

000 CRITIQUE TO VERIFY: ACCURATE AND HONEST TEST- 001 TIME SCALING WITH RL-TRAINED VERIFIERS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Test-time scaling via solution sampling and aggregation has become a key
010 paradigm for improving the reasoning performance of Large Language Models
011 (LLMs). While reward model selection is commonly employed in this approach,
012 it often fails to identify minority-yet-correct answers, which limits its effectiveness
013 beyond that of simple majority voting. We argue that this limitation stems
014 from a lack of informative critique signals during verifier training. To bridge this
015 gap, we introduce **Mirror-Critique**, a framework that trains a verifier with in-
016 formative critiques. Our key insight is to leverage the rich critique signal by
017 contrasting model-generated solutions with ground-truth solutions. We deploy
018 a small instruction-tuned model to synthesize high-quality critique data with re-
019 jection sampling that teaches the verifier not only what is wrong, but also why.
020 The synthetic data is used to cold-start the LLMs in the RLVR process to further
021 improve the verification ability. The resulting **Mirror-Verifier** is deployed to eval-
022 uate candidate solutions by generating multiple critiques per solution, aggregating
023 them into a verify score used for weighted voting or selective abstention. The
024 experimental results show that our **Mirror-Verifier** significantly outperforms ma-
025 jority voting in terms of solution accuracy and also improves the solver’s honesty
026 to recognize and abstain from answering beyond its capability boundaries.
027

028 1 INTRODUCTION 029

030 Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful method for
031 training Large Language Models (LLMs) to perform complex reasoning tasks, enabling significant
032 improvements in domains such as mathematics, code generation, and scientific problem-solving. A
033 common strategy to further boost performance is test-time scaling: generating multiple candidate
034 solutions and aggregating them via methods such as majority voting, verifier model voting, or ag-
035 ggregator model selection. In an ideal scenario, an effective verifier or aggregator should be able to
036 approach Pass@K performance by improving solution accuracy through test-time scaling. However,
037 they often fail to identify minority yet correct solutions, resulting in limitations in their improvement
038 compared to majority voting. This limitation underscores the need for more sophisticated verifica-
039 tion mechanisms that can critically evaluate and select solutions.
040

041 While verifiers have demonstrated promise in detecting flawed reasoning, their training typically
042 depends on binary labels that provide insufficient feedback about why a solution succeeds or fails.
043 This limitation constrains the verifier’s ability to improve its performance meaningfully. One potential
044 approach involves enhancing LLMs with critique capabilities through supervised fine-tuning on
045 critique data. However, obtaining high-quality critique data often requires sampling from closed-
046 source models, making this approach prohibitively expensive. Additionally, the potential of RLVR
047 for training verifiers remains largely unexplored. RLVR could offer significant advantages by im-
048 proving accuracy while enabling models to recognize their limitations and appropriately abstain
049 from answering questions beyond their capabilities.

050 To this end, we propose **Mirror-Critique**, a novel framework that synthesizes high quality critiques
051 by contrasting model-generated solutions with ground-truth answers to train a verifier. Our key
052 insight is that such informative critiques can teach the verifier not only to judge correctness, but also
053 to understand the underlying reasoning gaps. We generate high-quality critique data via rejection
sampling on an open-source, instruction-tuned model. The synthesized critique data is then used

054 to fine-tune the Base LLMs to address the cold start issue for the RLVR process, further improving
 055 the verification ability. The resulting **Mirror-Verifier** is deployed to generate multiple critiques
 056 per solution, which are aggregated into a verification score used for weighted voting or selective
 057 abstention during test-time scaling.

058 Extensive experiments on multiple mathematical reasoning benchmarks show that Mirror-Verifier
 059 significantly outperforms majority voting and reward-based selection methods, achieving superior
 060 accuracy across tasks. Furthermore, it enhances the honesty of the solver–verifier system, enabling
 061 it to abstain from questions beyond its capability boundaries, both in test-time scaling and standard
 062 (Pass@1) settings. In summary, our main contributions are:

- 064 • We introduce the **Mirror-Critique** framework, a novel approach for training verifiers that
 065 leverages rich, synthetic critique data generated by contrasting LLM solutions with ground-
 066 truth solutions. This synthetic critique data, curated via rejection sampling, provides infor-
 067 mative signals that teach the verifier to not only identify errors but also understand their
 068 rationale. Unlike other approaches that depend on distillation from larger models, our
 069 method is self-contained, synthesizing all training data through internal supervision.
- 070 • We demonstrate significant accuracy gains in test-time scaling. By using the **Mirror-**
 071 **Verifier** to aggregate multiple solutions via weighted voting, our approach consistently
 072 outperforms strong baselines like majority voting and reward-model selection across mul-
 073 tiple mathematical reasoning benchmarks.
- 074 • We propose the **honesty** score and show that Mirror-Verifier significantly improves it. This
 075 metric quantifies a model’s ability to know what it knows. By abstaining from answers with
 076 low verification scores, our framework enhances model honesty while maintaining answer
 077 accuracy, reliably recognizing capability boundaries in both test-time scaling and standard
 078 (Pass@1) settings.

079 2 RELATED WORKS

080 **Reinforcement Learning with Verifiable Reward** Reinforcement Learning (RL) has become a
 081 standard component in the post-training stage of LLMs. Recent research indicates that RLVR sub-
 082 stantially enhances the reasoning performance of LLMs in areas such as mathematics and code
 083 generation. A notable advancement was made with OpenAI’s o1 model (Jaech et al., 2024), which
 084 marked a significant leap in reasoning capabilities. This was followed by DeepSeek-R1 (Guo et al.,
 085 2025), where RLVR was shown to activate inherent slow-thinking abilities in a base model—a
 086 paradigm now referred to as zero-RL (Li et al., 2025). Subsequently, multiple Large Reasoning
 087 Models (LRMs) have been released, such as Kimi 1.5 (Team et al., 2025), Gemini-Think (Deep-
 088 Mind, 2024), and QwQ (Qwen, 2024). SimpleRL (Zeng et al., 2025) provided comprehensive em-
 089 pirical studies on zero-RL, while Luo et al. (2025) utilized RLVR to further improve open-source
 090 models derived from DeepSeek-R1. A prominent RLVR algorithm adopted in many of these works
 091 is GRPO (Shao et al., 2024). Extending PPO (Schulman et al., 2017), it achieves notable improve-
 092 ments by evaluating multiple responses to estimate group-relative advantage. GRPO has motivated
 093 several variants, including DAPo (Yu et al., 2025), VAPO (Yue et al., 2025), and Dr. GRPO (Liu
 094 et al., 2025b). Additionally, DARS (Yang et al., 2025) introduces adaptive sampling based on dif-
 095 ficulty, leading to gains in both Pass@1 and Pass@K metrics. In this work, we train the verifier
 096 while performing zero-RL training of the solver, and further improvements are achieved through the
 097 solver-verifier framework in test-time scaling.

