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We have developed a system for automatic facial expression recognition running on Google Glass, delivering real-time social 
cues to children with Autism Spectrum Disorder (ASD). The system includes multiple mechanisms to engage children and 
their parents, who administer this technology within the home. We completed an at-home design trial with 14 families that 
used the learning aid over a 3-month period. We found that children with ASD generally respond well to wearing the system 
at home and opt for the most expressive feedback choice. We further evaluated app usage, facial engagement, and model 
accuracy. We found that the device can act as a powerful training aid when used periodically in the home, that interactive 
video content from wearable therapy sessions should be augmented with sufficient context about the content to produce 
long-term engagement, and that the design of wearable systems for children with ASD should be heavily dependent on the 
functioning level of the child. We contribute general design implications for developing wearable aids used by children with 
ASD and other behavioral disorders as well as their parents during at-home parent-administered therapy sessions.  
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1 INTRODUCTION 
Autism Spectrum Disorder (ASD) is quickly becoming a global health crisis, estimated to affect 1 in 68 children 
[5] and cost the U.S. health system over $137 billion each year [29]. The neurodevelopmental disorder results in 
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impaired communication, eye contact, expression recognition and social interactions [10, 11, 12, 27, 28, 32, 33, 
41, 48, 60]. Today’s best-known intervention, applied behavioral analysis (ABA), relies on teaching these skills 
in clinical environments, largely removed from where they will be used and relying on tools such as flashcards 
[33]. While this intervention can lead to improvements [34], the therapy is applied inconsistently and often 
generalizes poorly to situations that go beyond the routines practiced with the relatively limited clinical tools 
available [10]. 

Even when programs are properly administered, their delivery is increasingly bottlenecked as the number of 
available therapists lags well behind by the number of children in need of care. Wearable aids such as Google 
Glass provide a means of helping children with ASD because they allow for the juxtaposition of the user’s field-
of-view with virtual visual and audio feedback, which creates an opportunity to reinforce real-world concepts 
such as a person’s emotional state while having a conversation with another person. We have developed an 
artificial intelligence tool for automatic facial expression recognition, named SuperpowerGlass, that runs on 
Google Glass and delivers instantaneous social cues to children with ASD in their natural environment. We 
tested the system via a longitudinal at-home study under the supervision of the Stanford Institutional Review 
Board. All identifiable data we collected are secured in HIPAA compliant systems. 

At a high level, the computer vision system uses the glasses’ outward facing camera to read a person’s facial 
expressions by passing video data to an Android native app for immediate machine learning-based classification 
of the commonly used Ekman “basic” emotions for which training-data are readily available: anger, disgust, 
fear, happiness, sadness, and surprise, plus a contempt (or “meh”) and a neutral category [13]. The system then 
gives the child wearer real-time social cues and records social responses, including the amount of eye contact 
and level of social engagement. Through a dedicated app, parents can then review and discuss videos of social 
interaction. These videos are auto-curated to enable fast navigation by highlighting the emotions detected in 
the video on the video playback bar. 

Rather than acting as a prosthetic that is constantly worn by the child, the system is meant to be used as a 
training aid that is used for a few minutes to an hour on a regular basis. An important aspect of this system is 
that the experience must be engaging not only for the child with ASD but also for the parent, who must 
consistently and repeatedly use the wearable system with their child. This introduces a vast array of additional 
design constraints, as all design decisions must be considered in terms of both the child and the parent. 

To evaluate the effectiveness of our wearable system and to determine how families use the system over a 
twelve-week period at home, we launched an iterative design study with 14 families with a child impacted by 
ASD. These families took the devices home and used them on a regular basis. Although the families were asked 
to use the device for an hour every day, there was variation in the participation rate of the families. The study 
produced over 5,000 minutes of app usage data from the 14 families, which we used to learn about the 
effectiveness of various parts of the system. We tracked emotional learning progress with periodic in-lab check-
ins while continuously gathering device data. Along with observations made by parents, the data suggest that 
the therapy delivered by our system has the potential to facilitate substantial improvement in children’s social 
skills. This methodology enabled us to refine design choices about the system while learning about each family’s 
experiences with the system. 

Our contributions to HCI are (1) a wearable emotion-recognition and feedback system for children with ASD 
that is designed for regular periodic administration by parents in an at-home setting and (2) numerous design 
lessons learned from a longitudinal at-home iterative design trial involving families with children with varying 
severities of ASD. 

2 RELATED WORK 

2.1 Interactive Assistive Technology For ASD 
Head-worn displays have been used to provide unobtrusive, always-available, and glanceable vocabulary 
support to individuals with Aphasia. It was found that a head-worn approach better allows wearers to maintain 
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focus on the conversation, reduce reliance on the availability of external tools (e.g., paper and pen) or people, 
and minimize visibility of the support by others [59]. 

Interactive visual displays have been developed for children with ASD. vSked, an interactive and 
collaborative visual scheduling system designed for children with ASD in elementary school classrooms, was 
found to reduce staff effort for using the visual cues and also resulted in improvements in the perceived quality 
and quantity of communication and social interactions in the classroom [26, 61]. 

Techniques that involve verbal and visual prompting annotated on top of the physical objects used during 
therapies for children with ASD have also been explored in Mobis, a mobile augmented reality application that 
lets teachers superimpose digital content on top of physical objects [16]. MOSOCO, another mobile assistive 
technology, uses the visual supports of a validated curriculum to help children with ASD practice social skills 
in real-life situations [15]. 

Hayes et al. have determined design requirements for assistive technologies that use interactive visual 
supports to engage students and support parents simultaneously: flexibility, communication and collaboration 
capabilities for both children and parents, and parent support for programming and documentation of use [24]. 

It should be noted that although visual support systems have been extensively explored for children with 
ASD, audio coaching has been shown to be an effective instructional tool for children with ASD as well [4]. We 
therefore explore both visual and audio cues in SuperpowerGlass. 

