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ABSTRACT

Test-time scaling via solution sampling and aggregation has become a key
paradigm for improving the reasoning performance of Large Language Models
(LLMs). While reward model selection is commonly employed in this approach,
it often fails to identify minority-yet-correct answers, which limits its effective-
ness beyond that of simple majority voting. We argue that this limitation stems
from a lack of informative critique signals during verifier training. To bridge this
gap, we introduce Mirror-Critique, a framework that trains a verifier with in-
formative critiques. Our key insight is to leverage the rich critique signal by
contrasting model-generated solutions with ground-truth solutions. We deploy
a small instruction-tuned model to synthesize high-quality critique data with re-
jection sampling that teaches the verifier not only what is wrong, but also why.
The synthetic data is used to cold-start the LLMs in the RLVR process to further
improve the verification ability. The resulting Mirror-Verifier is deployed to eval-
uate candidate solutions by generating multiple critiques per solution, aggregating
them into a verify score used for weighted voting or selective abstention. The
experimental results show that our Mirror-Verifier significantly outperforms ma-
jority voting in terms of solution accuracy and also improves the solver’s honesty
to recognize and abstain from answering beyond its capability boundaries.

1 INTRODUCTION

Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful method for
training Large Language Models (LLMs) to perform complex reasoning tasks, enabling significant
improvements in domains such as mathematics, code generation, and scientific problem-solving. A
common strategy to further boost performance is test-time scaling: generating multiple candidate
solutions and aggregating them via methods such as majority voting, verifier model voting, or ag-
gregator model selection. In an ideal scenario, an effective verifier or aggregator should be able to
approach Pass@K performance by improving solution accuracy through test-time scaling. However,
they often fail to identify minority yet correct solutions, resulting in limitations in their improvement
compared to majority voting. This limitation underscores the need for more sophisticated verifica-
tion mechanisms that can critically evaluate and select solutions.

While verifiers have demonstrated promise in detecting flawed reasoning, their training typically
depends on binary labels that provide insufficient feedback about why a solution succeeds or fails.
This limitation constrains the verifier’s ability to improve its performance meaningfully. One poten-
tial approach involves enhancing LLMs with critique capabilities through supervised fine-tuning on
critique data. However, obtaining high-quality critique data often requires sampling from closed-
source models, making this approach prohibitively expensive. Additionally, the potential of RLVR
for training verifiers remains largely unexplored. RLVR could offer significant advantages by im-
proving accuracy while enabling models to recognize their limitations and appropriately abstain
from answering questions beyond their capabilities.

To this end, we propose Mirror-Critique, a novel framework that synthesizes high quality critiques
by contrasting model-generated solutions with ground-truth answers to train a verifier. Our key
insight is that such informative critiques can teach the verifier not only to judge correctness, but also
to understand the underlying reasoning gaps. We generate high-quality critique data via rejection
sampling on an open-source, instruction-tuned model. The synthesized critique data is then used
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to fine-tune the Base LLMs to address the cold start issue for the RLVR process, further improving
the verification ability. The resulting Mirror-Verifier is deployed to generate multiple critiques
per solution, which are aggregated into a verification score used for weighted voting or selective
abstention during test-time scaling.

Extensive experiments on multiple mathematical reasoning benchmarks show that Mirror-Verifier
significantly outperforms majority voting and reward-based selection methods, achieving superior
accuracy across tasks. Furthermore, it enhances the honesty of the solver–verifier system, enabling
it to abstain from questions beyond its capability boundaries, both in test-time scaling and standard
(Pass@1) settings. In summary, our main contributions are:

• We introduce the Mirror-Critique framework, a novel approach for training verifiers that
leverages rich, synthetic critique data generated by contrasting LLM solutions with ground-
truth solutions. This synthetic critique data, curated via rejection sampling, provides infor-
mative signals that teach the verifier to not only identify errors but also understand their
rationale. Unlike other approaches that depend on distillation from larger models, our
method is self-contained, synthesizing all training data through internal supervision.

