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Abstract

Low-dimensional embeddings are central to analyzing and visualizing high-
dimensional data. However, widely adopted NE methods assume centralized
access to all data an unrealistic constraint in privacy-sensitive, decentralized envi-
ronments. We propose SENSE, a geometry-aware, privacy-preserving framework
for global neighbor embedding without raw data exchange. SENSE reconstructs
global structure using local distance measurements and structured matrix com-
pletion, enabling embeddings that preserve both local and global geometry in
Euclidean and hyperbolic spaces. It further integrates contrastive learning by deriv-
ing cross-client positive and negative pairs from estimated similarities, effectively
generalizing negative sampling under structural constraints. Experiments across
diverse real-world datasets show that SENSE achieves embedding quality on par
with centralized baselines, while offering strong privacy guarantees. Theoretical
analysis provides formal bounds on reconstruction fidelity and privacy, establishing
conditions under which structure and confidentiality are jointly preserved. '

1 Introduction

Neighbor embedding (NE) methods are widely used for dimensionality reduction (DR), enabling
interpretable low-dimensional visualizations of high-dimensional data [51]. Techniques like t-
SNE [53], UMAP [37], MDS [15], and PHATE [38] are effective for visualization [9], anomaly
detection [46], and exploratory analysis [16]. These methods, however, assume centralized access to
complete pairwise similarity matrices an assumption often violated in real-world settings. In domains
such as healthcare [45], finance [8], and mobile networks [34], data is distributed across clients and
subject to strict privacy constraints. In such settings, standard NE methods fail due to the absence of
global distance information especially problematic for attraction-repulsion frameworks like t-SNE
and UMAP [6, 56] that depend on complete similarity graphs to balance local and global structure.
Recent work links NE with contrastive learning [10, 11], further emphasizing the importance of
accurate pairwise similarities. In privacy-constrained regimes, however, such structure is either
missing or only partially available, making decentralized contrastive NE a challenging problem.

Related Work. Several approaches have been proposed to address this gap, but they fall short on
scalability, privacy, or deployment realism. SMAP [57] offers strong privacy via encrypted multi-party
computation, but its cryptographic overhead renders it impractical for large-scale use. FedNE [33]
introduces a federated NE framework but lacks intrinsic privacy guarantees and incurs repeated server-
client interactions, making it communication heavy. Methods like dSNE [48] and FASNE [47] require
full shared reference datasets for alignment, an unrealistic assumption in many settings, and diverge
from standard FL protocols while also introducing high communication and privacy costs. More
recently, MMD-based distribution alignment [43] has been used to generate synthetic shared data,
but it assumes multi-sample clients and is fragile in single data sample per client scenarios common
to IoT and mobile devices. Moreover, it risks adversarial corruption of synthesized distributions
and introduces additional computational burden. To address these limitations, we propose SENSE,
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Figure 1: Observed entries in the global distance matrix D under four SENSE configurations: (1) Pointwise-
Full, (2) Pointwise-Partial, (3) Multisite-Full, and (4) Multisite-Partial. These differ in the visibility of An-
chor—-NonAnchor (A-NA) and NA-NA blocks, governed by client-level data locality and anchor access. Multisite
settings permit intra-client NA-NA observations (e.g., Al, A2, ..., C2), while Pointwise settings restrict each
client to a single NA (e.g., 1, 2, ..., 9). Full modes provide all NAs with access to the global anchor set (e.g.,
A-E), yielding complete A—NA blocks; Partial modes expose disjoint anchor subsets per client, resulting in
sparse and structured observations.

a unified, geometry-aware framework for privacy-preserving decentralized neighbor embedding.
SENSE supports both Euclidean and hyperbolic geometries the latter being critical for embedding
hierarchical structures in social and biological data [30, 36]. Unlike prior work, SENSE reconstructs
global structure from sparse local distance observations using anchor-based measurements, without
requiring raw data sharing, iterative communication, or centralized storage. The completed distance
matrix is then used with classical NE methods, contrastive NE, and hyperbolic CoSNE [22].

Although anchor sharing is sometimes perceived as a constraint in decentralized settings [43], it
serves as a robust, principled, and privacy-preserving coordination mechanism increasingly adopted
in practice. When curated by a trusted server, anchors can be synthetic, anonymized, or sourced
from public data completely decoupled from private client records. This mitigates leakage risks
inherent to client-generated anchors, which are vulnerable to reconstruction or membership inference,
especially in small or skewed-client regimes [43]. Server-curated anchors offer stability, auditability,
and adversarial robustness, enabling secure global coordination without compromising privacy.
This paradigm is already in use across real-world systems in healthcare [7, 27], genomics [35, 44],
finance [2], and mobile/NLP applications [23, 32], illustrating that carefully designed anchor-based
schemes are both secure and essential for scalable decentralized learning. Motivated by this, we argue
that anchors should be treated as core architectural components rather than ad hoc artifacts. SENSE
leverages anchor-based coordination in conjunction with tools from distance matrix completion,
network localization, and low-rank recovery, providing formal guarantees for reconstructing global
geometry from partial observations. When combined with contrastive learning, it further enhances
alignment and expressiveness, bridging classical and modern NE paradigms. SENSE introduces the
following key innovations:

* Privacy by design: Estimates global structure using only local distance measurements, eliminating
the need for encryption or differential privacy.

* Communication-efficient and geometry-aware: Requires a single server—client interaction, and
supports both Euclidean and hyperbolic spaces for modeling flat and hierarchical data.

* Deployment flexibility: Operates under two regimes (Figure 1): SENSE-Pointwise for single-point
clients (e.g., edge/mobile), and SENSE-Multisite for multi-sample clients (e.g., hospitals, banks).

* Provable reliability: Offers theoretical guarantees on both privacy preservation and embedding
fidelity, validated across diverse modalities and geometries.

These properties make SENSE suitable for privacy-sensitive, structurally diverse domains. Hospitals
can jointly visualize patient data without violating HIPAA/GDPR [50], banks can detect fraud
patterns without sharing transactions [3], and mobile/IoT clients with a single sample can still
contribute to global embeddings [4, 42]. Genomic labs can embed single-cell transcriptomes into
a shared hyperbolic space that preserves cellular hierarchy and privacy [1, 52]. Crucially, SENSE
also supports evolving data scenarios and dynamic client participation, new clients or data points
can be integrated by estimating only their partial distances to a subset of existing entities, avoiding
full re-computation and preserving global coherence with minimal overhead. This makes SENSE not
only privacy-preserving and geometry-aware but also inherently scalable to dynamic and federated
ecosystems.
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2 Background and Problem Formulation.

Neighbor Embeddlng (NE). Methods like t-SNE [53] and UMAP [10] embed high-dimensional
data X = {z;}"_, C R% into a low-dimensional space Y = {y;}_; C R% by preservmg pairwise
structure. These methods are distance-driven. They transform dlstances into similarities via kernels
to preserve relational structure (see Appendix A.1, A.2). Let Ddh = ||z; — ;|| and Dd‘ = ||yl yill
denote distances in the high- and low-dimensional spaces. These are mapped to s1m11ar1t1es via kernel
functions: Sdf‘ =f (Ddh), Sdz = g(Dd’f) where f and g are typically Gaussian, Laplacian, or
Cauchy kernels. The general NE Ob]eCthG minimizes the divergence between the two similarity

matrices: d d
h Z
E D(Si), Si) 1)
where D is a divergence measure such as KL dlvergence or binary cross-entropy.

Contrastive Neighbor Embedding. CNE [11] extends NE into the contrastive learning framework
by training an encoder fy to map x; toy; = fg(x;) such that the neighborhood structure from a k-NN
graph is preserved. CNE uses a distance-aware contrastive loss (see Def A.3 in Appendix), framed
as a binary similarity matching problem. Let S9 € {0,1}"*" denote ground-truth neighborhood
indicators and S% denote kernel-based similarities in the embedding space. The loss is a weighted
binary cross-entropy:

dp, d dp, d
Ly)y=-% [Si; log S 4 b(1 — S log(1 — Si;)} . ?)
i,

Key Challenges in Decentralized Settings. (C1) CNE, like NE, relies on a full similarity matrix, which
is unavailable in privacy-sensitive, decentralized settings. (C2) Conventional distributed learning
captures only intra-client structure, omitting crucial inter-client neighbor information. (C3) Clients
lack access to global data, leading to incorrect KNN graphs and biased negative sampling, as true
neighbors may reside on other clients.

