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Figure 1: Zero-shot subject-driven generation examples with multimodal prompts. Thanks to the
advanced multimodal perception capabilities of MLLM, KOSMOS-G can generate high-fidelity
subject-driven images by approaching all image inputs as a “foreign language”.

ABSTRACT

Recent advancements in subject-driven image generation have made significant
strides. However, current methods still fall short in diverse application scenarios,
as they require test-time tuning and cannot accept interleaved multi-image and text
input. These limitations keep them far from the ultimate goal of “image as a foreign
language in image generation.” This paper presents KOSMOS-G, a model that
leverages the advanced multimodal perception capabilities of Multimodal Large
Language Models (MLLMs) to tackle the aforementioned challenge. Our approach
aligns the output space of MLLM with CLIP using the textual modality as an
anchor and performs compositional instruction tuning on curated data. KOSMOS-G
demonstrates an impressive capability of zero-shot subject-driven generation with
interleaved multi-image and text input. Notably, the score distillation instruction
tuning requires no modifications to the image decoder. This allows for a seamless
substitution of CLIP and effortless integration with a myriad of U-Net techniques
ranging from fine-grained controls to personalized image decoder variants. We
posit KOSMOS-G as an initial attempt towards the goal of “image as a foreign
language in image generation.”

∗ Contribution during internship at Microsoft Research.
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1 INTRODUCTION

In recent studies, advancements in text-to-image (T2I) generation, particularly with diffusion models,
have shown remarkable progress in producing highly photorealistic, accurate, and diverse images
from textual descriptions. Building on the unprecedented success of producing highly accurate
images from text descriptions, numerous studies have delved into more sophisticated subject-driven
generation to integrate images into text prompts to generate new customized images.

A group of approaches (Gal et al., 2022; Ruiz et al., 2022; Kumari et al., 2023; Tewel et al., 2023;
Avrahami et al., 2023; Hao et al., 2023; Smith et al., 2023) propose to fine-tune the models on
each set of reference images, and fail to achieve subject-driven generation through a generalized
pre-trained model. Xiao et al. (2023); Wei et al. (2023); Chen et al. (2023; 2022) inject image features
into the U-Net of diffusion models. However, such injection methods segregate the guidance for
text and images, thereby limiting the effectiveness of joint modeling between the two modalities.
Additionally, this approach is challenging to extend to scenarios involving multiple entities. Recent
work BLIP-Diffusion (Li et al., 2023a) learns object representations by synthesizing images through
the composition of subjects with random backgrounds. This approach effectively endows it with
a zero-shot, subject-driven text-to-image generation capability. However, the specific design of its
input template and training data restricts its scalability to multiple entities.

In contrast to previous methods that work with original CLIP text encoder Radford et al. (2021),
we propose that through leveraging Multimodal Large Language Models (MLLMs) (Alayrac et al.,
2022; Hao et al., 2022; Aghajanyan et al., 2022; Huang et al., 2023; Li et al., 2023b), most of
the challenges in subject-driven generation may be easily resolved. MLLMs have expanded the
perception capabilities of language models to multimodality, enabling them to perceive diverse
modalities such as images. The idea of leveraging MLLMs for subject-driven generation presents
several advantages: 1) It capitalizes on the inherent vision-language alignment within the MLLM. 2)
The MLLM architecture naturally supports interleaved interleaved multi-image and text input. 3) The
pre-trained MLLM can effectively model multimodal input in context.

To support zero subject-driven generation with interleaved multi-image and text input, we present
KOSMOS-G, which leverages the advanced multimodal perception of MLLM following an “align
before instruct” manner. Specifically, we start from the multimodal language modeling stage, leading
to the KOSMOS-1 (Huang et al., 2023) MLLM. It envisions language models as a universal task layer,
perceiving free-form interleaved vision-language inputs and consolidating various task predictions
into textual formats. Given the aligned vision-language representation, we then use the language
modality as an anchor and align the output space of the MLLM with the CLIP text encoder. Finally,
we perform instruction tuning on the curated data. KOSMOS-G accepts captions as input, where
each entity is followed by its segmented image. The model is trained to faithfully reproduce all
entities, render the text content, and follow the instructions. In this process, the frozen pre-trained
diffusion image decoder serves as a score metric. We distill the learned data distribution to pass the
differentiable gradient to the MLLM. This enables KOSMOS-G to harness rich features from the
image encoder to generate images faithfully reproducing the contents across various contexts (see
Figure 1, we also present examples with more diverse interleaving in Figure 9).

