocks E and F of the global distance matrix D are observed. If202

K < dh, the NA coordinates cannot be exactly recovered up to isometry in Hdh , ensuring the privacy203

of the client data in SENSE. This follows from the contrapositive of the L-HYDRA theorem [30],204

which guarantees exact recovery only when K ≥ dh and anchors span a full subspace.205

3.2 SENSE in Evolving Distributed Environments206

In dynamic settings, new data points arrive continuously e.g., a hospital admitting a patient, a207

bank processing a transaction, or a platform onboarding a user. Recomputing the full embed-208

ding for each arrival is inefficient and may disrupt global structure. Existing decentralized NE209

methods [33, 43, 47, 48] assume static datasets and lack support for incremental updates, mak-210

ing them unsuitable for streaming environments. SENSE, by contrast, is modular and compatible211

with out-of-sample embedding methods [5, 24, 41]. Once the global embedding is constructed212

via anchor-based completion and NE optimization, it defines a geometry-aware coordinate space213

that supports new points without full recomputation. Let XNA = [x1, . . . ,xN ] ∈ RN×dh be the214

reconstructed NA embeddings. When a new point y arrives, we select K existing points as pseudo-215

anchors A = {a1, . . . , aK} ⊂ XNA, with coordinates XA = [p1, . . . ,pK ]⊤ ∈ RK×dh . Given216

dissimilarities {δliy}Ki=1 to these anchors, we compute the embedding ŷ by solving:217

σ̂(ŷ) =

K∑
i=1

(∥pi − ŷ∥2 − δliy)
2
. (12)

Here, δliy is the dissimilarity in the original space, and ∥pi − ŷ∥2 is the distance in the embedding218

space. Only ŷ is optimized, anchors remain fixed. Since K < dh, exact recovery is impossible219

(Theorems 3.1, 3.2), ensuring privacy. This lightweight optimization requires no raw data and220

supports real-time integration, making SENSE well-suited for scalable, privacy-constrained systems.221

4 Experiments222

In this section, we first outline the experimental setup, followed by an evaluation of SENSE across223

diverse datasets and deployment settings.224

4.1 Experimental Setup225

Datasets. We evaluate SENSE on 14 public datasets widely used in DR and representation learn-226

ing [18, 63]. These include three benchmarks: MNIST [14], Fashion-MNIST [58], and CIFAR-227

10 [21]; seven MedMNIST datasets [60]: DermaMNIST, PneumoniaMNIST, RetinaMNIST, BreastM-228

NIST, BloodMNIST, OrganCMNIST, OrganSMNIST; and the German Credit dataset [25] for financial229

risk modeling. For hyperbolic evaluation, we use three graph datasets: Airport [36], Amazon [59],230

and DBLP [29]. Detailed dataset statistics and system specifications are provided in Appendix Table 5231

and A.12.232

Baselines. We compare SENSE against centralized (Van) baselines: t-SNE [53], UMAP [37],233

PHATE [38], and CNE [11] (with s ∈ {0, 0.5, 1}). These assume full raw data access at a central234

server and serve as upper bounds for evaluating SENSE’s privacy-preserving performance.235

Implementation Details. SENSE comprises two stages: matrix completion and global embedding.236

In the first stage, data is partitioned across M clients. In Pointwise, each client holds one NA237

point, sampled randomly. In Multisite, clients hold multiple NA points under IID or non-IID splits238
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Table 1: Full vs. Partial comparison in MULTISITE under non-IID (unbalanced) splits. Evaluation spans
centralized and privacy-preserving SENSE variants across different embedding quality metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

— Multisite-Partial Setting —

MNIST

Trust. 0.9890 0.9898 0.9553 0.9552 0.8741 0.8763 0.9517 0.9521 0.9524 0.9538 0.9455 0.9476
Cont. 0.9575 0.9639 0.9774 0.9771 0.9811 0.9804 0.9806 0.9797 0.9799 0.9787 0.9799 0.9787
Stead. 0.7719 0.7861 0.7639 0.7635 0.6628 0.6746 0.7840 0.7790 0.7752 0.7768 0.7634 0.7658
Cohes. 0.8189 0.8458 0.8865 0.8853 0.8668 0.8877 0.9229 0.9112 0.9107 0.9196 0.9158 0.9087

fashionMNIST

Trust. 0.9902 0.9914 0.9140 0.9148 0.9579 0.9557 0.9765 0.9752 0.9784 0.9769 0.9765 0.9731
Cont. 0.9608 0.9590 0.9812 0.9818 0.9910 0.9906 0.9915 0.9913 0.9905 0.9903 0.9900 0.9901
Stead. 0.8415 0.8643 0.7570 0.7622 0.7836 0.7891 0.8632 0.8638 0.8643 0.8660 0.8493 0.8513
Cohes. 0.6496 0.6559 0.6748 0.7069 0.7051 0.7115 0.7680 0.7669 0.7637 0.7508 0.7792 0.7666

— Multisite-Full Setting —

MNIST

Trust. 0.9890 0.9852 0.9553 0.9570 0.8741 0.8780 0.9517 0.9516 0.9524 0.9542 0.9455 0.9452
Cont. 0.9575 0.9518 0.9774 0.9754 0.9811 0.9797 0.9806 0.9772 0.9799 0.9763 0.9799 0.9761
Stead. 0.7719 0.7953 0.7639 0.7726 0.6628 0.6688 0.7840 0.7808 0.7752 0.7828 0.7634 0.7690
Cohes. 0.8189 0.8328 0.8865 0.8665 0.8668 0.8818 0.9229 0.9047 0.9107 0.8926 0.9158 0.9106

fashionMNIST

Trust. 0.9902 0.9895 0.9140 0.9076 0.9579 0.9555 0.9765 0.9752 0.9784 0.9769 0.9765 0.9725
Cont. 0.9608 0.9731 0.9812 0.9797 0.9910 0.9902 0.9915 0.9906 0.9905 0.9895 0.9900 0.9891
Stead. 0.8415 0.8604 0.7570 0.7530 0.7836 0.7981 0.8632 0.8608 0.8643 0.8649 0.8493 0.8538
Cohes. 0.6496 0.6936 0.6748 0.7019 0.7051 0.7039 0.7680 0.7503 0.7637 0.7591 0.7792 0.7695

— Pointwise-Full Setting —

MNIST

Trust. 0.9661 0.9679 0.9484 0.9467 0.8457 0.8469 0.9218 0.9166 0.9164 0.9138 0.9137 0.9151
Cont. 0.9418 0.9410 0.9376 0.9396 0.9546 0.9538 0.9434 0.9422 0.9428 0.9417 0.9409 0.9403
Stead. 0.8083 0.8113 0.7878 0.7763 0.6953 0.6958 0.8024 0.8003 0.8041 0.7996 0.8025 0.7914
Cohes. 0.7904 0.7998 0.7855 0.7819 0.7912 0.7843 0.7988 0.7982 0.8034 0.7894 0.7931 0.7919

fashionMNIST

Trust. 0.9647 0.9681 0.9441 0.9434 0.8407 0.8375 0.9283 0.9264 0.9255 0.9245 0.9256 0.9196
Cont. 0.9430 0.9454 0.9386 0.9373 0.9542 0.9528 0.9464 0.9460 0.9456 0.9440 0.9451 0.9429
Stead. 0.8118 0.8103 0.7797 0.7779 0.6923 0.6931 0.8087 0.8049 0.8085 0.8003 0.8082 0.8150
Cohes. 0.7570 0.7882 0.7685 0.7670 0.7564 0.7599 0.7876 0.7786 0.7843 0.7788 0.7838 0.7710