2.2 Wearable Technologies For ASD 
While there are numerous concerns regarding user perceptions of smart glasses for general-purpose use [31], 
other studies have found that participants consider head-mounted display use more socially acceptable when 
the device is being used to support a person with a disability [46]. Because of the social acceptability of wearable 
displays for disabilities and the large potential for wearable technologies to aid those with disabilities, there is 
a great deal of literature on wearable systems to aid children with ASD. 

Virtual reality systems using a fully immersive headset have been found to be effective learning aids for both 
children and young adults [29]. Parent-driven use of wearable cameras for ASD support has shown that the 
ability to see the world through their child’s eyes was of high value to parents. The camera supported parents 
in understanding their children’s needs and helping their children engage with the world [37]. Hayes et al. have 
found that automated capture can be successfully applied in a variety of settings to assist with the education 
and giving of care to children with ASD, while also providing a means of keeping records of those activities 
[23]. 

Picard’s lab at MIT has explored the use of wearable systems and affective computing as companion tools for 
social-emotional learning and the use of the recorded videos for defining a process to collect, segment, label, 
and use video clips from everyday conversations [44, 55]. The group has built a prototype of a Google Glass 
application to sense daily emotions in users, identifying several challenges of using Google Glass to detect 
emotions, such as constrained battery life, limited storage space, and privacy concerns over transmitting 
affective information over a wireless network [25]. 

Various wearable systems have been developed specifically for autism support. Boyd et al. have developed 
SayWAT, a wearable assistive system which can automatically detect atypical prosody and deliver feedback in 
real time without disrupting the wearer or the conversation partner [7]. They found that for short-term 
engagement, visual wearable feedback is likely to be appropriate for people with ASD, but that for longer-term 
use, additional work is needed to understand the potential opportunities and challenges of visual wearable 
feedback [7].  ProCom has been developed as a wearable assistive technology which can support people with 
ASD in developing awareness of physical proximity in social settings; the researchers found that children with 
autism respond to real-time information in wearable visualizations during a conversation [8]. We use this 
insight in the development of our system which provides emotion feedback to children during a conversation 
or other person-to-person interaction. 
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None of these wearable systems for children with ASD are meant to be used for a prolonged period in an at-
home setting while regularly being administered by parents. We extend this prior work on wearable aids for 
children with autism by exploring challenges that arise when the system is frequently used at home over a 
prolonged time period and controlled by the parent. To address this design challenge, we introduce several 
customizable options for visual and audio feedback to promote continued parent and child engagement, a facial 
engagement indicator to promote face-to-face interaction during the sessions, and a session review application 
that highlights emotional moments during video playback of a previous therapy session. These additions have 
allowed us to make several design insights about wearable systems for children with ASD used at home and 
administered by parents. 

2.3 Behavioral Therapy Systems for ASD 
Recent work explores technology to enhance therapy for children with ASD. The ECHOES project explores a 
technology-enhanced learning (TEL) environment that facilitates acquisition and exploration of social skills by 
typically developing children and children with ASD [45]. Another study found that watching a television series 
designed to enhance emotion comprehension every day can improve the emotion comprehension of young 
children with ASD [21]. Multitouch interfaces for behavioral therapy have been found to increase collaboration 
skills in children with ASD [3, 19, 20]. Humanoid robots used as catalysts for social behavior have been shown 
to promote positive child-human interactions [17]. Much of this work has determined that children with ASD 
enjoy gamified systems and that a playful system is generally most effective in providing useful behavioral 
therapy. Frameworks for designing games to teach emotion to children with ASD have also been successful 
[43]. Robot therapy for ASD has been explored as one of the first applications for socially assistive robotics. 
Scassellati et al. (2012) found that social robots may be developed into useful tools for social skills and 
communication therapies, specifically by embedding social interaction into intrinsic reinforcers and motivators 
for children with ASD [50]. Ahmed et al. have found that for children with autism, behavioral engagement (the 
proportion of time a participant has their face oriented to the computer screen) and emotional engagement (the 
activation of facial activation units) are strongly correlated with one another, but that emotional (not behavioral) 
engagement is a better predictor of test performance [1]. Our system takes a different approach to addressing 
this phenomenon by providing feedback reinforcing behavioral engagement for the child only when the child 
elicits emotional engagement with a conversational partner. 

Kientz’s work has determined several relevant principles for designing ubiquitous systems for children with 
ASD: changes in behavior should be seamless for the child, easier systems are better, customization of the system 
is critical, and parents are usually a better source of feedback about the system than the children themselves 
[23]. Participatory evaluation with children with ASD has been explored and found to be successful through 
dedicated evaluation phases including the co-definition of goals and methods, joint processes of data gathering 
and the co-interpretation of results [52]. Spiel et al. have developed an approach for capturing and describing 
the multi-faceted experiences autistic children have with technologies, drawing on diverse data sources ranging 
from interviews to log-data, and the first-hand perspective of autistic children [53]. We used these various data 
sources in our evaluation of SuperpowerGlass in order to understand the multi-faceted experiences that the 
system may result in at home as opposed to in lab. 

We extend the study of behavioral therapy systems for ASD by conducting, to our knowledge, the first 
longitudinal study observing prolonged use of a wearable device in an at-home setting by children with ASD. We 
identify several differences required in the design of such therapy systems that arise when the devices are used 
at home and controlled by parents (as opposed to in-lab studies). 
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3 SUPERPOWER GLASS SYSTEM DESIGN 

3.1 Overall Architecture 
The overall system architecture for the SuperpowerGlass system is depicted in Figure 1. The system consists of 
two components: the Google Glass (worn by the child) and a wirelessly linked Android phone (used by the 
parent). The system is controlled by the Android application, which allows the parent to initiate one of several 
activities (detailed in the next section). During a session, social cues are delivered to the child in real-time on 
Glass based on the results of the emotion recognition model that runs on the Android device. A video recording 
of the session is saved on the Android device. During the initial pre-trial interviews, parents explained that they 
were comfortable with sharing video recordings of at-home recordings but were not willing to share the audio 
of their conversations. Due to these initial privacy concerns, the audio from the activity sessions is not recorded. 
After a session is complete, the parent and child can review a video recording of previous sessions on the 
Android app. 