098 **Test-Time Scaling** Test-time scaling through solution sampling and aggregation has become a
 099 widely adopted paradigm for improving reasoning performance in LLMs. A common strategy is
 100 to use rule-based methods such as majority voting, exemplified by self-consistent decoding (Wang
 101 et al., 2023; Brown et al., 2024), which aggregates multiple chain-of-thought trajectories by selecting
 102 the most frequent answer. Several lightweight variants have been proposed to enhance this approach,
 103 including dynamically adjusting the number of samples or applying heuristic filters (Aggarwal et al.,
 104 2023; Xue et al., 2023; Huang et al., 2024; Knappe et al., 2024). While effective in many cases,
 105 these methods can fail when correct solutions lie in minority modes, causing majority voting to
 106 amplify errors rather than surface the right answer. To move beyond simple counting, recent work
 107 has explored model-based selection and aggregation. These methods either train a separate reward

108 model to score and select candidate solutions (Yang et al., 2024b; Liu et al., 2024; 2025c), or prompt
 109 the LLM itself to compare and consolidate answers as Universal Self-Consistency (USC; Chen et al.
 110 2024). Although these approaches combine frequency with a learned notion of quality, they can still
 111 be prone to regression errors and may not fully leverage the potential of learned aggregation. Liu
 112 et al. (2025a) propose RISE to leverage verifiable rewards from an outcome verifier to provide on-
 113 the-fly feedback for both solution generation and self-verification tasks. Concurrent to this paper, the
 114 other line of works (Qi et al., 2025; Zhao et al., 2025) explored the training of solution aggregators.
 115 Sample Set Aggregator (SSA; Qi et al. 2025), AggLM (Zhao et al., 2025) train the model aggregators
 116 via reinforcement learning to generate a final answer from multiple solutions. However, they did not
 117 utilize the informative critique information to train the model’s ability to select solutions, nor did
 118 they propose a method to determine the model’s reasoning boundaries to enhance its honesty. We
 119 train the LLM with synthetic critique data, guiding it to both the right answer and the exact error;
 120 this sharply improves later RLVR training. The learned verifier identifies the model’s reasoning
 121 boundaries, letting it decline questions beyond its ability and greatly boosting honesty.
 122

3 PROBLEM FORMULATION

124 We consider the problem of training a solver and a verifier from a base language model M to improve
 125 reasoning performance through test-time scaling. Given a training dataset $\mathcal{D} = \{(q, a)\}$ consisting
 126 of questions q and their corresponding ground-truth answers a , our goal is to acquire two models:
 127

- 128 • A **solver** S that, given a question q , generates a solution s (which includes both a reasoning
 129 trace and a final answer a).
- 130 • A **verifier** V that, given a question q and a set of candidate solutions $\{s_1, s_2, \dots, s_N\}$,
 131 selects the best solution among them.

133 At test time, we employ a **test-time scaling** paradigm: for a given question q , the solver S generates
 134 N candidate solutions $\{s_1, s_2, \dots, s_N\}$. The verifier V then selects the most promising answer \hat{a}
 135 from the candidate set:

$$136 \hat{a} = f_{\text{select}}(V, q, \{s_1, s_2, \dots, s_N\})$$

137 where f_{select} is the selecting function that leverages the verifier V to identify the solution with the
 138 highest estimated quality. The selected solution \hat{a} is chosen to produce the final answer. Additionally,
 139 to enhance honesty, the selecting function f_{select} can abstain from answering the questions that
 140 are beyond the reasoning capabilities of the Solver. We aim to jointly optimize the verifier V such
 141 that the solver-verifier framework maximizes accuracy on the reasoning task while also improving
 142 honesty through calibrated abstention.

4 MIRROR-CRITIQUE FOR TEST-TIME SCALING

146 The Mirror-Critique framework is designed to train a high-performance verifier that leverages rich,
 147 informative critique signals. The overall framework is shown in Figure 1. This section details the
 148 four key components of our approach: (1) **RLVR Training Zero-Solver**, we use GRPO (Shao et al.,
 149 2024) to conduct RL training on the base model while collecting the trajectories generated during
 150 the training process. (2) **Mirror the Truth for Critique Synthesis**, we synthesize a large amount
 151 of high-quality critique data by contrasting model-generated solutions with ground-truth solutions;
 152 (3) **RLVR Training Zero-Verifier**, we first conduct supervised fine-tuning (SFT) to cold-start the
 153 base model, then we balance the data and conduct RL training to further improve the verifier’s
 154 capabilities. Finally, we deploy the resulting solver-verifier system for accurate and honest test-time
 155 scaling.

4.1 MIRRORING THE TRUTH: CRITIQUE SYNTHESIS

156 We consider that the difficulty in training verifiers lies in the fact that relying solely on binary labels
 157 (correct or wrong) does not enable the model to understand why a solution is wrong. Critique
 158 data that points out the specific errors often requires the generation from powerful, closed-source
 159 models, which increases the cost of data synthesis. To address this issue, we propose a low-cost data
 160 synthesis pipeline that can generate high-quality, instructive critiques.