(balanced/unbalanced). A subset of 10% of the total data points is designated as anchors. In Full239

settings, all anchors are global, and in Partial, anchors are split into global and client-specific local240

sets. The total number of anchors (global + local) is fixed at dh − 1, where dh is the original feature241

dimension. In the embedding stage, we use the completed global distance matrix to generate privacy-242

preserving embeddings using multiple neighbor embedding methods. For Euclidean geometry, we243

use the official implementations of t-SNE [53], UMAP [37], and PHATE (via its standard Python244

library). For CNE, we adopt the implementation from [11], where the parameter s controls the245

attraction-repulsion tradeoff: s = 0 mimics t-SNE, s = 1 aligns with UMAP, and intermediate values246

interpolate between them. CNE operates within a contrastive learning framework using negative247

sampling. For hyperbolic embeddings, we use the CO-SNE implementation from [22].248

Data Partitioning. To simulate realistic distributed settings, we evaluate SENSE under both IID249

and non-IID distributions using Dirichlet-based partitioning. For each class c, client-wise proportions250

are drawn from qc ∼ Dir(α), where lower α yields greater heterogeneity and class imbalance [55, 61].251

We set α = 0.5 in all experiments. Three partitioning schemes are used: IID (uniform class mix),252

non-IID balanced (varying class distributions, equal client sizes), and non-IID unbalanced (both253

class and size vary).254

Evaluation Metrics. We assess SENSE using both reconstruction and embedding quality metrics.255

For fidelity, we compute Relative Distance Error (DE) and F-score (FS) between the reconstructed256

distance matrix (NA-NA) Ĝ and ground truth Gtrue: DE = ∥Ĝ−Gtrue∥F

∥Gtrue∥F
, and FS = 2 tp

2 tp+fp+fn , where257

tp, fp, and fn are true, false positive, and false negative neighbors respectively [17]. To evaluate258

2D embeddings, we compute Trustworthiness and Continuity [54], which measure neighborhood259

agreement between original and embedded spaces. We also report Steadiness and Cohesiveness [26]260

to assess global structural reliability: steadiness detects false groupings and cohesiveness quantifies261

how well true input clusters are preserved.262

4.2 Result Analysis.263

We comprehensively evaluate SENSE across: 1) Standard image datasets (MNIST, FashionMNIST,264

CIFAR-10): These are evaluated under Pointwise-Full, Multisite-Full, and Multisite-Partial with265

non-IID unbalanced splits. As shown in Table 1 and in Appendix 8, SENSE closely matches266

centralized baselines across Cont., Trust., Stead., and Cohes. Notably, the Partial configuration267

performs comparably to Full, indicating that accurate reconstruction of the global distance matrix is268

possible even with partial anchor–NA observations. Table 7 further confirms high F-score and low269

distance error, validating strong neighborhood preservation under strict privacy constraints.270

2) MedMNIST datasets: These are evaluated across unbalanced non-IID, balanced non-IID, and271

IID splits. SENSE consistently matches centralized performance (Tables 2,10,9), even under high272
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Table 2: Performance of centralized (Van.) and SENSE variants under non-IID unbalanced splits.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

PneumoniaMNIST

Trust. 0.9723 0.9712 0.7699 0.7673 0.8570 0.8590 0.9027 0.9008 0.8976 0.8952 0.8832 0.8806
Cont. 0.9418 0.9383 0.9140 0.9154 0.9624 0.9608 0.9594 0.9591 0.9590 0.9583 0.9606 0.9599
Stead. 0.7868 0.7932 0.6258 0.6168 0.7247 0.7204 0.7552 0.7591 0.7496 0.7461 0.7283 0.7341
Cohes. 0.6991 0.6591 0.6318 0.6250 0.6953 0.6957 0.6983 0.7085 0.7052 0.7142 0.7015 0.7065

BloodMNIST

Trust. 0.9633 0.9609 0.8674 0.8632 0.8493 0.8513 0.8841 0.8816 0.8814 0.8795 0.8737 0.8715
Cont. 0.9256 0.9375 0.9411 0.9401 0.9435 0.9428 0.9555 0.9552 0.9558 0.9556 0.9555 0.9552
Stead. 0.7498 0.7480 0.6889 0.6874 0.6781 0.6851 0.7172 0.7323 0.7186 0.7216 0.7100 0.7132
Cohes. 0.7242 0.7178 0.7253 0.7253 0.7456 0.7448 0.7462 0.7440 0.7384 0.7540 0.7533 0.7379

BreastMNIST

Trust. 0.9379 0.9378 0.7817 0.7998 0.8921 0.8884 0.9133 0.9117 0.9124 0.9113 0.9108 0.9108
Cont. 0.9508 0.9481 0.8140 0.8247 0.9616 0.9563 0.9519 0.9515 0.9516 0.9513 0.9510 0.9509
Stead. 0.8417 0.8329 0.5605 0.5550 0.8037 0.8149 0.8438 0.8480 0.8491 0.8495 0.8490 0.8398
Cohes. 0.6091 0.6137 0.4095 0.4112 0.5668 0.5570 0.5777 0.5695 0.5807 0.5689 0.5675 0.5585

DermaMNIST

Trust. 0.9757 0.9770 0.7496 0.7466 0.8737 0.8728 0.9130 0.9121 0.9119 0.9116 0.9020 0.9021
Cont. 0.9461 0.9572 0.9127 0.9122 0.9736 0.9730 0.9709 0.9713 0.9706 0.9707 0.9716 0.9715
Stead. 0.7977 0.7979 0.5945 0.5936 0.7308 0.7319 0.7739 0.7689 0.7682 0.7686 0.7578 0.7553
Cohes. 0.7147 0.7111 0.5586 0.5459 0.7127 0.7108 0.7268 0.7321 0.7385 0.7502 0.7438 0.7383

RetinaMNIST

Trust. 0.9797 0.9736 0.8793 0.8636 0.9161 0.9050 0.9486 0.9357 0.9475 0.9348 0.9451 0.9336
Cont. 0.9496 0.9669 0.9273 0.9244 0.9738 0.9734 0.9720 0.9714 0.9707 0.9701 0.9678 0.9680
Stead. 0.8442 0.8498 0.6307 0.5923 0.7559 0.7636 0.8267 0.8176 0.8196 0.8138 0.8158 0.8040
Cohes. 0.6734 0.7281 0.5832 0.5828 0.6957 0.6991 0.7100 0.7137 0.7089 0.6982 0.6883 0.6990

OrganCMNIST

Trust. 0.9621 0.9387 0.8887 0.8867 0.8850 0.8871 0.9134 0.9041 0.9159 0.9056 0.9019 0.8907
Cont. 0.9207 0.9170 0.9268 0.9247 0.9691 0.9699 0.9733 0.9693 0.9729 0.9685 0.9737 0.9696
Stead. 0.7011 0.7855 0.7527 0.7718 0.7935 0.8093 0.8666 0.8755 0.8733 0.8722 0.8597 0.8607
Cohes. 0.4685 0.5037 0.3322 0.3373 0.5431 0.5444 0.4653 0.5096 0.5681 0.5233 0.5745 0.5375