CO-SNE (for Hyperbolic Data). Hierarchical structures in social, biological, and knowledge
graphs grow exponentially, making Euclidean embeddings unsuitable due to distortion of tree-like
geometry. Hyperbolic space, with constant negative curvature, naturally models such growth and
supports hierarchy-aware learning [19, 36, 40] (see Appendix A.3.1). Standard methods like t-SNE
assume Euclidean geometry and distort global structure when applied to hyperbolic data, collapsing
depth and relative positioning. CO-SNE [22] extends t-SNE to hyperbolic space (see Def A.4).
It preserves both local and global structure using distance-aware kernels in hyperbolic geometry:
Sdh = f(dpn (i, x;)), Sdl = g(dp=(yi,y;)), where f is a hyperbolic normal kernel and g is a
heavy -tailed hyperbolic Cauchy kernel. A regularization term also aligns global depth via norm
matching. The full objective is:

L(Y) = A1 - D(S, S%) + Ay Z(p(m) —p(y)?, 3)

where p(z) = ||z|| and D is typically KL divergence.

2.1 Problem Formulation

We consider a decentralized system with M clients {C1,...,Cps} coordinated by a central server
owned by a private company, hospital, bank, or government agency. Each client C,,, holds a private
dataset D,,, = {x;”}f\[:’"i C R, which remains local and disjoint, i.e., D,, N D,,, = 0 for m # m'.
Let N = 2%21 N,,, be the total number of data points, indexed globally by i € [N]. We consider two
real-world configurations: A) SENSE-Pointwise, where each client holds a single sample x™ € R%,
and B) SENSE-Multisite, where each client holds a local dataset X™ = [xT",...,x}} ] € RNm X dn,
Let D € RV* denote the full squared distance matrix. In Euclidean space, D;; = ||x; — x;[|%; in

hyperbolic space, it reflects squared distances in the Poincaré ball B% or Lorentz model H% (see
Appendix A.3). Due to privacy constraints, only a subset of entries is observable. Let 2 C [N] x [N]
be the set of observed indices, and define the projection operator Pg, : RVXN — RNXN gq:

Dy, if(i,j) €Q,
[Pa(D));j = {07 otherwise. @
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Goal 1 Our goal is to recover the full distance matrix D € RN*N from partial observations
Dg = Pq(D) via structured matrix completion. Instead of estimating distances directly, we infer

latent embeddings X whose induced distances match the observed entries. This is done without
access to raw features, relying solely on Dgq. Formally,

~ S . 2

D = D(X) = argmin [P (D(X')) — Dol )

where D(X') is the distance matrix induced by X' under the chosen geometry (Euclidean or hyper-
bolic). From D, we derive a global low-dimensional embedding Y = {y; Z-Iil C R% with dy < dj,
preserving neighborhood structure.

We use D to find the similarities, defined in Eq. 6 and optimized via divergence D(S%, S%) (Eq. 1).

D..

d d

Sij = exp (—202) . Sy = 9lyi = vil%), (6)
For contrastive learning, we build binary similarities using k-nearest neighbors:

g _ {1, if j € KNN(i; D), 1
Y

St = d(yiyi)= —
0, otherwise, i = o) L+ [lyi — y;l1*

)

and minimize the contrastive loss (Eq. 2). For hierarchical data, we apply CO-SNE, treating D as
squared hyperbolic distances in the Poincaré model to compute similarities (Eq. 17 in Appendix).
The embedding Y C B% is optimized using the CO-SNE loss (Eq. 3).

Remark 1 Conventional FL methods (e.g., FedAvg) assume large local datasets, require multiple
communication rounds, and expose gradients that risk privacy leaks [20, 62]. They also fail in
pointwise settings where local training is infeasible. In contrast, SENSE reconstructs D via privacy-
preserving matrix completion and then optimizes NE, CNE, or CO-SNE objectives without sharing
raw features.

3 Proposed Framework: SENSE

As described in Section 2.1, we consider two decentralized settings: SENSE-Pointwise and SENSE-
Multisite. In both, each client holds private non-anchor (NA) data and accesses a shared anchor set
A= {ay,...,ax} with feature matrix X4 = [p1,...,px]' € RE*%_ Anchors, broadcast by the
server, may be global or client-specific (see Appendix A.8). Let X = {1, ...,z x} be the set of all

private NA points, where N = Zﬂf:l N,,,. Each client computes squared distances between its NAs
and accessible anchors:

d;n = [”x;n - p1H27 ) ||$Zn - pKHQ} )
and transmits these to the server, masking unshared local anchors. In Pointwise, each client contributes
one NA-anchor vector, in Multisite, intra-client NA-NA distances may also be known. The global
incomplete squared distance matrix D € RUC+HN)X(K+N) jg partitioned as:

D - [ s g] , ®)
where F is anchor—anchor, F' is anchor-NA, and G is NA-NA. The observed subset is indexed by
Q2 C [K + N]?, based on anchor visibility and client configuration. We consider four configurations:
Pointwise-Full, Pointwise-Partial, Multisite-Full, and Multisite-Partial which differ in the extent
of observed entries in F' (anchor-NA) and G (NA-NA). These define distinct visibility patterns in
2, summarized in Appendix Table 4 and illustrated in Figure 1, and determine which distances are
available for structured matrix completion.

To reconstruct the full matrix D, or specifically G, we apply geometry-specific solvers: anchored-
MBDS in Euclidean space (discussed in Sec 3.1) and LHydra [30] in hyperbolic space. The complete
pipeline is outlined in Algorithm | in Appendix.

Remark 2 In practice, F' may be only partially visible due to bandwidth, privacy, or data limitations.
SENSE is designed to operate under such conditions. Whether F' is full or partial, structured matrix
completion (in SENSE) enables accurate and privacy-preserving recovery of inter-client affinities.
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3.1 SENSE via Anchored-MDS
Classical MDS embeds N points by minimizing stress over a fully observed distance matrix D €
RN XN The embedding X € RY*?» minimizes:

2
o(X) = (e — x| — 6:5)°
i<y
where d;; is the input Euclidean distance between points ¢ and j. SMACOF solves this using
a majorization-based surrogate [13], 7(X,Z) = C + tr(X'VX) — 2tr(XB(Z)Z), with the
iterative update:
X®) = vigx*-1)x k-1, )

In SENSE, the full distance matrix D is not available, instead we work with a structured, incomplete

matrix of observed anchor—NA distances. Let the embedding be X = [X4 Xy A]T, where X 4 and
X4 are anchor and NA embeddings, respectively. The stress is minimized over observed entries
only:
2
o(X) = [[Pa(D(X) = D)|[z,
where P, projects onto the observed indices €2, and D(X) computes pairwise distances. The
SMACOF updates are restricted to {2, with:
s

{i:(,5) €}, i=j REEZE (i) €Qi# ]
Vii = —1, (’L,_])GQ,’L#], B”(X): 7;@ Zk SZBik, 1=7
0, otherwise 75 (k)€ .
0, otherwise

We partition V and B as defined in Eq. 10, where V4, Baa € REXE Vin, Bay € REXN and
VN, Bny € RVXV:

Vaa Van Baa Ban
V = B = 10
{VXN VNN] {BXN BNN] (10
The update rule for NA embeddings becomes:
Xk = Viey (BawX{L" + BlyPa(Xa) - ViyPa(Xa)) (an

This projection-aware update ensures X v 4 uses only observed/available distances, enabling privacy-
preserving global embedding under any SENSE configuration. The projection operator Pg, acts
as a binary mask over observed entries. While V and B are derived from €, we apply Pq, to X 4
in Eq. (11) to retain only anchors with observed anchor-NA distances. This avoids leakage from
inaccessible anchors and ensures privacy-compliant updates. Pseudocode is provided in Appendix A.7.
Furthermore, to preserve privacy, the number of shared anchors K must be limited. Theorems 3.1,
3.2 (Euclidean) and Lemma 1 (hyperbolic) characterize how K relates to embedding dimension dj,
across SENSE configurations, establishing conditions for faithful reconstruction.

Theorem 3.1 Let X = {xi,...,xy} C R% be the set of NA data points, and let A =
{ay,...,ag} C R be the set of K anchor points. Suppose we observe the pairwise Euclidean
distances {||x; —a;|| }ie[n],je| k) between each NA and all anchors. If the number of anchors satisfies

K < dp, then the original NA features {x;}| cannot be exactly reconstructed from these distances,
guaranteeing the privacy of the individual client data.

Proof. Deferred in Appendix, check A.2.

