
Proceedings of Machine Learning Research vol 120:1–9, 2020 2nd Annual Conference on Learning for Dynamics and Control

Linear Antisymmetric Recurrent Neural Networks

Signe Moe SIGNE.MOE@SINTEF.NO
Dept. of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway

Filippo Remonato FILIPPO.REMONATO@SINTEF.NO
Dept. of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway

Esten I. Grøtli ESTENINGAR.GROTLI@SINTEF.NO
Dept. of Mathematics and Cybernetics, SINTEF Digital, Trondheim, Norway

Jan Tommy Gravdahl JAN.TOMMY.GRAVDAHL@NTNU.NO

Dept. Engineering Cybernetics, NTNU, Trondheim, Norway

Editors: A. Bayen, A. Jadbabaie, G. J. Pappas, P. Parrilo, B. Recht, C. Tomlin, M. Zeilinger

Abstract
Recurrent Neural Networks (RNNs) have a form of memory where the output from a node at
one timestep is fed back as input the next timestep in addition to data from the previous layer.
This makes them highly suitable for timeseries analysis. However, standard RNNs have known
weaknesses such as struggling with long-term memory. In this paper, we suggest a new recurrent
network structure called Linear Antisymmetric RNN (LARNN). This structure is based on the
numerical solution to an Ordinary Differential Equation (ODE) with stability properties resulting
in a stable solution, which corresponds to long-term memory. Three different numerical methods
are suggested to solve the ODE: Forward and Backward Euler and the midpoint method. The
suggested structure has been implemented in Keras and several simulated datasets have been used
to evaluate the performance. In the investigated cases, the LARNN performs better or similar to the
Long Short Term Memory (LSTM) network which is the current state of the art for RNNs.
Keywords: Recurrent Neural Network, Long-Term Memory, Timeseries Analysis

1. Introduction

RNNs are a standard, proven method for modeling sequential data (Goodfellow et al., 2016). They
have a form of memory which result in the ability to learn long-term dependencies in data, which is
relevant in for instance language modeling (Józefowicz et al., 2016) and physical systems with slow
dynamics. A standard RNN layer has the following structure for the output

hhht = f (WWWhhht−1 +VVV xxxt +bbb), (1)

where hhhi is the output of the layer and xxxi is the layer input at time i, WWW , VVV and bbb are the layer weight
matrices and bias vector and f (·) is a nonlinear activation function. These networks have known
weaknesses such as exploding/vanishing gradient during training and they struggle with a long-term
memory (Hochreiter, 1998). As a result, more complex gated structures such as LSTM networks
and gated recurrent units have been proposed. These have a higher trainability (Collins et al., 2017).
However, these only solve the problem to some extent and must be combined with techniques such
as normalization layers and gradient clipping to achieve good performance (Chang et al., 2019).
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The memory of a network is related to the sensitivity of the network prediction with respect
to a perturbation in the input (Samarasinghe, 2016). Thus, an input-sensitive network implies that
the output is unstable with respect to the input, i.e. a small change in the input results in a large
change in the state hhh. Similarly an input-insensitive network implies that the output is insensitive
with respect to the input. For RNNs in particular, the input to the network is a sequence of length
k (often referred to as the number of steps) xxx = [xxx1, ...,xxxk]. To ensure long-term memory, the final
layer output hhhk must be affected also by the first elements of xxx, i.e. a perturbation ∆xxx in xxx1 (or any
step) should lead to a change ∆hhh in the final state hhhk. In addition, to ensure a consistent memory,
similar input sequences should result in similar layer outputs, i.e. the magnitude of ∆hhh should reflect
the magnitude of ∆xxx.

In this paper, a new structure for RNNs is proposed based on the numerical solution to an ODE.
The stability properties of this ODE are analyzed and proven to provide a network layer with a stable
long-term memory. The proposed structure is inspired by the AntisymmetricRNN (ARNN) (Chang
et al., 2019), but addresses some of its shortcomings.

This paper is organized as follows; Section 2 discusses the stability of ODE solutions and relates
this to long-term memory of RNNs. The previously suggested ARNN is presented and discussed
in Section 3 before the LARNN is presented and analyzed in Section 4 and implementation and
evaluation are described in Section 5. Finally, conclusions are given in Section 6.

2. Stability of ODEs as a basis for RNNs

To achieve a network structure with the desired properties for consistent long-term memory, we
consider the stability of solutions of ODEs.