OrganSMNIST

Trust. 0.9552 0.9357 0.8741 0.8625 0.8792 0.8821 0.9114 0.9028 0.9126 0.9040 0.8993 0.8912
Cont. 0.9214 0.9169 0.9246 0.9213 0.9684 0.9700 0.9738 0.9682 0.9731 0.9675 0.9736 0.9683
Stead. 0.6765 0.7311 0.7222 0.7485 0.7809 0.7995 0.8609 0.8659 0.8664 0.8708 0.8561 0.8582
Cohes. 0.4951 0.4814 0.3603 0.3211 0.5198 0.5343 0.4704 0.44009 0.5192 0.4833 0.5155 0.5033

german-credit

Trust. 0.9745 0.9543 0.9514 0.9294 0.8555 0.8394 0.9337 0.9124 0.9380 0.9072 0.9336 0.9092
Cont. 0.9583 0.9424 0.9604 0.9410 0.9481 0.9255 0.9571 0.9438 0.9576 0.9438 0.9571 0.9440
Stead. 0.8576 0.8248 0.8313 0.7933 0.7483 0.7061 0.8398 0.7921 0.8479 0.7855 0.8436 0.7906
Cohes. 0.6774 0.6755 0.6638 0.6568 0.6893 0.6745 0.6446 0.6551 0.6575 0.6481 0.6513 0.6676

heterogeneity. Table 6 in Appendix, further shows low DE and high FS, confirming strong structural273

and similarity preservation.274

3) Hyperbolic datasets (Airport, Amazon, DBLP): For these datasets, the results in Table 3 highlight275

SENSE’s geometry-aware design, achieving high FS and very low DE in non-Euclidean spaces. This276

confirms its adaptability across geometric regimes. Overall, SENSE effectively ensures:277

• Neighbor preservation: High continuity and trustworthiness show SENSE keeps similar points278

close in the embedding, preserving semantics across clients.279

• Similarity recovery: Despite no raw data access, SENSE accurately approximates pairwise dis-280

tances evidenced by low DE and high FS.281

• Cluster structure: Comparable steadiness and cohesiveness confirm that SENSE maintains cluster282

alignment without fragmentation.283

Table 3: FS and DE for hyperbolic
datasets in POINTWISE setting.

Dataset FS DE

AIRPORT 0.9992 0.000067
AMAZON 0.9945 0.00052
DBLP 0.9929 0.00073

Visualization. Figure 2 shows global embeddings learned by284

SENSE on MNIST in the MULTISITE setting with 25,000 non-285

anchor samples across 10 clients in an unbalanced non-IID split.286

Using only 783 anchors (dh − 1), SENSE constructs high-quality287

embeddings without accessing or sharing raw features. Embed-288

dings from t-SNE, UMAP, PHATE, and CNE cleanly separate289

semantic groups, preserving local neighborhoods and global clus-290

ter topology. By estimating inter-client similarities, SENSE enables meaningful inter-client pos-291

itive/negative contrastive pairs. This highlights its ability to learn structure-preserving, privacy-292

compliant embeddings in decentralized, heterogeneous settings. Additional visualizations are in the293

Appendix.294

4.3 Ablation Study.295

To validate Theorems 3.1, 3.2, and Lemma 1, we perform an ablation study by varying anchor count296

from dh − ϵ to dh + ϵ. We evaluate SENSE using five normalized metrics, plotted in Figure 3:297

(i) Cosine Similarity [39] between ground-truth X ′
NA and reconstructed latent embeddings X̂NA;298

(ii) Distance Error and (iii) F-score (Sec. 4.1); (iv) Pearson Correlation (ρ) [49] over NA–NA299

distances; and (v) Frobenius Norm Error (Xfrob) [28], capturing reconstruction loss (full definitions300

in Appendix A.14). Key observations from the study:301

• Effective with few anchors: Even with anchor count well below dh (e.g., dh − 100), SENSE302

achieves high F-score, low distance error, and strong cosine similarity, showing robust neighborhood303

preservation in resource-constrained settings.304
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Figure 2: Global embeddings of MNIST under the MULTISITE setting. Top: CNE spectrum with SENSE.
Bottom: t-SNE, PHATE, and UMAP embeddings generated via SENSE without any raw feature sharing. All
embeddings preserve global structure while ensuring privacy.

(a) MNIST (b) German-credit (c) RetinaMNIST (d) PneumoniaMNIST

Figure 3: Impact of anchor count on normalized metric scores under non-IID unbalanced distributions. The red
vertical line denotes the theoretical privacy threshold at dh − 1 (783 for MNIST, 19 for German Credit), beyond
which exact recovery may be possible. For Retina and Pneumonia, this threshold lies outside the x-axis range,
resulting in monotonic performance gains. Trends confirm trade-offs between reconstruction fidelity and privacy
risk as anchor count increases.

• Privacy-compliant reconstruction: As anchors approach dh, cosine and Pearson scores improve.305

Beyond dh + 1, near-zero Frobenius error indicates possible exact recovery highlighting the need306

to limit anchor count to preserve privacy.307

• Structural consistency: Pearson correlation rises with anchor count, saturating near 1.0 at dh + 1,308

with corresponding drops in Frobenius error confirming theoretical bounds for exact recovery.309

• Metric alignment with theoretical thresholds: Across datasets, all metrics converge near dh, with310

diminishing gains beyond matching theoretical thresholds.311

These results validate that SENSE achieves high-fidelity, privacy-compliant reconstruction with312

minimal anchors, making it scalable and effective in decentralized settings with limited observability.313

5 Conclusion314

We propose SENSE, a unified geometry-aware framework for decentralized neighbor embedding that315

enables global projections without raw data exchange. SENSE addresses the key challenge of missing316

inter-client similarities via structured matrix completion using anchor-based distance observations.317

It supports both Euclidean and hyperbolic spaces and adapts to four practical deployment settings.318

By reconstructing global distance geometry from sparse, client-local views, SENSE accurately319

approximates both attractive–repulsive (NE) and positive–negative (CNE) interactions, while limiting320

anchor count to preserve privacy. The completed matrix enables classical and contrastive neighbor321

embeddings under strong privacy guarantees. Extensive experiments show that SENSE closely322

matches centralized baselines in neighborhood and cluster preservation across diverse non-IID323

scenarios. Theoretical results provide conditions for both faithful reconstruction and formal privacy324

protection, making SENSE a scalable and secure solution for distributed representation learning.325
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A Appendix509

A.1 Neighbor Embedding (NE).510

Definition A.1 t-SNE models pij as symmetrized conditional probabilities using Gaussian kernels:511

pj|i ∝ exp(−∥xi − xj∥2/2σ2
i ), with pij =

pj|i+pi|j
2n . Low-dimensional similarities are computed512

using a heavy-tailed Student-t kernel: qij ∝ (1 + ∥yi − yj∥2)−1. The loss minimizes the KL513

divergence:514

LtSNE =
∑
i ̸=j

pij log
pij
qij

.

Definition A.2 UMAP defines pj|i = exp(−(∥xi−xj∥−ρi)/τi) using adaptive exponential kernels,515

where ρi is the local connectivity threshold. Symmetrized pij is computed via fuzzy set union. In the516

embedding space, qij = (1 + a∥yi − yj∥2)−b with fixed parameters (a, b). The loss is a weighted517

binary cross-entropy:518

LUMAP =
∑
i̸=j

[
pij log

pij
qij

+ (1− pij) log
1− pij
1− qij

]
.

