
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VLBIMAN: VISION-LANGUAGE ANCHORED ONE-
SHOT DEMONSTRATION ENABLES GENERALIZABLE
BIMANUAL ROBOTIC MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Achieving generalizable bimanual manipulation requires systems that can learn
efficiently from minimal human input while adapting to real-world uncertainties
and diverse embodiments. Existing approaches face a dilemma: imitation policy
learning demands extensive demonstrations to cover task variations, while mod-
ular methods often lack flexibility in dynamic scenes. We introduce VLBiMan,
a framework that derives reusable skills from a single human example through
task-aware decomposition, preserving invariant primitives as anchors while dy-
namically adapting adjustable components via vision-language grounding. This
adaptation mechanism resolves scene ambiguities caused by background changes,
object repositioning, or visual clutter without policy retraining, leveraging seman-
tic parsing and geometric feasibility constraints. Moreover, the system inherits
human-like hybrid control capabilities, enabling mixed synchronous and asyn-
chronous use of both arms. Extensive experiments validate VLBiMan across tool-
use and multi-object tasks, demonstrating: (1) a drastic reduction in demonstra-
tion requirements compared to imitation baselines, (2) compositional generaliza-
tion through atomic skill splicing for long-horizon tasks, (3) robustness to novel
but semantically similar objects and external disturbances, and (4) strong cross-
embodiment transfer, showing that skills learned from human demonstrations can
be instantiated on different robotic platforms without retraining. By bridging hu-
man priors with vision-language anchored adaptation, our work takes a step to-
ward practical and versatile dual-arm manipulation in unstructured settings.

1 INTRODUCTION

Recent years have witnessed rapid progress in embodied robotic manipulation, particularly under
the paradigm of visuomotor imitation learning through large-scale teleoperated demonstrations Fang
et al. (2024a); Khazatsky et al. (2024); O’Neill et al. (2024); Bu et al. (2025). By collecting thou-
sands of real-world samples for each task and object setting, Vision-Language-Action (VLA) models
Team et al. (2024); Kim et al. (2024); Lin et al. (2025) are trained to directly map raw sensory inputs
to motor commands. This end-to-end approach avoids explicitly modeling task- or object-specific
priors (even for challenging cases involving deformable or articulated objects), by embedding such
complexities into high-dimensional latent representations. Such strategies are especially compati-
ble with high-DoF collaborative scenarios like bimanual manipulation, enabling impressive perfor-
mance on long-horizon tasks, as demonstrated by works such as ALOHA series Zhao et al. (2023a);
Fu et al. (2024); Aldaco et al. (2024); Zhao et al. (2024), RDT-1B Liu et al. (2025a), π0 Black et al.
(2024), and FAST Pertsch et al. (2025). However, this line of research is bottlenecked by its re-
liance on large-scale data collection and retraining cycles: adapting to new objects or tasks typically
demands a full demonstration pipeline and model retraining, hindering scalability in open-world
settings with unbounded task-object combinations and robot types.

To alleviate this, recent efforts have embraced modularized VLA pipelines that leverage the gener-
alization capabilities of pre-trained LLMs Achiam et al. (2023) and VLMs Radford et al. (2021);
Xiao et al. (2024). These models are repurposed to handle perception and semantic grounding,
while downstream motion execution is delegated to either optimization-based controllers or pre-
trained visuomotor modules such as atomic skills or diffusion policies Chi et al. (2023); Ze et al.
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Figure 1: Left: Taking pouring water as an example, we sketch the entire process of VLBiMan based
on the one-shot demonstration. Right: VLBiMan can achieve generalizable bimanual manipulation
on a variety of complex contact-rich tasks without retraining, robustly coping with diverse scenarios.

(2024); Yang et al. (2024). Reinforcement learning in simulation also serves as a strategy for learn-
ing skill-specific controllers Xie et al. (2020); Chen et al. (2022); Yuan et al. (2024b). This modular
design allows robotic agents to inherit part of the generalization capability from foundation mod-
els, while maintaining flexibility and interpretability. A common practice in these pipelines is to
define generalizable representations (e.g., keypoints, affordances and correspondences), as struc-
tured anchors between perception and control. For instance, ReKep Huang et al. (2024b) plans
robot motion by anchoring on multiple predicted relation points, MOKA Fang et al. (2024b) ex-
tracts fine-grained functional regions via multi-modal visual question answering, and RobotPoint
Yuan et al. (2024a) identifies object-centric task-relevant point clusters. Such approaches demon-
strate that keypoint-affordance abstractions are effective for transferring behavior across objects,
viewpoints, or instances, and have become a cornerstone of generalizable manipulation.

Building on this insight, we propose VLBiMan for one-shot bimanual manipulation that leverages
vision-language anchoring without retraining. Our approach also relies on object-centric representa-
tion points, but rather than predicting them via learned networks, we utilize VLMs to perform stable
and robust object segmentation, followed by two heuristic strategies for anchor selection: geometric
center of masks and plane-contact points. These anchors, though reminiscent of affordances, are
far more controllable and lightweight. Unlike prior zero-shot methods Huang et al. (2024b) that
require fragile prompt engineering and suffer from unreliable trajectory execution, our framework is
demonstration-conditioned: we structure the action plan based on a one-shot, fine-labeled demon-
stration, then adapt it using language-grounded object anchors and motion optimization techniques.
This enables robust execution on complex bimanual tasks while reusing invariant sub-skills.