Fig. 1. Overview of the SuperpowerGlass system. 
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Fig. 2. The home screen allows parents to scroll through a newsfeed of previously recorded sessions or to start a new 
session. Parents can select various parameters about the session, such as the exact activity, the type of feedback (audio or 

visual or both), and the type of facial engagement indicator returned to the heads-up display in real-time. 

3.2 Activities 
The Android application allows the user to select between three different types of activities: two structured 
game-like activities (Capture the Smile and Guess the Emotion) and an unstructured activity where a social cue 
is provided whenever the corresponding facial expression is detected on the Glass. Multiple games are added in 
order to increase engagement by increasing the selection of activity choices. We also wanted to determine 
whether children with ASD will prefer cycling through a series of games over a long period of time or converge 
to a preferred game. 

3.2.1 Capture the Smile. The first structured activity, “Capture the Smile”, is a game adapted from Picard’s 
work at the MIT Media Lab [14] in which the child is challenged to provoke prompted emotions in an adult who 
makes the face corresponding to the emotion. For example, the child can give a compliment to the adult in order 
to provoke a happy face.  The glasses play an audio prompt of the form “find a/an <emotion> face”. Once the 
emotion recognition system recognizes the emotion on the adult’s face, audio or visual feedback is provided to 
the child via the glasses (the feedback mechanisms are described in more detail in the next section). Our 
implementation of Capture the Smile lasts for 180 seconds or until the child has successfully evoked 20 emotions, 
whichever comes first. If the adult and child are stuck and cannot evoke an emotion, they have the option to 
swipe forward on Google Glass’ touchpad located near the wearer’s right temple. 

3.2.2 Guess the Emotion. The second structured activity, called “Guess the Emotion”, challenges the child to 
guess the emotion evoked on the face of an adult. In each round, the adult initially selects on the Android app 
the emotion they want to evoke. After the adult has chosen the emotion and made the corresponding face, the 
child verbally guesses the emotion. If the child guesses the correct emotion, then the glasses play/display the 
social cue corresponding to the emotion. The game is scored but can last for as many rounds as the adult and 
child wish to play the game. 

3.2.3 Unstructured Activity. When the glasses are worn at home, they can be used as an unstructured 
emotional aid during social activities (e.g., dinner). During the unstructured activity, the glasses provide the 
selected feedback mechanism whenever it recognizes the emotion. The user simply wears the Google Glass 
system, receiving feedback whenever the system detects an emotion (rather than in the context of a game like 
Capture the Smile of Guess the Emotion). To prevent excessive feedback, the glasses provide the social cues at 
a maximum rate of once per six seconds for repeated emotions. The unstructured activity has no time limit. 
Families are provided a list of suggested activities divided into three categories (“Play”, “Tell me…”, “Others”), 
including “Free Play” and “Other” options from which they choose an action. Their choice has no impact on the 
way the system works during the activity, but is recorded for analysis. 
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3.3 Feedback Choices 
Several potential feedback mechanisms can be run on the glasses, in the form of both visual and audio cues. An 
ideal feedback mechanism will maximize behavioral information given to the child while minimizing distraction 
to the child’s focus. This is a particular concern with children with ASD, who are believed to hyper-focus on 
nonsocial objects and react negatively to sensory overload [40]. We therefore have explored various visual 
feedback mechanisms to display on the glasses, each with varying levels of potential distraction to the child. 
The visual feedback can also be combined with audio feedback for even more stimulation. Before a session 
begins, the parent has the option to select the feedback mechanism that will be used during the session. Our aid 
allows users to choose between three emotional feedback mechanisms: visual cues, auditory cues, and combined 
visual and auditory cues. 

3.3.1 Visual Emotion and Color Cues. For the visual feedback, [57] introduces three possible heads-up 
interfaces and describes in-lab interaction observations that argue for a combined emoticon and color feedback 
as depicted in Figure 3. This can be justified with perception literature. It has been shown that a majority of 
children with ASD are able to recognize the emotion displayed by a digital avatar [39]. Work in color research 
suggests that people notice colors before shape or text within their peripheral field of view and tend to associate 
colors with certain emotions [56]. While not all of the emotion-to-color associations are universal [30], children 
tend to make similar associations between colors and emotional concepts [6]. We selected the colors for each 
emotion using the guidelines presented in [6]. Because we were only studying 7 emotions, we hypothesized that 
repeatedly showing a color with an emoticon and auditory feedback would allow children to eventually notice 
the social cues within their peripheral field of view, rather than having to actively look at the screen, and thus 
provide an unobtrusive cue. 

Fig. 3. There are various potential visual feedback cues that can be displayed to the user. 

3.3.2 Auditory Cues. Because audio coaching has been shown to be an effective instructional tool for 
children with ASD [4], we decided to provide users the option before beginning a session to receive audio 
feedback either in addition to or instead of visual feedback. The audio feedback consists of a female voice reading 
out the name of the emotion. The audio feedback is emitted via a bone-conducting speaker on the glasses, which 
is loud enough for the child to hear and only faintly noticeable by a conversation partner in a home environment. 
Children also had the option to use a right-sided mono earpiece that plugs into the glasses for improved sound 
quality and privacy, but mostly did not find this necessary. 

3.4 Face-Tracking Indicator 
During the in-lab trials conducted in [58], situations were observed in which the system would fail to recognize 
emotions not because of a problem with the recognition model but because a face was not detected, for example 
due to challenging backlighting. To enable users to distinguish between a lack of cues and a correctly tracked 
but neutral face, we have added an indicator signal on the display of the glasses that lights up whenever a face 
is detected. We explored whether the presence of the indicator would result in increased facial engagement over 
time with periodic use of the SuperpowerGlass system. The indicator is bright green, primarily because green 
is not one of the colors used to represent any of the emotions. As shown in Figure 4, there are four indicator 
options. Each indicator option varies in its level of prominence (area of screen coverage). The indicator is 
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generally visible to both the child and the parent due to the clear display of Glass. The user is prompted to select 
one of the four choices at the beginning of each session. In order to see whether child preferences for indicator 
design stabilizes over time, we asked the parents to allow the children to choose the indicator option which they 
preferred. For lower functioning kids who could not respond/not choose the indicator option they liked the 
most, the parents chose for them. 