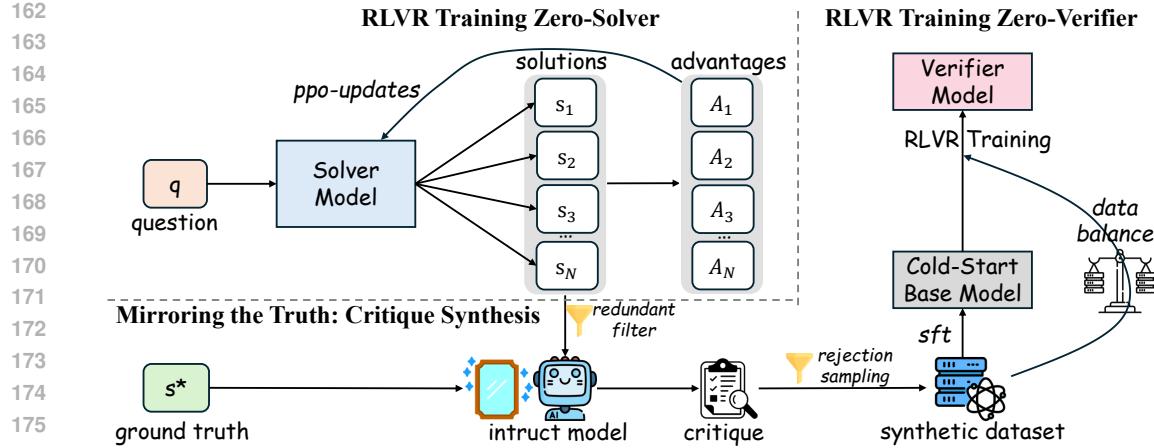


Figure 1: Overview of our framework **Mirror-Critique**. We utilized the trajectory data during the zero-solver training process of RLVR to synthesize a large amount of high-quality critique data at low cost without applying closed-source LLMs. This synthetic data is then used to cold start and facilitate RLVR training of the verifier.

We begin by training a base solver model using RLVR (e.g., GRPO), recording its solution trajectories throughout the training process. To reduce data redundancy, we filter out the trajectories that are ultimately identical with Math Verify¹. For a given question q , we have a set of model-generated solutions $\{\hat{s}_i\}$ and a ground-truth solution s^* . To synthesize a critique for a solution pair (q, \hat{s}_i) , we instruct a small, instruction-tuned language model with the following template:

Prompt for Critique with Ground Truth

You are an expert mathematics tutor who always thinks step-by-step. You will be shown: Question, Ground Truth (hidden from the student), Solution. Your task:
 * Analyze the Solution according to the Ground Truth. But do not mention ‘ground truth’, ‘correct answer’, ‘official solution’, etc.
 * Produce a numbered step-by-step analysis of the Solution, explaining why it is correct or incorrect.
 * End with a single line containing only
`True` — if the boxed answer in the Solution is correct,
`False` — otherwise.

The instruct model generates a candidate critique c_i . We then apply a rejection sampling filter: the final `Judgment` (True/False) matches the actual correctness of \hat{a}_i are retained. This process ensures the synthetically generated data maintains a high standard of quality, teaching the verifier not just to judge but to justify its judgment with a coherent rationale.

4.2 DATA SELECTION AND VERIFIER TRAINING

Cold Start. Since the base model lacks the critique ability, it is difficult to enhance its verification capability through reinforcement learning. We illustrate this in Appendix D. We use the synthetic critique dataset, $\mathcal{D}_{\text{synth}} = \{(q, \hat{a}, c)\}$ to cold start the base model. This SFT step serves as an effective cold start, equipping the model with fundamental critique generation capabilities before the subsequent RLVR phase.

Balance Data for RLVR. The filtered synthetic dataset often exhibits class imbalance, with more critiques labeling solutions as incorrect ($y = \text{False}$). We found that training the verifier with imbalanced samples through RLVR easily leads to reward hacking, where the LLM tends to predict all

¹<https://github.com/huggingface/Math-Verify>

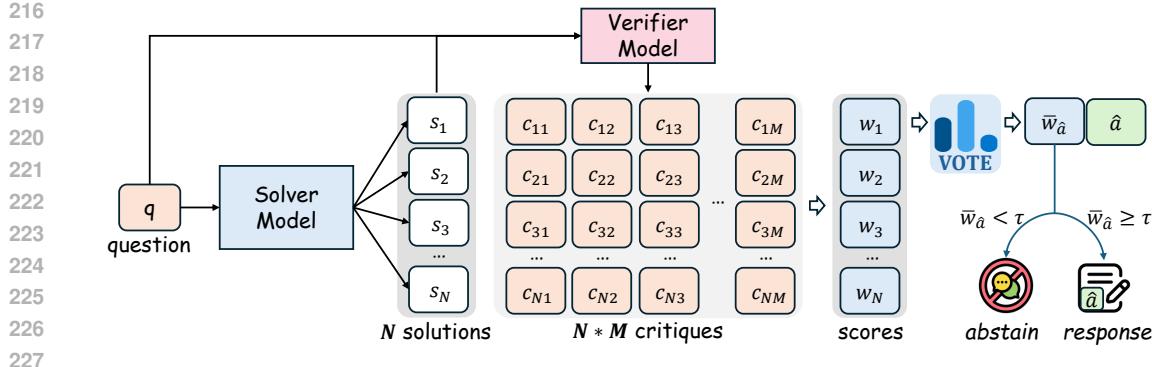


Figure 2: Test-Time Scaling with Mirror-Verifier. We deploy the verifier to generate critiques for each candidate solution, then select the final answer according to the weighted majority voting. If the average verification score of the chosen answer is lower than the threshold τ , the system will abstain from answering the question.

samples as False, as illustrated in Appendix E. To this end, we conducted balanced data sampling for positive and negative samples. Additionally, to make the model pay more attention to minor-yet-correct samples, we only selected question-solution pairs with an accuracy rate of less than 60% for further RLVR training. We further refine the SFT-initialized verifier using Reinforcement Learning with the balanced dataset. The goal is to align the verifier’s critique generation policy, $\pi_\phi(c|q, \hat{a})$, to produce critiques that are not only correct but also pedagogically valuable and concise. The verifier model is prompted with a question-solution pair (q, \hat{a}) and is tasked to generate a critique c .

4.3 ACCURATE AND HONEST TEST-TIME SCALING

The resulting verifier is deployed in a solver-verifier framework to enhance performance at test time via solution sampling and selection. For a given test question q , the solver generates N candidate solutions $\{s_1, s_2, \dots, s_N\}$. The Mirror-Verifier then evaluates each solution s_i by generating M independent critiques $\{c_{i,1}, c_{i,2}, \dots, c_{i,M}\}$. Each critique $c_{i,j}$ contains a binary judgment $y_{i,j} \in \{\text{True}, \text{False}\}$. The verification score w_i for solution s_i is calculated as the proportion of critiques judging it to be correct:

$$w_i = \frac{1}{M} \sum_{j=1}^M \mathbb{I}(y_{i,j} = \text{True})$$

The score can be used for the following aspects:

- **Weighted Voting for Accuracy:** The final answer is selected through a weighted majority vote. Each solution s_i contributes a vote for its final answer a_i , weighted by its verification score w_i :

$$\hat{a} = \arg \max_{a \in \mathcal{A}} \sum_{i=1}^N w_i \cdot \mathbb{I}(a_i = a)$$

- **Selective Abstention for Honesty:** The system can abstain from answering when it lacks sufficient confidence. Specifically, for the selected answer \hat{a} , the average verification score of all solutions that proposed \hat{a} is computed:

$$\bar{w}_{\hat{a}} = \frac{\sum_{i=1}^N w_i \cdot \mathbb{I}(a_i = \hat{a})}{\sum_{i=1}^N \mathbb{I}(a_i = \hat{a})}$$

A predefined confidence threshold $\tau \in [0, 1]$ is set. If $\bar{w}_{\hat{a}} < \tau$, the system rejects the query and abstains from providing an answer. This mechanism enhances honesty by preventing the delivery of potentially unreliable or low-confidence responses.