Our methodology unfolds in three stages: (1) Task-Aware Bimanual Decomposition, which splits the
one-shot demonstration into semantically meaningful left/right arm primitives with inter-arm depen-
dencies; (2) Vision-Language Anchored Adaptation, which grounds the invariant motion primitives
onto new scenes by aligning demonstration anchors with newly segmented objects via VLMs; (3)
Autonomous Trajectory Composition, which composes new robot trajectories through kinematics-
aware blending of adapted sub-skills, ensuring smooth coordination under scene variations. The
related illustrations can be glimpsed in Fig. 1 and Fig. 2. VLBiMan actually is inspired by a key
principle: what to achieve matters more than how to execute it. For instance, rather than mim-
icking the exact poses or insignificant diversities involved in pouring water, our approach focuses
on capturing and re-instantiating the relative spatial relationship between the cup and bottle, empha-
sizing coordination rather than absolute motion. We validate VLBiMan across ten diverse bimanual
tasks (including six basic bimanual skills, two long-horizon tasks consisting of skill combinations,
and two multi-stage tool-use tasks), demonstrating superior generalization and minimal engineering
overhead compared to prior strong baseline methods.
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To summarize, our contributions are as follows: (i) We propose VLBiMan, a novel framework that
enables generalizable bimanual manipulation through one-shot demonstration and vision-language
anchoring, without retraining. (ii) We introduce a task-aware motion decomposition and adaptation
mechanism, which reuses invariant sub-skills via object-centric anchors from VLMs and supports
cross-embodiment transfer from human demonstrations to different robotic embodiments. (iii) We
validate VLBiMan on ten diverse bimanual tasks, showing superior generalization, sample effi-
ciency, and robustness compared to strong baselines.

2 RELATED WORKS

Generalizable Representations for Manipulation. Traditional robotic manipulation often relied
on structured representations built upon strong priors Kaelbling & Lozano-Pérez (2013); Dantam
et al. (2018); Migimatsu & Bohg (2020); Tyree et al. (2022), such as object geometry or rigid-body
assumptions, typically via estimating 6D poses or manually specifying grasp configurations. They
are hard to scale in unstructured environments. With the rise of data-driven techniques, more flexible
representations have emerged, including keypoints Papagiannis et al. (2024); Gao et al. (2024); Wen
et al. (2024b); Grannen et al. (2021), affordances Ju et al. (2024); Nasiriany et al. (2024); Zhao
et al. (2023b), dynamic flow fields Colomé & Torras (2018); Weng et al. (2022), and invariant
object-centric correspondences Ko et al. (2024); Zhang & Boularias (2024); Zhang et al. (2023).
Some works further leverage human demonstrations to retarget 3D hand trajectories to robots Chen
et al. (2024a); Li et al. (2024); Kerr et al. (2024); Chen et al. (2024b). However, these approaches
often depend on private datasets, retraining, or complex retargeting pipelines, limiting scalability. In
contrast, our method essentially anchors adaptation to object representive points without retraining,
achieving greater efficiency and generality.

Efficient Bimanual Robotic Manipulation. Recent advances in bimanual manipulation have show-
cased the power of large Vision-Language-Action (VLA) models Black et al. (2024); Liu et al.
(2025a); Pertsch et al. (2025) trained on extensive teleoperated demonstrations Fang et al. (2024a);
Khazatsky et al. (2024); O’Neill et al. (2024); Bu et al. (2025). However, these approaches are highly
suspected of lacking efficiency, as scaling to unseen objects or tasks often requires re-collecting and
retraining. Alternative efforts explore leveraging large-scale Internet Ponimatkin et al. (2025); Ye
et al. (2025); Bharadhwaj et al. (2024) or egocentric human-hand videos Zhan et al. (2024); Liu et al.
(2024b); Grauman et al. (2024); Zhao et al. (2025); Kareer et al. (2024), yet the embodiment gap be-
tween human and robot limits direct usability. Some methods improve sample efficiency by learning
visuomotor policies Chi et al. (2023); Ze et al. (2024) from a small set of real-world robot data, but
their generalization remains limited. While one-shot imitation learning Wen et al. (2022); Bahety
et al. (2024); Zhou et al. (2025); Wang & Johns (2025); Mao et al. (2023); Liu et al. (2025b); Biza
et al. (2023) reduces data demands, the high-dimensional action space and coordination complexity
of bimanual control hinder learning efficiency. In contrast, VLBiMan achieves efficient adaptation
from a single bimanual demonstration by leveraging VLMs to handle novel variations, while reusing
decomposed task-invariant atomic skills. These lead to both data and computational efficiency.

Large Foundation Models for Robotics. Integrating LLMs and VLMs into robotics is a prominent
trend to enable generalizable agents Ma et al. (2025); Huang et al. (2025); Fang et al. (2025); Feng
et al. (2025). LLMs are utilized for high-level task understanding and planning, such as decompos-
ing instructions into executable subtasks or generating scripts Liang et al. (2023); Singh et al. (2023);
Szot et al. (2024); Huang et al. (2024a). Meanwhile, VLMs facilitate visually grounded perception
through semantic prompts, enabling object-level detection and segmentation. For fine-grained tasks,
Visual Foundation Models (VFMs) Oquab et al. (2024); Ravi et al. (2025) are further employed to
find keypoints Papagiannis et al. (2024); Gao et al. (2024); Wen et al. (2024b) or dense correspon-
dences Ko et al. (2024); Zhang & Boularias (2024). Recent efforts like ReKep Huang et al. (2024b),
MOKA Fang et al. (2024b), RobotPoint Yuan et al. (2024a), and RAM Kuang et al. (2024) combine
LLMs and VLMs into modular pipelines that follow the perceive-understand-plan-act paradigm to
achieve zero-shot generalization. These approaches often rely on engineered prompts and ambigu-
ous intermediate representations (e.g., region of interest or keypoint clusters) requiring additional
post-processing. In contrast, VLBiMan avoids LLM-based instruction parsing and task decompo-
sition, which are brittle and labor-intensive. Instead, we build on one-shot demonstrations with
precise action labels, using VLMs to extract semantically grounded action structures that are adap-
tively composed and reused, enabling efficient and scalable bimanual manipulation.
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Figure 2: Framework of Vision-Language Anchored Bimanual Manipulation (VLBiMan). Taking
the pouring water as an example, the paradigm consists of three stages (e.g., decomposition, adap-
tation, and composition) based on a given demonstration. VLBiMan can achieve generalization of
unseen spatial placements and category-level new instances under the same task.