Benefiting from general-purpose pre-training, KOSMOS-G approaches the objective of “image as a
foreign language in image generation.” This means KOSMOS-G can capture novel concepts from
input images and guide personalized creations in a zero-shot setting. Notably, KOSMOS-G also
stands as the first model to master zero-shot subject-driven generation with interleaved multi-image
and text input. Owing to the score distillation instruction tuning, KOSMOS-G do not need to modify
any parameters of the image decoder, i.e., the diffusion U-Net and VAEs. This makes it possible
for us to seamlessly substitute CLIP with KOSMOS-G in any image generation system. As a result,
a plethora of applications can be unlocked in conjunction with U-Net techniques, ranging from
fine-grained controls like ControlNet (Zhang & Agrawala, 2023) to personalized or stylized image
decoder variants like amazing community contributed LoRA (Hu et al., 2022) checkpoints.

Overall, we propose KOSMOS-G as an initial attempt towards the objective of “image as a foreign
language in image generation.” We summarize our main contributions as follows:

1. We propose to leverage the advanced multimodal perception of MLLMs for subject-driven
generation with interleaved multi-image and text input.
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Figure 2: KOSMOS-G comprises an MLLM for multimodal perception, coupled with an AlignerNet
that bridges the MLLM to the diffusion U-Net image decoder. KOSMOS-G can pass the fine concept-
level guidance from interleaved input to image decoder, and offer a seamless alternative to CLIP.
Orange denotes the trainable modules; Blue denotes the frozen ones.

2. We propose a compositional instruction tuning task, leading to amazing zero-shot multi-
entity subject-driven generation capability.

3. Score distillation instruction tuning allows KOSMOS-G to seamlessly interface with a
spectrum of U-Net techniques, indicating broad applicability and potential for integration
into various frameworks.

2 KOSMOS-G: IMAGE AS A FOREIGN LANGUAGE IN IMAGE GENERATION

As shown in Figure 2, KOSMOS-G is a model that can perceive interleaved multi-image and text
input and generate subject-driven conditions. Specifically, the backbone of KOSMOS-G MLLM is
a Transformer-based causal language model, serving as a general-purpose interface to multimodal
input. We train KOSMOS-G following an “align before instruct” manner, the entire training pipeline
can be divided into 3 stages:

1. Multimodal Language Modeling: We pre-train the MLLM from scratch on multimodal
corpora, including monomodal data, cross-modal paired data, and interleaved multimodal
data with language modeling loss following KOSMOS-1.

2. Image Decoder Aligning: We use the U-Net (Ronneberger et al., 2015) of Stable Diffusion
v1.5 (Rombach et al., 2022) as our image decoder. We trained an AlignerNet on only
textual data to align the output space of KOSMOS-G to U-Net’s input space through CLIP
supervision. Here, the language acts as the anchoring modality, ensuring image input is also
compatible with the image decoder.

3. Instruction Tuning: We further fine-tune KOSMOS-G through a compositional generation
task on curated data, with the differentiable gradient passed from the frozen U-Net.

In Stage 1, only the MLLM is trained. In Stage 2, AlignerNet is trained with MLLM frozen.
During Stage 3, both AlignerNet and MLLM are jointly trained. The image decoder remains frozen
throughout all stages.

2.1 MULTIMODAL LANGUAGE MODELING

Following KOSMOS-1, KOSMOS-G perceives general modalities in a unified way. To achieve this,
we represent the input format as a single sequence using special tokens. Specifically, we use the
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tokens <s> and </s> to denote start- and end-of-sequence. We also incorporate <image> and
</image> tokens to indicate the start and end of any embedded image representations within the
sequence.