A.2 Contrastive Neighbor Embedding (CNE).519

Definition A.3 Given a kNN graph, high-dimensional similarities are binary: Sdh
ij = 1 if xj ∈520

kNN(xi), and 0 otherwise. In the embedding space, similarities are defined using a Cauchy kernel:521

Sdl
ij = ϕ(yi,yj) =

1
1+∥yi−yj∥2 . The CNE objective combines attractive and repulsive forces:522

L(θ) = −E(i,j)∼pi
log ϕ(fθ(xi), fθ(xj))− bE(i,j) log(1− ϕ(fθ(xi), fθ(xj))),

where pi samples positive pairs and b > 0 balances the repulsion term.523

A.3 Hyperbolic Models and Distance Calculation.524

There are several equivalent models of hyperbolic geometry exist, including the Poincaré ball model,525

lorentz model (or hyperboloid model) and the upper half-space model. The mathematical framework526

of the d-dimensional hyperboloid model of hyperbolic geometry is deined as follows:527

For x, y ∈ Rd+1, the Lorentz product is an indefinite inner product given by,528

x ◦ y := x1y1 − (x2y2 + · · ·+ xd+1yd+1). (13)

The real vector space Rd+1 equipped with this inner product is called Lorentz space, denoted by R1,d.529

It contains the positive Lorentz space as a subset:530

R1,d
+ :=

{
x ∈ R1,d : x1 > 0

}
.

Within R1,d
+ , the single-sheet hyperboloid Hdh is given by531

Hdh :=
{
x ∈ R1,d : x ◦ x = 1, x1 > 0

}
. (14)

The hyperboloid model in dimension d with curvature −κ (for κ > 0) consists of Hdh endowed with532

the hyperbolic distance:533

dκH(x, y) =
1√
κ

arcosh(x ◦ y), x, y ∈ Hdh . (15)

The distance dκH is a valid metric on Hdh , it is positive definite and satisfies the triangle inequality.534

Moreover, equipped with the metric tensor:535

ds2 =
1

κ
(dx ◦ dx),

the hyperboloid Hdh becomes a Riemannian manifold of constant sectional curvature −κ, and dκH536

corresponds exactly to its geodesic distance. In particular, the curvature κ does not alter the definition537

of the manifold Hdh itself, but only scales the distance metric. Just as Euclidean space is the canonical538

model for zero curvature, hyperbolic space is the canonical geometry for constant negative curvature.539
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A.3.1 Poincaré Ball Model.540

The Poincaré ball model is the most widely used formulation of hyperbolic space in machine541

learning [19, 40]. It defines the n-dimensional hyperbolic space as Bn = {x ∈ Rn : ∥x∥ < 1} with542

Riemannian metric gx =
(

2
1−∥x∥2

)2
In. The hyperbolic distance between two points u, v ∈ Bn is:543

dBn(u, v) = arcosh

(
1 +

2∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
. (16)

This distance increases exponentially near the boundary, enabling natural hierarchical embeddings544

where central points correspond to root nodes and peripheral points to leaves.545

A.4 CO-SNE546

Definition A.4 CO-SNE defines the similarities via hyperbolic normal kernels in the high-547

dimensional Poincaré ball Bn: pj|i = exp
(
−dBn(xi, xj)

2/2σ2
i

)
/Zi, with pij = (pj|i + pi|j)/2m.548

In the embedding space B2, similarities use a hyperbolic Cauchy kernel: qij = γ2/(dB2(yi, yj)
2 +549

γ2)/Z. The loss combines KL divergence with a norm-based regularizer:550

LCO-SNE = λ1

∑
i,j

pij log
pij
qij

+ λ2

∑
i

(∥xi∥2 − ∥yi∥2)2. (17)

A.5 Classical MDS551

Utilizing the measurements of distances among pairs of objects, MDS (multidimensional scaling)552

finds a representation of each object in d - dimensional space such that the distances are preserved in553

the estimated configuration as closely as possible. To validate the goodness-of-fit measure, MDS554

optimizes the loss function (known as "Stress"(σ)) given by:555

σ(X) = min
X

∑
i<j≤N

wij (δij − dij(X))
2
, (18)

, where the observation mask is W where wij = 1 if the distance δij is known and wij = 0 otherwise,556

with the block structure:557

W =

[
0N×N 1N×M

1⊤
M×N 1M×M

]
(19)

where 0 and 1 denote matrices of zeros and ones, respectively and X represents the computed558

configuration, dij(X) = ∥xi − xj∥ is the Euclidean distance between nodes i and j, δij is the559

measured distance computed privately. Placing the weights of unknown inter-user distance to zero,560

the weight matrix W can be partitioned into block matrices as shown in 19, where 11N,M is a matrix561

of ones with shape N ×M . De Leeuw [13] applied an iterative method called SMACOF (Scaling by562

Majorizing a Convex Function) to estimate the configuration X . As the objective is a non-convex563

function, SMACOF minimizes the stress using the simple quadratic function τ(X,Z) which bounds564

σ(X) (the complicated function) from above and meets the surface at the so-called supporting point565

Z as defined below:566

σ(X) ≤τ(X,Z) =
∑
i<j

wijδ
2
ij +

∑
i<j

wijd
2
ij(X)− 2

∑
i<j

wijδij
2 (xi − xj)

T
(zi − zj)

∥zi − zj∥
(20)

Equation (20) can be written in matrix form as:567

τ(X,Z) = C + tr
(
XTV X

)
− 2 tr

(
XTB(Z)Z

)
. (21)

The iterative solution which guarantees monotone convergence of stress [12] is given by equation568

(22), where Z = Xk−1:569

X(k) = min
X

τ(X,Z) = V †B(X(k−1))X(k−1) (22)

This algorithm offers flexibility to embed features in any dimension other than d, which enables the570

handling of high-dimensional data and also meets privacy constraints. As V is not of full rank, hence571

the Moore-Penrose pseudoinverse V † is used. The elements of the matrix B(X) and V are defined572
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in equation (23).573

bij =


− wijδij
dij(X)

, if dij(X) ̸= 0, i ̸= j

0, if dij(X) = 0, i ̸= j

−
N∑

j=1, j ̸=i

bij , if i = j

vij =


−wij , if i ̸= j

−
N∑

j=1, j ̸=i

vij , if i = j

(23)

A.6 SENSE: Pseudocode574

Algorithm 1 SENSE Framework

Require: Anchors XA ∈ RK×dh , client datasets {Dm = {xm
i }

Nm
i=1}Mm=1, target dim dℓ, high/low

geometry Ghigh ∈ {Rdh ,Hdh}, Glow ∈ {Rdℓ ,Hdℓ}
Ensure: Global embeddings {Ym ∈ GNm

low }Mm=1
1: Server broadcasts XA to all clients
2: for each client Cm do
3: Compute distances dm

i = DGhigh(x
m
i ,XA) for all xm

i ∈ Dm

4: Send {dm
i }

Nm
i=1 to server

5: end for
6: Server builds observed matrix DΩ using E, F , (optionally G)
7: Complete D̂ via structured matrix completion; extract Ĝ
8: Compute similarities Sdh from Ĝ using kernel f (see Eqns 6, 7)
9: Learn embedding Y in Glow using NE, contrastive, or CO-SNE objective

A.7 SENSE via Anchored-MDS: Pseudocode575

Algorithm 2 SENSE via Anchored-MDS

Require: Anchor embeddings XA ∈ RK×dh , observed entries PΩ(D), target dim dh, tolerance ϵ,
max iterations T