3 METHODOLOGY

This section introduces the full pipeline of VLBiMan (Fig. 2), which enables generalizable biman-
ual manipulation via vision-language anchored one-shot demonstration. Firstly, we present prelim-
inaries, where we formalize the problem and describe the input-output configuration. Then, we
explain three key components: (1) Task-Aware Bimanual Decomposition in Sec. 3.1, which extracts
reusable atomic skills through structured trajectory segmentation; (2) Vision-Language Anchored
Adaptation in Sec. 3.2, which adapts to new object instances or configurations with vision-language
models; and (3) Autonomous Trajectory Composition in Sec. 3.3, which composes and optimizes
executable dual-arm motion plans under physical and semantic constraints.

Preliminaries. Given a concise textual description of a bimanual manipulation task, together with
an one-shot demonstration in a canonical scene, we aim to synthesize executable dual-arm trajec-
tories through modular decomposition and adaptation in new scenes, where objects may be re-
located or replaced by category-level variants. Formally, let T denote the task description and
D = {(Ot,At)}Tt=1 represent the demonstration, where Ot is the multimodal observation (e.g.,
visual frame, 6-DoF end-effector poses of both arms, and gripper states) at time t, and At is the
corresponding bimanual action. We seek to learn a mapping:

FVLBiMan : (T ,D,Snew) 7→ {Ãnew
t }T

′

t=1, (1)

where Snew denotes a new scene containing instance-level object variations or rearrangements,
and Ãnew

t denotes the synthesized bimanual trajectory adapted to Snew. To achieve this, we de-
compose the overall policy synthesis into reusable invariant modules and scene-adaptive variants.
This requires solving three core challenges: (1) Task-object semantic grounding: aligning T with
semantically-relevant objects ok in the scene via visual-language grounding, i.e., learning a map-
ping G : T 7→ {ok}Kk=1. (2) Executable module decomposition: partitioning D into temporally
ordered motion primitivesMi with discrete boundaries ti such that eachMi is either task-invariant
or requires adaptation. (3) Trajectory composition with kinematic feasibility: synthesizing a new
trajectory Ãnew

t by composing primitives under scene-aware geometric and kinematic constraints.

3.1 TASK-AWARE BIMANUAL DECOMPOSITION

To enable reusable and adaptable dual-arm skills, we begin by parsing the one-shot demonstrationD
into semantically meaningful and structurally reusable modules, which involves two sub-procedures:
spatiotemporal segmentation and atomic skill extraction.

Spatiotemporal Segmentation. We record the one-shot demonstration using a third-person stereo
RGB camera at 10 FPS, synchronously collecting dual-arm end-effector 6-DoF poses and gripper
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Figure 3: Illustrations of representative points for manipulated objects in three tasks: pouring
(left), reorient+unscrew (middle) and tool-use:spoon (right). These points will be used
to calculate the change in object position and orientation (not always required).

states. This forms a temporally aligned observation-action sequence: D = {(Ot,At)}Tt=1, where
each action At ∈ R14 consisting of 6-DoF for each arm with binary gripper states. We employ a
keypose-driven segmentation scheme, which are inspired by those discrete motion prediction studies
James et al. (2022); Shridhar et al. (2023); Ma et al. (2024); Ke et al. (2024). Initial segmentation
can be scripted and automated via heuristics: trajectory waypoints are detected based on either
changes in motion dynamics (e.g., velocity discontinuities, acceleration spikes) or state switches
(e.g., gripper open/close transitions). Each candidate waypoint wi divides the trajectory into time
slots τi = [ti, ti+1]. The inverse kinematics (IK) solver Chitta et al. (2012); Schulman et al. (2014)
is used to validate the feasibility of trajectory segmentsMi = {At}t∈τi .

Then, human-in-the-loop refinement ensures spatial continuity and execution robustness. Waypoints
are inspected and manually adjusted in both temporal order and spatial distribution to guarantee
smooth and robust control under the segmentation policy πseg : D → {Mi}Ni=1.

Atomic Skill Extraction. To determine task-relevant modularity, we assign semantic labels to seg-
mentsMi by assessing object-robot couplings. For eachMi, if no object is rigidly grasped, i.e., ob-
ject and end-effector are not in contact, the segment is classified as pre-contact adaptation dependent
and potentially variable. Once the object is grasped and rigidly coupled with an end-effector (veri-
fied via gripper state and object pose consistency), subsequent motion is considered task-invariant,
such as lifting or dual-arm alignment. Let bind(o, r, t) be a binary indicator of whether object o is
physically attached to end-effector r at time t. We define a skillMi as invariant if:

∀t ∈ τi,bind(ok, r, t) = 1, and geometry(ok) ≈ geometry(odemok ), (2)

where the ≈ denotes geometrically equivalent dimensions within a tolerance threshold ϵg . Other-
wise, we markMi as requiring adaptation. This yields a decomposition into:

D ⇒ {Minv
i }

Ninv
i=1 ∪ {M

var
j }

Nvar
j=1 . (3)

These atomic skill modules are stored for reuse and recomposition in novel scenes or tasks. Some
illustrations on the pouring water task can be found in the left side of Fig. 2.

3.2 VISION-LANGUAGE ANCHORED ADAPTATION

Adaptation of variable modulesMvar
j is anchored by semantic perception and geometric reasoning,

structured into components: VLM-based scene understanding and VFM-based geometric feasibility.

VLM-Based Scene Understanding. We extract task-relevant prompts pk from the text description
T , mapping them to object categories. These are passed to the VLMs (e.g., Florence-2 Xiao et al.
(2024) and SAM2 Ravi et al. (2025)) to obtain high-quality 2D semantic masks M2D

k from the
current scene observationOnew. Given the robustness of VLMs to lighting variations and distractors,
we leverage their segmentation results to ground physical object identity without requiring explicit
detection or prior 3D models.