Our methodology involves encoding both text tokens and images into vectors, which are then fed
into the decoder. For text tokens, we use a lookup table to map them into embeddings. To handle the
input images, we employ a vision Transformer (Dosovitskiy et al., 2021) as the embedding module.
Furthermore, Resampler (Alayrac et al., 2022) is used as an attentive pooling mechanism to reduce
the number of image embeddings. After obtaining the embeddings of an input sequence, we feed
them into the Transformer-based decoder. The left-to-right causal decoder processes the sequence in
an auto-regressive manner. A softmax classifier on the Transformer is used to assign probabilities to
each token in the vocabulary.

KOSMOS-G is first trained using the next-token prediction task. The training objective is to maximize
the log-likelihood of tokens in examples. It’s important to note that the training loss only takes into
account discrete tokens, specifically text tokens. The MLLM component has 24 layers with 2,048
hidden dimensions, 8,192 FFN intermediate size, and 32 attention heads. For faster convergence,
the image representation is obtained from a pre-trained CLIP ViT-L/14 model with 1,024 feature
dimensions. The images are preprocessed into 224×224 resolution during training. We freeze the
parameters of the CLIP model except for the last layer during training. The total number of parameters
of the MLLM is about 1.6B.

2.2 IMAGE DECODER ALIGNING

After undertaking multimodal language modeling, we have successfully aligned vision and language
perception within MLLM. To make KOSMOS-G capable of image generation, we incorporate
diffusion models (Sohl-Dickstein et al., 2015) as our image decoder. Specifically, we adopt the
widely accepted Stable Diffusion v1.5 (Rombach et al., 2022). It’s important to note that we only
replace the CLIP text encoder (Radford et al., 2021) with multimodal KOSMOS-G, without making
any modifications to the U-Net architecture or weight. This setup allows KOSMOS-G to effectively
collaborate with techniques applied to the U-Net, like ControlNet (Zhang & Agrawala, 2023) and
various community LoRA (Hu et al., 2022) variants. In this section, we will provide brief preliminaries
of latent diffusion models, and then delve into the process of aligning the output space of KOSMOS-G
with the image decoder after the aforementioned replacement.

Preliminaries of Latent Diffusion Models Diffusion models define a Markov chain of forward
diffusion process q, adding Gaussian noise samples to the initial real data z0 ∼ q(z) over T steps.
Here, z denotes latent representations rather than pixel values. The efficient, low-dimensional
latent space is approximately perceptually equivalent to high-dimensional RGB space, while the
redundant semantically meaningless information present in the pixel domain is eliminated. Perceptual
compression models (i.e., VQ-VAE) consisting of E and D encode the real data into the latent space
and reverse, such that D(E(x)) ≈ x. Latent diffusion models use latent representations z = E(x)
instead of working directly with pixel values during the diffusion process. The final output can
be decoded back to pixel space via D(z). The separate mild perceptual compression stage only
eliminates imperceptible details, leading to competitive generation results with a much lower cost.
The forward process q(zt|zt−1) at each time step t can be expressed as follows:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI)

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1)
(1)

in which βt ∈ (0, 1) denotes the step size. Note βt−1 < βt.

Diffusion models learn a U-Net (Ronneberger et al., 2015) denoted as ϵθ to reverse the forward
diffusion process, constructing desired data samples from the noise. Let αt = 1 − βt and ᾱt =∏t

i=1 αi. We can reparameterize the denoising process p(zt−1|zt) also as a Gaussian distribution.
This distribution can be estimated by ϵθ and takes the following form:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t))

with µθ(zt, t) =
1√
αt

(zt −
βt√
1− ᾱt

ϵθ(zt, t))
(2)
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Figure 3: Overview of alignment.

The learning objective of diffusion models is to approximate the mean µθ(zt, t) in the reverse
diffusion process. To achieve this, we can utilize the variational lower bound (ELBO) (Kingma &
Welling, 2014) to minimize the negative log-likelihood of pθ(z0) (Ho et al., 2020). The simplified
objective can be expressed as a denoising objective:

Ldiff = Ez0,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t)∥2

]
(3)

During inference, (Ho & Salimans, 2022) proposes to use classifier-free guidance to obtain more
relevant generation results.