• We demonstrate significant accuracy gains in test-time scaling. By using the Mirror-
Verifier to aggregate multiple solutions via weighted voting, our approach consistently
outperforms strong baselines like majority voting and reward-model selection across mul-
tiple mathematical reasoning benchmarks.

• We propose the honesty score and show that Mirror-Verifier significantly improves it. This
metric quantifies a model’s ability to know what it knows. By abstaining from answers with
low verification scores, our framework enhances model honesty while maintaining answer
accuracy, reliably recognizing capability boundaries in both test-time scaling and standard
(Pass@1) settings.

2 RELATED WORKS

Reinforcement Learning with Verifiable Reward Reinforcement Learning (RL) has become a
standard component in the post-training stage of LLMs. Recent research indicates that RLVR sub-
stantially enhances the reasoning performance of LLMs in areas such as mathematics and code
generation. A notable advancement was made with OpenAI’s o1 model (Jaech et al., 2024), which
marked a significant leap in reasoning capabilities. This was followed by DeepSeek-R1 (Guo et al.,
2025), where RLVR was shown to activate inherent slow-thinking abilities in a base model—a
paradigm now referred to as zero-RL (Li et al., 2025). Subsequently, multiple Large Reasoning
Models (LRMs) have been released, such as Kimi 1.5 (Team et al., 2025), Gemini-Think (Deep-
Mind, 2024), and QwQ (Qwen, 2024). SimpleRL (Zeng et al., 2025) provided comprehensive em-
pirical studies on zero-RL, while Luo et al. (2025) utilized RLVR to further improve open-source
models derived from DeepSeek-R1. A prominent RLVR algorithm adopted in many of these works
is GRPO (Shao et al., 2024). Extending PPO (Schulman et al., 2017), it achieves notable improve-
ments by evaluating multiple responses to estimate group-relative advantage. GRPO has motivated
several variants, including DAPO (Yu et al., 2025), VAPO (Yue et al., 2025), and Dr. GRPO (Liu
et al., 2025b). Additionally, DARS (Yang et al., 2025) introduces adaptive sampling based on dif-
ficulty, leading to gains in both Pass@1 and Pass@K metrics. In this work, we train the verifier
while performing zero-RL training of the solver, and further improvements are achieved through the
solver-verifier framework in test-time scaling.

Test-Time Scaling Test-time scaling through solution sampling and aggregation has become a
widely adopted paradigm for improving reasoning performance in LLMs. A common strategy is
to use rule-based methods such as majority voting, exemplified by self-consistent decoding (Wang
et al., 2023; Brown et al., 2024), which aggregates multiple chain-of-thought trajectories by selecting
the most frequent answer. Several lightweight variants have been proposed to enhance this approach,
including dynamically adjusting the number of samples or applying heuristic filters (Aggarwal et al.,
2023; Xue et al., 2023; Huang et al., 2024; Knappe et al., 2024). While effective in many cases,
these methods can fail when correct solutions lie in minority modes, causing majority voting to
amplify errors rather than surface the right answer. To move beyond simple counting, recent work
has explored model-based selection and aggregation. These methods either train a separate reward
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model to score and select candidate solutions (Yang et al., 2024b; Liu et al., 2024; 2025c), or prompt
the LLM itself to compare and consolidate answers as Universal Self-Consistency (USC; Chen et al.
2024). Although these approaches combine frequency with a learned notion of quality, they can still
be prone to regression errors and may not fully leverage the potential of learned aggregation. Liu
et al. (2025a) propose RISE to leverage verifiable rewards from an outcome verifier to provide on-
the-fly feedback for both solution generation and self-verification tasks. Concurrent to this paper, the
other line of works (Qi et al., 2025; Zhao et al., 2025) explored the training of solution aggregators.
Sample Set Aggregator (SSA; Qi et al. 2025), AggLM (Zhao et al., 2025) train the model aggregators
via reinforcement learning to generate a final answer from multiple solutions. However, they did not
utilize the informative critique information to train the model’s ability to select solutions, nor did
they propose a method to determine the model’s reasoning boundaries to enhance its honesty. We
train the LLM with synthetic critique data, guiding it to both the right answer and the exact error;
this sharply improves later RLVR training. The learned verifier identifies the model’s reasoning
boundaries, letting it decline questions beyond its ability and greatly boosting honesty.