VFM-Based Geometric Feasibility. To adapt grasping or alignment poses, we introduce a three-
step process. (1) Firstly, we compute relative position transformation ∆T between new object
placement and reference demonstration via task-specific representative points (e.g. the 2D mask
centroid or a task-specific contact point on the table-facing boundary). Examples of two kinds of
representative points can be found in Fig. 3. Let pdemo, pnew denote the representative 3D positions
back-projected from 2D points via stereo and calibrated camera intrinsics. The relative position shift
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is ∆x = pnew−pdemo. (2) To account for orientation-sensitive objects (such as pen, spoon and lying
down bottle), we compute the principal axis from second-order image moments Chaumette (2004);
Kotoulas & Andreadis (2007) of the 2D mask and derive relative rotation ∆θ = ∠(vnew,vdemo)
via angular deviation. The final adapted grasp pose T̃ is obtained by applying (∆x,∆θ) to the
original grasp pose in robot coordinates via calibrated hand-eye transformation. (3) For category-
level variation, we measure shape-induced feasibility change through height and width differences.
For example, the z-extent of the object point cloud P3D

k yields ∆hk = maxz(P3D
k ) − minz(P3D

k ).
This is used to adjust vertical placement motions or inter-arm distances for tools or containers.

Notably, we avoid applying 6-DoF pose estimation Lin et al. (2024); Wen et al. (2024a) or grasp pose
detection Fang et al. (2020; 2023) methods in our adaptation, as they either depend on pre-defined
CAD models or produce ambiguous non-semantic proposals, which are fragile and unfriendly.

3.3 AUTONOMOUS TRAJECTORY COMPOSITION

After adaptation, we compose a new executable trajectory D̃ by aligningMinv
i and M̃var

j according
to the original temporal structure. However, this naive assembly may suffer from infeasibility due
to reachability or collision. We therefore apply two refinements:

Progressive IK Refinement: For initial grasping motions M̃grasp, we iteratively solve IK with
interpolated splines approaching the target pose:

q(n+1) = IK(T(n)
g ), T(n)

g = SplineInterp(Tstart,Tgoal, n), (4)

where Tstart is the continuously updated initial pose, Tgoal is the final goal that remains un-
changed or is recalculated after being disturbed by external factors (such as human relocation or
movement after being touched), and n represents the interpolation density (which is set to 6 in our
experiments). This refinement brings closed-loop correction under object displacement.

Dynamic Collision Compensation: To reduce early contact risks, we add proximal and vertical
compensation terms δbase and δz on the position item during grasp approach:

x̃goal = xgoal + δbaseu∥ + δzuz, (5)

where u∥ and uz respectively represent 3D Cartesian coordinates. After full trajectory synthesis,
we perform one-time physical replay to observe unintended collisions and adjust motion plans ac-
cordingly. The adjusted plan remains reusable for repeated deployments of the identical object.

Thanks to modularity, VLBiMan supports cross-task module assembly and long-horizon tool-based
task compositions by reusingMinv

i across tasks. This enables not only generalization within a task,
but also scalable extension to new task compositions, as illustrated in Fig. 5(b,c).

4 EXPERIMENTS

We aim to answer following research questions: (1) How well does our framework automatically
formulate and synthesize bimanual manipulation behaviors (Sec. 4.1)? (2) Can our method general-
ize to novel scenarios and achieve effective combination of skills (Sec. 4.2)? (3) How do individual
components contribute to the effectiveness and robustness of our system (Sec. 4.3)? We validate VL-
BiMan on a stationary dual-arm platform with two parallel grippers and a binocular camera (Fig. 4).
Additional implementation details can be found in Supplementary Materials.

Tasks and Setups: We have designed up to 10 bimanual tasks (Fig. 5). In each task, at least two
category-level objects with different geometric shapes are covered (Fig. 4), for comprehensively
testing the performance in the face of novel placements and instances. These tasks involve diverse
skill operations, complex multiple stages, and contact-rich tool-using, which can help to test the
generalization. The external dynamic interference might be involved to check robustness.

Baselines and Metric: For each task setting, we conduct 25 trials, where objects are randomly
located or replaced, and the success rate will be reported. For baselines, we compare to Robot-
ABC Ju et al. (2024) based on keypoint affordance prediction with using AnyGrasp Fang et al.
(2023) for initial grasping (After which, the remaining trajectory is obtained by trivial modules
combination), as well as ReKep Huang et al. (2024b) based on VFMs (SAM Kirillov et al. (2023)
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and DINOv2 Oquab et al. (2024)) and GPT-4o Achiam et al. (2023). Besides, for a convincing
comparison, an enhanced ReKep+ is introduced, where we inject an oracle-level initial grasp label
to mitigate the impact of noisy perception. We also adapt two one-shot single-arm manipulation
methods Mechanisms Mao et al. (2023) and MAGIC Liu et al. (2025b) for our dual-arm tasks.

plugpen
inserting

unscrew pouring

pressing

reorient

reorient 
+ 

unscrew

unscrew 
+ 

pouring scoop  funnel

Figure 4: Manipulated object assets involved in each task, and the fixed-base dual-arm platform.