ϵ̂ = w · ϵθ(zt, φ, t)− (w − 1) · ϵθ(zt, t) (4)

where w is guidance scale, φ denotes the condition.

Align Output Space with Diffusion Models Upon replacing the previous CLIP text encoder with
KOSMOS-G, the main focus is to address the misalignment issue between the KOSMOS-G and the
image decoder. We discovered that simply fine-tuning KOSMOS-G using the gradient passed from
the image decoder results in both trivial alignment and compromised image quality.

Inspired by (Qin et al., 2023), we propose the AlignerNet consisting of an encoder M and a decoder
N to learn the alignment between the KOSMOS-G source space S and CLIP text encoder target space
T. Given a single text-only caption C, KOSMOS-G source encoder and CLIP text target encoder
encode the caption into embeddings denoted as s ∈ Rls×ds and t ∈ Rlt×dt , respectively. Here, l and
d indicate the length of features and embedding dimensions.

As shown in Figure 3a, we employ the encoder M to minimize the distance between the text source
embedding and the target embedding, aiming for a close approximation M(s) ≈ t through:

Lmse = Es∼S,t∼T

[
∥t−M(s))∥22

]
(5)

To mitigate the reduction in feature discrimination, we also employ a decoder N to reconstruct the
source embedding N (M(s)) ≈ s through:

Lrec = Es∼S

[
∥t−N (M(s)))∥22

]
(6)

Different from (Qin et al., 2023), KOSMOS-G is a vision-language multimodal encoder. The language
modality serves as an anchor throughout the process, aligning the entire KOSMOS-G space with the
image decoder input space, thus also achieving semantic alignment for the image embeddings.

To efficiently process lengthy sequences consisting of multiple images and minimize memory usage,
KOSMOS-G encodes the interleaved vision-language input sequence into variable-length embeddings.
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However, the use of variable length embeddings makes the MLP-based GlueNet (Qin et al., 2023)
unsuitable for learning alignment. To address this, we employ a Transformer-based architecture in
AlignerNet, enabling it to effectively align the source and target spaces with mismatched sequence
lengths and embedding dimensions.

As shown in Figure 3b, both M and N share a similar architecture design, consisting of a Transformer
encoder and a Transformer decoder. The Transformer encoder and decoder in both models comprise
12 layers, with an input dimension d = 768 and a hidden dimension of 3072. This configuration
results in approximately 225M parameters in total. In the cross attention module of Transformer
decoder, we use variable length learned latent queries QM ∈ Rlt×d in M and QN ∈ Rls×d in N
to match sequence length. Note that as discussed in Section 4.3, we can still align MLLM with
Kosmos-G through directly using diffusion loss in Equation 3 with the help of AlignerNet. While it
is more costly and leads to worse performance under the same GPU days.

2.3 INSTRUCTION TUNING

After achieving a semantic alignment between KOSMOS-G and the image decoder, our model
can successfully generate images following interleaved vision-language guidance. However, the
multimodal language modeling and text-only alignment stage only preserve the semantic consistency
between the input and output, KOSMOS-G still can not leverage rich features extracted from the
image encoder to generate images faithfully reproducing the contents in various contexts.

To pursue our objective of “image as a foreign language in image generation,” we curate interleaved
vision-language data and use the diffusion loss in Equation 3 to further fine-tune KOSMOS-G.
Specifically, we propose a compositional generation task in which we input captions containing
entities, with each of them followed by their corresponding images, like “<s> A cat <image> image
embedding of the cat </image> and a dog <image> image embedding of the dog </image>
sleeping in the garden <image> image embedding of the garden </image> </s>”. Our model is
trained to generate images following the input instruction.