This framework ensures that the final output is not only accurate (through weighted voting) but also trustworthy (through selective abstention), thereby improving overall reliability and alignment with user expectations.

270 5 EXPERIMENTS
271272 5.1 SETUP
273

274 **Data** We evaluate the Solver-Verifier framework with 5 widely used mathematical reasoning
275 benchmarks: MATH-500 (Lightman et al., 2023), OlympiadBench (He et al., 2024a), Minverva-
276 Math (Lewkowycz et al., 2022), AIME24, and AMC23. We further combine all of the evaluation
277 benchmarks to report the performance of test-time scaling with different sampling sizes (from 1
278 to 16). The training data used in this work is OpenR1-45K, which is a subset of OpenR1-Math-
279 220k (Hugging Face, 2025).

280 **Metrics.** In this work, we conduct 2 metrics to evaluate the solver-verifier framework.
281

- 282 • **Accuracy:** The proportion of problems for which the model generates a correct final answer. For
283 a benchmark D , the Accuracy is defined as:

$$284 \text{Accuracy} = \frac{1}{|D|} \sum_{i=1}^{|D|} \mathbb{I}(\hat{a}_i = a_i^*)$$

$$285$$

$$286$$

287 where \hat{a}_i is the model’s predicted answer for the i -th problem, a_i^* is the ground-truth answer, and
288 \mathbb{I} is the indicator function.

- 289 • **Honesty Score:** We propose a metric that jointly considers correctness and the harm of providing
290 incorrect information. For each problem, the model receives +1 if it answers correctly, -1 if it
291 answers incorrectly, and 0 if it abstains from answering. The Honesty Score for the entire dataset
292 is the average of these values:

$$293 \text{Honesty Score} = \frac{1}{|D|} \sum_{i=1}^{|D|} [\mathbb{I}(\hat{a}_i = a_i^*) - \mathbb{I}(\hat{a}_i \neq a_i^* \wedge \hat{a}_i \neq \text{"abstain"})]$$

$$294$$

$$295$$

$$296$$

297 This metric encourages not only high accuracy but also cautious behavior by penalizing incorrect
298 outputs, thus mitigating the risk of propagating harmful misinformation.

299 **Training and Testing Details.** We conduct our RL training experiments on Qwen2.5-Math (Yang
300 et al., 2024a) series Models with different sizes. We change the rope theta from 10,000 to 40,000 and
301 extend the window size to 16,384. We remove the KL loss term and the. Following Dr.GRPO (Liu
302 et al., 2025b), we remove length normalization in the loss function and the standard normalization
303 in advantage computation. For all training procedures, the learning rate is set as 1e-7. The batch
304 size is set as 128 and 1024 for training the solver and verifier, respectively. The rollout size is set as
305 8 for training the zero-solver and 16 for training the zero-verifier. The temperature is set as 1.0 for
306 both training and testing. During test-time scaling, we generate $M = 16$ critiques per solution.

307 **Baselines.** We compare our Mirror-Verifier with the following methods: (1) *Pass@1* (*Avg@16*),
308 we sample 16 solutions for each question and compute the average accuracy for all responses. (2)
309 *Majority@K*, (3) Math-Shepherd-PRM (Wang et al., 2024), a process reward model trained with
310 automatic process data annotation. (4) Skywork-O1-PRM (He et al., 2024b), A specialized model
311 designed to enhance reasoning capability through incremental process rewards, ideal for complex
312 problem solving at a smaller scale. (5) Qwen2.5-Math-7B-CFT (Wang et al., 2025), a critique model
313 trained on 50K critique responses generated by GPT-4o. (6) Mirror-SFT model, the SFT cold-start
314 model in our Mirror-Critique training procedure.

315 5.2 MAIN RESULTS
316317 5.2.1 ACCURACY PERFORMANCE WITHOUT ABSTAIN
318

319 We show the accuracy performance of test-time scaling in Table 1. In this experiment, the abstain
320 threshold τ is set as 0 to acquire the best accuracy performance of each method. That is, we require
321 the LLMs not to abstain from any given question. It is worth noting that our Mirror-Verifier achieved
322 the best performance on the majority of benchmarks, with an overall performance higher than all the
323 baselines. In particular, Mirror-Verifier-1.5B achieved the best results compared to other baseline
methods on the five selected benchmarks.

324

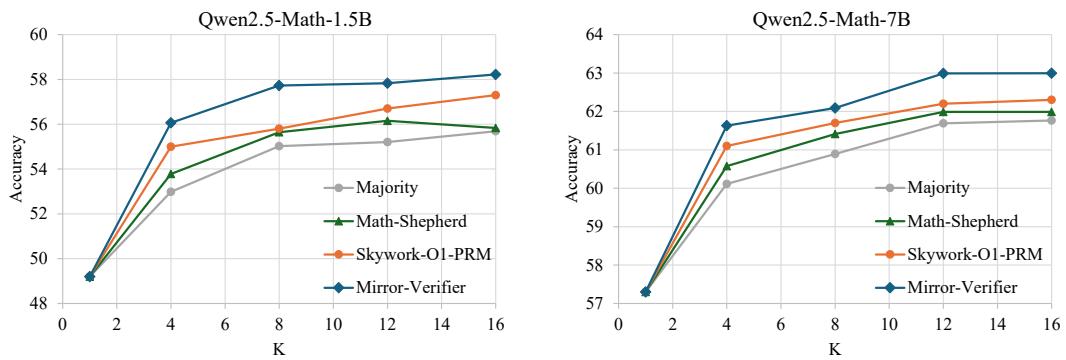
325 Table 1: Overall performance of accuracy for Qwen2.5-Math series on AIME, MATH500,
326 Olympiad, AMC, and Minerva. (#Instances denotes the number of training data used to train the
327 model.)