Ensure: Reconstructed embeddings XNA ∈ RN×dh

1: Initialize X
(0)
NA randomly, set k ← 1

2: while k ≤ T do
3: Form X(k−1) =

[
XA X

(k−1)
NA

]T
4: Compute PΩ(D(X(k−1)))
5: Construct W and compute V , B(X(k−1)) respecting Ω

6: Update X
(k)
NA using Eq. (11)

7: If stress improvement < ϵ, break; else k ← k + 1
8: end while
9: return X

(k)
NA

A.8 Anchor Generation576

In the proposed method, distribution of the anchor data is critical. The anchor is a common information577

shared between all the clients. The anchor data is generated randomly or by open data for securing578

privacy. The proper scheduling of the anchors has a significant impact on the overall performance579

and accuracy of the framework. There are several factors to consider when developing the anchor580

scheduling strategy, including:581

Number of anchors: The number of anchors used in the framework has a direct impact on the582

algorithmic performance. Too few anchors may not preserve the structural information while ensuring583

privacy, while too many anchors may lead to overfitting and may violate privacy.584
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Selection criteria: The criteria used to select anchors can also impact the performance of the system.585

Selecting anchors from the same probability distribution as of the underlying user data may be more586

effective than selecting them at random. For example, the data distribution of patient similarity587

networks or social networks will depend on factors including a number of patients/users or similarity588

of patients/connection between users.589

Table 4: Observed index sets Ω used for SENSE under each client configuration. Here, AG denotes global
anchors, A(j)

L are local anchors accessible only to client j, and X (m) are NA indices at client m. Binary masks
WF and WG indicate anchor-to-NA and intra-client NA–NA visibility. Observed distances are used to construct
V , B(X), and select relevant rows of XA for embedding computation.

SENSE Setting Observed Index Set Ω

Pointwise-Full Each client holds one NA. All anchor-to-NA distances are known; no NA–NA or
local anchor information.
Ω = {(i, j) : i ∈ AG, j ∈ [K + 1,K + N ]} ∪ {(j, i) : i ∈ AG, j ∈
[K + 1,K +N ]}

Pointwise-Partial Each client holds one NA. Global anchors AG are shared across all clients. Local
anchors A(j)

L are only accessible to client j.
Ω =

⋃N
j=1

(
(AG ∪ A(j)

L )× {K + j} ∪ {K + j} × (AG ∪ A(j)
L )

)
Multisite-Full Each client holds multiple NAs. All anchor-to-NA distances are known. Intra-

client NA–NA distances are observed.
Ω = {(i, j) : i ∈ AG, j ∈ [K + 1,K + N ]} ∪ {(j, i) : i ∈ AG, j ∈
[K + 1,K +N ]} ∪

⋃M
m=1(X

(m) ×X (m))

Multisite-Partial Each client holds multiple NAs. Anchor-to-NA distances are partially known
via WF (global + local anchors). Intra-client NA–NA distances are observed via
WG.
Ω = {(i, j + K) : WF [i, j] = 1} ∪ {(j + K, i) : WF [i, j] = 1} ∪ {(i, j) :
WG[i, j] = 1}

A.9 Theoretical Proofs.590

Unlike some EDG [52] methods that assume uniform random sampling of pairwise distances, SENSE591

uses a structured sampling scheme where anchor-to-NA distances are measured by design. This592

enables deterministic recovery guarantees based on geometric conditions (e.g., connectivity to affinely593

independent anchors), avoiding reliance on probabilistic bounds from random sampling.594

Proof A.1 Each NA point xj ∈ Rdh computes squared distances to a subset of anchors indexed by595

Ij , with rj = |Ij |. This yields rj quadratic constraints of the form:596

∥xj − ai∥2 = d2hij , ∀i ∈ Ij .

To analyze identifiability, fix a reference anchor ak ∈ IG from the global anchor set, and consider597

the difference of equations relative to this reference:598

∥xj − ai∥2 − ∥xj − ak∥2 = d2hij − d2hkj .

Expanding and simplifying yields the linear system:599

2(ak − ai)
⊤xj = ∥ak∥2 − ∥ai∥2 + d2hij − d2hkj , ∀i ∈ Ij \ {k}.

Letting Aj ∈ R(rj−1)×d denote the coefficient matrix and bj the RHS vector, we write:600

Ajxj = bj .

This is a system of rj−1 linear equations in dh unknowns. If rj < dh+1, then rank(Aj) ≤ rj−1 <601

dh, and the solution set {xj ∈ Rdh : Ajxj = bj} forms an affine subspace of dimension at least602

dh − rj + 1. Hence, infinitely many solutions exist that satisfy the same anchor distances, preventing603

exact recovery of xj .604

To ensure privacy across all clients (both pointwise and multisite), we enforce:605

|Ij | = KG +K
(j)
L ≤ dh, ∀j ∈ [N ],
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where K
(j)
L is the number of local anchors accessible to xj . In the multisite case, local anchors606

are restricted to the corresponding client, and global anchors are common across all clients. This607

structure ensures that even with partial anchor visibility, each client’s feature vector cannot be608

uniquely recovered from its observed distances.609

Remark 3 Each anchor distance imposes a quadratic constraint on the unknown xj ∈ Rdh . If the610

number of constraints rj is less than the ambient dimension d, the system is underdetermined and611

has infinitely many solutions. Thus, SENSE preserves privacy by bounding the number of anchor612

distances accessible to each client.613

Proof A.2 Consider a network in dh-dimensional Euclidean space Rdh , comprising anchors A =614

{A1, A2, . . . , AK} and non-anchor nodes P = {P1, P2, . . . , PN}, with feature vectors xi ∈ Rdh .615

Anchors locations are known, while non-anchors need estimation. Previous work [31] shows that in616

Rdh , a minimum of (d+ 1) anchors with known locations is required to locate N non-anchor nodes.617

The utilization of anchors for distributed sensor localization constitutes a thoroughly investigated618

domain, underpinned by the following assumptions:619

• (A1) Non-anchor nodes lie inside the convex hull of the anchors, i.e., C(P ) ⊆ C(A).620

• (A2) Each non-anchor node Pi has at least one set of neighbor nodes Ni ⊂ (A ∪ P ) with621

|Ni| = dh + 1 such that i lies inside C(Ni).622

• (A3) In the set {i ∪Ni}, every non-anchor node i can obtain the inter-node distances among all623

nodes.624

However, to accurately recover features in Rdh , at least dh anchors are necessary, even if non-anchors625

are placed in any location. Thus, having fewer than dh anchors, i.e., K < dh, guarantees that exact626

feature embeddings cannot be obtained, ensuring privacy.627

Proof A.3 From Theorem 3.1 (Exact Recovery) in [30], the L-HYDRA algorithm guarantees recovery628

up to isometry only if K ≥ dh and the K anchors are in general position (not lying on a single629

hyperbolic hyperplane). If K < dh, then the system of equations defined by E and F is underdeter-630

mined: the landmarks do not span Hdh

h , and multiple embeddings of the NA points are consistent631

with the observed distances. Hence, SENSE ensures privacy by choosing K < dh, preventing unique632

reconstruction of private client embeddings.633

A.10 Metric Used.634

• Cosine Similarity (CosSim): Measures angular similarity between the original NA feature matrix635

X ′
NA ∈ RN×dh and the reconstructed version XNA ∈ RN×dh from SENSE-anchored MDS. Cosine636

similarity is computed as:637

CosSim(X ′
NA, XNA) =

1

N

N∑
i=1

⟨X ′
NA

(i), X
(i)
NA⟩

∥X ′
NA

(i)∥ · ∥X(i)
NA∥

High values (close to 1) indicate strong alignment between original and reconstructed embeddings.638

• Distance Error (DE): and F-score (FS): defined in Section 4.1.639

• Pearson Correlation (ρ): Quantifies linear correlation between the original and reconstructed640

NA–NA distance matrices:641

ρ = Pearson(Gij , Ĝij), ∀i < j

where G and Ĝ denote the ground-truth and reconstructed distance matrices respectively. Values642

close to 1 indicate that the relative distance structure is preserved.643

• Frobenius Norm Error (Xfrob): Measures reconstruction error in the embedding space:644

Xfrob =
∥XNA −X ′

NA∥F
∥X ′

NA∥F
A value of 0 implies perfect reconstruction; higher values suggest increasing deviation.645
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A.11 Dataset Statistics.646

Table 5: Dataset statistics and learning setups grouped by embedding geometry. For hyperbolic, the stats are for
Pointwise setting.