Fig. 4. Face-tracking indicator options. 

3.5 Parent Review System 
In order to facilitate continued parent and child engagement with SuperpowerGlass, we have added a parent 
review system on the Android app which allows parents and children to review previously recorded sessions. 
The review system contains a newsfeed-like view of the previous session recordings, as shown in Figure 5. In 
the video playback for each video, emotions are gathered from metadata that are stored with each frame of the 
recorded video so that the emotions displayed on the video playback bar are aligned with the emotions that 
were captured during recording-time, as shown in Figure 6. This allows users to skip to relevant parts of the 
video. Parents are encouraged to review videos of past sessions with their children. While reviewing the videos, 
parents can mark particular parts of the session as important. This serves as a bookmarking tool for parents and 
researchers. The parent review feature capitalizes on the longitudinal nature of the system usage, allowing 
parents to point out to children differences in behaviors over time. 

Fig. 5. The parent review application contains a newsfeed-like view of the system. 
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Fig. 6. While reviewing the videos, parents can mark parts of the session as important by clicking the star button on the 
upper right-hand corner of the screen. This can signify a variety of features important to either/both the parents and 

researchers, such as an error in emotion recognition, notable behavior in the child’s response to therapy, or an otherwise 
important part of the video that should be reviewed at a later time. 

4 IMPLEMENTATION DETAILS 

4.1 Communications Infrastructure 
The glasses and Android device are connected via a dedicated wireless network, originating from the Android 
device and secured via WPA2 encryption. Users initiate a new activity via the Android application. This prompts 
the glasses to begin the activity and start capturing video frames. To reduce the video latency, the glasses send 
the uncompressed video frames to the phone via UDP as uncompressed greyscale frames at 320x194 resolution 
with a frame rate of 30 fps. While some frames may be dropped due to the nature of the UDP protocol, this is 
not of concern, as detected emotions are associated with a particular frame rather than a time. 

During a session, the Android device displays a real-time preview of the incoming video feed and runs each 
frame through our expression recognition pipeline (detailed below). It then returns the detected emotion and 
face location data via UDP to the glasses. The glasses interpret the result and show the appropriate social cue 
(either on the heads-up display or as audio). 

4.2 Facial Expression Recognition 
Our real-time expression recognition system running on the Android device builds on a lightweight face tracker 
and an emotion recognition classifier. The system is built to be modular, so that the facial expression recognition 
classifiers are trained separately from other components of the computer vision system. This allows us to not 
only quickly evaluate the experience had with different models, but also adapt the system to different face-
relevant tasks. 

Our emotion recognition system consists of a logistic regression classifier that evaluates HOG features [9] of 
a face registered via a lightweight face tracker and made lighting-robust by the method of Tan-Triggs [54]. The 
system uses neutral subtraction [22], a method that learns the subject’s neutral face at runtime in order to better 
discriminate expressions. After classification, we temporally filter the results in order to reduce the fire-rate of 
social cues and avoid false positives or rapid switching between cues if a classifier finds the data near the 
decision boundary. As we know who will be interacting with the user of the device for this use case, we optimize 
each participant’s model to these individuals, adapting from a base model. The base model is trained on a mix 
of the Binghamton University 4D Facial Expression Database [62], the Bosphorus Database [49], the CMU Pose, 
Illumination, and Expression Database [51], the Extended Cohn-Kanade Dataset [35], the Japanese Female Facial 
Expression Database [36], and the MMI Facial Expression Database [42], along with our own data gathered in-
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lab via another approved protocol through Stanford University Institutional Review Board. At training time, 
data are augmented by mirroring images and adding Gaussian field noise to the face tracker to simulate tracking 
inaccuracy. 

User-specific models are then employed via hierarchical Bayesian domain adaptation [18], putting a Gaussian 
prior on the distribution of model coefficients. Adaptation can be done online via an approximation. Data are 
collected through an iterative training technique in which we ask subjects to act out various expressions 
multiple times, with acting-out queries made in an active fashion – the current model decides what it needs to 
see more of. This process usually takes 2-3 steps. Data are loosely curated, keeping all that the subject decides 
is a reasonable representation of the emotion, so long as there is a noticeable distinction made between 
expressions. An evaluation of this adaptation system is presented in the section on Model Accuracy. 

4.3 Increasing Facial Resolution 
Given the limited processing power and battery life of Glass, all computationally intensive tasks such as frame 
processing, video encoding, and data storage are handled on the Android phone. Despite this, the combination 
of camera processing and network activity on Glass still results in a limitation on the resolution of images that 
can be processed and transmitted at a frame rate sufficient for the emotion recognition processor. Further, this 
limitation increases over time, as the device temperature increases and Glass enacts CPU throttling to avoid 
overheating. To provide a sufficient frame rate through the entire life span of a real-time interaction session, 
but still increase the resolution available for emotion recognition, a dual approach is taken. Instead of providing 
the same image source for all conditions, a lower resolution full-frame image is provided whenever a face has 
not been detected; this allows for face detection through the camera’s full field of view. However, when a face 
has been detected, the face’s location in the field of view is used to instead provide a cropped view of the face 
from a higher resolution image. This allows for providing increased facial resolution to the emotion recognition 
processor while still working within the same processing and transmission limitations encountered on Glass.   

4.4 Moving Window Frame Buffer 
To avoid displaying the emotion cue for temporary errors in the emotion recognition model, the expression 
recognition server running on the Android employs a series of moving average filters during various stages of 
processing, including in the final expression classification, before sending a result back to the Glass device. 