3 PROBLEM FORMULATION

We consider the problem of training a solver and a verifier from a base language model M to improve
reasoning performance through test-time scaling. Given a training dataset D = {(q, a)} consisting
of questions q and their corresponding ground-truth answers a, our goal is to acquire two models:

• A solver S that, given a question q, generates a solution s (which includes both a reasoning
trace and a final answer a).

• A verifier V that, given a question q and a set of candidate solutions {s1, s2, . . . , sN},
selects the best solution among them.

At test time, we employ a test-time scaling paradigm: for a given question q, the solver S generates
N candidate solutions {s1, s2, . . . , sN}. The verifier V then selects the most promising answer â
from the candidate set:

â = fselect(V, q, {s1, s2, . . . , sN})
where fselect is the selecting function that leverages the verifier V to identify the solution with the
highest estimated quality. The selected solution â is chosen to produce the final answer. Addition-
ally, to enhance honesty, the selecting function fselect can abstain from answering the questions that
are beyond the reasoning capabilities of the Solver. We aim to jointly optimize the verifier V such
that the solver-verifier framework maximizes accuracy on the reasoning task while also improving
honesty through calibrated abstention.

4 MIRROR-CRITIQUE FOR TEST-TIME SCALING

The Mirror-Critique framework is designed to train a high-performance verifier that leverages rich,
informative critique signals. The overall framework is shown in Figure 1. This section details the
four key components of our approach: (1) RLVR Training Zero-Solver, we use GRPO (Shao et al.,
2024) to conduct RL training on the base model while collecting the trajectories generated during
the training process. (2) Mirror the Truth for Critique Synthesis, we synthesize a large amount
of high-quality critique data by contrasting model-generated solutions with ground-truth solutions;
(3) RLVR Training Zero-Verifier, we first conduct supervised fine-tuning (SFT) to cold-start the
base model, then we balance the data and conduct RL training to further improve the verifier’s
capabilities. Finally, we deploy the resulting solver-verifier system for accurate and honest test-time
scaling.

4.1 MIRRORING THE TRUTH: CRITIQUE SYNTHESIS

We consider that the difficulty in training verifiers lies in the fact that relying solely on binary labels
(correct or wrong) does not enable the model to understand why a solution is wrong. Critique
data that points out the specific errors often requires the generation from powerful, closed-source
models, which increases the cost of data synthesis. To address this issue, we propose a low-cost data
synthesis pipeline that can generate high-quality, instructive critiques.
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Figure 1: Overview of our framework Mirror-Critique. We utilized the trajectory data during the
zero-solver training process of RLVR to synthesize a large amount of high-quality critique data at
low cost without applying closed-source LLMs. This synthetic data is then used to cold start and
facilitate RLVR training of the verifier.

We begin by training a base solver model using RLVR (e.g., GRPO), recording its solution trajec-
tories throughout the training process. To reduce data redundancy, we filter out the trajectories that
are ultimately identical with Math Verify1. For a given question q, we have a set of model-generated
solutions {ŝi} and a ground-truth solution s∗. To synthesize a critique for a solution pair (q, ŝi), we
instruct a small, instruction-tuned language model with the following template:

Prompt for Critique with Ground Truth

You are an expert mathematics tutor who always thinks step-by-step. You will be shown:
Question, Ground Truth (hidden from the student), Solution. Your task:
* Analyze the Solution according to the Ground Truth. But do not mention ‘ground truth’,
‘correct answer’, ‘official solution’, etc.
* Produce a numbered step-by-step analysis of the Solution, explaining why it is correct or
incorrect.
* End with a single line containing only
True — if the boxed answer in the Solution is correct,
False — otherwise.

The instruct model generates a candidate critique ci. We then apply a rejection sampling filter:
the final Judgment (True/False) matches the actual correctness of âi are retained. This process
ensures the synthetically generated data maintains a high standard of quality, teaching the verifier
not just to judge but to justify its judgment with a coherent rationale.