SENSE supports multiple configurations, which critically influence embedding fidelity and privacy.
Theorem 3.2 formalizes privacy guarantees when only partial anchor—NA distances (block F') are
available, covering both pointwise and multisite regimes. 1) SENSE-Pointwise: Each client j € [N]
holds a single private point x; € R? and accesses a subset of anchors indexed by Z; C [K]. The
corresponding anchor set is A; = {a; }icz,, comprising: (i) global anchors A = {a1,...,an},
shared across all clients, and (ii) local anchors A(Lj), unique to client j. The total number of anchors
observedis r; = |Z;| = Mg —|—M£J ). 2) SENSE-Multisite: Each client m € [M] holds a local dataset
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x(m) = {Zm1s-- s Timon, } C R, where N = Z%Zl nm. Bach point ¢, ; observes distances
to (i) a shared global anchor set A, and (ii) a local anchor set A(Lm) exclusive to client m. Let

Imi=121gU Ié’") be the index set of accessible anchors, with r,,, ; = |Z,, ;| denoting the number
observed.

Theorem 3.2 Let X = {x1,...,xn} C R pe the set of all non-anchor (NA) points across
all clients, where each x; computes squared distances only to a subset of accessible anchors
A; = {a;}jez,, with |I;| = r. If r; < dp, for all i € [N], then exact recovery of each x; is
impossible. The inverse map from anchor distances to features is non-unique, preserving privacy
under both pointwise and multisite configurations.

Proof. Defered in Appendix, check A.l.

Lemma 1 Let {xy,...,vx N} C H% be K anchors and N non-anchor points in hyperbolic space
with curvature —k. Suppose only blocks E and F of the global distance matrix D are observed. If
K < dy, the NA coordinates cannot be exactly recovered up to isometry in H%, ensuring the privacy
of the client data in SENSE. This follows from the contrapositive of the L-HYDRA theorem [30],
which guarantees exact recovery only when K > dj, and anchors span a full subspace.

3.2 SENSE in Evolving Distributed Environments

In dynamic settings, new data points arrive continuously e.g., a hospital admitting a patient, a
bank processing a transaction, or a platform onboarding a user. Recomputing the full embed-
ding for each arrival is inefficient and may disrupt global structure. Existing decentralized NE
methods [33, 43, 47, 48] assume static datasets and lack support for incremental updates, mak-
ing them unsuitable for streaming environments. SENSE, by contrast, is modular and compatible
with out-of-sample embedding methods [5, 24, 41]. Once the global embedding is constructed
via anchor-based completion and NE optimization, it defines a geometry-aware coordinate space

that supports new points without full recomputation. Let Xy 4 = [X1,...,Xn] € RN *dn pe the
reconstructed NA embeddings. When a new point y arrives, we select K existing points as pseudo-
anchors A = {ay,...,ax} C Xpya, with coordinates X4 = [p1,...,Pxr]’ € RE*4 Given
dissimilarities {4, }/ to these anchors, we compute the embedding ¥ by solving:
K
Al A 2
5(3) =Y (Ipi = ¥ll2 — d,y)°- (12)

i=1

Here, 0y, is the dissimilarity in the original space, and ||p; — ¥||2 is the distance in the embedding
space. Only y is optimized, anchors remain fixed. Since K < dj, exact recovery is impossible
(Theorems 3.1, 3.2), ensuring privacy. This lightweight optimization requires no raw data and
supports real-time integration, making SENSE well-suited for scalable, privacy-constrained systems.

4 Experiments

In this section, we first outline the experimental setup, followed by an evaluation of SENSE across
diverse datasets and deployment settings.

4.1 Experimental Setup

Datasets. We evaluate SENSE on 14 public datasets widely used in DR and representation learn-
ing [18, 63]. These include three benchmarks: MNIST [14], Fashion-MNIST [58], and CIFAR-
10 [21]; seven MedMNIST datasets [60]: DermaMNIST, PneumoniaMNIST, RetinaMNIST, BreastM-
NIST, BloodMNIST, OrganCMNIST, OrganSMNIST; and the German Credit dataset [25] for financial
risk modeling. For hyperbolic evaluation, we use three graph datasets: Airport [36], Amazon [59],
and DBLP [29]. Detailed dataset statistics and system specifications are provided in Appendix Table 5
and A.12.

Baselines. We compare SENSE against centralized (Van) baselines: t-SNE [53], UMAP [37],

PHATE [38], and CNE [11] (with s € {0,0.5,1}). These assume full raw data access at a central
server and serve as upper bounds for evaluating SENSE’s privacy-preserving performance.

Implementation Details. SENSE comprises two stages: matrix completion and global embedding.
In the first stage, data is partitioned across M clients. In Pointwise, each client holds one NA
point, sampled randomly. In Multisite, clients hold multiple NA points under IID or non-IID splits
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Table 1: Full vs. Partial comparison in MULTISITE under non-IID (unbalanced) splits. Evaluation spans
centralized and privacy-preserving SENSE variants across different embedding quality metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE
— Multisite-Partial Setting —

Trust.  0.9890 0.9898 0.9553 0.9552 0.8741 0.8763 0.9517 0.9521 0.9524 0.9538 0.9455 0.9476
Cont. 0.9575 0.9639 0.9774 0.9771 0.9811 0.9804 0.9806 0.9797 0.9799 0.9787 0.9799 0.9787

MNIST Stead. 07719 07861 07639 07635 0.6628 06746 07840 07790 07752 07768 0.7634 07658
Cohes. 0.8180 0.8458 0.8865 08853 08668 08877 09229 09112 09107 09196 09158 0.9087
Trust. 09902 09914 09140 09148 09579 09557 09765 09752 09784 09769 09765 0.9731
fachionMNgsT  COnt 09608 09590 09812 09818 09910 09906 09915 09913 09905 09903 09900 0.9901
Stead. 08415 08643 07570 07622 07836 07891 08632 0.8638 08643 08660 0.8493 0.8513
Cohes.  0.6496 0.6559 0.6748 07069 07051 07115 07630 07669 07637 07508 0.7792 0.7666
— Multisite-Full Setting —
Trust. 09890 09852 09553 09570 08741 08780 09517 09516 09524 09542 09455 09452
MNIST Cont. 09575 09518 09774 09754 09811 09797 09806 09772 0.9799 09763 09799 0.9761
Stead. 07719 07953 076390 07726 0.6628 0.6688 07840 07808 07752 07828 0.7634 0.7690
Cohes. 08189 08328 0.8865 08665 08668 0.8818 09229 09047 09107 08926 09158 0.9106
Trust. 09902 09895 09140 09076 09579 09555 09765 09752 09784 09769 09765 09725
fachionMNisT  Cont 09608 09731 09812 09797 09910 09902 09915 09906 09905 09895 09900 0.9891
Stead. 08415 0.8604 07570 07530 07836 07981 08632 0.8608 08643 08649 0.8493 0.8538
Cohes.  0.6496 0.6936 0.6748 07019 07051 07030 07680 07503 07637 07591 07792 0.7695
— Pointwise-Full Setting —
Trust. 09661 09679 09484 09467 08457 08469 09218 09166 09164 09138 09137 09151
Cont. 09418 09410 09376 09396 09546 09538 09434 09422 09428 09417 09409 0.9403
MNIST Stead.  0.8083 08113 07878 07763 0.6953 0.6958 0.8024 0.8003 0.8041 07996 0.8025 0.7914
Cohes. 07904 07998 07855 07819 07912 07843 07988 07982 0.8034 07894 07931 0.7919
Trust. 09647 09681 09441 09434 08407 08375 09283 09264 09255 09245 09256 09196
Cont. 09430 09454 09386 09373 09542 09528 00464 00460 09456 0.9440 09451 0.9429
fashionvinisy  Stead:  O8LI8 08103 07797 07779 06923 06931 08087 08049 08085 08003 08082 08150

Cohes.  0.7570 0.7882 0.7685 0.7670 0.7564 0.7599 0.7876 0.7786 0.7843 0.7788 0.7838 0.7710

(balanced/unbalanced). A subset of 10% of the total data points is designated as anchors. In Full
settings, all anchors are global, and in Partial, anchors are split into global and client-specific local
sets. The total number of anchors (global + local) is fixed at dj, — 1, where d, is the original feature
dimension. In the embedding stage, we use the completed global distance matrix to generate privacy-
preserving embeddings using multiple neighbor embedding methods. For Euclidean geometry, we
use the official implementations of t-SNE [53], UMAP [37], and PHATE (via its standard Python
library). For CNE, we adopt the implementation from [11], where the parameter s controls the
attraction-repulsion tradeoff: s = 0 mimics t-SNE, s = 1 aligns with UMAP, and intermediate values
interpolate between them. CNE operates within a contrastive learning framework using negative
sampling. For hyperbolic embeddings, we use the CO-SNE implementation from [22].

Data Partitioning. To simulate realistic distributed settings, we evaluate SENSE under both 11D
and non-IID distributions using Dirichlet-based partitioning. For each class ¢, client-wise proportions
are drawn from ¢. ~ Dir(«), where lower « yields greater heterogeneity and class imbalance [553, 61].
We set o = 0.5 in all experiments. Three partitioning schemes are used: /ID (uniform class mix),
non-IID balanced (varying class distributions, equal client sizes), and non-IID unbalanced (both
class and size vary).