Definition 1 A solution yyy(t) of an ODE

ẏyy(t) = f (t,yyy(t)) (2)

with initial condition yyy(0) is stable if for any ξ > 0 there exists a δ > 0 such that any other solution
ȳyy(t) with initial condition ȳyy(0) satisfying ||yyy(0)− ȳyy(0)|| ≤ δ also satisfies ||yyy(t)− ȳyy(t)|| ≤ ξ ∀ t ≥ 0.
It is asymptotically stable if ||yyy(t)− ȳyy(t)|| → 0 as t→ ∞.

Here, ẏyy denotes the derivative of yyy with respect to time. Figure 1 illustrates the behavior of
asymptotically stable, stable and unstable solutions yyy(t). An asymptotically stable solution has
no long-term memory since the long-term solution is independent of the initial condition, whereas
a small perturbation in the initial condition of an unstable solution might lead to infinitely large
differences in the state evolution over time. For regression tasks, similar input sequences should
result in similar, but not equal, states hhh. Thus, it is desirable to design a RNN structure which
possesses the qualities of a stable ODE solution as by Definition 1.

3. Antisymmetric RNNs

This section describes the AntisymetricRNNs as proposed by (Chang et al., 2019). The ARNN
structure is defined as

hhht = hhht−1 + ε f (WWW hhhht−1 +VVV xxxt +bbb), (3)
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(a) Asymptotically stable (b) Stable (c) Unstable

Figure 1: Stability of ODE solutions with different initial conditions: (a) asymptotically stable -
the solutions converge into one another, (b) stable - the solutions remain close to one another, (c)
unstable - the solutions diverge away from each other.

which is the Forward Euler numerical solution with timestep ε > 0 to the ODE

ḣhh = f (WWW hhhh+VVV xxx+bbb). (4)

Here,
WWW h =WWW −WWW T , (5)

for some matrix WWW , so WWW h is by definition an antisymmetric matrix which has eigenvalues strictly
on the imaginary axis. Furthermore, only hyperbolic tangent is considered as the activation function
f in (Chang et al., 2019).

There are several possible improvements to the proposed structure (3): First, the theorems ap-
plied in (Chang et al., 2019) to analyze the stability of the solutions to the ODE (4) are from Chapter
3 in (Ascher et al., 1994) and are valid for ODEs on the form ẏyy = f (t,yyy), i.e. an ODE without input
terms. Eq. (4) is on the form ẏyy = f (yyy,xxx). Hence, the theorems are not actually applicable to this
system.

Second, the proposed network structure (3) is based on the Forward Euler method, which is
stable only in the region given in Figure 2a. Given that the system is designed so the eigenvalues are
always on the imaginary axis, Forward Euler results in numerical instability regardless of timestep
ε . To remedy this, the authors suggest adding a diffusion term to move the eigenvalues slightly
into the left half plane. However, this results in an extra hyperparameter to tune in the implemen-
tation which results in a trade-off between numerical stability and long-term memory. Implicit
numerical methods such as Backward Euler and midpoint method (also known as the trapezoidal
rule) (Egeland and Gravdahl, 2002) have larger stability regions which include the imaginary axis
(Figure 2b-2c), but these cannot be solved explicitly for hhht for the ODE (4).

Finally, we note that the state hhh(t) is unstable for other common activation functions such as
sigmoid ∈ (0,1) (globally unstable) and relu ∈ [0,∞) (locally unstable). For f as sigmoid, ḣhh > 000
in (4) regardless of the state hhh or input xxx and it is thus unbounded. Similarily, for relu ḣhh ≥ 000
regardless of input, state or antisymmetric weight matrix.
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(a) (b) (c)

Figure 2: Stability region (blue) of various numerical methods. To ensure numerical stability, ελi

must lie within the blue region for all eigenvectors λi. (a) Forward Euler method (explicit), (b)
Backward Euler method (implicit) and (c) midpoint method (implicit).

4. Linear Antisymmetric RNNs

This section introduces a new RNN structure, also based on an antisymmetric weight matrix, which
improves the stability and numerical properties of the ARNN. We suggest basing the network struc-
ture on the ODE

ḣhh =WWW hhhh+ f (VVV xxx+bbb). (6)

This ODE is linear in the state hhh(t) and is therefore referred to as a Linear Antisymmetric
RNN (LARNN). Consider first the long-term memory of this ODE. Note that (6) is a Hammerstein
system, which consists of a cascade of linear and nonlinear parts. Such systems are used for system
identification and modeling (Mete et al., 2016). For two solutions hhh(t) and h̄hh(t) with non-equal
initial conditions hhh(0) and h̄hh(0) presented with the same input xxx(t),

∆∆∆ḣhh = ḣhh− ˙̄hhh =WWW hhhh+ f (VVV xxx+bbb)−WWW hh̄hh− f (VVV xxx+bbb)

=WWW h∆∆∆hhh. (7)

We apply Theoreom 4.5 (Khalil, 2002) to prove that the equilibrium point ∆∆∆hhh = 000 is stable. Since
WWW h ∈Rn×n is antisymmetric, it is a normal operator over Rn and all its eigenvalues satisfy Re(λi) =
0. By applying the Spectral Theorem we can conclude that WWW h has a full basis of (orthogonal)
eigenvectors, so that for each λi its geometric multiplicity gi equals the algebraic multiplicity qi.
Thus, Rank(WWW h−λiI) = n−Null(WWW h−λiI) = n−gi = n−qi, where the first equality comes from
the Rank+Nullity Theorem. Thus, ∆∆∆hhh = 000 is stable (Khalil, 2002).