4.1 EFFECTIVE AND ROBUST BIMANUAL MANIPULATION WITH VLBIMAN

Firstly, we compare to baselines on six basic dual-arm tasks as summarized on Tab. 1 left. In general,
our VLBiMan shows promising capabilities and advantages in various complex situations, regardless
of whether the interference is applied. For example, it can timely adjust the end-effector 6-DoF pose
and achieve task-related precise grasping for unseen position and orientation of objects (including
pens in and inserting, or spoons in reorient), which reflects the high success rate of the
initial grasping stage. For actions that require fine-grained dual-arm coordination (such as aligning
the pen tip and pen cap in plugpen, or aligning bottle mouth and cup mouth in pouring), it can
always synthesize trustworthy trajectories to deal with these challenges. This ability benefits from
decoupling and reusing invariant modules to the greatest extent. Strong baselines ReKep Huang et al.
(2024b) and Robot-ABC Ju et al. (2024) do not have such a concept. For each new placement, they
always need to re-plan the grasping and motion paths, which cannot fully explore and effectively
utilize core components in a given demonstraion. The adapted baselines Mechanisms Mao et al.
(2023) and MAGIC Liu et al. (2025b) originally designed for single-arm tasks also cannot handle
these bimanual tasks well, revealing the non-trivial nature of dual-arm coordination.

Table 1: Quantitative comparison results of success rates on six primary bimanual tasks/skills.
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Mechanisms 11/25 09/25 05/25 05/25 07/25 03/25 26.7% 06/25 05/25 02/25 01/25 04/25 01/25 12.7%
MAGIC 16/25 15/25 10/25 10/25 09/25 07/25 44.7% 11/25 10/25 05/25 05/25 06/25 04/25 27.3%

Robot-ABC 14/25 10/25 09/25 07/25 08/25 06/25 36.0% 11/25 09/25 03/25 02/25 07/25 04/25 24.0%
ReKep 14/25 11/25 10/25 12/25 10/25 08/25 43.3% 12/25 08/25 05/25 06/25 07/25 06/25 29.3%

ReKep+ 19/25 18/25 13/25 17/25 17/25 11/25 63.3% 15/25 12/25 09/25 10/25 11/25 07/25 42.7%
VLBiMan 25/25 23/25 20/25 21/25 20/25 19/25 85.3% 24/25 21/25 18/25 17/25 20/25 17/25 78.0%

Yes

Mechanisms 05/25 05/25 03/25 02/25 04/25 01/25 13.3% 03/25 01/25 00/25 00/25 02/25 00/25 4.0%
MAGIC 09/25 09/25 05/25 04/25 06/25 04/25 24.7% 05/25 04/25 03/25 01/25 04/25 01/25 12.0%

Robot-ABC 07/25 06/25 04/25 03/25 05/25 02/25 18.0% 05/25 03/25 00/25 00/25 03/25 00/25 7.3%
ReKep 10/25 06/25 06/25 04/25 05/25 03/25 22.7% 09/25 04/25 03/25 01/25 04/25 02/25 15.3%

ReKep+ 12/25 10/25 09/25 08/25 09/25 09/25 38.0% 10/25 08/25 05/25 04/25 06/25 05/25 25.3%
VLBiMan 19/25 16/25 19/25 18/25 17/25 15/25 69.3% 18/25 14/25 15/25 14/25 15/25 13/25 59.3%

4.2 GENERALIZATION ON NOVEL SCENARIOS AND SKILLS COMBINATION

To prove that VLBiMan has stronger generalization, such as being able to quickly transfer skills
taught in a single time to new category-level objects, or further realize skills combination, complete
complex multi-stage tool-use tasks, and transfer to other dual-arm robots. We conducted extensive
experiments on six basic tasks (see Tab. 1 right) and four long-horizon tasks (see Tab. 2). The final
results again show that VLBiMan has outstanding performance and significant advantages.
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Table 2: Quantitative comparison results of success rates on four long-horizon multi-stage tasks.
new placements + same objects new placements + novel instances
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el Average

Success
Rate

No

Mechanisms 05/25 04/25 02/25 01/25 12.0% 01/25 02/25 00/25 00/25 3.0%
MAGIC 09/25 08/25 04/25 03/25 24.0% 05/25 04/25 01/25 01/25 11.0%

Robot-ABC 06/25 06/25 03/25 03/25 18.0% 04/25 02/25 00/25 01/25 7.0%
ReKep 07/25 08/25 05/25 03/25 23.0% 05/25 04/25 01/25 00/25 10.0%

ReKep+ 11/25 10/25 07/25 06/25 34.0% 07/25 06/25 04/25 02/25 19.0%
VLBiMan 15/25 15/25 12/25 10/25 52.0% 12/25 11/25 10/25 08/25 41.0%

Yes

Mechanisms 01/25 02/25 00/25 00/25 3.0% 00/25 00/25 00/25 00/25 0.0%
MAGIC 04/25 03/25 04/25 01/25 12.0% 02/25 02/25 01/25 00/25 5.0%

Robot-ABC 02/25 02/25 02/25 02/25 9.0% 01/25 00/25 01/25 00/25 2.0%
ReKep 06/25 05/25 03/25 02/25 16.0% 03/25 03/25 00/25 00/25 6.0%

ReKep+ 08/25 08/25 05/25 03/25 24.0% 06/25 04/25 01/25 01/25 12.0%
VLBiMan 12/25 11/25 09/25 06/25 38.0% 08/25 09/25 05/25 02/25 24.0%
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Figure 5: Visualization of ten tasks executed on real robots. They are designed to validate different
aspects, including (a) six dual-arm primary skills, (b) combination of basic skills for two long-
horizon tasks, and (c) exploration of two multi-stage tool-use tasks.