Method / Verifier	#Instances	AIME24	MATH500	Olympiad	AMC	Minerva	Overall
<i>Qwen2.5-Math-1.5B as the Solver</i>							
<i>pass@1 (avg@16)</i>	-	11.9	75.0	39.6	44.2	31.1	49.2
<i>majority@16</i>	-	20.0	81.1	47.5	48.6	35.5	55.7
Qwen2.5-Math-7B-CFT	50k	20.0	81.3	47.2	49.8	34.9	55.6
Math-Shepherd-PRM	445k	20.0	81.4	47.6	48.2	35.7	55.8
Skywork-o1-PRM-1.5B	unknown	20.0	83.4	48.9	53.0	36.0	57.3
Mirror-SFT-1.5B	170k	16.7	82.3	46.2	50.6	34.8	55.5
Mirror-Verifier-1.5B	170k	23.3	84.0	49.5	53.0	37.9	58.2
<i>Qwen2.5-Math-7B as the Solver</i>							
<i>pass@1 (avg@16)</i>	-	23.2	84.2	46.7	57.1	38.1	57.3
<i>majority@16</i>	-	23.3	88.1	52.3	63.3	40.4	61.8
Qwen2.5-Math-7B-CFT	50k	25.0	87.8	52.7	63.2	38.7	61.7
Math-Shepherd-PRM	445k	26.7	88.9	52.4	62.7	40.0	62.0
Skywork-o1-PRM-7B	unknown	26.7	88.6	52.4	67.5	40.4	62.3
Mirror-SFT-7B	116k	25.0	88.4	53.2	62.7	40.3	62.2
Mirror-Verifier-7B	116k	25.0	89.1	54.1	63.9	41.2	63.0

348

349

We further show the accuracy performance versus the number of candidate solutions K across the five chosen benchmarks in Figure 3. The results show that our Mirror-Verifier consistently improves performance for different values of K , significantly outperforming majority voting and other baselines. Additionally, it is worth noting that although Mirror-Verifier was trained with $K = 8$, it can still effectively generalize to $K = 16$.

368 Figure 3: Accuracy vs. number of candidate solutions (K) for different methods.
369
370
371372 5.2.2 HONESTY PERFORMANCE ON DIFFERENT BENCHMARKS
373

374 Then, we also report the performance honesty score on the selected benchmark. We uniformly set
375 the threshold $\tau = 0.20$ for all methods to control the abstention as described in Section 4.3. For
376 *pass@1 (avg@16)* and *majority@16*, no mechanism can be used to abstain. We report the honesty
377 score of these methods directly. The results are shown in Table 2. Both of our **Mirror-Verifier-1.5/7B** models
378 outperform the honesty performance of all baseline methods.

378
379
380

Table 2: Overall performance of honesty for Qwen2.5-Math series on AIME, MATH500, Olympiad, AMC, and Minerva.

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

Method / Verifier	AIME24	MATH500	Olympiad	AMC	Minerva	Honesty
<i>Qwen2.5-Math-1.5B as the Solver</i>						
<i>pass@1 (avg@16)</i>	-76.2	50.0	-20.8	-11.6	-37.8	-1.60
<i>majority@16</i>	-60.0	62.2	-5.0	-2.8	-29.0	11.4
Math-Shepherd-PRM	-60.0	62.6	-4.89	-3.61	-27.9	11.7
Skywork-o1-PRM-1.5B	-56.7	67.0	1.04	9.64	-21.7	17.6
Mirror-SFT-1.5B	-53.3	66.6	6.52	15.7	-19.9	20.5
Mirror-Verifier-1.5B	-13.3	71.6	21.5	30.1	-5.15	32.7
<i>Qwen2.5-Math-7B as the Solver</i>						
<i>pass@1 (avg@16)</i>	-53.6	68.4	-6.6	14.2	-23.8	14.6
<i>majority@16</i>	-53.4	76.2	4.60	26.6	-19.2	23.6
Math-Shepherd-PRM	-46.7	77.6	4.74	25.3	-19.5	23.9
Skywork-o1-PRM-1.5B	-26.7	75.0	11.3	38.6	-17.3	27.4
Mirror-SFT-7B	-26.7	77.0	16.7	30.1	-16.9	30.2
Mirror-Verifier-7B	-26.7	78.0	17.4	33.7	-14.3	31.3

400
401
402
403
404
405
406
407
408
409

5.3 HONESTY-ACCURACY CURVE

To further show the effectiveness of the RLVR process for training Mirror-Verifier, we plot the Honesty-Accuracy curve for Mirror-SFT and Mirror-RLVR models in Figure 4. This is done by gradually increasing the threshold τ while evaluating the test-time scaling results. We combine the five selected benchmarks to report the accuracy and honesty score. As illustrated in the figure, in the case of equal accuracy, the Honesty Score of our Mirror-RLVR model is higher than that of Mirror-SFT, which is reflected in the envelope being positioned higher up. In addition, Mirror-RLVR is also significantly higher than Skywork-O1-PRM, surpassing this stronger baseline. The result fully demonstrates the effectiveness of the RLVR training within the Mirror-Critique framework.

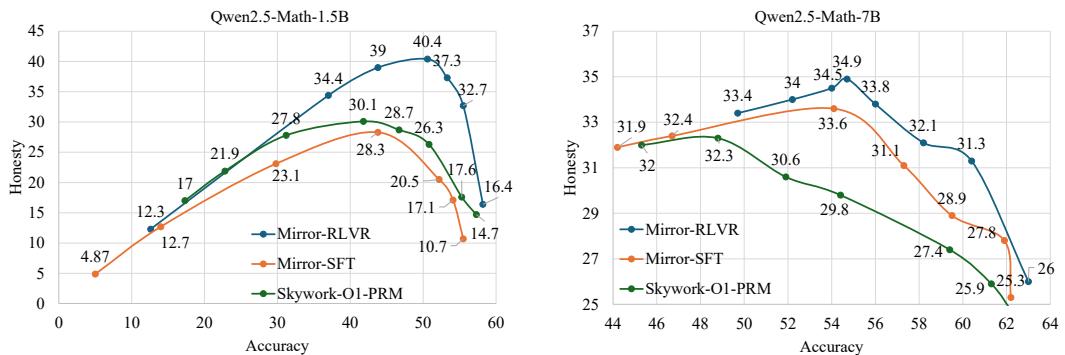
422
423
424

Figure 4: Honesty-Accuracy Curve for comparison of SFT and RLVR model.