Evaluation Metrics. We assess SENSE using both reconstruction and embedding quality metrics.
For fidelity, we compute Relative Distance Error (DE) and F-score (FS) between the reconstructed

: . A . _ IG—GuellF _ 2tp
distance matrix (NA-NA) G and ground truth G,.: DE = TCelle and FS = ST’

tp, fp, and fn are true, false positive, and false negative neighbors respectively [17]. To evaluate
2D embeddings, we compute Trustworthiness and Continuity [54], which measure neighborhood
agreement between original and embedded spaces. We also report Steadiness and Cohesiveness [26]
to assess global structural reliability: steadiness detects false groupings and cohesiveness quantifies
how well true input clusters are preserved.

4.2 Result Analysis.

We comprehensively evaluate SENSE across: 1) Standard image datasets (MNIST, FashionMNIST,
CIFAR-10): These are evaluated under Pointwise-Full, Multisite-Full, and Multisite-Partial with
non-IID unbalanced splits. As shown in Table 1 and in Appendix 8, SENSE closely matches
centralized baselines across Cont., Trust., Stead., and Cohes. Notably, the Partial configuration
performs comparably to Full, indicating that accurate reconstruction of the global distance matrix is
possible even with partial anchor—NA observations. Table 7 further confirms high F-score and low
distance error, validating strong neighborhood preservation under strict privacy constraints.

2) MedMNIST datasets: These are evaluated across unbalanced non-IID, balanced non-IID, and
IID splits. SENSE consistently matches centralized performance (Tables 2,10,9), even under high

where
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Table 2: Performance of centralized (Van.) and SENSE variants under non-IID unbalanced splits.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE  VAN. SENSE

Trust.  0.9723 0.9712 0.7699 0.7673 0.8570 0.8590 0.9027 0.9008 0.8976 0.8952 0.8832 0.8806
Cont. 0.9418 0.9383 0.9140 09154 0.9624 0.9608 0.9594 0.9591 0.9590 0.9583 0.9606 0.9599
Stead.  0.7868 0.7932 0.6258 0.6168 0.7247 0.7204 0.7552  0.7591 0.7496 0.7461 0.7283 0.7341
Cohes.  0.6991 0.6591 0.6318 0.6250 0.6953 0.6957 0.6983 0.7085 0.7052 0.7142 0.7015 0.7065

Trust.  0.9633 0.9609 0.8674 0.8632 0.8493 0.8513 0.8841 0.8816 0.8814 0.8795 0.8737 0.8715
Cont. 0.9256  0.9375 0.9411 0.9401 09435 0.9428 0.9555 0.9552 0.9558 0.9556 0.9555 0.9552
Stead.  0.7498 0.7480 0.6889 0.6874 0.6781 0.6851 0.7172 0.7323  0.7186 0.7216 0.7100 0.7132

PneumoniaMNIST

BloodMNIST Cohes. 0.7242  0.7178 0.7253  0.7253 0.7456 0.7448 0.7462 0.7440 0.7384 0.7540 0.7533 0.7379
Trust.  0.9379 0.9378 0.7817 0.7998 0.8921 0.8884 0.9133 09117 09124 09113 0.9108 0.9108

Cont. 0.9508 09481 0.8140 0.8247 0.9616 0.9563 0.9519 0.9515 0.9516 0.9513 0.9510 0.9509

BreastMNIST Stead.  0.8417 0.8329 0.5605 0.5550 0.8037 0.8149 0.8438 0.8480 0.8491 0.8495 0.8490 0.8398
cas Cohes.  0.6091 0.6137 0.4095 0.4112 0.5668 0.5570 0.5777 0.5695 0.5807 0.5689 0.5675 0.5585
Trust. ~ 0.9757 0.9770 0.7496 0.7466 0.8737 0.8728 0.9130 0.9121 09119 09116 0.9020 0.9021

Cont. 09461 09572 09127 09122 0.9736 0.9730 0.9709 0.9713 0.9706 0.9707 0.9716 0.9715

DermaMNIST Stead.  0.7977 0.7979 0.5945 0.5936 0.7308 0.7319 0.7739  0.7689  0.7682 0.7686 0.7578 0.7553
Cohes. 0.7147 0.7111 0.5586 0.5459 0.7127 0.7108 0.7268 0.7321  0.7385 0.7502 0.7438 0.7383

Trust.  0.9797 0.9736 0.8793 0.8636 0.9161 0.9050 0.9486 0.9357 0.9475 0.9348 0.9451 0.9336

Cont. 0.9496 09669 0.9273 0.9244 0.9738 0.9734 0.9720 0.9714 0.9707 0.9701 0.9678 0.9680

RetinaMNIST Stead.  0.8442 0.8498 0.6307 0.5923 0.7559 0.7636 0.8267 0.8176 0.8196 0.8138 0.8158 0.8040
Cohes.  0.6734 0.7281 0.5832 0.5828 0.6957 0.6991 0.7100 0.7137 0.7089 0.6982 0.6883 0.6990

Trust.  0.9621 0.9387 0.8887 0.8867 0.8850 0.8871 0.9134 0.9041 09159 0.9056 0.9019 0.8907

Cont. 0.9207 09170 0.9268 0.9247 0.9691 0.9699 0.9733 0.9693 0.9729 0.9685 0.9737 0.9696

OreanCMNIST Stead.  0.7011 0.7855 0.7527 0.7718 0.7935 0.8093 0.8666 0.8755 0.8733 0.8722 0.8597 0.8607
& Cohes.  0.4685 0.5037 0.3322 03373 0.5431 0.5444 0.4653 0.5096 0.5681 0.5233 0.5745 0.5375
Trust.  0.9552  0.9357 0.8741 0.8625 0.8792 0.8821 09114 0.9028 09126 0.9040 0.8993 0.8912

Cont. 0.9214 0.9169 0.9246 0.9213 0.9684 0.9700 0.9738 0.9682 0.9731 0.9675 0.9736 0.9683

OrganSMNIST Stead.  0.6765 0.7311 0.7222 0.7485 0.7809 0.7995 0.8609 0.8659 0.8664 0.8708 0.8561 0.8582

Cohes.  0.4951 0.4814 0.3603 03211 0.5198 0.5343 0.4704 0.44009 0.5192 0.4833 0.5155 0.5033

Trust.  0.9745 0.9543 09514 09294 0.8555 0.8394 0.9337 09124 0.9380 0.9072 0.9336  0.9092
Cont. 0.9583 0.9424 0.9604 0.9410 0.9481 0.9255 0.9571 0.9438 0.9576 0.9438 0.9571 0.9440
Stead.  0.8576  0.8248 0.8313 0.7933 0.7483 0.7061 0.8398  0.7921  0.8479 0.7855 0.8436 0.7906
Cohes.  0.6774 0.6755 0.6638 0.6568 0.6893 0.6745 0.6446 0.6551 0.6575 0.6481 0.6513 0.6676

german-credit

heterogeneity. Table 6 in Appendix, further shows low DE and high FS, confirming strong structural
and similarity preservation.

3) Hyperbolic datasets (Airport, Amazon, DBLP): For these datasets, the results in Table 3 highlight
SENSE’s geometry-aware design, achieving high FS and very low DE in non-Euclidean spaces. This
confirms its adaptability across geometric regimes. Overall, SENSE effectively ensures:

* Neighbor preservation: High continuity and trustworthiness show SENSE keeps similar points
close in the embedding, preserving semantics across clients.

* Similarity recovery: Despite no raw data access, SENSE accurately approximates pairwise dis-
tances evidenced by low DE and high FS.

* Cluster structure: Comparable steadiness and cohesiveness confirm that SENSE maintains cluster
alignment without fragmentation.

Visualization. Figure 2 shows global embeddings learned by Table 3: FS and DE for hyperbolic

SENSE on MNIST in the MULTISITE setting with 25,000 non- datasets in POINTWISE setting.

anchor samples across 10 clients in an unbalanced non-IID split. ~ Dataset FS DE

Using only 783 anchors (dj, — 1), SENSE constructs high-quality "~ A xporr  0.9992  0.000067
embeddings without accessing or sharing raw features. Embed-  Avazon 09945  0.00052
dings from t-SNE, UMAP, PHATE, and CNE cleanly separate = DBLP 0.9929  0.00073

semantic groups, preserving local neighborhoods and global clus-
ter topology. By estimating inter-client similarities, SENSE enables meaningful inter-client pos-
itive/negative contrastive pairs. This highlights its ability to learn structure-preserving, privacy-
compliant embeddings in decentralized, heterogeneous settings. Additional visualizations are in the
Appendix.