For example, in six basic tasks, it can correctly handle unseen objects according to the VLMs an-
chored adaptation, achieve stable combination of variable modules and readjusted invariant modules,
and synthesize new executable trajectories. For long-horizon tasks, the first two are the sequential
superposition of two basic tasks. The difficulty lies in that new intermediate grasping stages during
the task execution are introduced (e.g., in reorient+unscrew, the right arm needs to pick up
and straighten the lying bottle first, and then the right arm takes the bottle to perform the dual-arm
collaborative unscrewing of the bottle cap). These difficulties challenge the adaptability and multi-
stage compatibility. The latter two tool-use tasks naturally contain additional common sense related
to affordances, as well as multi-object contact-intensive actions, which introduce troubles includ-
ing the organic connection of sub-modules and mutual interference of multiple objects. VLBiMan
effectively alleviates these challenges with the help of powerful vision perception capabilities of
VLMs and reasonable skill reuse design. While, baselines Mao et al. (2023); Liu et al. (2025b); Ju
et al. (2024); Huang et al. (2024b) still perform poorly on these more complex dual-arm tasks. More
importantly, we can still impose external interference on these long-horizon tasks, indicating VLBi-
Man more practical and feasible. Fig. 5 shows visualization results. Besides, we migrated VLBiMan
to a humanoid dual-arm robot to demonstrate its ability to generalize across different embodiment
types. Qualitative results are shown in Fig. 6. Please refer to the Appendix for more details.

4.3 SYSTEM PERFORMANCE ABLATION AND ANALYSIS

Our modular solution has good process controllability and theoretical interpretability. We conducted
the following two analyses on VLBiMan: ablation studies on module effectiveness and multi-factor
statistics on system errors. First, we focused on four core designs (including VLMs type, initial
grasp alignment, IK refinement, and collision avoidance), and checked the corresponding system
performance. The results are shown in Tab. 3. It can be found that choosing the more advanced
VLMs has obvious advantages, and our initial grasp adaptation scheme is more robust than the non-
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grasp lift up carry insert placeVLMs

grasp lift up carry pour placeVLMs
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Figure 6: Visualization of four cross-embodiment transferred tasks executed on new humanoid arms.

semantic AnyGrasp Fang et al. (2023) (where we find the one closest to the demo grasp pose from
many proposals for fair comparison). In addition, the kinematic optimization for trajectory synthesis
is much better than the trivial module stacking, which is consistent with common sense.

Then, we conducted a statistical analysis of failed cases for results on Tab. 1 right (the interference
part), and results are plotted in Fig. 7. The most prominent errors come from the initial grasp execut-
ing, even though its computing is relatively more reliable (with a lower error rate), which shows that
performing task-related grasping in real-world is not easy, and there are a considerable proportion
of singularity points or early collision problems. The second most error comes from the dual-arm
coordination, which is the most core challenge of bimanual tasks. An optional mitigation solution is
the closed-loop servo alignment. Finally, other items such as VLM-based perception and anchoring
occupy a smaller proportion, indicating that it is at least reliable for our tasks, and the lower propor-
tion of trajectory optimization indicates that the overall feasibility of our solution is well. Through
these exhaustive analyses, we can understand the advantages and defects of VLBiMan.

Table 3: Ablation studies of VLBiMan. All trials were
completed on six basic tasks, under the new placements
+ novel instances evaluation, with interference.

VLMs type initial grasp
alignment

IK
refinement

collision
avoidance

Avg.
SR

SAM+DINOv2 ours ✓ ✓ 35.8%
ours AnyGrasp ✓ ✓ 31.7%
ours ours ✗ ✓ 29.2%
ours ours ✓ ✗ 34.2%
ours ours ✓ ✓ 59.2%

45%

21%

12%

6%
6%

10% Initial Grasp Executing

Dual-Arm Coordination

Initial Grasp Computing

VLM Perception

Trajectory Optimization

Others

Figure 7: Error breakdown of VLBiMan.

5 CONCLUSION AND LIMITATION

In this work, we present VLBiMan, a novel framework that enables generalizable bimanual manip-
ulation from a single human demonstration, guided by a natural language task description. Through
a task-aware decomposition strategy, vision-language grounded scene understanding, and geomet-
ric adaptation anchored by visual representations, our approach efficiently composes executable
bimanual trajectories under diverse scene variations. Without reliance on object-specific priors or
pose annotations, VLBiMan achieves robust generalization across unseen object instances and an-
other dual-arm robots. Extensive experiments demonstrate its effectiveness across a wide range of
real-world bimanual tasks, including tool use, and long-horizon compositions.

Limitations: Despite promising results, VLBiMan still faces several limitations. First, it is restricted
to rigid objects and does not handle deformable items such as cloth or rope, which require different
representations and control. Second, it lacks runtime anomaly detection and recovery mechanisms,
making it sensitive to execution errors like slippage or occlusion. Third, the capability of our ap-
proach is inherently bounded by the hardware: the fixed-base dual-arm platform limits the reachable
workspace and lacks force or tactile sensing. Future work could explore extending the system to a
mobile base to enhance spatial flexibility, and equipping end-effectors with force or tactile sensors
to enable fine manipulation of delicate or force-sensitive objects.
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APPENDIX

This supplementary part provides detailed clarifications and additional insights to support the main
paper. In Sec. A (Discussion on Bimanual Manipulation Tasks), we present the motivation be-
hind the design of ten bimanual manipulation tasks, including an overview of the dual-arm robotic
platform, a task-by-task breakdown, and the process of collecting one-shot demonstrations for each
task. In Sec. B (More Implementation Details of VLBiMan), we elaborate on the implementation
details of the proposed VLBiMan framework, such as the object principal axis extraction algorithm
based on image moments, and procedure for robust dual-arm execution under external dynamic dis-
turbances. In Sec. C (More Exploration on VLBiMan Advantages and Limitations), we explore
further strengths of VLBiMan, including its robustness to lighting variations and its modular struc-
ture, which allows for synchronous dual-arm sub-skills to improve manipulation efficiency. We also
provide additional experimental results and analyses, such as evaluating the impact of varying lev-
els of external interference on task success rates, revealing the ease with which the system can be
transferred across embodiments, as well as discussing some interesting empirical findings. This sec-
tion also includes additional analyses introduced in four new subsections: (1) a detailed discussion
of the human-in-the-loop refinement process used during primitive segmentation, clarifying its role
and negligible burden; (2) an investigation into the robustness of using simple object representing
points—such as mask centroids or front-edge contacts—for cross-object generalization; (3) evalua-
tions of VLBiMan under cluttered scenes to assess stability in more realistic environments; and (4)
ablation studies on pre-grasp interpolation density, highlighting its effect on collision avoidance and
resilience to external disturbances. Finally, Sec. D is the statement on the use of LLMs.