Space Dataset #Classes #Datapoints #Clients (M) Dimension

Euclidean

MNIST 10 25000 10 784
Fashion-MNIST 10 25000 10 784

CIFAR-10 10 25000 5/10 1024
DermaMNIST 7 10015 10 784

PneumoniaMNIST 2 5856 10 784
Euclidean RetinaMNIST 5 1600 10 784

BreastMNIST 2 780 10 784
BloodMNIST 8 17092 10 784

OrganCMNIST 11 23583 10 784
OrganSMNIST 11 25211 10 784
German-Credit 2 1000 10 20

Hyperbolic
Airport 4 3185 3185 11

Hyperbolic Amazon - 5000 5000 128
DBLP - 5000 5000 128

A.12 System Specifications647

All experiments are conducted on a server equipped with two NVIDIA RTX A6000 GPUs (48 GB648

memory each) and an Intel Xeon Platinum 8360Y CPU with 1 TB RAM.649

A.13 Visualization Results650

Figure 4: Pointwise setting: CIFAR-10 (1000 non-anchor points, 783 anchors)
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Figure 5: Pointwise setting: FashionMNIST (1000 non-anchor points, 783 anchors)

Figure 6: Pointwise setting: MNIST (1000 non-anchor points, 783 anchors)
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A.14 Results.651

Table 6: FS and DE across IID, and non-IID balanced and unbalanced splits.
Data IID Bal Unbal

FS DE FS DE FS DE

PNEU. 0.92 0.0052 0.87 0.0066 0.91 0.0055
BLOOD 0.90 0.0052 0.89 0.0051 0.90 0.0052
BREAST 0.95 0.0092 0.92 0.0113 0.91 0.0124
DERMA 0.96 0.0029 0.93 0.0031 0.96 0.0029
RETINA 0.96 0.0221 0.94 0.0272 0.96 0.0214
ORGANC 0.80 0.0092 0.79 0.0089 0.79 0.0092
ORGANS 0.81 0.0089 0.80 0.0085 0.81 0.0093
GERMAN 0.75 0.0565 0.73 0.0621 0.72 0.0629

Table 7: FS and DE under POINTWISE, IID, and NON-IID settings, comparing MULTISITE-FULL and
MULTISITE-PARTIAL.

Dataset Pointwise IID-Full IID-Partial Non-IID-Full Non-IID-Partial

FS DE FS DE FS DE FS DE FS DE

MNIST 0.9557 0.0057 0.8034 0.0097 0.9266 0.0438 0.7864 0.0101 0.9275 0.0434
FashionMNIST 0.9560 0.0058 0.7586 0.0070 0.8726 0.0153 0.7534 0.0070 0.8754 0.0156
CIFAR-10 0.9562 0.0057 0.9303 0.0049 0.9277 0.0044 0.9308 0.0049 0.9380 0.0044

Table 8: Multisite setting comparison Non-iid unbalanced: Full vs Partial: Evaluation of different methods
(Vanilla and SENSE variants) across different metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

— Multisite-Partial Setting —

CIFAR-10

Trust. 0.9259 0.9274 0.7447 0.7476 0.8175 0.8174 0.8334 0.8336 0.8322 0.8321 0.8232 0.8244
Cont. 0.9107 0.9391 0.8756 0.8804 0.9369 0.9381 0.9554 0.9552 0.9552 0.9549 0.9565 0.9561
Stead. 0.8099 0.8165 0.6904 0.6938 0.7363 0.7349 0.7609 0.7654 0.7619 0.7580 0.7415 0.7487
Cohes. 0.4707 0.4806 0.3725 0.3752 0.4927 0.4857 0.4708 0.4630 0.4716 0.4778 0.4766 0.4793

— Multisite-Full Setting —

CIFAR-10

Trust. 0.9259 0.9270 0.7447 0.7482 0.8175 0.8168 0.8334 0.8336 0.8322 0.8329 0.8232 0.8247
Cont. 0.9107 0.9364 0.8756 0.8808 0.9369 0.9366 0.9554 0.9553 0.9552 0.9550 0.9565 0.9561
Stead. 0.8099 0.8229 0.6904 0.6875 0.7363 0.7357 0.7609 0.7624 0.7619 0.7580 0.7415 0.7464
Cohes. 0.4707 0.4673 0.3725 0.3674 0.4927 0.4831 0.4708 0.4662 0.4716 0.4690 0.4766 0.4811

— Pointwise-Full Setting —

CIFAR-10

Trust. 0.9683 0.9659 0.9435 0.9419 0.8488 0.8531 0.9112 0.9123 0.9082 0.9079 0.9021 0.9035
Cont. 0.9465 0.9448 0.9379 0.9333 0.9533 0.9527 0.9446 0.9442 0.9458 0.9437 0.9445 0.9442
Stead. 0.8061 0.8081 0.7793 0.7825 0.7111 0.7165 0.7992 0.7878 0.7887 0.8005 0.7808 0.7920
Cohes. 0.7482 0.7672 0.7415 0.7336 0.7431 0.7365 0.7485 0.7451 0.7513 0.7473 0.7435 0.7350
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Table 9: IID setting: Evaluation of different dimensionality reduction methods (Vanilla and SENSE variants)
across various metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

PneumoniaMNIST

Trust. 0.9718 0.9700 0.7687 0.7700 0.8573 0.8590 0.9016 0.9026 0.8973 0.8967 0.8837 0.8795
Cont. 0.9395 0.9442 0.9145 0.9143 0.9616 0.9598 0.9592 0.9587 0.9591 0.9582 0.9606 0.9598
Stead. 0.7840 0.7844 0.6203 0.6272 0.7158 0.7228 0.7554 0.7516 0.7439 0.7424 0.7369 0.7263
Cohes. 0.7031 0.6963 0.6081 0.6272 0.6902 0.6898 0.7013 0.7112 0.6981 0.6970 0.7006 0.7050

BloodMNIST

Trust. 0.9628 0.9611 0.8643 0.8633 0.8515 0.8527 0.8847 0.8820 0.8793 0.8820 0.8729 0.8736
Cont. 0.9312 0.9280 0.9416 0.9391 0.9444 0.9440 0.9555 0.9558 0.9556 0.9558 0.9553 0.9556
Stead. 0.7515 0.7436 0.6899 0.6764 0.6967 0.6871 0.7259 0.7211 0.7228 0.7211 0.7164 0.7133
Cohes. 0.7085 0.7106 0.7233 0.7261 0.7416 0.7469 0.7435 0.7339 0.7329 0.7339 0.7453 0.7462