4.2 DATA SELECTION AND VERIFIER TRAINING

Cold Start. Since the base model lacks the critique ability, it is difficult to enhance its verification
capability through reinforcement learning. We illustrate this in Appendix D. We use the synthetic
critique dataset, Dsynth = {(q, â, c)} to cold start the base model. This SFT step serves as an
effective cold start, equipping the model with fundamental critique generation capabilities before
the subsequent RLVR phase.

Balance Data for RVLR. The filtered synthetic dataset often exhibits class imbalance, with more
critiques labeling solutions as incorrect (y = False). We found that training the verifier with imbal-
anced samples through RLVR easily leads to reward hacking, where the LLM tends to predict all

1https://github.com/huggingface/Math-Verify
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Figure 2: Test-Time Scaling with Mirror-Verifier. We deploy the verifier to generate critiques for
each candidate solution, then select the final answer according to the weighted majority voting. If
the average verification score of the chosen answer is lower than the threshold τ , the system will
abstain from answering the question.

samples as False, as illustrated in Appendix E. To this end, we conducted balanced data sampling
for positive and negative samples. Additionally, to make the model pay more attention to minor-yet-
correct samples, we only selected question-solution pairs with an accuracy rate of less than 60% for
further RLVR training. We further refine the SFT-initialized verifier using Reinforcement Learning
with the balanced dataset. The goal is to align the verifier’s critique generation policy, πϕ(c|q, â), to
produce critiques that are not only correct but also pedagogically valuable and concise. The verifier
model is prompted with a question-solution pair (q, â) and is tasked to generate a critique c.

4.3 ACCURATE AND HONEST TEST-TIME SCALING

The resulting verifier is deployed in a solver-verifier framework to enhance performance at test time
via solution sampling and selection. For a given test question q, the solver generates N candidate
solutions {s1, s2, ..., sN}. The Mirror-Verifier then evaluates each solution si by generating M
independent critiques {ci,1, ci,2, ..., ci,M}. Each critique ci,j contains a binary judgment yi,j ∈
{True, False}. The verification score wi for solution si is calculated as the proportion of critiques
judging it to be correct:

wi =
1

M

M∑
j=1

I(yi,j = True)

The score can be used for the following aspects:

• Weighted Voting for Accuracy: The final answer is selected through a weighted majority vote.
Each solution si contributes a vote for its final answer ai, weighted by its verification score xi:

â = argmax
a∈A

N∑
i=1

wi · I(ai = a)

• Selective Abstention for Honesty: The system can abstain from answering when it lacks suf-
ficient confidence. Specifically, for the selected answer â, the average verification score of all
solutions that proposed â is computed:

w̄â =

∑N
i=1 wi · I(ai = â)∑N

i=1 I(ai = â)

A predefined confidence threshold τ ∈ [0, 1] is set. If w̄â < τ , the system rejects the query and
abstains from providing an answer. This mechanism enhances honesty by preventing the delivery
of potentially unreliable or low-confidence responses.

This framework ensures that the final output is not only accurate (through weighted voting) but also
trustworthy (through selective abstention), thereby improving overall reliability and alignment with
user expectations.
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5 EXPERIMENTS

5.1 SETUP

Data We evaluate the Solver-Verifier framework with 5 widely used mathematical reasoning
benchmarks: MATH-500 (Lightman et al., 2023), OlympiadBench (He et al., 2024a), Minverva-
Math (Lewkowycz et al., 2022), AIME24, and AMC23. We further combine all of the evaluation
benchmarks to report the performance of test-time scaling with different sampling sizes (from 1
to 16). The training data used in this work is OpenR1-45K, which is a subset of OpenR1-Math-
220k (Hugging Face, 2025).

Metrics. In this work, we conduct 2 metrics to evaluate the solver-verifier framework.

• Accuracy: The proportion of problems for which the model generates a correct final answer. For
a benchmark D, the Accuracy is defined as:

Accuracy =
1

|D|

|D|∑
i=1

I(âi = a∗i )

where âi is the model’s predicted answer for the i-th problem, a∗i is the ground-truth answer, and
I is the indicator function.