To construct the requisite data, we first caption the image, then extract the entities from the caption,
and obtain the segmentation results from the image itself. A detailed introduction of the entire
pipeline can be found in Section 3.1. Additionally, we leverage the data constructed by (Brooks et al.,
2023) for InstructPix2Pix to improve KOSMOS-G’s image editing capability. This data is structured
as: “<s> caption <image> embedding of the original image </image> edit instruction </s>”.
We also mix some text-to-image data to preserve the language alignment already achieved.

Our goal is to leverage MLLMs to model image distributions through direct latent space sampling.
In this setup, the pre-trained frozen Stable Diffusion U-Net serves as a score metric, distilling the
learned data distribution. This strategy is similar to Score Distillation Sampling (SDS) (Poole et al.,
2022). From the perspective of score distillation, the KL divergence between KOSMOS-G (denoted
as ϕ, which encodes inputs into condition C) and the score function is equivalently minimized for
distilling learned probability density in the image decoder:

min
ϕ

LDiff = Ez0,t,C

[
DKL

(
q(zt−1|zt, z0) ∥ pθ(zt−1|zt; C)

)]
(7)

This enables KOSMOS-G to leverage rich features from the image encoder to generate an image
faithfully reproducing the contents across various contexts. More details about the score distillation
instruction tuning can be found in Appendix C.

3 MODEL TRAINING

3.1 MULTIMODAL TRAINING DATA

The multimodal language modeling stage in Section 2.1 using the same setting of KOSMOS-1 (Huang
et al., 2023), where the models are trained on web-scale multimodal corpora, consisted of text corpora,
image-caption pairs, and interleaved data of images and texts. For the image decoder aligning stage
in Section 2.2, we only use the caption from image-caption pairs. For the instruction tuning stage in
Section 2.3, we use constructed data from Open Images V7 dataset (Kuznetsova et al., 2020), the
image-caption pairs, as well as the image editing data from InstructPix2Pix (Brooks et al., 2023).
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Figure 4: Overview of our data construction pipeline for compositional generation instruction tuning.

Captions The image-caption pairs are sourced from multiple datasets, including English LAION-
2B (Schuhmann et al., 2022), LAION-400M (Schuhmann et al., 2021), COYO-700M (Byeon et al.,
2022), and Conceptual Captions (Sharma et al., 2018; Changpinyo et al., 2021). English LAION-2B,
LAION-400M, and COYO-700M are collected from Common Crawl web data by extracting images
and the corresponding alt-texts. Conceptual captions are also derived from web pages.

Constructed Data We use approximately 9M images from the Open Images V7 dataset (Kuznetsova
et al., 2020) to construct our compositional generation instruction tuning data. As illustrated in
Figure 4, we begin by generating captions with BLIP-2-OPT-6.7b (Li et al., 2023b). Subsequently,
we employ an LLM MPT-7B-Instruct (Team et al., 2023) to extract entities from the captions. The
original image, along with the text of each entity, is then input into the text-prompted segmentation
model CLIPSeg (Lüddecke & Ecker, 2022) to derive the corresponding image of each entity.

3.2 TRAINING SETUP

Our implementation is based on the TorchScale (Ma et al., 2022) library, which is designed for large-
scale model training. Following KOSMOS-1 (Huang et al., 2023), we also use MAGNETO (Wang
et al., 2022), a Transformer variant, as the backbone architecture of our MLLM and AlignerNet. The
whole training process took around four days with 256 NVIDIA V100 GPUs, i.e., one day for image
decoder aligning, and three days for instruction tuning. In the instruction tuning stage, we use a
blend of constructed data, InstructPix2Pix data, and caption data in a ratio of 2:2:1. For constructed
data, to enhance input robustness, we randomly drop the texts of entities with a probability of 0.5
and also maintain the background of the segmented entities with a 0.5 probability. Other training
configurations can be found in Appendix A

4 EVALUATION

4.1 MAIN QUALITATIVE RESULTS

As shown in Figure 5, KOSMOS-G delivers impressive zero-shot generation results across diverse
settings, yielding meaningful and coherent outputs even for highly customized subjects. The visual
samples showcase generative capabilities in re-contextualization, stylization, modification, and
accessory incorporation. Notably, multi-entity subject-driven generation is very challenging even for
fine-tuning methods like DreamBooth (Ruiz et al., 2022; Avrahami et al., 2023). While owing from
the novel compositional generation instruction tuning, KOSMOS-G is the first model that is capable
of achieving this in a zero-shot setting.