5 SYSTEM EVALUATION 

5.1 Study Methodology 
We conducted a 3-month long at-home iterative design trial exclusively with children with varying degrees of 
ASD and their parents in order to learn about the effectiveness of various aspects of the system, such as the 
emotion recognition model, the activity types, the feedback mechanism options, and indicator design. The 
average age in years for the 14 participants was 9.57 (SD=3.37, min=4, max=15), with n=3 (21.42%) females and 
n=11 (79.58%) males. Out of our 14 participants, 6 were Caucasian (including 1 Hispanic/Latino participant), 7 
were Asian, and 1 was of Pacific Island origin. We asked each family to take the system home and use it for at 
least 20 minutes 3 times per week. Beyond this, they were encouraged to use it as they saw fit for any additional 
length they preferred. 

The study was under the supervision of the Stanford Institutional Review Board (protocol 34059). All 
identifiable data we collected are secured in HIPAA compliant systems. Every participant went through an 
initial onboarding session in lab. During these onboarding sessions, families were given an overview of the 
system, including a trial-run of Capture the Smile, Guess the Emotion, and the Unstructured Activity. Facial 
emotion data were then collected from the parents and nuclear family members, with our baseline model being 
iteratively trained until convergence for all basic Ekman emotions. To provide an additional layer of security to 
the recorded videos on the Android application, all devices were locked with a 4-digit passcode provided to the 
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parents during this onboarding session. To correlate data about the participants’ system usage with the 
functioning level of the child, each selected participant took the Abbreviated Battery Intelligence Quotient 
(ABIQ), which measures the areas of nonverbal fluid reasoning and verbal knowledge and includes two of the 
most important abilities predictive of academic and vocational advancement [47]. We interviewed each 
participant and their parents during these onboarding sessions, where we were able to make initial design 
modifications to the system before sending it home with the family. 

Roughly every two weeks, the families returned to our lab for a check-in. During each check-in, we provided 
parents with an updated version of the Google Glass and Android apps. If the parents noticed a problem with 
the emotion recognition model, we would update the model until it consistently recognized all emotions 
correctly. 

During these scheduled check-ins, a clinical examiner interviewed both the parents and child with ASD. The 
same clinical examiner conducted all of the interviews. Interviews lasted between 30-45 minutes and included 
a parent-directed and a child-directed set of yes-or-no questions (see Appendix A for the full list of questions). 
A clinical autism expert pre-approved the child-directed questions. The parent(s) were interviewed first, 
followed by the child. After each question was asked, the interviewee had the opportunity to elaborate on their 
response or to move on to the next question. If the interviewee chose to elaborate on their response, the clinical 
examiner noted verbatim quotes in a log containing all of the participant quotes. While the optional participant 
quotes were recorded during these intermediate check-ins, the responses to the yes-or-no questions were not 
recorded until the final conclusion appointment. Two kids were nonverbal during conclusion interviews. In 
both cases, the kid-directed set of questions were redirected to the parent, who would answer on behalf of the 
child. 

We asked the same set of questions to each set of families during the final conclusion appointment, as well 
as an additional set of questions (see Appendix B for the full list of additional questions). For the additional set 
of questions, formal tallies were recorded and used for post-study synthesis by the study researchers. Parents 
and children were kept in the same room for both the check-in and conclusion interviews. As a result, the 
parents and children would sometimes elaborate upon each other’s responses. 

The quotes and qualitative findings presented in this paper are drawn from the interview content. Given the 
nature of this pilot design study with a small sample, we followed an iterative, inductive approach to finding 
patterns that pointed to potentially relevant outcomes and design issues. Members of our team reviewed the 
system logs and identified areas where there appeared to be meaningful patterns to explore further. Through 
the interview process described above, as well as a review of session videos and analysis of logged study data 
(detailed in Section 5.2), we made several observations about the use of the system outside of the lab, giving us 
several insights about the effectiveness and usability of wearable social aids outside of the lab. We reviewed 
(watched as a team) individual videos to illustrate points from the parent interviews as they were brought up, 
usually amounting to reviewing approximately 20 minutes of video data per participant. When parents marked 
videos as important via the video review system, we selected these videos to watch. If not, we asked parents if 
there were any notable videos to review. If parents did not have an answer, we selected videos with high levels 
of emotional content (which our system automatically logged, as described in Section 3.5) to review. 
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Table 1. Participant demographic data and scores on various screening questionnaires. 

5.2 System Usage 
To measure usage across interface choices (different indicators, activities, and feedback options) we encouraged 
participants to try out all options at home. During the biweekly check-ins, if a participant stated that they did 
not use a particular feature or only used a particular feature once, we asked them to use it during the next two 
weeks so that we could gather more concrete data about their interactions. We collected all recorded video data 
and marked sections of the videos along with custom usage logs during check-in days. These usage logs were 
recorded automatically by the SuperpowerGlass system and stored locally on the Android device until the 
check-ins, when the data was migrated to a HIPAA-compliant server using a custom analysis tool suite 
implemented in Python. 

In total, we collected 5726 minutes of app usage log data. Participant mean usage of the app was 409 minutes 
(SD=266.8), which includes time spent with features like the parent review. Participants produced a total of 3017 
minutes of session video data, with a mean amount of 216 minutes per participant (SD=162). The mean video 
session length was 5.28 minutes (SD=6.15). 
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Fig. 7. Fraction of participant’s usage that was Guess the Emotion and Unstructured Activity vs. functioning level (as 
measured by ABIQ) of each participant. The plot for Capture the Smile is not provided since Capture the Smile was a 

fixed-length game (whereas the user can play Guess the Emotion and the Unstructured Activity for as long as they wish). 

While overall, families chose evenly between structured and unstructured activities, we noticed that this 
choice differed across the functioning spectrum of our participants. Figure 7 shows breakdowns of the activity 
choice for each participant along with their functioning level, revealing a downward trend in usage of the Guess 
the Emotion activity and an upward trend in usage of the Unstructured Activity with the increasing functioning 
level of the child, as determined by the ABIQ scale. Multiple families of lower-functioning children remarked that 
the structured games elicited more response from their child. Parents believed this was due to the fact that the 
games had structured goals to achieve, and clear predictable feedback responses when milestones were met. 
Families of higher-functioning children remarked that their child gravitated to the unstructured activity. One 
such family remarked that when their child was asked to try Guess the Emotion (one of the structured games), 
they tried it once, figured out how to play it immediately, accumulated a very high score, and then declared that 
the game wasn’t challenging and that they had finished it. Another commented that their child didn’t find the 
structured games challenging, and wanted to use the unstructured activity so they could choose their own game 
to play. 