4.3 Ablation Study.

To validate Theorems 3.1, 3.2, and Lemma 1, we perform an ablation study by varying anchor count
from dj, — € to dj, + €. We evaluate SENSE using five normalized metrics, plotted in Figure 3:
(i) Cosine Similarity [39] between ground-truth X, and reconstructed latent embeddings Xna;
(ii) Distance Error and (iii) F-score (Sec. 4.1); (iv) Pearson Correlation (p) [49] over NA-NA
distances; and (v) Frobenius Norm Error (Xgop) [28], capturing reconstruction loss (full definitions
in Appendix A.14). Key observations from the study:

* Effective with few anchors: Even with anchor count well below dj, (e.g., d, — 100), SENSE
achieves high F-score, low distance error, and strong cosine similarity, showing robust neighborhood
preservation in resource-constrained settings.
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Figure 2: Global embeddings of MNIST under the MULTISITE setting. Top: CNE spectrum with SENSE.
Bottom: t-SNE, PHATE, and UMAP embeddings generated via SENSE without any raw feature sharing. All
embeddings preserve global structure while ensuring privacy.
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Figure 3: Impact of anchor count on normalized metric scores under non-IID unbalanced distributions. The red
vertical line denotes the theoretical privacy threshold at dj, — 1 (783 for MNIST, 19 for German Credit), beyond
which exact recovery may be possible. For Retina and Pneumonia, this threshold lies outside the x-axis range,
resulting in monotonic performance gains. Trends confirm trade-offs between reconstruction fidelity and privacy
risk as anchor count increases.

* Privacy-compliant reconstruction: As anchors approach dj,, cosine and Pearson scores improve.
Beyond dj, + 1, near-zero Frobenius error indicates possible exact recovery highlighting the need
to limit anchor count to preserve privacy.

e Structural consistency: Pearson correlation rises with anchor count, saturating near 1.0 at dj, + 1,
with corresponding drops in Frobenius error confirming theoretical bounds for exact recovery.

* Metric alignment with theoretical thresholds: Across datasets, all metrics converge near dj, with
diminishing gains beyond matching theoretical thresholds.

These results validate that SENSE achieves high-fidelity, privacy-compliant reconstruction with
minimal anchors, making it scalable and effective in decentralized settings with limited observability.

5 Conclusion

We propose SENSE, a unified geometry-aware framework for decentralized neighbor embedding that
enables global projections without raw data exchange. SENSE addresses the key challenge of missing
inter-client similarities via structured matrix completion using anchor-based distance observations.
It supports both Euclidean and hyperbolic spaces and adapts to four practical deployment settings.
By reconstructing global distance geometry from sparse, client-local views, SENSE accurately
approximates both attractive-repulsive (NE) and positive—negative (CNE) interactions, while limiting
anchor count to preserve privacy. The completed matrix enables classical and contrastive neighbor
embeddings under strong privacy guarantees. Extensive experiments show that SENSE closely
matches centralized baselines in neighborhood and cluster preservation across diverse non-IID
scenarios. Theoretical results provide conditions for both faithful reconstruction and formal privacy
protection, making SENSE a scalable and secure solution for distributed representation learning.
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A Appendix

A.1 Neighbor Embedding (NE).
Definition A.1 1-SNE models p;; as symmetrized conditional probabilities using Gaussian kernels:
pjli < exp(—|lz; — x;|?/202), with p;; = % Low-dimensional similarities are computed
using a heavy-tailed Student-t kernel: q;; < (1 + |ly; — y;||*)~*. The loss minimizes the KL
divergence:
Dii
Lisve =Y pijlog =
— Qij
i#]

Definition A.2 UMAP defines p;|; = exp(—(||z; —x;|| — pi) /7:) using adaptive exponential kernels,
where p; is the local connectivity threshold. Symmetrized p;; is computed via fuzzy set union. In the
embedding space, q;; = (1 + ally; — y;||?) =" with fixed parameters (a,b). The loss is a weighted
binary cross-entropy:

ij 1—pij
Lymap = Z [Pz‘j log & + (1 — pij) log 1 _p‘J. :
s qij qij

A.2 Contrastive Neighbor Embedding (CNE).

Definition A.3 Given a kNN graph, high-dimensional similarities are binary: ng“ =1lifz; €
kNN(z;), and 0 otherwise. In the embedding space, similarities are defined using a‘Cauchy kernel:
S;ijl =o(y:,y;) = m The CNE objective combines attractive and repulsive forces:

L(0) = —E(i j)~p; log ¢(fo(xi), fo(x5)) — VE(; 5y log(1 — &(fo(xi), fo(x5)))s

where p; samples positive pairs and b > 0 balances the repulsion term.

A.3 Hyperbolic Models and Distance Calculation.

There are several equivalent models of hyperbolic geometry exist, including the Poincaré ball model,
lorentz model (or hyperboloid model) and the upper half-space model. The mathematical framework
of the d-dimensional hyperboloid model of hyperbolic geometry is deined as follows:

For z,y € R4*!, the Lorentz product is an indefinite inner product given by,
roy:i=x1y1 — (Tayo + -+ Tar1Ydtr1)- (13)

The real vector space R%*! equipped with this inner product is called Lorentz space, denoted by R4,
It contains the positive Lorentz space as a subset:

R = {z € RY : 21 >0} .
Within Ri’d, the single-sheet hyperboloid H is given by
H* .= {xeRl’d txox =1, x1>0}. (14)

The hyperboloid model in dimension d with curvature — (for x > 0) consists of H% endowed with
the hyperbolic distance:

1
dfi(z,y) = —=arcosh(z oy), z,y € H™. (15)

N

The distance dfj is a valid metric on H", it is positive definite and satisfies the triangle inequality.
Moreover, equipped with the metric tensor:

1
ds* = —(dx o dx),
K
the hyperboloid H% becomes a Riemannian manifold of constant sectional curvature —x, and df
corresponds exactly to its geodesic distance. In particular, the curvature x does not alter the definition

of the manifold H itself, but only scales the distance metric. Just as Euclidean space is the canonical
model for zero curvature, hyperbolic space is the canonical geometry for constant negative curvature.
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A.3.1 Poincaré Ball Model.
The Poincaré ball model is the most widely used formulation of hyperbolic space in machine
learning [19, 40]. It defines the n-dimensional hyperbolic space as B™ = {& € R™ : ||z| < 1} with

2
Riemannian metric g, = (ﬁ) I,,. The hyperbolic distance between two points u, v € B" is:

2fju — v|”

dpn (u,v) = arcosh (1 + . (16)
(1= fluf®) (X = [lv]?)

This distance increases exponentially near the boundary, enabling natural hierarchical embeddings

where central points correspond to root nodes and peripheral points to leaves.

A4 CO-SNE

Definition A.4 CO-SNE defines the similarities via hyperbolic normal kernels in the high-
dimensional Poincaré ball B": p;; = exp (—d[ﬁgn (24, xj)2/202-2) [Zs, with pij; = (pj|; + pijj)/2m.
In the embedding space B?, similarities use a hyperbolic Cauchy kernel: qij = 72/ (dgz (v, yj)2 +
v2)/Z. The loss combines KL divergence with a norm-based regularizer:

Leosne =M Y pislog 22 4+ 0 3" ([lal|? — lyal®)2. (17)
J

— di
i,J

K3

A.5 Classical MDS

Utilizing the measurements of distances among pairs of objects, MDS (multidimensional scaling)
finds a representation of each object in d - dimensional space such that the distances are preserved in
the estimated configuration as closely as possible. To validate the goodness-of-fit measure, MDS
optimizes the loss function (known as "Stress" (o)) given by:

o(X)=min Y wy (0 — dij(X))*, (18)
i<j<N

, where the observation mask is W where w;; = 1 if the distance J;; is known and w;; = 0 otherwise,
with the block structure:

1
W= |:](_)JTV><N 1N><M:| (19)
MxN MxM

where 0 and 1 denote matrices of zeros and ones, respectively and X represents the computed
configuration, d;;(X) = ||&; — ;| is the Euclidean distance between nodes ¢ and j, §;; is the
measured distance computed privately. Placing the weights of unknown inter-user distance to zero,
the weight matrix W can be partitioned into block matrices as shown in 19, where 11y 57 is a matrix
of ones with shape NV x M. De Leeuw [13] applied an iterative method called SMACOF (Scaling by
Majorizing a Convex Function) to estimate the configuration X . As the objective is a non-convex
function, SMACOF minimizes the stress using the simple quadratic function 7(X, Z) which bounds
o(X) (the complicated function) from above and meets the surface at the so-called supporting point
Z as defined below:

T
o(X) <T(X,2) = > wijd; + Y widy;(X) =2 wi;oy;° (s = 25) (2~ %) (20)

i<y i<j i<j i = 2l
Equation (20) can be written in matrix form as:
(X, Z)=C+tr (X"VX) —2tr (X"B(2)Z2). 1)

The iterative solution which guarantees monotone convergence of stress [12] is given by equation
(22), where Z = XF—1.

xX® = min (X, Z) = viB(x k-1 x k=1 (22)

This algorithm offers flexibility to embed features in any dimension other than d, which enables the
handling of high-dimensional data and also meets privacy constraints. As V' is not of full rank, hence
the Moore-Penrose pseudoinverse V1 is used. The elements of the matrix B(X) and V are defined
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in equation (23).