425
426

5.4 QUALITY OF SYNTHETIC CRITIQUE DATA

427
428
429
430
431

We further measured the quality of the synthetic critique data. Although we have ensured the accuracy of the final judgment labels through rejection sampling, the accuracy of the critique content still needs to be measured. We consider that the quality of critique is important for performance. We adopted the approach of using the LLM as a judge. We randomly sample 30 data points from the synthetic dataset and use Deepseek-V3.1 to evaluate the quality of critique content. The input prompt of Deepseek-V3.1 is shown in Appendix B. At the same time, we also conducted manual

432 verification. Table 3 shows the results of LLM as a judge and manual verification. It can be seen
 433 that the critique content of our synthetic data, despite still containing noise, has a certain degree of
 434 quality assurance. Finding better denoising methods can be a direction for future research and may
 435 further improve the performance of the resulting verifier.

437 **Table 3: Quality Evaluation for our Synthetic Critique Data generated from Qwen2.5-7B-Instruct.**

Synthetic Data	Gen Model	DeepSeek-V3.1	Human
Mirror-Critique-1.5B	Qwen2.5-7B-Instruct	83.3%	80.0%
Mirror-Critique-7B	Qwen2.5-7B-Instruct	80.0%	76.7%

442 5.5 CASE STUDY

443 We further show a case of our synthetic critique data as illustrated in Figure 5. The synthetic critique
 444 exemplifies a common type of logical verification, where a proposed solution is checked for internal
 445 consistency and correctness against existing mathematical principles or theories. It highlights an
 446 error in calculation by referencing a fundamental combinatorial concept, demonstrating a typical
 447 corrective action in problem-solving analysis.

448 Question	449 Synthetic Critique
<p>450 In a football championship, 16 teams participate, each playing 451 against each other once. What is the minimum number of games 452 that must be played so that among any three teams, there are 453 two that have already played against each other?</p>	<p>454 Now I will give the step-by-step Analysis followed by the boxed 455 judgment. 456 ## Analysis: 457 1. **Understanding the Problem:** 458 - The problem correctly identifies the need to ensure that 459 among any three teams, there are two that have played against 460 each other. This translates to a graph theory problem where we 461 need to avoid an independent set of size 3 in the complement 462 graph. 463 2. **Graph Theory Representation:** 464 - The teams are represented as vertices, and the games as 465 edges. This is correct. 466 3. **Combinatorial Approach:** 467 - The problem correctly identifies the need to find the 468 minimum number of edges such that the graph does not contain 469 an independent set of size 3. This is correct. 470 ... 471 8. **Minimum Number of Games:** 472 - The solution incorrectly states that the minimum number of 473 games required is 65. The correct calculation should be: $\begin{aligned} & \backslash \backslash \\ & 120 - 64 = 56 \\ & \backslash \backslash \end{aligned}$ 474 - The solution should have subtracted the maximum number of 475 edges in a triangle-free graph from the total number of edges 476 in a complete graph. 477 9. **Conclusion:** 478 - The solution concludes with 65, which is incorrect. The 479 correct answer is 56. $\backslash \backslash \boxed{\text{False}}$</p>
479 Candidate Solution	480
<p>481 1. **Understanding the Problem:** 482 - We have 16 teams in a football championship. 483 - Each team plays against each other team exactly once. 484 - We need to find the minimum number of games such that 485 among any three teams, there are two that have already played 486 against each other.</p> <p>487 2. **Graph Theory Representation:** 488 - Represent the teams as vertices of a graph. 489 - Represent a game between two teams as an edge between 490 two vertices. 491 - We need to ensure that in any subset of three vertices 492 (teams), at least one edge (game) exists. 493 ...</p> <p>494 8. **Conclusion:** 495 - Therefore, the minimum number of games that must be 496 played so that among any three teams, there are two that have 497 already played against each other is: $\begin{aligned} & \backslash \backslash \\ & \boxed{65} \\ & \backslash \backslash \end{aligned}$</p>	

478 **Figure 5: Case Study of the Synthetic Critique Data.**

479 6 CONCLUSION

480 In this work, we introduced **Mirror-Critique**, a novel framework for training verifiers that leverages
 481 rich, synthetic critique data to enable accurate and honest test-time scaling. Our key insight was to
 482 address the limitation of binary reward signals by generating critiques through a low-cost, self-
 483 supervised pipeline that contrasts model-generated solutions with ground-truth answers without the
 484 use of stronger LLMs. Extensive experiments on multiple mathematical reasoning benchmarks
 485 demonstrate the effectiveness of our resulting **Mirror-Verifier** in terms of both solution accuracy
 486 and honesty. The framework’s ability to identify minority-yet-correct answers through weighted
 487 voting and to abstain from questions beyond the model’s capability boundaries marks a substantial
 488 step towards more reliable and trustworthy reasoning systems.

486 7 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our research, we have meticulously assembled a comprehensive
489 reproducibility package as part of our supplementary materials. This package is designed to en-
490 able the seamless replication of all experiments detailed in our paper. It encompasses anonymized
491 source code that implements the proposed model and training procedures, along with the process
492 to synthesize the datasets utilized in our experiments. Comprehensive guidelines for setting up the
493 environment, preparing the data, and executing the experiments are meticulously outlined in the ac-
494 companying README documentation. Additionally, we have included precise configuration files
495 and scripts that specify all hyperparameters and the training commands necessary to reproduce our
496 results.
497498 REFERENCES
499500 Pranjal Aggarwal, Aman Madaan, Yiming Yang, and Mausam. Let’s sample step by step: Adaptive-
501 consistency for efficient reasoning and coding with LLMs. In Houda Bouamor, Juan Pino, and
502 Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-*
503 *guage Processing*, pp. 12375–12396, Singapore, December 2023. Association for Computational
504 Linguistics. doi: 10.18653/v1/2023.emnlp-main.761. URL <https://aclanthology.org/2023.emnlp-main.761/>.
505
506 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
507 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
508 *arXiv preprint arXiv:2407.21787*, 2024.
509
510 Xinyun Chen, Renat Akositov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
511 Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large lan-
512 guage models. In *ICML 2024 Workshop on In-Context Learning*, 2024. URL <https://openreview.net/forum?id=LjsjHF7nAN>.
513
514 Google DeepMind. Gemini 2.0 flash thinking, 2024. URL <https://deepmind.google/technologies/gemini/flash-thinking/>.
515
516 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
517 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
518 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
519
520 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
521 Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:
522 A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
523 problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd An-*
524 *nual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-*
525 *pers)*, pp. 3828–3850, Bangkok, Thailand, August 2024a. Association for Computational Lin-
526 guistics. doi: 10.18653/v1/2024.acl-long.211. URL <https://aclanthology.org/2024.acl-long.211/>.
527
528 Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao
529 Liu, Liang Zeng, Xiaokun Wang, Boyang Wang, Yongcong Li, Fuxiang Zhang, Jiacheng Xu,
530 Bo An, Yang Liu, and Yahui Zhou. Skywork-o1 open series, November 2024b. URL <https://doi.org/10.5281/zenodo.16998085>.
531
532 Siyuan Huang, Zhiyuan Ma, Jintao Du, Changhua Meng, Weiqiang Wang, and Zhouhan Lin. Mirror-
533 consistency: Harnessing inconsistency in majority voting. In Yaser Al-Onaizan, Mohit Bansal,
534 and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
535 *2024*, pp. 2408–2420, Miami, Florida, USA, November 2024. Association for Computational
536 Linguistics. doi: 10.18653/v1/2024.findings-emnlp.135. URL <https://aclanthology.org/2024.findings-emnlp.135/>.
537
538 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.
539