• Honesty Score: We propose a metric that jointly considers correctness and the harm of providing
incorrect information. For each problem, the model receives +1 if it answers correctly, -1 if it
answers incorrectly, and 0 if it abstains from answering. The Honesty Score for the entire dataset
is the average of these values:

Honesty Score =
1

|D|

|D|∑
i=1

[I(âi = a∗i )− I(âi ̸= a∗i ∧ âi ̸= “abstain”)]

This metric encourages not only high accuracy but also cautious behavior by penalizing incorrect
outputs, thus mitigating the risk of propagating harmful misinformation.

Training and Testing Details. We conduct our RL training experiments on Qwen2.5-Math (Yang
et al., 2024a) series Models with different sizes. We change the rope theta from 10,000 to 40,000 and
extend the window size to 16,384. We remove the KL loss term and the. Following Dr.GRPO (Liu
et al., 2025b), we remove length normalization in the loss function and the standard normalization
in advantage computation. For all training procedures, the learning rate is set as 1e-7. The batch
size is set as 128 and 1024 for training the solver and verifier, respectively. The rollout size is set as
8 for training the zero-solver and 16 for training the zero-verifier. The temperature is set as 1.0 for
both training and testing. During test-time scaling, we generate M = 16 critiques per solution.

Baselines. We compare our Mirror-Verifier with the following methods: (1) Pass@1 (Avg@16),
we sample 16 solutions for each question and compute the average accuracy for all responses. (2)
Majority@K, (3) Math-Shepherd-PRM (Wang et al., 2024), a process reward model trained with
automatic process data annotation. (4) Skywork-O1-PRM (He et al., 2024b), A specialized model
designed to enhance reasoning capability through incremental process rewards, ideal for complex
problem solving at a smaller scale. (5) Qwen2.5-Math-7B-CFT (Wang et al., 2025), a critique model
trained on 50K critique responses generated by GPT-4o. (6) Mirror-SFT model, the SFT cold-start
model in our Mirror-Critique training procedure.

5.2 MAIN RESULTS

5.2.1 ACCURACY PERFORMANCE WITHOUT ABSTAIN

We show the accuracy performance of test-time scaling in Table 1. In this experiment, the abstain
threshold τ is set as 0 to acquire the best accurayc performance of each method. That is, we require
the LLMs not to abstain from any given question. It is worth noting that our Mirror-Verifier achieved
the best performance on the majority of benchmarks, with an overall performance higher than all the
baselines. In particular, Mirror-Verifier-1.5B achieved the best results compared to other baseline
methods on the five selected benchmarks.
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Table 1: Overall performance of accuracy for Qwen2.5-Math series on AIME, MATH500,
Olympiad, AMC, and Minerva. (#Instances denotes the number of training data used to train the
model.)

Method / Verifier #Instances AIME24 MATH500 Olympiad AMC Minerva Overall

Qwen2.5-Math-1.5B as the Solver
pass@1 (avg@16) - 11.9 75.0 39.6 44.2 31.1 49.2
majority@16 - 20.0 81.1 47.5 48.6 35.5 55.7
Qwen2.5-Math-7B-CFT 50k 20.0 81.3 47.2 49.8 34.9 55.6
Math-Shepherd-PRM 445k 20.0 81.4 47.6 48.2 35.7 55.8
Skywork-o1-PRM-1.5B unknown 20.0 83.4 48.9 53.0 36.0 57.3
Mirror-SFT-1.5B 170k 16.7 82.3 46.2 50.6 34.8 55.5
Mirror-Verifier-1.5B 170k 23.3 84.0 49.5 53.0 37.9 58.2

Qwen2.5-Math-7B as the Solver
pass@1 (avg@16) - 23.2 84.2 46.7 57.1 38.1 57.3
majority@16 - 23.3 88.1 52.3 63.3 40.4 61.8
Qwen2.5-Math-7B-CFT 50k 25.0 87.8 52.7 63.2 38.7 61.7
Math-Shepherd-PRM 445k 26.7 88.9 52.4 62.7 40.0 62.0
Skywork-o1-PRM-7B unknown 26.7 88.6 52.4 67.5 40.4 62.3
Mirror-SFT-7B 116k 25.0 88.4 53.2 62.7 40.3 62.2
Mirror-Verifier-7B 116k 25.0 89.1 54.1 63.9 41.2 63.0