BreastMNIST

Trust. 0.9382 0.9370 0.7599 0.7589 0.8835 0.8774 0.8938 0.8924 0.8939 0.8920 0.8934 0.8924
Cont. 0.9452 0.9412 0.8147 0.8174 0.9533 0.9526 0.9450 0.9446 0.9450 0.9445 0.9450 0.9444
Stead. 0.8522 0.8514 0.5800 0.5697 0.8056 0.8099 0.8400 0.8400 0.8287 0.8308 0.8317 0.8353
Cohes. 0.6028 0.5987 0.4226 0.4226 0.5639 0.5611 0.5566 0.5605 0.5637 0.5670 0.5532 0.5606

DermaMNIST

Trust. 0.9758 0.9762 0.7513 0.7480 0.8726 0.8726 0.9129 0.9118 0.9125 0.9126 0.9017 0.9023
Cont. 0.9592 0.9583 0.9134 0.9129 0.9736 0.9729 0.9709 0.9712 0.9707 0.9706 0.9716 0.9714
Stead. 0.7995 0.7976 0.5930 0.5945 0.7332 0.7291 0.7726 0.7739 0.7694 0.7638 0.7580 0.7577
Cohes. 0.7294 0.7107 0.5590 0.5618 0.7001 0.7184 0.7339 0.7334 0.7390 0.7373 0.7308 0.7297

RetinaMNIST

Trust. 0.9797 0.9758 0.8777 0.8643 0.9144 0.9038 0.9480 0.9335 0.9469 0.9331 0.9450 0.9313
Cont. 0.9669 0.9567 0.9280 0.9232 0.9738 0.9730 0.9718 0.9711 0.9704 0.9700 0.9678 0.9678
Stead. 0.8483 0.8479 0.6120 0.5941 0.7618 0.7434 0.8183 0.8140 0.8117 0.8050 0.8105 0.8086
Cohes. 0.7051 0.6963 0.5835 0.5515 0.6980 0.6995 0.7123 0.7074 0.7046 0.7112 0.6831 0.7135

OrganCMNIST

Trust. 0.9608 0.9482 0.8879 0.8815 0.8845 0.8858 0.9149 0.9028 0.9160 0.9039 0.9024 0.8890
Cont. 0.9238 0.9413 0.9231 0.9242 0.9696 0.9682 0.9731 0.9683 0.9730 0.9679 0.9738 0.9688
Stead. 0.6948 0.8027 0.7575 0.7678 0.7994 0.8058 0.8690 0.8677 0.8788 0.8673 0.8624 0.8593
Cohes. 0.4762 0.4849 0.3335 0.3145 0.5695 0.5153 0.4751 0.4760 0.5268 0.5001 0.5545 0.5166

OrganSMNIST

Trust. 0.9565 0.9421 0.8707 0.8588 0.8766 0.8890 0.9130 0.9026 0.9128 0.9034 0.8991 0.8911
Cont. 0.9219 0.9366 0.9248 0.9211 0.9679 0.9717 0.9741 0.9684 0.9732 0.9672 0.9737 0.9679
Stead. 0.6793 0.7753 0.7305 0.7513 0.7786 0.7965 0.8609 0.8691 0.8649 0.8745 0.8517 0.8601
Cohes. 0.4856 0.4702 0.3327 0.3316 0.5575 0.5094 0.4838 0.4525 0.5312 0.4889 0.5564 0.4783

german-credit

Trust. 0.9771 0.9553 0.9505 0.9330 0.8559 0.8551 0.9380 0.9224 0.9359 0.9140 0.9325 0.9192
Cont. 0.9590 0.9434 0.9587 0.9449 0.9482 0.9294 0.9573 0.9448 0.9573 0.9429 0.9564 0.9432
Stead. 0.8603 0.8251 0.8342 0.7907 0.7500 0.7228 0.8414 0.7954 0.8416 0.7883 0.8401 0.7944
Cohes. 0.6810 0.6895 0.6542 0.6413 0.6712 0.6640 0.6465 0.6651 0.6577 0.6675 0.6624 0.6550

Table 10: Non-IID (balanced) setting: Evaluation of different methods (Vanilla and SENSE variants) across
different metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

PneumoniaMNIST

Trust. 0.9566 0.9483 0.8806 0.8658 0.8909 0.8937 0.9430 0.9393 0.9372 0.9343 0.9226 0.9168
Cont. 0.9228 0.9278 0.9031 0.9114 0.9776 0.9732 0.9683 0.9678 0.9690 0.9686 0.9704 0.9695
Stead. 0.6952 0.7165 0.6007 0.6211 0.7146 0.7244 0.7778 0.7737 0.7694 0.7692 0.7622 0.7579
Cohes. 0.6377 0.6815 0.6205 0.6070 0.6650 0.6771 0.7259 0.7162 0.7240 0.7145 0.7172 0.7336

BloodMNIST

Trust. 0.9304 0.9292 0.8902 0.8796 0.8640 0.8633 0.9003 0.8972 0.8959 0.8944 0.8862 0.8856
Cont. 0.9020 0.9029 0.9385 0.9390 0.9510 0.9492 0.9618 0.9611 0.9620 0.9614 0.9622 0.9614
Stead. 0.7060 0.7017 0.6815 0.6927 0.6812 0.6927 0.7531 0.7505 0.7466 0.7442 0.7536 0.7395
Cohes. 0.6781 0.6761 0.7210 0.7096 0.7620 0.7540 0.7441 0.7603 0.7472 0.7335 0.7561 0.7603

BreastMNIST

Trust. 0.9643 0.9657 0.8476 0.8562 0.9188 0.9241 0.9403 0.9422 0.9385 0.9418 0.9383 0.9415
Cont. 0.9632 0.9658 0.8567 0.8408 0.9587 0.9671 0.9604 0.9594 0.9598 0.9590 0.9599 0.9591
Stead. 0.8331 0.8370 0.5159 0.5081 0.7585 0.7913 0.8712 0.8742 0.8684 0.8616 0.8691 0.8675
Cohes. 0.6174 0.6018 0.3677 0.3741 0.5187 0.5165 0.5254 0.5667 0.5265 0.5413 0.5200 0.5485

DermaMNIST

Trust. 0.9545 0.9467 0.8253 0.8048 0.8963 0.8961 0.9335 0.9351 0.9292 0.9327 0.9147 0.9167
Cont. 0.9403 0.9284 0.8977 0.8895 0.9825 0.9815 0.9742 0.9734 0.9743 0.9733 0.9761 0.9756
Stead. 0.7304 0.7148 0.5608 0.5428 0.7327 0.7295 0.7901 0.7909 0.7834 0.7841 0.7751 0.7743
Cohes. 0.6493 0.6484 0.5159 0.5152 0.6867 0.6726 0.6993 0.6976 0.6976 0.7128 0.6902 0.7012

RetinaMNIST

Trust. 0.9749 0.9743 0.8933 0.8829 0.9228 0.9227 0.9522 0.9523 0.9492 0.9519 0.9497 0.9495
Cont. 0.9627 0.9616 0.9289 0.9152 0.9752 0.9729 0.9720 0.9713 0.9712 0.9700 0.9670 0.9675
Stead. 0.8447 0.8380 0.6155 0.6174 0.7534 0.7559 0.8224 0.8172 0.8134 0.8189 0.8123 0.8046
Cohes. 0.7140 0.7283 0.5785 0.5648 0.7189 0.6836 0.7292 0.7005 0.7092 0.6938 0.7039 0.6849