Uz'j = . Z

A.6 SENSE: Pseudocode

ifdij(X) #0,i#j
if dij(X) =0, i #j

ifi=j
ifi # j
ifi=j

(23)

Algorithm 1 SENSE Framework

Require: Anchors X4 € R¥*% _ client datasets {D,, = {z}"} 7

Ensure: Global embeddings {Y™ €
: Server broadcasts X 4 to all clients
: for each client C,,, do
Compute distances dj* =

1
2
3
4
5:
6
7
8
9

geometry Gpigh € {R%, H%}, Gjow € {Rd’f T4 }

low

Send {d7*} N to server

end for

GN m

ml

Dg,yp (27, X 4) for all 27 € Dy,

. Server bullds observed matrix Dg, using E, F, (optlonally G)
. Complete D via structured matrix completion; extract G

: Compute similarities S% from G using kernel f (see Eqns 6, 7)
: Learn embedding Y in Gy, using NE, contrastive, or CO-SNE objective

ml’

target dim d,, high/low

A.7 SENSE via Anchored-MDS: Pseudocode

Algorithm 2 SENSE via Anchored-MDS

Require: Anchor embeddings X 4 € R¥*49r observed entries P (D), target dim dj,, tolerance e,

Ensure: Reconstructed embeddings Xy 4 €

max iterations 1T’

1: Initialize X](\% randomly, set k < 1

2:

while k£ < T do

T
Form X -1 = {XA X](\i:l)}
Compute Pq (D (X *-1))
Construct T and compute V, B(X (*=1)) respecting

Update X](VZ‘ using Eq. (11)
If stress improvement < ¢, break; else k < k + 1

end while

return X J(\@‘

RN xXdp,

A.8 Anchor Generation
In the proposed method, distribution of the anchor data is critical. The anchor is a common information
shared between all the clients. The anchor data is generated randomly or by open data for securing
privacy. The proper scheduling of the anchors has a significant impact on the overall performance
and accuracy of the framework. There are several factors to consider when developing the anchor
scheduling strategy, including:

Number of anchors: The number of anchors used in the framework has a direct impact on the
algorithmic performance. Too few anchors may not preserve the structural information while ensuring

privacy, while too many anchors may lead to overfitting and may violate privacy.
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Selection criteria: The criteria used to select anchors can also impact the performance of the system.
Selecting anchors from the same probability distribution as of the underlying user data may be more
effective than selecting them at random. For example, the data distribution of patient similarity
networks or social networks will depend on factors including a number of patients/users or similarity
of patients/connection between users.

Table 4: Observed index sets 2 used for SENSE under each client configuration. Here, A denotes global
anchors, A(LJ) are local anchors accessible only to client 5, and X’ (™) are NA indices at client m. Binary masks
W and Wg indicate anchor-to-NA and intra-client NA-NA visibility. Observed distances are used to construct
V, B(X), and select relevant rows of X 4 for embedding computation.

SENSE Setting Observed Index Set (2

Pointwise-Full Each client holds one NA. All anchor-to-NA distances are known; no NA-NA or
local anchor information.
Q={(j):1€ Ag, j e [K+1L,K+N}U{(4i):1€ Ag, j €
[K+1,K + NJ|}

Pointwise-Partial Each client holds one NA. Global anchors Ag are shared across all clients. Local
anchors Ag) are only accessible to client j.

= U, (A6 UAD) x {K + 5} U{K + 3} x (A UA))

Multisite-Full Each client holds multiple NAs. All anchor-to-NA distances are known. Intra-
client NA-NA distances are observed.
Q={(,5) : 1 € Ag,j € [K+1,K+ N} U{(4,i) : i € Ag,j €
[K + 1, K + NJJUUN_ (20 x x0m)

Multisite-Partial Each client holds multiple NAs. Anchor-to-NA distances are partially known
via Wr (global + local anchors). Intra-client NA-NA distances are observed via
Wa.
Q= {(i,5+ K) : Weliog) = 1} U{(G + K.4) : Wrlig) = 1} U{(0,5) :
Wali, j] = 1}

A.9 Theoretical Proofs.

Unlike some EDG [52] methods that assume uniform random sampling of pairwise distances, SENSE
uses a structured sampling scheme where anchor-to-NA distances are measured by design. This
enables deterministic recovery guarantees based on geometric conditions (e.g., connectivity to affinely
independent anchors), avoiding reliance on probabilistic bounds from random sampling.

Proof A.1 Each NA point x; € R computes squared distances to a subset of anchors indexed by
Z;, with r; = |Z;|. This yields r; quadratic constraints of the form.:

|z — a;l”> = d12u‘j7 Vi € Z;.

To analyze identifiability, fix a reference anchor ay, € Zg from the global anchor set, and consider
the difference of equations relative to this reference:

|z — ai||2 —lz; — ak||2 = d%ij - d%kj'
Expanding and simplifying yields the linear system:
2(ay, — @)z = [lag]* - aill® + diy; — diyy, Vi€ I\ {k}.
Letting A; € R =DX4 denote the coefficient matrix and b; the RHS vector, we write:
Ajx; = b;.

This is a system of r; — 1 linear equations in dj, unknowns. If r; < dp +1, then rank(A;) <r;—1 <

dp, and the solution set {x; € R : A;x; = b;} forms an affine subspace of dimension at least
dp, — r; + 1. Hence, infinitely many solutions exist that satisfy the same anchor distances, preventin,

J y y p g
exact recovery of x;.

To ensure privacy across all clients (both pointwise and multisite), we enforce:

IZ;| = Ko+ KY < dy, Vje[N],
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where K éj ) is the number of local anchors accessible to x;. In the multisite case, local anchors
are restricted to the corresponding client, and global anchors are common across all clients. This
structure ensures that even with partial anchor visibility, each client’s feature vector cannot be
uniquely recovered from its observed distances.

Remark 3 Each anchor distance imposes a quadratic constraint on the unknown x; € R If the
number of constraints r; is less than the ambient dimension d, the system is underdetermined and
has infinitely many solutions. Thus, SENSE preserves privacy by bounding the number of anchor
distances accessible to each client.

Proof A.2 Consider a network in dy,-dimensional Euclidean space R%, comprising anchors A =
{Ay, Ay, ..., Ax} and non-anchor nodes P = { Py, P,, ..., Py}, with feature vectors x; € R,
Anchors locations are known, while non-anchors need estimation. Previous work [31] shows that in
R, a minimum of (d + 1) anchors with known locations is required to locate N non-anchor nodes.
The utilization of anchors for distributed sensor localization constitutes a thoroughly investigated
domain, underpinned by the following assumptions:

* (A1) Non-anchor nodes lie inside the convex hull of the anchors, i.e., C(P) C C(A).

* (A2) Each non-anchor node P; has at least one set of neighbor nodes N; C (A U P) with
|N;| = dp, + 1 such that i lies inside C(N;).

* (A3) In the set {i U N;}, every non-anchor node i can obtain the inter-node distances among all
nodes.

However, to accurately recover features in R, at least dj, anchors are necessary, even if non-anchors
are placed in any location. Thus, having fewer than dj, anchors, i.e., K < dy, guarantees that exact
feature embeddings cannot be obtained, ensuring privacy.

Proof A.3 From Theorem 3.1 (Exact Recovery) in [30], the L-HYDRA algorithm guarantees recovery
up to isometry only if K > dy, and the K anchors are in general position (not lying on a single
hyperbolic hyperplane). If K < d;,, then the system of equations defined by E and F' is underdeter-
mined: the landmarks do not span H%*, and multiple embeddings of the NA points are consistent
with the observed distances. Hence, SENSE ensures privacy by choosing K < dj,, preventing unique
reconstruction of private client embeddings.

A.10 Metric Used.