5.3 Facial Engagement 
To quantify social interaction across different usage and activities, we employed a face-tracking based 
engagement measure we term “facial engagement”. Due to the obtrusive nature of wearable glass based eye 
trackers described in [61], we did not utilize a full field-of-view eye tracker in this at-home study and instead 
relied on face tracking data extracted from the front-facing camera of Google Glass to identify video frames in 
which the child was engaging with a face. Specifically, we report normalized facial engagement for a given 
session video as: 



112:14  •  P. Washington et al. 

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 112. Publication date: 
September 2017. 

Frames containing face with yaw angle between
-30 and 30 degrees 

Total number of frames

We hypothesized that this is a reasonable proxy measure for social overtures and perhaps even eye contact. 
We plan to further validate this using structured lab observations. Engagement measured this way exhibits 
relatively large standard deviations across sessions due to vastly heterogeneous usage patterns and the noise 
associated with face tracking in unstructured, naturalistic videos. 

Although generally parents and children chose relatively evenly between structured and unstructured 
activities, facial attention was not even across both types of activities. Structured interactive games yielded more 
facial engagement than the unstructured activities, as can be seen in Table 2. 

Table 2. Mean Facial Engagement Proportion Across Various Activities ± SEM (SD) 

Capture The 
Smile 

Guess The Emotion Unstructured Activity 

0.466 ±0.032 
(0.267) 

0.366±0.023 
(0.228) 

0.280±0.015 
(0.227) 

5.4 Indicator Preferences 
In order to obtain qualitative information about all four indicator options, families were asked to cycle through 
all four indicator options throughout the duration of the trial. During interviews, all 14 families stated when 
asked that they preferred the use of a facial indicator to not having one. One family remarked that the indicator 
wasn’t displaying in certain lighting conditions outside, so they used it inside where the indicator confirmed 
operation was reliable. Another family commented that they would use the device often in the kitchen, because 
the indicator confirmed emotions could be detected there best. 

This feedback supports our hypothesis that the indicator was an important aid in helping children distinguish 
between “neutral faces” and missed expression detections due to a system failure, such as those introduced by 
adverse lighting situations. Initially, we worried that this indicator would encourage the maladaptive behavior of 
children lining up the display with their conversation partner's face, but families reported no evidence of this, and 
no such behavior was observed in lab during study check-ins. 

Of the four options for indicator shape and size presented to participants, parents and children chose the box 
indicator in slightly over 51% of all sessions, followed by the triangle indicator at 34%. This data further supports 
that children preferred having an indicator to just raw expression feedback and, given a visual design choice, 
chose the most prominent and noticeable one (the amount of face contact measured tended to decline as the 
area of the indicator declined). We observed a measurable difference in facial engagement across the four 
indicator choices, as seen in Figure 8. Facial engagement per indicator choice was calculated as the average over 
all sessions of the proportion of time the facial engagement indicator was activated in a session (weighted by 
session time). All visible indicator options provoked more facial engagement than having no indicator, with the 
largest gain measurable in the “box” indicator. However, although children volunteered during the interviews 
that they preferred the “triangle” indicator to the “line” indicator, the latter exhibited noticeably higher facial 
engagement. Nevertheless, the children responded that they preferred the “triangle” indicator to the line because 
“it’s easy to use” (Participant 2, 10-year-old male) and “it’s not distracting” (Participant 2, 10-year-old male as 
well as Participant 11, 4-year-old female) compared to the other indicator options. This discrepancy between 
some of the design preferences of the user and designs that result in higher facial engagement suggests that 
there may sometimes be a tradeoff between feedback that elicits a high level of facial contact versus feedback 
that is unobtrusive. 
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Fig. 8. Mean facial engagement for each indicator with SEM error-bars (t-test of “None” vs “Box” indicator gives p<0.05). 
Facial engagement per indicator choice was calculated as the average over all sessions of the proportion of time the facial 

engagement indicator was activated in a session (weighted by session time). 

5.5 Parent Review 
Based on usage logs, 7 out of 14 families used the parent review consistently more than once at home. During 
exit interviews, one family described using the review app to demonstrate their child’s behavior to them, 
resulting in the child more carefully considering their behavior thereafter. The parent of another family came 
to realize, after seeing their child’s field of view move sporadically, that their child’s inability to focus was 
related to their frequent physical movements. One parent described the process of reviewing the session as a 
fun activity: 

“We like looking at the parent review app together. We usually wind up laughing at ourselves because, 
gosh, I didn’t realize I looked like that!” – Participant 31 parent (participant 10 years old, male) 

Regarding the families who did not use the parent review system, two families commented that the review’s 
lack of audio playback (see Section 6.2) made it harder to review interactions because it was difficult to recall 
the context of the interaction from just an annotated video. Furthermore, we suspect that without building 
intentional activities centered around the parent review, families may not know how best to use it. 

5.6 Model Accuracy 
The base facial expression recognition system achieves 97.0% accuracy on the Extended Cohn-Kanade Dataset 
[22]. We performed cross-validation on our participant expression calibration data, achieving an accuracy of 
74.7% (SD=10.5%) with participant-specific models and 60.4% (SD=10.5%) with the base model. Note that the 
much lower performance than on Cohn-Kanade owes to the fact that this data, gathered in an active learning 
fashion, is by definition “adversarial,” with greater variation and noise than standard academic datasets, 
providing a lower bound estimate on real-time accuracy in the home. 