4.2 QUANTITATIVE RESULTS

We do quantitative evaluations of KOSMOS-G on DreamBench (Ruiz et al., 2022) for single-entity
subject-driven generation and MS-COCO (Lin et al., 2014) for text-to-image generation.

The DreamBench dataset contains 30 subjects and features 25 prompt templates, resulting in 750
unique prompts covering skills like re-contextualization, modification, accessorization, etc. We
follow prior work to generate 4 images for each prompt to form the 3000 images for a comprehensive
evaluation. We follow DreamBooth to adopt DINO, CLIP-I to evaluate the subject fidelity, and CLIP-
T to evaluate the text fidelity. We use a classifier-free guidance scale of 7.5 and 100 DPM-Solver (Lu
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Figure 5: Zero-shot image generation examples with multimodal prompts.

Methods DINO↑ CLIP-I↑ CLIP-T↑
Real Images (Oracle) 0.774 0.885 -

Fine-Tuning

Textual Inversion (Gal et al., 2022) 0.569 0.780 0.255
DreamBooth (Ruiz et al., 2022) 0.668 0.803 0.305
BLIP-Diffusion (Li et al., 2023a) 0.670 0.805 0.302

Test Time Tuning Free

Re-Imagen∗ (Chen et al., 2022) 0.600 0.740 0.270
SuTI (Chen et al., 2023) 0.741 0.819 0.304
BLIP-Diffusion∗ (Li et al., 2023a) 0.594 0.779 0.300
KOSMOS-G∗ (single image input) 0.694 0.847 0.287

Methods FID↓

T2I Models

GLIDE (Nichol et al., 2022) 12.24
Make-A-Scene (Gafni et al., 2022) 11.84
DALL-E 2 (Ramesh et al., 2022) 10.39
SD v1.5† (Rombach et al., 2022) 9.34
Imagen-3.4B (Saharia et al., 2022) 7.27

CLIP-Aligned VL2I Models

GILL-8B (Koh et al., 2023) 12.20
Emu-14B (Sun et al., 2023) 11.66
KOSMOS-G-1.9B 10.99

Table 1: Left: Quantitative comparisons on DreamBench. ∗ denotes zero-shot methods. Right: Zero-shot FID
comparisons on MS-COCO. † indicates results evaluated by us under same settings and seed with KOSMOS-G.

et al., 2022) inference steps for sampling. As shown in Table 1, zero-shot KOSMOS-G outperforms
Textual Inversion and Re-Imagen and exhibits marginally better performance than DreamBooth and
BLIP-Diffusion with only a single image input. Furthermore, Our results are also comparable with
SuTI, without requiring expensive apprenticeship learning supervision. KOSMOS-G accepts only a
single image as input, we select a clear image from the 4-7 provided images for each subject to avoid
occlusion. We slightly modify the prompt template to ensure better alignment with the instruction
tuning data. The images and prompt used can be found in Appendix B.

For the text-to-image generation, We generate images using 30,000 randomly sampled captions
from the MS-COCO (2014) validation set. We use a classifier-free guidance scale of 3.0 and 250
DDIM (Song et al., 2021) inference steps for sampling. As shown in Table 1, KOSMOS-G surpasses
other CLIP-aligned VL2I models, delivering the optimal alignment results.

4.3 ABLATION STUDIES
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KOSMOS-G before instruction tuning Stable Diffusion v1.5 Rombach et al. (2022)
Figure 6: Comparisons with cases presented in the second row of Figure 1.

as an oil painting in the style of

(a) KOSMOS-G with canny control using ControlNet.

plays

(b) KOSMOS-G with LoRA variant.

Figure 7: Various Applications of KOSMOS-G in Conjunction with U-Net Techniques. In Figure 7b,
the left image is generated using standard U-Net, the right one is produced with LoRA-tuned U-Net.