* Cosine Similarity (CosSim): Measures angular similarity between the original NA feature matrix
X{a € RV*dn and the reconstructed version Xya € RY*4 from SENSE-anchored MDS. Cosine
similarity is computed as:

N i (2)
_ 1 (Xxa?, X32)
CosSim(X{x, Xna) = N E : I% NS) ;\I(A(i)
i |l NA -l NAH

High values (close to 1) indicate strong alignment between original and reconstructed embeddings.
e Distance Error (DE): and F-score (FS): defined in Section 4.1.
* Pearson Correlation (p): Quantifies linear correlation between the original and reconstructed
NA-NA distance matrices: R
p = Pearson(G,;,G;j), VYi<j
where G and G denote the ground-truth and reconstructed distance matrices respectively. Values
close to 1 indicate that the relative distance structure is preserved.
* Frobenius Norm Error (Xj,,): Measures reconstruction error in the embedding space:

oy — [ Xna — XxallF
rob —
[ XXallF

A value of 0 implies perfect reconstruction; higher values suggest increasing deviation.
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s46  A.11 Dataset Statistics.

Table 5: Dataset statistics and learning setups grouped by embedding geometry. For hyperbolic, the stats are for
Pointwise setting.

Space Dataset #Classes #Datapoints #Clients (M) Dimension
MNIST 10 25000 10 784
Fashion-MNIST 10 25000 10 784
CIFAR-10 10 25000 5/10 1024
DermaMNIST 7 10015 10 784
PneumoniaMNIST 2 5856 10 784
Euclidean RetinaMNIST 5 1600 10 784
BreastMNIST 2 780 10 784
BloodMNIST 8 17092 10 784
OrganCMNIST 11 23583 10 784
OrganSMNIST 11 25211 10 784
German-Credit 2 1000 10 20
Airport 4 3185 3185 11
Hyperbolic Amazon - 5000 5000 128
DBLP - 5000 5000 128

647 A.12 System Specifications
e+ All experiments are conducted on a server equipped with two NVIDIA RTX A6000 GPUs (48 GB
649 memory each) and an Intel Xeon Platinum 8360Y CPU with 1 TB RAM.

650 A.13 Visualization Results

CNE Spectrum Projection for CIFAR-10
}.G‘.

.
iy

T eI
N 1

® o
1
o 2
2 )
$=0 4 ;‘ $=0.5 S=1
t-SNE Projection e ? PHATE Projection UMAP Projection
S ® 8 . .
9

Figure 4: Pointwise setting: CIFAR-10 (1000 non-anchor points, 783 anchors)
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CNE Spectrum Projection for FashionMNIST
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Figure 5: Pointwise setting: FashionMNIST (1000 non-anchor points, 783 anchors)
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Figure 6: Pointwise setting: MNIST (1000 non-anchor points, 783 anchors)
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A.14 Results.

651

Table 6: FS and DE across IID, and non-IID balanced and unbalanced splits.

Data 11D Bal Unbal
FS DE FS DE FS DE
PNEU. 0.92 0.0052 0.87 0.0066 0.91 0.0055
BLooD 0.90 0.0052 0.89 0.0051 0.90 0.0052
BREAST 0.95 0.0092 0.92 0.0113 0.91 0.0124
DERMA  0.96 0.0029 0.93 0.0031 0.96 0.0029
RETINA 0.96 0.0221 0.94 0.0272 0.96 0.0214
ORGANC 0.80 0.0092 0.79 0.0089 0.79 0.0092
ORGANS 0.81 0.0089 0.80 0.0085 0.81 0.0093
GERMAN 0.75 0.0565 0.73 0.0621 0.72 0.0629

Table 7: FS and DE under POINTWISE, IID, and NON-IID settings, comparing MULTISITE-FULL and
MULTISITE-PARTIAL.

Dataset Pointwise IID-Full IID-Partial Non-IID-Full Non-IID-Partial
FS DE FS DE FS DE FS DE FS DE
MNIST 0.9557  0.0057 0.8034  0.0097 0.9266 0.0438 0.7864 0.0101  0.9275 0.0434
FashionMNIST ~ 0.9560 0.0058 0.7586  0.0070  0.8726  0.0153  0.7534  0.0070  0.8754  0.0156
CIFAR-10 0.9562  0.0057 0.9303 0.0049 09277 0.0044 0.9308 0.0049 0.9380 0.0044

Table 8: Multisite setting comparison Non-iid unbalanced: Full vs Partial: Evaluation of different methods
(Vanilla and SENSE variants) across different metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE
— Multisite-Partial Setting —

Trust. 09259 0.9274 0.7447 0.7476 0.8175 0.8174 0.8334 0.8336 0.8322 0.8321 0.8232 0.8244
CIFAR-10 Cont. 0.9107 0.9391 0.8756 0.8804 0.9369 0.9381 0.9554 0.9552 0.9552 0.9549 0.9565 0.9561
B Stead.  0.8099 0.8165 0.6904 0.6938 0.7363 0.7349 0.7609 0.7654 0.7619 0.7580 0.7415 0.7487
Cohes. 0.4707 0.4806 0.3725 0.3752 0.4927 0.4857 0.4708 0.4630 04716 0.4778 0.4766 0.4793

— Multisite-Full Setting —
Trust.  0.9259 0.9270 0.7447 0.7482 0.8175 0.8168 0.8334 0.8336 0.8322 0.8329 0.8232 0.8247
CIFAR-10 Cont. 0.9107 0.9364 0.8756 0.8808 0.9369 0.9366 0.9554 0.9553 0.9552 0.9550 0.9565 0.9561
Stead.  0.8099 0.8229 0.6904 0.6875 0.7363 0.7357 0.7609 0.7624 0.7619 0.7580 0.7415 0.7464
Cohes. 04707 0.4673 0.3725 0.3674 0.4927 0.4831 04708 0.4662 04716 0.4690 0.4766 0.4811

— Pointwise-Full Setting —
Trust.  0.9683 0.9659 0.9435 0.9419 0.8488 0.8531 0.9112 0.9123 0.9082 0.9079 0.9021 0.9035
Cont. 0.9465 0.9448 0.9379 0.9333 0.9533 0.9527 0.9446 0.9442 0.9458 0.9437 0.9445 0.9442
CIFAR-10 Stead.  0.8061 0.8081 0.7793 0.7825 0.7111 0.7165 0.7992 0.7878 0.7887 0.8005 0.7808 0.7920
Cohes. 0.7482 0.7672 0.7415 0.7336 0.7431 0.7365 0.7485 0.7451 0.7513 0.7473 0.7435 0.7350
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Table 9: IID setting: Evaluation of different dimensionality reduction methods (Vanilla and SENSE variants)
across various metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

Trust. 09718 0.9700 0.7687 0.7700 0.8573 0.8590 0.9016 0.9026 0.8973 0.8967 0.8837 0.8795
Cont. 0.9395 09442 09145 09143 09616 09598 09592 0.9587 0.9591 0.9582 0.9606 0.9598
Stead.  0.7840 0.7844 0.6203 0.6272 0.7158 0.7228 0.7554 0.7516 0.7439 0.7424 0.7369 0.7263
Cohes.  0.7031 0.6963 0.6081 0.6272 0.6902 0.6898 0.7013 0.7112 0.6981 0.6970 0.7006 0.7050

Trust. 09628 09611 0.8643 0.8633 0.8515 0.8527 0.8847 0.8820 0.8793 0.8820 0.8729 0.8736
Cont. 0.9312  0.9280 0.9416 09391 0.9444 09440 09555 0.9558 0.9556 0.9558 0.9553 0.9556
Stead.  0.7515 0.7436  0.6899 0.6764 0.6967 0.6871 0.7259 0.7211 0.7228 0.7211 0.7164 0.7133