While we maximized accuracy by customizing the emotion recognition model to each participant’s family 
and close friends, there were still instances when the model failed. In some of these cases, parents were able to 
use the emotion misclassification as a learning experience: 
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“We would laugh if it picked up the wrong emotion and then we would talk about what is in fact the correct 
emotion…it gave us a platform to talk about emotions that we didn’t have before.”  - Participant 2’s Parent 
(participant 10 years old, male) 

In other cases, when the emotion recognition failed, the parents would sometimes blame their emotional 
acting skills rather than the system itself: 

“[Participant 17] has used the glasses several times with his therapists, and they seem to be working well. 
He’s still getting inconsistent feedback on them when using them with me, though, which tells me that I 
really just don’t have an expressive enough face for the software to be able to interpret my emotions 
correctly.” – Participant 17’s parent (participant 11 years old, male) 

We are conducting further studies to evaluate the correlation between recognition accuracy and overall 
effectiveness of the device. 

5.7 Potential to Increase Social Acuity 
During the interviews, 11 out of 14 families responded in the exit interview that their child’s ability to recognize 
emotions had noticeably improved during the course of the study. Participants noted: 

“I’ve been applying what I saw with the Google Glass to situations without the Google Glass...I would see 
my friend’s face and it would look similar to one of the faces I saw on my parents when they were upset so 
then I could ask my friend, ‘What happened?’” - Participant 3 (15 years old, female) 

“It's like she had to have a software upload and then she was able to implement it in her life and she just 
got it. She got the information she needed to start seeing how people were feeling and interacting" – 
Participant 18’s parent (participant 11 years old, female) 

This suggests that such wearable systems need not be prosthetics that are constantly worn by the children, 
but rather, can create improvement with limited and constrained daily use. Additionally, some parents also 
noticed that the activities involved in the study had caused them to communicate emotions more expressively, 
with more facial gesturing, than they typically had in the past. When asked in interviews, 13 out of 14 families 
responded in the exit interview that the study provided a context for family discussion and thereby had 
increased family quality time. 

12 out of the 14 families that completed the study noticed a dramatic increase in eye contact, including cases 
where a difference was noticed independently by teachers and therapists who were unaware of the study. Some 
notable examples: 

“We already noticed something very dramatically I like to share. [Participant 1] is actually looking at us 
when he talks through Google Glass during a conversation and it was noticed without glasses from his 
teacher in Language Art yesterday, its [sic] almost like a switch was turned. We found this very important 
to share and I hope it will help your research to take a closer look at this event when other kids will start 
wearing the glasses. Thank you!!! My son is looking into my face.” - Participant 1’s parent (participant 11 
years old, male) 

“I was at [Participant 17]’s school speaking with the office secretary there about something, and in 
reminiscing about how long [Participant 17] has been at the school she mentioned how [Participant 17] 
now looks her in the face when speaking to her (whereas previously [Participant 17] wouldn’t look at her).  I 
am seeing improved eye contact at home as well, though some days it’s still hit or miss.” - Participant 17’s 
parent (participant 11 years old, male) 
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6 DISCUSSION 

6.1 Lessons Learned 
Based on our 12-week qualitative evaluation of the SuperpowerGlass system, we have learned several lessons 
regarding the design of wearable assistive technology that is used at home and controlled by parents. After the 
completion of the trials of all 14 participants, we reviewed both the yes/no answers to the interview questions, 
the supplemental parent and children quotes, system usage logs, and some session videos (described in Section 
5.1) to identify key issues for our SuperpowerGlass system and for future designers of similar systems. Given 
the nature of this pilot design study with a small sample, we followed an iterative, inductive approach to finding 
patterns that pointed to potentially relevant outcomes and design issues. Members of our team reviewed the 
data together and identified areas where there appeared to be meaningful patterns to discuss. 

Repeated Use of Wearable Social Aids Can Result in an Improvement in Social Behavior When 
Not Wearing the device. Seven of the 14 parents responded “yes” when asked if their child made increased
social interaction when not wearing the device, and 11 of the 14 parents responded “yes” when asked if their child 
exhibited increased emotional recognition when not wearing the device. In addition to the improvements in social 
behavior noticed by most parents in the trial, we have seen various instances of people who were unaware of the 
SuperpowerGlass study, such as Participant 17’s teacher, noticing improvements in child behavior (see Section 
5.7). Future designers of wearable behavioral aids should consider whether the system needs to be continuously 
worn or whether an effect can be observed with minimal usage as was done in this study. 

The Design of Wearable Systems For Children With ASD Should Be Heavily Dependent On the 
Functioning Level of the child. Since there is a significant discrepancy between children with high-
functioning and low-functioning ASD with respect to activity preference, the development of the games should 
be targeted towards the child’s age and severity of ASD symptoms. We also observed that certain children with 
ASD can handle multiple sensory stimulation. Both usage data and family interview feedback confirm that 
participants almost universally prefer enabling both a face indicator and video and audio feedback (12 of the 14 
children preferred both audio and visual feedback, while 2 preferred visual only. None preferred audio only). 
This contradicts the initial concern that offering multiple kinds of feedback might cause sensory overload, and 
suggests that as we continue to develop the user experience, there may be room to experiment with increasing 
frequency and types of feedback. 

In Order to Be engaging, Interactive Video Content from Wearable Therapy Sessions For Children 
With ASD Should Be Augmented With Context About the content. There was a lack of stated use of the 
post-session video review application despite frequent use of the Glass system (as described in Section 5.4). As 
discussed above, some parents found that the parent review feature helped facilitate engagement by providing 
a source of discussion and humor while others found little use for the app because it was difficult to recall the 
context of the interaction from a video only annotated with detected emotion. Parents stated that post-session 
tagging of content was rarely used for this reason. Therefore, interactive video content from wearable therapy 
sessions, when meant for review by children with ASD and their parents, should be augmented with sufficient 
context about the session so that users can easily navigate the video. This is particularly essential for long-term 
use of such wearable systems, which can produce hours of video content. 

Limited Insight Into How the System Operates Can Make Users Doubtful of Their Own 
capabilities. When our emotion recognition model failed consistently for some parents, the parents concluded 
that this was due to their emotions not being expressive enough for detection. However, there are several 
reasons emotion recognition could fail. If the system were to expose more of how it operates, users would be 
aware that an emotion recognition failure may be due to other aspects such as poor lighting conditions or non-
frontal head pose. In general, future designers should consider making the inner workings of automated 
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feedback mechanisms for therapeutic purposes transparent to the user, particularly for longitudinal use when 
failures could be corrected over time. 