Methods FID↓
SD v1.5 9.34

E2E w/o AlignerNet Failed
E2E w/ AlignerNet 11.30
12-Layers Decoder Failed
12-Layers AlignerNet 9.89
24-Layers AlignerNet 9.55

Table 2: Ablation study results
for image decoder aligning on
MS-COCO.

We conduct ablation studies to find out the importance of the image
decoder aligning and instruction tuning. Table 2 demonstrates that
direct end-to-end fine-tuning or using decoder-only architecture
fail to generate meaningful images. Incorporating AlignerNet and
CLIP supervision, however, results in outcomes close to the orig-
inal SD v1.5. End-to-end training is also feasible with AlignerNet,
but it is more costly due to the additional computational of the
U-Net. This leads to worse performance within the same GPU
days. We also compared the generation results from KOSMOS-G
before instruction tuning and the standard SD v1.5 against our
final model. As illustrated in Figure 6, without instruction tuning,
KOSMOS-G can only generate contents semantically aligned with
the vision-language input. SD baseline also remains at the semantic level and fails to faithfully
reproduce the entities in the generated images.

4.4 APPLICATIONS

As highlighted in Section 2.3, KOSMOS-G can seamlessly replace CLIP in any image generation
system. This remarkable property unlocks a myriad of brand-new applications that have never been
possible before. We demonstrate its integration with ControlNet (Zhang & Agrawala, 2023) and LoRA
variants (Hu et al., 2022) in Figure 7. KOSMOS-G works perfectly with these techniques. Building
on the CLIP space, we believe our model will push forward the transition from text-conditioned
generation toward vision-language generation, paving the way for numerous novel applications.

5 CONCLUSION

We propose KOSMOS-G, a model capable of high-fidelity zero-shot subject-driven generation from
interleaved multi-image and text input. Our approach hinges on a unique "align before instruct" pre-
training strategy. KOSMOS-G demonstrates competitive single-entity subject-driven image generation
and text-to-image capability, it also stands as the first model to extend zero-shot subject-driven image
generation to multi-entity scenarios. Furthermore, KOSMOS-G allows seamless replacement of CLIP,
unlocking various new applications in conjunction with other U-Net techniques such as ControlNet
and LoRA. In general, we present KOSMOS-G as a preliminary effort aimed at achieving the objective
of “image as a foreign language in image generation.”
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Figure 8: Selected images from DreamBench.

A DETAIL TRAINING SETUP

Multimodal Language Modeling We use a batch size of 1.2 million tokens which is broken
down as follows: 0.5 million tokens sourced from text corpora, 0.5 million tokens derived from
image-caption pairs, and 0.2 million tokens from interleaved data sets. The MLLM is trained for
300,000 steps, corresponding to about 360 billion tokens in total. We adopt the AdamW optimizer
with β = (0.9, 0.98). Furthermore, we configure the weight decay at 0.01 and the dropout rate
at 0.1. The learning rate is set to escalate to 2e-4 during the initial 375 warm-up steps and decay
linearly to 0 for the rest of the training steps. For optimization stability, we initiate using Magneto.
We use SentencePiece (Kudo & Richardson, 2018) to tokenize the text. We preprocess the data in
the “full-sentence” format (Liu et al., 2019), where each input sequence is populated with complete
sentences consecutively sampled from one or multiple documents.

Image Decoder Aligning The AlignerNet undergoes training using a batch size of 3,584 sentences
for 300,000 steps, with a maximum learning rate of 1e-3. This equates to approximately 1 billion
sentences overall. The remaining configurations remain consistent with the previous stage.

Instruction Tuning The MLLM and AlignerNet are jointly trained with a batch size of 1,024
images, totaling approximately 200 million images over 200,000 steps. The learning rate peaks at
1e-3. The rest settings are the same as in the previous stage.