For practical purposes, the hidden state of RNNs has initial condition hhh(0) = f (VVV xxx(0) + bbb).
Thus, if the ODE (6) is used as a basis for a RNN structure and two input sequences xxx(t)≡ x̄xx(t) ∀ t 6=
0 are given to the network, we can conclude that the two solutions hhh(t) and h̄hh(t) will neither converge
into one another (thereby infinitely preserving the memory of the initial state) nor diverge away
from one another (thereby having a consistent memory where similar input sequences yield similar
output).

Furthermore, since the ODE (6) is linear in the state hhh, it is possible to apply implicit numerical
methods to solve the ODE and thereby achieve a RNN layer structure which is numerically stable
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also on the imaginary axis. We propose the following three structures:

hhht = (III + εWWW h)hhht−1 + ε f (VVV xxxt +bbb), (8)

(III− εWWW h)hhht = hhht−1 + ε f (VVV xxxt +bbb), (9)

(III− ε

2
WWW h)hhht = (III +

ε

2
WWW h)hhht−1 + ε f (VVV xxxt +bbb), (10)

Eq. (8) is based on the Forward Euler method and consequently suffers from numerical instability
as (3). On the other hand, (9)–(10) are based on the Backward Euler and the implicit midpoint
method, respectively, and are numerically stable. They do, however, require inversion of the left-
hand side matrix (see Proposition 2). It is also possible to apply other numerical methods such
as higher order Runge-Kutta. However, these lead to more complex and computationally heavy
network structures. Also note that Backwards Euler method is known to be dissipative, whereas
the implicit midpoint method, being a symmetric method, preserves orbits without the need for a
diffusion term, (Hairer et al., 2006).

Proposition 2 The Rn×n matrix
III +δWWW h (11)

is always invertible for δ ∈ R.

Proof For δ = 0, the expression is trivial. For δ 6= 0, assume that (III+δWWW h) is not invertible. Then
λ = 0 is a root of det(III +δWWW h−λ III) = det(δWWW h− (λ −1)III) = δ ndet(WWW h− (λ−1)

δ
III). Thus,

det
(

WWW h−
(
− 1

δ

)
III
)
= 0,

which implies that (−1/δ ) ∈ R is an eigenvalue of WWW h. However, by definition WWW h only has eigen-
values on the imaginary axis. Thus, the matrix (III +δWWW h) is invertible.

Finally, the solution of the ODE (6) does not grow monotonically for sigmoid and relu activation
functions since the feedback term WWW hhhh is separate from the activation function. Proving input-to-
state stability remains a topic for future work.

5. Implementation and evaluation

The proposed architectures (8)-(10) have been implemented in Keras so that it can be readily
adopted and tested by other users. This code will be released as open source in the near future.

The parameter ε > 0 represents the timestep of the numerical methods and must be tuned as
a hyperparameter. A small ε 1) puts more weight on the current state hhhi (the memory) relative to
the new input xxxi, 2) results in a more smooth evolution of hhhi and 3) mitigates the effects of numer-
ical instability if Forward Euler is applied as the numerical method (8). In theory, ε can take any
positive value, but if the LARNN is to represent a dynamic system knowledge about the dynamics,
sampling frequency, signal noise, expected number/magnitude of outlier data and system time con-
stants should be considered when choosing ε . Similarly, the increased computational complexity
of (9)-(10) should be weighed against the numerical stability they provide.

In the remainder of this section we compare the performance of the proposed architectures
(8)-(10), the LSTM and the ARNN (3) on two cases of simulated timeseries data. In all cases,
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the networks have the same structure, specifically one recurrent layer (either LSTM, ARNN (3) or
LARNN (8)-(10)) of 32 units, one Dense (feedforward) layer of 8 units and relu activation function
and finally a Dense layer of 1 unit and a linear activation function. Both cases have been run for
tanh, sigmoid and relu as the activation function of the recurrent layer. For all networks, a mean
square error loss and the Adam optimizer is applied. Furthermore, 80% of the data is used for
training and 20% for testing. Hyperparameters for the two cases are given in Table 1.