We further show the accuracy performance versus the number of candidate solutions K across the
five chosen benchmarks in Figure 3. The results show that our Mirror-Verifier consistently improves
performance for different values of K, significantly outperforming majority voting and other base-
lines. Additionally, it is worth noting that although Mirror-Verifier was trained with K = 8, it can
still effectively generalize to K = 16.
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Figure 3: Accuracy vs. number of candidate solutions (K) for different methods.

5.2.2 HONESTY PERFORMANCE ON DIFFERENT BENCHMARKS

Then, we also report the performance honesty score on the selected benchmark. We uniformly set
the threshold τ = 0.20 for all methods to control the abstention as described in Section 4.3. For
pass@1 (avg@16) and majority@16, no mechanism can be used to abstain. We report the honesty
score of these methods directly. The results are shown in Table 2. Both of our Mirror-Verifier-
1.5/7B models outperform the honesty performance of all baseline methods.
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Table 2: Overall performance of honesty for Qwen2.5-Math series on AIME, MATH500, Olympiad,
AMC, and Minerva.

Method / Verifier AIME24 MATH500 Olympiad AMC Minerva Honesty

Qwen2.5-Math-1.5B as the Solver
pass@1 (avg@16) -76.2 50.0 -20.8 -11.6 -37.8 -1.60
majority@16 -60.0 62.2 -5.0 -2.8 -29.0 11.4
Math-Shepherd-PRM -60.0 62.6 -4.89 -3.61 -27.9 11.7
Skywork-o1-PRM-1.5B -56.7 67.0 1.04 9.64 -21.7 17.6
Mirror-SFT-1.5B -53.3 66.6 6.52 15.7 -19.9 20.5
Mirror-Verifier-1.5B -13.3 71.6 21.5 30.1 -5.15 32.7

Qwen2.5-Math-7B as the Solver
pass@1 (avg@16) -53.6 68.4 -6.6 14.2 -23.8 14.6
majority@16 -53.4 76.2 4.60 26.6 -19.2 23.6
Math-Shepherd-PRM -46.7 77.6 4.74 25.3 -19.5 23.9
Skywork-o1-PRM-1.5B -26.7 75.0 11.3 38.6 -17.3 27.4
Mirror-SFT-7B -26.7 77.0 16.7 30.1 -16.9 30.2
Mirror-Verifier-7B -26.7 78.0 17.4 33.7 -14.3 31.3

5.3 HONESTY-ACCURACY CURVE

To further show the effectiveness of the RLVR process for training Mirror-Verifier, we plot the
Honesty-Accuracy curve for Mirror-SFT and Mirror-RLVR models in Figure 4. This is done by
gradually increasing the threshold τ while evaluating the test-time scaling results. We combine the
five selected benchmarks to report the accuracy and honesty score. As illustrated in the figure, in the
case of equal accuracy, the Honesty Score of our Mirror-RLVR model is higher than that of Mirror-
SFT, which is reflected in the envelope being positioned higher up. In addition, Mirror-RLVR is
also significantly higher than Skywork-O1-PRM, surpassing this stronger baseline. The result fully
demonstrates the effectiveness of the RLVR training within the Mirror-Critique framework.
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Figure 4: Honesty-Accuracy Curve for comparison of SFT and RLVR model.

5.4 QUALITY OF SYNTHETIC CRITIQUE DATA

We further measured the quality of the synthetic critique data. Although we have ensured the ac-
curacy of the final judgment labels through rejection sampling, the accuracy of the critique content
still needs to be measured. We consider that the quality of critique is important for performance.
We adopted the approach of using the LLM as a judge. We randomly sample 30 data points from
the synthetic dataset and use Deepseek-V3.1 to evaluate the quality of critique content. The input
prompt of Deepseek-V3.1 is shown in Appendix B. At the same time, we also conducted manual
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verification. Table 3 shows the results of LLM as a judge and manual verification. It can be seen
that the critique content of our synthetic data, despite still containing noise, has a certain degree of
quality assurance. Finding better denoising methods can be a direction for future research and may
further improve the performance of the resulting verifier.