A DISCUSSION ON BIMANUAL MANIPULATION TASKS

A.1 FIXED-BASE DUAL-ARM PLATFORM

Our manipulation platform consists of a rectangular tabletop approximately 110 cm in length and
70 cm in width, equipped with two fixed-base robotic arms, parallel grippers, and a binocular vision
system (see Fig. 4 in the main paper for layout). The dual arms are mounted on opposite short edges
of the table. This is an opposite-side configuration, which differs from the more common same-side
or humanoid-style arrangements. This design significantly reduces workspace overlap between the
arms, thereby expanding their combined reachable workspace. The trade-off, however, is a reduced
resemblance to human-like coordination patterns. Each arm is mounted at the center of the table
short edge, with its base extended slightly beyond the tabletop to save space.

The manipulators are Aubo-i5 collaborative robots1 (880mm reach) with six degrees of freedom
and a maximum reach of approximately 880 mm. Note that these arms do not feature built-in force
control at the joints. Each arm is equipped with a DH-Robotics parallel gripper2, offering a max-
imum width of 80 mm and an effective finger length of about 50 mm (total length approximately
160 mm, used to compensate for tool flange length). While the gripper can be controlled at ar-
bitrary open ratios, we restrict it to two discrete states (open and closed) across all experiments.
For visual perception, we employ a binocular Kingfisher R-6000 stereo camera, capturing RGB
images at 960×540 resolution and supporting 3D scene reconstruction via calibrated stereo intrin-
sics. This setup functions similarly to standard RGB-D cameras, but offers improved reconstruction
quality and greater flexibility through algorithm-level customization. The camera is mounted in a
third-person perspective, positioned approximately 20 cm horizontally and 100 cm vertically from
one of the long edges of the table, enabling full coverage of the workspace. Consequently, we do
not employ eye-in-hand cameras at the robot end-effectors. To further demonstrate the convenient
transferability of VLBiMan, as shown in Fig. 8, we have prepared another dual-arm robotic plat-
form configured in a popular humanoid style. This new platform consists of two Rokae xMate CR73

6-DoF collaborative arms (reach: 988 mm), each equipped with a parallel gripper (Jodell Robotics
RG75-3004, max opening: 75 mm). A binocular camera Kingfisher R-6000 is mounted centrally at
the head position. We will present how to utilize this dual-arm platform in Sec. C.4.

1https://www.aubo-cobot.com/public/i5product3
2https://en.dh-robotics.com/product/pg
3https://www.rokae.com/en/product/show/545/xMateCR.html
4https://www.jodell-robotics.com/product-detail?id=5
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Figure 8: The another dual-arm manipulator platform (left) and corresponding manipulated object
assets (right) used for the cross-embodiment evaluation.

A.2 INTRODUCTION TO BIMANUAL TASKS

To comprehensively evaluate the dual-arm manipulation capabilities of our system, we first de-
sign a suite of six foundational bimanual tasks: plugpen, inserting, unscrew, pouring,
pressing and reorient. Each task involves manipulating objects drawn from at least two
category-level instances (see Fig. 4 in the main paper), enabling systematic assessment the general-
ization performance of VLBiMan under object instance variations. These tasks encompass a broad
range of atomic manipulation skills, such as single-arm actions like grasping, placing, inserting,
transporting, pressing, and precise reorientation, as well as coordinated dual-arm behaviors includ-
ing fix-and-unscrew, fix-and-skew-insert, bilateral alignment, and handover. Together, they ensure
sufficient complexity and coverage of real-world manipulation demands.

• plugpen: Plug the marker body into its cap. The task begins with a separated pen body and cap
placed on the table. The left and right arms grasp the pen body and cap respectively, lift them,
align the pen tip with the cap opening, and perform a high-precision plug-in motion to close the
pen. The right gripper then releases, and the left arm places the assembled pen on the table. This
task demands accurate segmentation of small objects, orientation-aware grasping, and near-zero-
tolerance insertion. To avoid issues due to the lack of eye-in-hand cameras, configurations where
the pen tip or cap opening faces downward are excluded.

• inserting: Insert a closed marker pen into an inverted cup. The setup includes an upside-
down, handleless cup and a fully assembled marker pen. The left and right arms grasp the cup
and pen respectively, lift them, and the left arm rotates the cup to face upward. Simultaneously,
the right arm reorients the pen vertically for insertion. After aligning the two objects, the right
arm inserts the pen, releases it, and the left arm places the cup back. The task requires precise
rotation for object reorientation, orientation-aware grasping, and moderate-tolerance insertion.

• unscrew: Open a bottle by twisting the cap counterclockwise. A sealed plastic bottle containing
water stands upright on the table. The left arm grasps and lifts the bottle, holding it steady in
mid-air. The right arm approaches the cap vertically from above, grasps it, and performs multiple
controlled counterclockwise rotations to unscrew it. The cap is then placed on the table, and the
bottle is set down. This task involves extremely tight grasping tolerance (for the cap), precise rota-
tional control, and potentially force-sensitive unscrewing (though our gripper lacks force sensing,
which may increase the failure risk).