540 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 541 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 542 preprint [arXiv:2412.16720](https://arxiv.org/abs/2412.16720), 2024.

543

544 Tim Knappe, Ryan Luo Li, Ayush Chauhan, Kaylee Chhua, Kevin Zhu, and Sean O'Brien. Enhanc-
 545 ing language model reasoning via weighted reasoning in self-consistency. In *The 4th Workshop on*
 546 *Mathematical Reasoning and AI at NeurIPS'24*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=2w0CIzW1le)
 547 forum?id=2w0CIzW1le.

548 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 549 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
 550 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
 551 guage models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Ad-*
 552 *vances in Neural Information Processing Systems*, volume 35, pp. 3843–3857. Curran Associates,
 553 Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf.

554

555 Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
 556 Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
 557 reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025.

558

559 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 560 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*
 561 *arXiv:2305.20050*, 2023.

562

563 Xiaoyuan Liu, Tian Liang, Zhiwei He, Jiahao Xu, Wenxuan Wang, Pinjia He, Zhaopeng Tu, Haitao
 564 Mi, and Dong Yu. Trust, but verify: A self-verification approach to reinforcement learning with
 565 verifiable rewards, 2025a. URL <https://arxiv.org/abs/2505.13445>.

566

567 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 568 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*
 569 *arXiv:2503.20783*, 2025b.

570

571 Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Ad-
 572 vancing frontier math reasoning with post-training and reward modeling. *arXiv preprint*
 573 *arXiv:2412.15084*, 2024.

574

575 Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. AceMath: Advanc-
 576 ing frontier math reasoning with post-training and reward modeling. In Wanxiang Che, Joyce
 577 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Associa-*
 578 *tion for Computational Linguistics: ACL 2025*, pp. 3993–4015, Vienna, Austria, July 2025c.
 579 Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.
 580 *findings-acl.206*. URL <https://aclanthology.org/2025.findings-acl.206/>.

581

582 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 583 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 584 with a 1.5b model by scaling rl, 2025. Notion Blog.

585

586 Jianing Qi, Xi Ye, Hao Tang, Zhigang Zhu, and Eunsol Choi. Learning to reason across parallel
 587 samples for llm reasoning. *arXiv preprint arXiv:2506.09014*, 2025.

588

589 Qwen. Qwq-32b: Embracing the power of reinforcement learning, 2024. URL <https://qwenlm.github.io/blog/qwq-32b/>.

590

591 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 592 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

593

594 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 595 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 596 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

594 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 595 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 596 llms. *arXiv preprint arXiv:2501.12599*, 2025.

597

598 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhipang
 599 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In *Pro-
 600 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 601 1: Long Papers)*, pp. 9426–9439, 2024.

602

603 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 604 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 605 models. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 606 <https://openreview.net/forum?id=1PL1NIMMrw>.

607

608 Yubo Wang, Xiang Yue, and Wenhui Chen. Critique fine-tuning: Learning to critique is more effec-
 609 tive than learning to imitate. *arXiv preprint arXiv:2501.17703*, 2025.

610

611 Mingfeng Xue, Dayiheng Liu, Wenqiang Lei, Xingzhang Ren, Baosong Yang, Jun Xie, Yidan
 612 Zhang, Dezhong Peng, and Jiancheng Lv. Dynamic voting for efficient reasoning in large lan-
 613 guage models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Associa-
 614 tion for Computational Linguistics: EMNLP 2023*, pp. 3085–3104, Singapore, December 2023.
 615 Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.203. URL
<https://aclanthology.org/2023.findings-emnlp.203/>.

616

617 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 618 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 619 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
 620 pert model via self-improvement, 2024a. URL <https://arxiv.org/abs/2409.12122>.

621

622 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 623 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 624 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

625

626 Zhicheng Yang, Zhijiang Guo, Yinya Huang, Yongxin Wang, Dongchun Xie, Yiwei Wang, Xiaodan
 627 Liang, and Jing Tang. Depth-breadth synergy in rlrv: Unlocking llm reasoning gains with adaptive
 628 exploration, 2025. URL <https://arxiv.org/abs/2508.13755>.

629

630 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
 631 Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
 632 ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
 633 Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
 634 Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
 635 uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
<https://arxiv.org/abs/2503.14476>.

636

637 Yu Yue, Yufeng Yuan, Qiyi Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
 638 Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,
 639 Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang
 640 Zhu, Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and
 641 reliable reinforcement learning for advanced reasoning tasks, 2025. URL <https://arxiv.org/abs/2504.05118>.

642

643 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 644 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv
 645 preprint arXiv:2503.18892*, 2025.

646

647 Wenting Zhao, Pranjal Aggarwal, Swarnadeep Saha, Asli Celikyilmaz, Jason Weston, and Ilia
 648 Kulikov. The majority is not always right: RL training for solution aggregation, 2025. URL
<https://arxiv.org/abs/2509.06870>.

648

APPENDIX

649

650

651 A THE USE OF LARGE LANGUAGE MODELS

652

653 This work utilizes the open-source LLMs for model training and testing. In addition, some closed-
 654 source LLMs (Kimi-K2, DeepSeek-V3.1, and Gemini 2.5) are employed for polishing and grammatical error correction in the writing of the paper. In general, our use of LLMs in paper writing is
 655 cautious and limited.