PneumoniaMNIST

BloodMNIST Cohes.  0.7085 0.7106 0.7233  0.7261 0.7416 0.7469 0.7435 0.7339 0.7329 0.7339 0.7453  0.7462
Trust.  0.9382 0.9370 0.7599 0.7589 0.8835 0.8774 0.8938 0.8924 0.8939 0.8920 0.8934 0.8924
Cont. 0.9452  0.9412 0.8147 0.8174 0.9533 0.9526 0.9450 0.9446 0.9450 0.9445 0.9450 0.9444
BreastMNIST Stead.  0.8522 0.8514 0.5800 0.5697 0.8056 0.8099 0.8400 0.8400 0.8287 0.8308 0.8317 0.8353
; Cohes.  0.6028 0.5987 0.4226 0.4226 0.5639 0.5611 0.5566 0.5605 0.5637 0.5670 0.5532 0.5606
Trust. 09758 0.9762 0.7513 0.7480 0.8726 0.8726 0.9129 0.9118 0.9125 0.9126 0.9017 0.9023
Cont. 0.9592  0.9583 0.9134 0.9129 0.9736 0.9729 0.9709 0.9712 0.9707 0.9706 0.9716 0.9714
DermaMNIST Stead.  0.7995 0.7976 0.5930 0.5945 0.7332 0.7291 0.7726  0.7739  0.7694 0.7638 0.7580 0.7577
Cohes.  0.7294 0.7107 0.5590 0.5618 0.7001 0.7184 0.7339 0.7334 0.7390 0.7373 0.7308 0.7297
Trust. ~ 0.9797 0.9758 0.8777 0.8643 0.9144 0.9038 0.9480 0.9335 0.9469 0.9331 0.9450 0.9313
Cont. 0.9669 0.9567 0.9280 0.9232 0.9738 0.9730 0.9718 0.9711 0.9704 0.9700 0.9678 0.9678
RetinaMNIST Stead.  0.8483 0.8479 0.6120 0.5941 0.7618 0.7434 0.8183 0.8140 0.8117 0.8050 0.8105 0.8086
! Cohes.  0.7051  0.6963 0.5835 0.5515 0.6980 0.6995 0.7123 0.7074 0.7046 0.7112 0.6831 0.7135
Trust.  0.9608 0.9482 0.8879 0.8815 0.8845 0.8858 0.9149 0.9028 0.9160 0.9039 0.9024 0.8890
Cont. 0.9238  0.9413 0.9231 0.9242 0.9696 0.9682 0.9731 0.9683 0.9730 0.9679 0.9738 0.9688
OroanCMNIST Stead.  0.6948 0.8027 0.7575 0.7678 0.7994 0.8058 0.8690 0.8677 0.8788 0.8673 0.8624 0.8593
& Cohes. 0.4762 0.4849 0.3335 0.3145 0.5695 0.5153 0.4751 0.4760 0.5268 0.5001 0.5545 0.5166
Trust.  0.9565 0.9421 0.8707 0.8588 0.8766 0.8890 0.9130 0.9026 0.9128 0.9034 0.8991 0.8911
Cont. 0.9219 0.9366 0.9248 0.9211 0.9679 0.9717 0.9741 0.9684 0.9732 0.9672 0.9737 0.9679
Stead.  0.6793 0.7753 0.7305 0.7513 0.7786 0.7965 0.8609 0.8691 0.8649 0.8745 0.8517 0.8601

OrganSMNIST

Cohes.  0.4856 0.4702 0.3327 0.3316 0.5575 0.5094 0.4838 0.4525 0.5312 0.4839 0.5564 0.4783

Trust. 09771 09553 0.9505 0.9330 0.8559 0.8551 0.9380 0.9224 0.9359 0.9140 0.9325 0.9192
Cont. 0.9590 0.9434 09587 0.9449 09482 09294 009573 09448 0.9573 0.9429 0.9564 0.9432
Stead.  0.8603 0.8251 0.8342 0.7907 0.7500 0.7228 0.8414 0.7954 0.8416 0.7883 0.8401 0.7944
Cohes.  0.6810 0.6895 0.6542 0.6413 0.6712 0.6640 0.6465 0.6651 0.6577 0.6675 0.6624 0.6550

german-credit

Table 10: Non-IID (balanced) setting: Evaluation of different methods (Vanilla and SENSE variants) across
different metrics.

Data Metric t-SNE UMAP PHATE CNE(s=0) CNE(s=0.5) CNE(s=1)
VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE VAN. SENSE

Trust.  0.9566 0.9483 0.8806 0.8658 0.8909 0.8937 0.9430 0.9393 0.9372 0.9343 0.9226 0.9168
Cont. 0.9228 09278 0.9031 09114 09776 09732 0.9683 0.9678 0.9690 0.9686 0.9704 0.9695
Stead.  0.6952 0.7165 0.6007 0.6211 0.7146 0.7244 0.7778 0.7737 0.7694 0.7692 0.7622 0.7579

PreumoniaMNIST o 06377 06815 06205 0.6070 0.6650 0.6771 07259 07162 07240 07145 07172 0.7336
Trust. 0.9304 09292 0.8902 08796 08640 08633 09003 08972 08959 08944 08862 0.8856

Cont. 09020 09029 09385 09390 09510 09492 09618 09611 09620 09614 09622 09614

BloodMNIST Stead. 07060 07017 0.6815 0.6927 06812 06927 07531 07505 07466 07442 07536 0.7395
Cohes.  0.6781 0.6761 07210 07096 07620 07540 07441 07603 07472 07335 07561 07603

Trust.  0.9643 09657 08476 08562 09188 09241 09403 09422 09385 09418 09383 09415

Cont. 09632 09658 08567 08408 00587 09671 09604 09594 09598 09590 09599 09591

BreastMNIST Stead.  0.8331 08370 05159 05081 07585 07913 08712 08742 08684 08616 08691 0.8675
Cohes.  0.6174 0.6018 03677 03741 05187 05165 05254 05667 05265 05413 05200 0.5485

Trust.  0.9545 09467 08253 08048 08963 08961 09335 09351 09292 09327 09147 09167

Cont. 09403 09284 08977 0.8895 09825 09815 09742 09734 09743 09733 09761 09756

DermaMNIST Stead. 07304 07148 05608 05428 07327 07295 07901 07909 07834 07841 07751 07743
Cohes.  0.6493 0.6484 05159 05152 06867 06726 06993 06976 06976 07128 06902 07012

Trust.  0.9749 09743 0.8933 08829 09228 09227 09522 09523 09492 09519 09497 09495

Cont. 09627 09616 09289 09152 09752 09729 09720 09713 09712 09700 09670 0.9675

RetinaMNIST Stead.  0.8447 08380 06155 06174 0753 07559 08224 08172 08134 08189 08123 0.8046
Cohes. 07140 07283 05785 05648 07189 06836 07292 07005 07092 06938 07039 0.6849

Trust.  0.9489 09271 0.8975 0.8888 09005 0.8984 09235 09132 09232 09126 09140 0.8994

Cont. 09210 09082 09232 09185 09737 09719 09756 09715 09750 09710 09760 09717

OreancyNisT  Stead 06365 07142 07462 07290 08038 07909 08611 08724 08660 08745 08621 08640
g Cohes. 04862 04913 03249 03191 05088 05154 05338 04980 05266 04974 04908 0.5282
Trust.  0.9383 09093 0.8954 0.8861 09054 09071 09269 09190 09291 09194 09172 09092

Cont. 09164 08881 09168 09255 00774 00758 09796 09746 09786 09741 09788 09741

OrganSMNIST  Sead 03896 06154 06315 06953 0.7784 07963 08591 08684 08560 08634 08411 08523

Cohes.  0.5109 05108 0.3441 0.3665 0.5642 0.5278 0.5079 0.4878 0.5461 0.5021 0.5487 0.5001

Trust. 09752 09575 09511 0.9301 0.8552 0.8508 0.9403 0.9211 0.9380 0.9172 0.9350 0.9176
Cont. 0.9581 09418 0.9606 0.9427 0.9481 0.9240 0.9576 0.9470 0.9575 0.9463 0.9571 0.9460
Stead.  0.8567 0.8267 0.8350 0.7850 0.7398 0.7023 0.8484 0.8063 0.8475 0.8016 0.8405 0.8020
Cohes.  0.6795 0.6837 0.6488 0.6509 0.6870 0.6828 0.6620 0.6834 0.6557 0.6676 0.6564 0.6653

german-credit
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?

Answer: [Yes]

Justification: Yes, all the claims are reflected in paper. See Section 4 and Appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 4. While increasing K (number of anchors) tends to improve results, it

also introduces a trade-off between privacy guarantees and approximation quality. For optimal

privacy preservation, K should be less than dj,, with K = d;, — 1 being the ideal setting. In

4 we provide the ablation study with varying anchor count to show this. Thus, if we have

data such that d, < N where N are the total points, then dp, — 1 anchors are optimal due to

manageable computational costs. But for data with d;, >> N, using K < dj; — 1 anchors
reduces computational costs, although using too few anchors significantly decreases performance,
illustrating a trade-off between performance and computational cost.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: See Appendix.

Guidelines:
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 4 and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data

are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to make

their results reproducible or verifiable.

» Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to

faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All datasets used are publicly available. See Section 4 and link SENSE-NeurIPS

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,

how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate

information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-

ments?

Answer: [Yes]

Justification: See Appendix A.12.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.
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11.

» The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS

Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conducted in the paper conform, in every respect, with the NeurIPS Code

of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal

impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,

or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

883 12. Licenses for existing assets
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13.

14.

15.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: Assets are properly credited and publicly available.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation

provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as well as

details about compensation (if any)?

Answer: [NA|

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-

jects

Question: Does the paper describe potential risks incurred by study participants, whether such

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals

(or an equivalent approval/review based on the requirements of your country or institution) were

obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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