OrganCMNIST

Trust. 0.9489 0.9271 0.8975 0.8888 0.9005 0.8984 0.9235 0.9132 0.9232 0.9126 0.9140 0.8994
Cont. 0.9210 0.9082 0.9232 0.9185 0.9737 0.9719 0.9756 0.9715 0.9750 0.9710 0.9760 0.9717
Stead. 0.6365 0.7142 0.7462 0.7290 0.8038 0.7909 0.8611 0.8724 0.8660 0.8745 0.8621 0.8640
Cohes. 0.4862 0.4913 0.3249 0.3191 0.5088 0.5154 0.5338 0.4980 0.5266 0.4974 0.4908 0.5282

OrganSMNIST

Trust. 0.9383 0.9093 0.8954 0.8861 0.9054 0.9071 0.9269 0.9190 0.9291 0.9194 0.9172 0.9092
Cont. 0.9164 0.8881 0.9168 0.9255 0.9774 0.9758 0.9796 0.9746 0.9786 0.9741 0.9788 0.9741
Stead. 0.5896 0.6154 0.6315 0.6953 0.7784 0.7963 0.8591 0.8684 0.8560 0.8634 0.8411 0.8523
Cohes. 0.5109 0.5108 0.3441 0.3665 0.5642 0.5278 0.5079 0.4878 0.5461 0.5021 0.5487 0.5001

german-credit

Trust. 0.9752 0.9575 0.9511 0.9301 0.8552 0.8508 0.9403 0.9211 0.9380 0.9172 0.9350 0.9176
Cont. 0.9581 0.9418 0.9606 0.9427 0.9481 0.9240 0.9576 0.9470 0.9575 0.9463 0.9571 0.9460
Stead. 0.8567 0.8267 0.8350 0.7850 0.7398 0.7023 0.8484 0.8063 0.8475 0.8016 0.8405 0.8020
Cohes. 0.6795 0.6837 0.6488 0.6509 0.6870 0.6828 0.6620 0.6834 0.6557 0.6676 0.6564 0.6653
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paper.660
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made in the paper and important assumptions and limitations. A No or NA answer to this662

question will not be perceived well by the reviewers.663
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results can be expected to generalize to other settings.665
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attained by the paper.667

2. Limitations668
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• The answer NA means that the paper does not include theoretical results.710
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• The instructions should contain the exact command and environment needed to run to reproduce767

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/768

guides/CodeSubmissionPolicy) for more details.769
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applicable).776
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Question: Does the paper report error bars suitably and correctly defined or other appropriate790
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• If error bars are reported in tables or plots, The authors should explain in the text how they were812
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8. Experiments Compute Resources814
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resources (type of compute workers, memory, time of execution) needed to reproduce the experi-816

ments?817

Answer: [Yes]818

Justification: See Appendix A.12.819
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• The paper should provide the amount of compute required for each of the individual experimental824
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• The paper should disclose whether the full research project required more compute than the826
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Guidelines:846

• The answer NA means that there is no societal impact of the work performed.847

• If the authors answer NA or No, they should explain why their work has no societal impact or848

why the paper does not address societal impact.849

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,850

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-851

ment of technologies that could make decisions that unfairly impact specific groups), privacy852

considerations, and security considerations.853

• The conference expects that many papers will be foundational research and not tied to par-854

ticular applications, let alone deployments. However, if there is a direct path to any negative855

applications, the authors should point it out. For example, it is legitimate to point out that856

an improvement in the quality of generative models could be used to generate deepfakes for857

disinformation. On the other hand, it is not needed to point out that a generic algorithm for858

optimizing neural networks could enable people to train models that generate Deepfakes faster.859

• The authors should consider possible harms that could arise when the technology is being used860

as intended and functioning correctly, harms that could arise when the technology is being used861

as intended but gives incorrect results, and harms following from (intentional or unintentional)862

misuse of the technology.863

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies864

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for865

monitoring misuse, mechanisms to monitor how a system learns from feedback over time,866

improving the efficiency and accessibility of ML).867

11. Safeguards868

Question: Does the paper describe safeguards that have been put in place for responsible release of869

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,870

or scraped datasets)?871

Answer: [NA]872

Justification: The paper poses no such risks873

Guidelines:874

• The answer NA means that the paper poses no such risks.875

• Released models that have a high risk for misuse or dual-use should be released with necessary876

safeguards to allow for controlled use of the model, for example by requiring that users adhere877

to usage guidelines or restrictions to access the model or implementing safety filters.878

• Datasets that have been scraped from the Internet could pose safety risks. The authors should879

describe how they avoided releasing unsafe images.880

• We recognize that providing effective safeguards is challenging, and many papers do not require881

this, but we encourage authors to take this into account and make a best faith effort.882

12. Licenses for existing assets883
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in the884

paper, properly credited and are the license and terms of use explicitly mentioned and properly885

respected?886

Answer: [Yes]887

Justification: Assets are properly credited and publicly available.888

Guidelines:889

• The answer NA means that the paper does not use existing assets.890

• The authors should cite the original paper that produced the code package or dataset.891

• The authors should state which version of the asset is used and, if possible, include a URL.892

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.893

• For scraped data from a particular source (e.g., website), the copyright and terms of service of894

that source should be provided.895

• If assets are released, the license, copyright information, and terms of use in the package should896

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for897

some datasets. Their licensing guide can help determine the license of a dataset.898

• For existing datasets that are re-packaged, both the original license and the license of the derived899

asset (if it has changed) should be provided.900

• If this information is not available online, the authors are encouraged to reach out to the asset’s901

creators.902

13. New Assets903

Question: Are new assets introduced in the paper well documented and is the documentation904

provided alongside the assets?905

Answer: [NA]906

Justification: The paper does not release new assets.907

Guidelines:908

• The answer NA means that the paper does not release new assets.909

• Researchers should communicate the details of the dataset/code/model as part of their sub-910

missions via structured templates. This includes details about training, license, limitations,911

etc.912

• The paper should discuss whether and how consent was obtained from people whose asset is913

used.914

• At submission time, remember to anonymize your assets (if applicable). You can either create915

an anonymized URL or include an anonymized zip file.916

14. Crowdsourcing and Research with Human Subjects917

Question: For crowdsourcing experiments and research with human subjects, does the paper918

include the full text of instructions given to participants and screenshots, if applicable, as well as919

details about compensation (if any)?920

Answer: [NA]921

Justification: The paper does not involve crowdsourcing nor research with human subjects.922

Guidelines:923

• The answer NA means that the paper does not involve crowdsourcing nor research with human924

subjects.925

• Including this information in the supplemental material is fine, but if the main contribution of926

the paper involves human subjects, then as much detail as possible should be included in the927

main paper.928

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other929

labor should be paid at least the minimum wage in the country of the data collector.930

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-931

jects932

Question: Does the paper describe potential risks incurred by study participants, whether such933

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals934

(or an equivalent approval/review based on the requirements of your country or institution) were935

obtained?936

Answer: [NA]937

Justification: The paper does not involve crowdsourcing nor research with human subjects.938

Guidelines:939

• The answer NA means that the paper does not involve crowdsourcing nor research with human940

subjects.941
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• Depending on the country in which research is conducted, IRB approval (or equivalent) may be942

required for any human subjects research. If you obtained IRB approval, you should clearly943

state this in the paper.944

• We recognize that the procedures for this may vary significantly between institutions and945

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for946

their institution.947

• For initial submissions, do not include any information that would break anonymity (if applica-948

ble), such as the institution conducting the review.949
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