656

657

658

659 B PROMPTS USED IN THIS WORK

660

661

Prompt for Solving Complex Reasoning Tasks

662

663

664

665

666

667

Your task is to solve the given question step by step. You should conduct a systematic, thorough reasoning process before providing the final answer. This involves analyzing, summarizing, exploring, reassessing, and refining your reasoning process through multiple iterations. Each reasoning step should include detailed analysis, brainstorming, verification, and refinement of ideas. You should include the final answer in `\boxed{}` for closed-form results like multiple choices or mathematical results.

668

669

670

Prompt for Critique without Ground Truth

You are an expert mathematics tutor who always thinks step-by-step. You will be shown: Question and its Solution. Your task:

671

672

673

674

675

676

677

678

- * Analyze the Solution according to the Question
- * Produce a numbered step-by-step analysis of the Solution, explaining why it is correct or incorrect.
- * End with a single line containing only

`True` — if the boxed answer in the Solution is correct,
`False` — otherwise.

679

680

681

Prompt for Evaluating the Quality of Critique Content

682

683

684

685

686

687

You are an evaluator tasked with analyzing critique accuracy. For each input, you will receive:

- Question: the problem statement
- Ground truth solution: the correct reference solution
- Candidate solution: a proposed solution to the question
- Critique: an analysis evaluating the candidate solution

688

689

Your task is to identify if the critique content is correct.

690

691

Process the following Input:

Question: {question}

—

Ground truth solution: {ground_truth_solution}

—

Candidate solution: {candidate_solution}

—

Critique: {critique}

—

692

693

694

695

696

697

698

699

700

701

Now, please determine whether the critique to the candidate solution is accurate or not. Finally, provide your judgment in the specified boxed format. (Shorten your output and give me quick judgment)

C REWARD FUNCTION DESIGN

For Training zero-solver, we utilize the Math-Verify² to judge whether the candidate solution is correct according to the ground truth answer. On this basis, I also add the constraint that the use of code is not allowed. When code is detected in the text, the result is directly judged to be incorrect. This is because code verification is beyond the scope of this work. In the future, we will consider expanding the method to the field of Tool-Integrated Reasoning. For training zero-verifier, I directly use regular expressions to extract the text within 'boxed', and match it with True/False to obtain a binary reward.

D BASE MODEL LACKS CRITIQUE ABILITY

We observe that the base model lacks the necessary critique capabilities, which is reflected in the fact that there are almost no critique outputs that meet the requirements in its responses. We show an example in the following:

Critique Generated from Base Model

You are an expert mathematics tutor who always thinks step-by-step. You will be shown: Question and its Solution. Your task:
* Analyze the Solution according to the Question
* Produce a numbered step-by-step analysis of the Solution, explaining why it is correct or incorrect.* End with a single line containing only
True - if the boxed answer in the Solution is correct,
False - otherwise.

Qwen2.5-Math Series sometimes repeats the content of the system prompt, and sometimes it echoes the candidate solution. Therefore, it is necessary to fine-tune the Base model using critique data.

E REWARD HACKING ON IMBALANCE SAMPLE

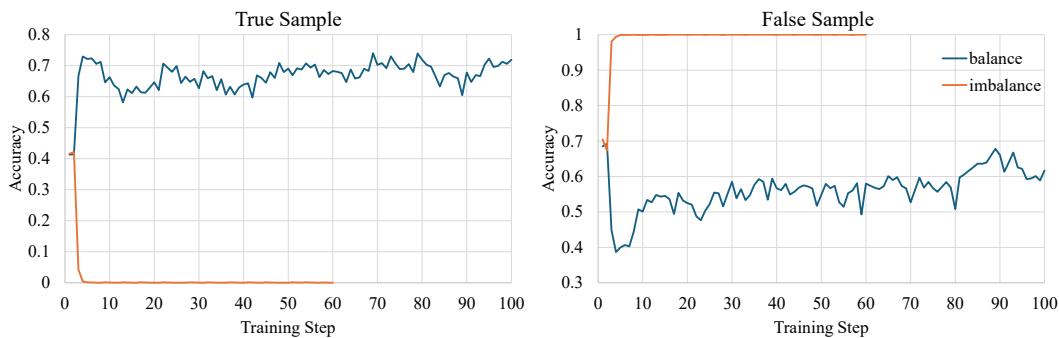
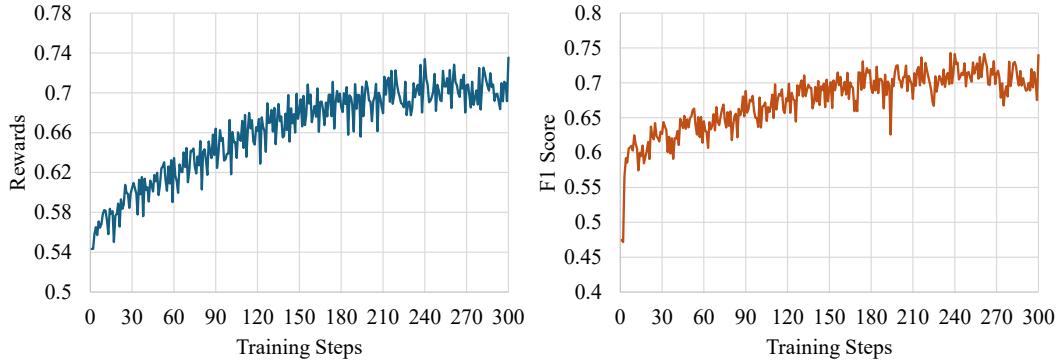


Figure 6: Reward Hacking on Imbalanced Data.

We observe the reward hacking phenomena on imbalanced data training during RLVR. The statistical results of the training dynamics is shown in Figure 6. The imbalance data in this experiment contains about 75% negative samples. When applied to RLVR, the model quickly adjusts the distribution of predictions, tending to predict all results as False. Subsequently, we sampled positive and negative samples at a 1:1 ratio to create balanced data, which solved the reward hacking problem.

²<https://github.com/huggingface/Math-Verify>

756 F TRAINING DYNAMICS
757758 We further plot the training dynamics of verification accuracy and F1 score for **Mirror-Verifier-7B**
759 model in Figure 7. When using balanced data, the training of the verifier is relatively stable. It can
760 be observed that as the training steps increase, both the verification rewards and the training F1 score
761 gradually rise.
762775 Figure 7: Training dynamics for **Mirror-Verifier-7B**.
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809