Table 3: Quality Evaluation for our Synthetic Critique Data generated from Qwen2.5-7B-Instruct.

Synthetic Data Gen Model DeepSeek-V3.1 Human

Mirror-Critique-1.5B Qwen2.5-7B-Instruct 83.3% 80.0%
Mirror-Critique-7B Qwen2.5-7B-Instruct 80.0% 76.7%

5.5 CASE STUDY

We further show a case of our synthetic critique data as illustrated in Figure 5. The synthetic critique
exemplifies a common type of logical verification, where a proposed solution is checked for internal
consistency and correctness against existing mathematical principles or theories. It highlights an
error in calculation by referencing a fundamental combinatorial concept, demonstrating a typical
corrective action in problem-solving analysis.

In a football championship, 16 teams participate, each playing 
against each other once. What is the minimum number of games 
that must be played so that among any three teams, there are 
two that have already played against each other?

1. **Understanding the Problem:**
 - We have 16 teams in a football championship.
 - Each team plays against each other team exactly once.
 - We need to find the minimum number of games such that 

among any three teams, there are two that have already played 
against each other.

2. **Graph Theory Representation:**
 - Represent the teams as vertices of a graph.
 - Represent a game between two teams as an edge between 

two vertices.
 - We need to ensure that in any subset of three vertices 

(teams), at least one edge (game) exists.
...

8. **Conclusion:**
 - Therefore, the minimum number of games that must be 

played so that among any three teams, there are two that have 
already played against each other is:
  \\[

    \\boxed{65}
  \\]

Now I will give the step-by-step Analysis followed by the boxed 
judgment.
## Analysis:
1. **Understanding the Problem:**
   - The problem correctly identifies the need to ensure that 
among any three teams, there are two that have played against 
each other. This translates to a graph theory problem where we 
need to avoid an independent set of size 3 in the complement 
graph.

2. **Graph Theory Representation:**
   - The teams are represented as vertices, and the games as 
edges. This is correct.

3. **Combinatorial Approach:**
   - The problem correctly identifies the need to find the 
minimum number of edges such that the graph does not contain 
an independent set of size 3. This is correct.
...
8. **Minimum Number of Games:**
   - The solution incorrectly states that the minimum number of 
games required is 65. The correct calculation should be:
     \\[
         120 - 64 = 56
     \\]
   - The solution should have subtracted the maximum number of 
edges in a triangle-free graph from the total number of edges 
in a complete graph.

9. **Conclusion:**
   - The solution concludes with 65, which is incorrect. The 
correct answer is 56.

\\boxed{False}

Question Synthetic Critique

Candidate Solution

Figure 5: Case Study of the Synthetic Critique Data.

6 CONCLUSION

In this work, we introduced Mirror-Critique, a novel framework for training verifiers that leverages
rich, synthetic critique data to enable accurate and honest test-time scaling. Our key insight was to
address the limitation of binary reward signals by generating critiques through a low-cost, self-
supervised pipeline that contrasts model-generated solutions with ground-truth answers without the
use of stronger LLMs. Extensive experiments on multiple mathematical reasoning benchmarks
demonstrate the effectiveness of our resulting Mirror-Verifier in terms of both solution accuracy
and honesty. The framework’s ability to identify minority-yet-correct answers through weighted
voting and to abstain from questions beyond the model’s capability boundaries marks a substantial
step towards more reliable and trustworthy reasoning systems.

9
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have meticulously assembled a comprehensive
reproducibility package as part of our supplementary materials. This package is designed to en-
able the seamless replication of all experiments detailed in our paper. It encompasses anonymized
source code that implements the proposed model and training procedures, along with the process
to synthesize the datasets utilized in our experiments. Comprehensive guidelines for setting up the
environment, preparing the data, and executing the experiments are meticulously outlined in the ac-
companying README documentation. Additionally, we have included precise configuration files
and scripts that specify all hyperparameters and the training commands necessary to reproduce our
results.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

This work utilizes the open-source LLMs for model training and testing. In addition, some closed-
source LLMs (Kimi-K2, DeepSeek-V3.1, and Gemini 2.5) are employed for polishing and gram-
matical error correction in the writing of the paper. In general, our use of LLMs in paper writing is
cautious and limited.