Children With ASD May Prefer System Design Decisions That Are Not Optimally Designed For 
the Desired Long-Term Outcome On the child. We noticed differences in facial engagement between the 
various indicator options. The amount of facial contact the children made with their parents increased as the area 
of the indicator increased, despite comments the children made of feeling more distracted with the larger facial 
indicators. Ideally, these secondary feedback cues can be helpful as long as they do not overwhelm the child. That 
is, the child should be able to focus on the primary content (such as the emotion cues) while simultaneously 
processing the peripheral information (face-tracking indicator light). Although children preferred the indicator 
that resulted in the most increase in facial engagement (the box) overall, for their second and third favorite choices, 
there was a stated discrepancy between design preferences of the user (the triangle indicator) and designs that 
resulted in higher facial engagement (the line indicator). This suggests that at times there can be a tradeoff between 
feedback that elicits a high level of facial contact versus feedback that is unobtrusive, and that the cost of two 
conflicting design goals (minimal obtrusiveness versus eliciting a response in the child) has to be weighed when 
determining the final design. While flashy designs have the potential to distract children with ASD from their 
primary task, in this case, the most obtrusive design was the one that resulted in the most effective clinical response 
(looking at a conversational partner’s face). It is therefore important for designers to consider whether to prioritize 
outcome measures over participant preferences, particularly for participants with developmental challenges or 
delays. 

6.2 Limitations 
While the design trial provided several useful insights into the design of affective wearable systems for children 
with ASD, there were limitations of the study. The participants we recruited were all from a single geographical 
area that contains a large concentration of high-tech families. For example, 6 of the child participants were 
curious enough to actively attempt to access the native Android operating system, which is a nontrivial task 
because the application is set to be persistent. Furthermore, all but one of the study families had a yearly income 
greater than $100,000 per year. Because of the skewed population, it is not clear that the findings would 
generalize to a broader population. 

The nature of our iterative trial resulted in some natural limitations in our results. During all participant 
check-ins and onboarding sessions, the most recent version of the Android and Glass software was uploaded to 
the device. Furthermore, the participants were recruited at different times, and therefore received differing 
versions of the system during onboarding. Specifically, the Guess the Emotion activity and line and triangle 
indicators were introduced shortly after enrolling the third participant. For analyses involving these choices, 
we only consider usage data from the first day that participants had all feature choices available to them. When 
excluding the first three affected participants from our plots, we show the same trends with some loss in 
statistical significance due to the decrease in sample size. Additionally, audio of activity sessions was originally 
not recorded due to privacy concerns. Audio recording for use in playback was enabled after confirming 
clearance with the Stanford Institutional Review Board, but was only available for a fraction of the study 
participants, so we did not include audio data in our analysis.  

Further, the specific hardware available for the study also presented limitations to its implementation. The 
short battery life of Glass inherently limited some activity interaction design decisions. Also, while we believe 
the analysis method described in 5.3 to be a good proxy of facial engagement, availability of built-in or 
unobtrusive eye tracking capability would have allowed for a more accurate measure.  

6.3 Ongoing Clinical Study 
Given the inherently shifting nature of an iterative user design trial, our current study (which is well underway, 
although the data have not yet been examined) is a randomized controlled trial (RCT). We are keeping the 
implementation and protocol stable throughout the study. 
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The design study described in this paper has resulted in key design conclusions that have informed the 
blueprint for this RCT, such as: 

• Increasing family engagement. We believe that additions in challenge and gamification, and in particular
a reward system, will increase family engagement across the span of a study. 
• Standardization of therapy sessions. The introduction of structure into the “Glass therapy sessions”
conducted at home, partially administered by behavioral therapists on a regular basis. This will provide a 
basis for comparing facial engagement more consistently, and provide more consistency for frequency of 
device usage. 
• In-lab measures. We are applying a consistently administered in-lab assessment to quantify eye contact
to further reduce heterogeneity in facial engagement data. 

6.4 Future Work 
During the current clinical validation stage, ongoing development of the system is occurring in a parallel track 
to enable rapid prototyping and iteration while not interfering with the integrity of the RCT. For this ongoing 
development, we are exploring additional gamification, more reinforcing feedback, and activities that leverage 
the parent review. We are also exploring how audio analysis can further improve emotion recognition accuracy, 
and plan to experiment with other wearable devices, such as the Microsoft HoloLens. 

Because the system tends to be used in interactions among a small group of people, we intend to explore 
ways that the emotion recognition models can be further improved by being iteratively trained by the parents 
on specific people. A mobile interface will allow parents to quickly train the emotion recognition model on 
themselves if certain emotions are frequently misclassified. Taking this further, we will use active learning 
techniques to query users with data gathered through their interaction with the device, prompting them to 
correct the classification if needed. Various active learning techniques intelligently choose key points for which 
user input is useful, minimizing the relabeling burden. 

We would also like to explore and evaluate alternative games and activities that can be used with our system, 
including games that can subtly update the active learning model and those that can incorporate more complex 
emotions. The games could also include the addition of levels of complexity and features such as score tracking 
and reward systems. 

7 CONCLUSIONS 
The SuperpowerGlass system provides a powerful platform for providing real-time social cues to children with 
ASD. We have anecdotal evidence that the system has made a noticeable impact on the behavior of our 
participants even when not wearing the device. Design lessons from this system can be applied to other affective 
wearable systems in the future. 

We have learned that 1) the repeated use of wearable social aids can result in an improvement in social 
behavior when not wearing the device, 2) children with ASD may prefer system design decisions that are not 
optimally designed for the desired long-term outcome on the child, 3) the design of wearable systems for 
children with ASD depends on the functioning level of the child, 4) limited insight into how the system operates 
can make users doubtful of their own capabilities, and 5) in order to be engaging, interactive video content from 
wearable therapy sessions for children with ASD should be augmented with context about the content. 
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