Case 1 Case 2
Steps in input sequence 64 100
Epochs 80 200
Batch size 64 64
Learning rate 0.0005 0.001
Timestep ε 0.05 0.1

Table 1: Hyperparameters for the two testcases.

Case 1 For this case, the network should predict the next value of a one-dimensional time series
y(t) given a sequence of the 64 previous values. The data consists of 2000 data points and is given
by

y(t) = sin(0.02t)+σ [0,0.5) . (12)

Here, σ [a,b) represents noise from a uniform distribution over [a,b). The results are summarized
in Table 2. For this test case, all network structures give a similar performance both on the training
and test data. The training time for ARNN (3) and LARNN using Forward Euler (8) are similar,
whereas the LARNN based on implicit methods (9)-(10) take longer to train due to the more com-
plex structure. These are in the same order of magnitude as the LSTM. For illustrative purposes,
the timeseries y(t) is plotted along with the predictions ŷ(t) of the LSTM and LARNN based on the
midpoint method (10) for the tanh activation function.

Table 2: The train/test loss and training time in seconds for Case 1 with hyperparameters given by
Tab. 1 and various activation functions.

Case 2 In case 2, the network should predict the next value of a one-dimensional time series y(t)
given a sequence of the 100 previous values of another time series x(t), which consists of N = 3000
data points. The output y(t) is the sum of the first 32 values in the input sequence multiplied by a
constant, i.e. the network must have a long-term memory to find the correct mapping between input

6



LINEAR ANTISYMMETRIC RNN

(a) (b)

Figure 3: Actual timeseries y(t) and prediction ŷ(t) of the LSTM (a) and LARNN (b) based on
the midpoint method (10) and tanh activation function for Case 1. Training data and test data are
separated by the black line. The two networks have a similar performance.

and output. This is motivated by one of the test cases in (Chang et al., 2019).

x(t) = 0.03(t)sin(0.15t)−0.03(N− t)cos(0.1t)

y(t) = 0.0002
t−68

∑
i=t−100

x(i)
(13)

Before training and testing, both x(t) and y(t) are scaled. This scaler is fitted so that the training
data of both signals range between 0 and 1 and is then applied also to the test data. The results
are summarized in Table 3. For hyperbolic tangent, all networks result in a similar performance,
whereas for sigmoid and relu the LARNN have several orders of magnitude lower loss both on
training and test data and outperforms the LSTM in particular. With regards to training time, the
results from Case 1 are confirmed: Methods based on Forward Euler are faster whereas the struc-
tures based on implicit methods are slower and comparable to LSTM. For illustrative purposes, the
timeseries y(t) is plotted along with the predictions ŷ(t) of the LSTM and LARNN based on the
midpoint method (10) for the relu activation function.

Table 3: The train/test loss and training time in seconds for Case 2 with hyperparameters given by
Tab. 1 and various activation functions.

The above cases illustrate that the LARNN structures (8)-(10) perform better or equally well as
the LSTM and ARNN in addition to having improved theoretical properties regarding stability and
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(a) (b)

Figure 4: The timeseries y(t) (a) and the prediction error y(t)− ŷ(t) of the LSTM and LARNN
(b) based on the midpoint method (10) and relu activation function for Case 2. Training data and
test data are separated by the black line in (a). In this case, the LSTM has significantly worse
performance.

long-term memory. It is worth noting that in some of the investigated exampled, the LSTM achieves
a similar performance given longer training. Thus, if limited resources are available for training,
the LARNN structure is preferable. Furthermore, although the ARNN (3) and LARNN based on
Forward Euler (3) are subject to numerical instability, this effect will be small for small values of
ε and/or short input sequences. Similarly, for practical purposes the state hhh for the ARNN will not
be infinitely large in spite of being (globally and locally) unstable for sigmoid and relu activation
functions. However, for cases with long input sequences and/or where the system dynamics and
sampling frequency suggest a larger value for ε , the LARNN based on implicit methods (9)-(10) is
recommended.

6. Conclusion

This paper presents the LARNN, which is a network structure specifically designed to ensure long-
term memory of time series analysis. An ODE is designed and proven to have a stable solution,
which corresponds to a long-term, consistent memory. The proposed network structures are based
on numerical solutions to the ODE, using explicit (Forward Euler) or implicit (Backward Euler and
midpoint method) approaches. The implicit methods ensure numerical stability, but result in a more
complex network structure and require longer time to train given the same hyperparameters. Two
test cases are investigated where the LARNN is compared to other recurrent network structures. In
these cases, the LARNN performs equally well or better than the other networks.
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