B PROMPTS USED IN THIS WORK

Prompt for Solving Complex Reasoning Tasks

Your task is to solve the given question step by step. You should conduct a systematic,
thorough reasoning process before providing the final answer. This involves analyzing,
summarizing, exploring, reassessing, and refining your reasoning process through multiple
iterations. Each reasoning step should include detailed analysis, brainstorming, verification,
and refinement of ideas. You should include the final answer in \boxed{} for closed-form
results like multiple choices or mathematical results.

Prompt for Critique without Ground Truth

You are an expert mathematics tutor who always thinks step-by-step. You will be shown:
Question and its Solution. Your task:
* Analyze the Solution according to the Question
* Produce a numbered step-by-step analysis of the Solution, explaining why it is correct or
incorrect.
* End with a single line containing only
True — if the boxed answer in the Solution is correct,
False — otherwise.

Prompt for Evaluating the Quality of Critique Content

You are an evaluator tasked with analyzing critique accuracy. For each input, you will
receive:
- Question: the problem statement
- Ground truth solution: the correct reference solution
- Candidate solution: a proposed solution to the question
- Critique: an analysis evaluating the candidate solution

Your task is to identify if the critique content is correct.

Process the following Input:
Question: {question}
—
Ground truth solution: {ground truth solution}
—
Candidate solution: {candidate solution}
—-
Critique: {critique}
—

Now, please determine whether the critique to the candidate solution is accurate or
not. Finally, provide your judgment in the specified boxed format. (Shorten your output and
give me quick judgment)
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C REWARD FUNCTION DESIGN

For Training zero-solver, we utilize the Math-Verify2 to judge whether the candidate solution is
correct according to the ground truth answer. On this basis, I also add the constraint that the use of
code is not allowed. When code is detected in the text, the result is directly judged to be incorrect.
This is because code verification is beyond the scope of this work. In the future, we will consider
expanding the method to the field of Tool-Integrated Reasoning. For training zero-verifier, I directly
use regular expressions to extract the text within ’boxed’, and match it with True/False to obtain a
binary reward.

D BASE MODEL LACKS CRITIQUE ABILITY

We observe that the base model lacks the necessary critique capabilities, which is reflected in the
fact that there are almost no critique outputs that meet the requirements in its responses. We show
an example in the following:

Critique Generated from Base Model

You are an expert mathematics tutor who always thinks step-by-step. You will be shown:
Question and its Solution. Your task:
* Analyze the Solution according to the Question
* Produce a numbered step-by-step analysis of the Solution, explaining why it is correct or
incorrect.* End with a single line containing only
True - if the boxed answer in the Solution is correct,
False - otherwise.

Qwen2.5-Math Series sometimes repeats the content of the system prompt, and sometimes it echoes
the candidate solution. Therefore, it is necessary to fine-tune the Base model using critique data.

E REWARD HACKING ON IMBALANCE SAMPLE
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Figure 6: Reward Hacking on Imbalanced Data.

We observe the reward hacking phenomena on imbalanced data training during RLVR. The statis-
tical results of the training dynamics is shown in Figure 6. The imbalance data in this experiment
contains about 75% negative samples. When applied to RLVR, the model quickly adjusts the distri-
bution of predictions, tending to predict all results as False. Subsequently, we sampled positive and
negative samples at a 1:1 ratio to create balanced data, which solved the reward hacking problem.

2https://github.com/huggingface/Math-Verify
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F TRAINING DYNAMICS

We further plot the training dynamics of verification accuracy and F1 score for Mirror-Verifier-7B
model in Figure 7. When using balanced data, the training of the verifier is relatively stable. It can
be observed that as the training steps increase, both the verification rewards and the training F1 score
gradually rise.
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Figure 7: Training dynamics for Mirror-Verifier-7B.
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