B IMAGES AND PROMPTS FOR DREAMBENCH EVALUATION

The input images selected for each entity for DreamBench evaluation are displayed in Figure 8. As
depicted in Table 3, We also slightly modified the original prompt to make it align better with the
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training data. For the remaining prompt, we simply remove the prefix “a”. We observe the prefix will
slightly affect the performance of image editing or customized generation. This might be attributed
to the high frequency of captions starting with “a photo of” produced by BLIP-2 in our constructed
training data. Given that the compositional instruction tuning data does not contain too much editing
data when a prompt starts with a prefix like “a”, the model often refrains from altering the appearance
of the input image. This can be further refined by shifting the data paradigm or by fine-tuning the
alignment.

Original Prompt Modified Prompt

a red {} {}, red
a purple {} {}, purple
a shiny {} {}, shiny
a wet {} {}, wet
a cube shaped {} {}, cube shaped

Table 3: Prompt Modification

C ADDITIONAL DETAILS ABOUT SCORE DISTILLATION INSTRUCTION
TUNING

During the instruction tuning stage, we still utilize the diffusion loss for model training. However,
this loss can also be regarded as score distillation, and it is effectively equivalent to optimizing the
diffusion loss as the Score Distillation Sampling (SDS) (Poole et al., 2022) loss.

Our objective is to distill the learned score function from the Stable Diffusion U-Net into KOSMOS-G.
This process enables KOSMOS-G to encode image features into embeddings that the Stable Diffusion
model can understand for subject-driven generation. Essentially, this approach is like pre-training a
generalized textual inversion Gal et al. (2022) model, with all conditions learnable by model-seeking.
Consider the KOSMOS-G model, denoted as ϕ, which takes an input x and produces an output
C = ϕ(x). Alongside this, we have the Diffusion U-Net, represented as θ. In our process, we
optimize the KOSMOS-G model ϕ using the diffusion loss, while keeping the parameters of the
Diffusion U-Net θ frozen. The diffusion loss is expressed as follows:

Ldiff (ϕ) = Ez0,ϵ∼N (0,1),t

[
w(t)∥ϵθ(zt; C, t)− ϵ∥2

]
(8)

Consider the gradient of Ldiff :

∇ϕLdiff (ϕ) = Ez0,ϵ∼N (0,1),t

[
w(t) (ϵθ(zt; C, t)− ϵ)︸ ︷︷ ︸

Noise Residual

∂ϵϕ(zt; C, t)
C︸ ︷︷ ︸

U-Net Jacobian

∂C
∂ϕ︸︷︷︸

KOSMOS-G Jacobian

]
(9)

Following the approach in Dreamfusion Poole et al. (2022), we can simplify this equation by omitting
certain terms, leading to the SDS loss for KOSMOS-G:

∇ϕLSDS(ϕ) = Ez0,ϵ∼N (0,1),t

[
w(t) (ϵθ(zt; C, t)− ϵ)

∂C
∂ϕ

]
(10)

As established in Dreamfusion Poole et al. (2022), optimizing the SDS loss is effectively equivalent
to optimizing the diffusion loss when the U-Net θ is frozen. From the perspective of score distillation,
when using diffusion loss, the KL divergence defined by conditions and the pre-learned score
function is equivalently minimized for distilling learned probability density in conditional image
synthesis Dong et al. (2023); Luo (2022):

min
ϕ

LDiff (ϕ) = Ez0,t,C

[
DKL

(
q(zt−1|zt, z0) ∥ pθ(zt−1|zt; C)

)]
(11)
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A photo of a dog in beach , wearing sunglasses

An oil painting portrait of 

a dog                    in the suit of                    , in the style of                     ,

highly detailed, masterpiece

A selfie, 

                       wearing sunglasses                    , standing in front of                    , 

highly detailed, best quality

A cartoon of the iron man standing in front of a car

on the beach , in the style of , masterpiece

Figure 9: Additional examples under challenging multi-image and text interleaving scenario. These
cases show that with KOSMOS-G, users can prompt Stable Diffusion Rombach et al. (2022) by
approaching all image inputs as a “foreign language”.

D ADDITIONAL EXAMPLES

In Figure 9, we present cases with more diverse and complex multi-image (3 to 4) and text inter-
leaving scenarios. These examples demonstrate KOSMOS-G’s robust performance in handling these
challenging cases.
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