• pouring: Pour water from a bottle into a mug. A water-filled plastic bottle without a cap and an
empty mug with a handle are placed on the table. The left and right arms grasp the bottle and mug
respectively, lift them, and coordinate to align the bottle and mug openings. The left arm rotates
approximately 90◦ to pour water, then restores the bottle to an upright position. The right arm
retracts the filled mug, and both objects are returned to the table. This task requires moderate-
tolerance alignment, precise angular control for pouring, and careful handling of the deformable
bottle body (deformation may affect the bottle’s geometry and induce spill errors).
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• pressing: Press a pump bottle and catch the water in a cup. A shampoo bottle with a pressable
nozzle and a handleless upward-facing cup are provided. The left arm grasps the cup and lifts it
to a tilted receiving position near the nozzle. The right arm approaches vertically and presses
the nozzle to dispense a small amount of water. Both arms then place the objects back. Key
challenges include precise nozzle approach, accurate cup positioning for water collection, and
robust force application (although without force feedback, we rely on a fixed press depth that
balances functionality and bottle safety).

• reorient: Flip a spoon or shovel so that its concave side faces upward. The object starts
in an arbitrary pose with the concave side down. The right arm vertically grasps its center and
lifts it, then repositions and reorients it into a graspable pose for the left arm. The left arm then
grasps the handle, the right arm releases, and the left arm completes the flipping motion to place
the spoon upright on the table. This task demands precise reorientation, spatially and temporally
coordinated handover, and potentially strong grasping (the left arm’s handle grasp is relatively
unstable and may result in object slippage during motion).

In addition to the six base tasks, we introduce four more challenging long-horizon tasks to evalu-
ate VLBiMan’s capacity for skill composition and multi-stage adaptive control. The tasks include
reorient+unscrew, unscrew+pouring, tool-use spoon, and tool-use funnel.
The first two are about concatenations of previously defined skills, while the latter two require tool-
use behaviors that test the system’s ability to generalize across distinct affordances.

• reorient+unscrew: Straighten a fallen bottle and unscrew its cap. A sealed water bottle lies
horizontally on the table. The right arm vertically grasps and reorients the bottle upright, ensuring
the cap faces upward. The system then proceeds with the unscrewing routine. The new challenge
lies in accurate estimation of the lying down bottle’s orientation, especially the cap direction.

• unscrew+pouring: Open the bottle cap and pour water into a mug. A sealed water-filled
bottle and an empty mug are provided. The system first performs the full unscrewing sequence,
followed by the water-pouring procedure. While the skills themselves are known, the compound
task increases complexity through potential error accumulation across stages.

• tool-use spoon: Use a spoon to transfer water from a larger bowl to a smaller one. Three
objects are involved: an upside-down spoon, a large bowl filled with water, and a smaller empty
bowl. The system first performs reorientation on the spoon, then uses it to scoop water from the
large bowl, transport it, and pour it into the smaller bowl before returning the spoon. The task
requires multiple precise reorientation and motion sequences, handling mutual visual distractions
among objects, and reliably distinguishing the bowls of different sizes.

• tool-use funnel: Use a funnel to pour water from a mug into an empty bottle. The setup
includes an upside-down metal funnel, an empty plastic bottle without a cap, and a water-filled
mug. The system reorients the funnel, inserts its narrow end into the bottle, then the left arm
relocates the bottle near the right arm. The right arm lifts the mug and pours water into the bottle
througth the funnel. This task tests multi-object coordination, spatial reasoning under occlusion,
and moderate-tolerance insertion.

A.3 ONE-SHOT HUMAN DEMONSTRATION

We collect one-shot seed demonstrations for each task using kinesthetic teaching, wherein the op-
erator manually guides the dual-arm robot to designated waypoints. Specifically, the full trajectory
is decomposed into sparse keypoints by physically dragging the robotic arms to target poses. At
each pause, we record the 6-DoF end-effector poses of both arms (relative to their respective robot
coordinate frames) using a teach pendant, along with the intended gripper open/close states. Subse-
quently, with objects placed at approximately fixed initial positions, the robot autonomously replays
the demonstration by executing the recorded sequence of waypoints. We first move the arms via in-
verse kinematics (handled by the control API), followed by gripper actions. Throughout this replay,
we record synchronized observations from the binocular camera and the corresponding end-effector
states at 10Hz. After collecting the demonstration, we decompose it using the task-aware strategy
described in the main paper, enabling downstream skill reuse. Notably, for the composed tasks
reorient+unscrew and unscrew+pouring, which are essentially combinations of existing
base skills, we do not provide additional one-shot demonstrations, as their behavior can be suffi-
ciently inferred from the constituent components.
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Algorithm 1 Overall Procedure of Object Orientation Estimation from 2D Mask.
Require: Binary object mask M ∈ {0, 1}H×W

Ensure: Orientation angle θ ∈ [0, 360) (degrees)
1: Extract object contour C = {(xi, yi)}Ni=1 from M
2: Compute centroid (x̄, ȳ) using image moments:

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi (6)

3: Calculate second-order central moments:

µ20 =
1

N

∑
(xi − x̄)2, µ02 =

1

N

∑
(yi − ȳ)2, µ11 =

1

N

∑
(xi − x̄)(yi − ȳ) (7)

4: Construct covariance matrix: Σ =

[
µ20 µ11

µ11 µ02

]
5: Compute eigenvalues λ1 > λ2 and eigenvectors v1,v2 of Σ
6: Obtain principal axis direction a = (ax, ay) = v1

7: Project contour points onto principal axis: pi = (xi − x̄)ax + (yi − ȳ)ay ∀i ∈ [1, N ]
8: Identify endpoints: emax = argmaxi pi, emin = argmini pi
9: Calculate perpendicular width wj within radius r around each endpoint ej

10: Determine front endpoint: efront ← (wmax < wmin)?emax : emin

11: Adjust axis direction: a← (a · (efront − (x̄, ȳ)) < 0)?− a : a
12: Compute final orientation angle: θ =

(
arctan 2(ay, ax)× 180

π

)
mod 360

13: return θ

Table 4: Statistical details regarding the ten bimanual manipulation tasks defined in this study. They
contain the names of the target objects involved (including their placement states), the representation
points used to indicate the positions of the target objects (where MC represents the object’s 2D mask
centroid, and CP represents the contact point between the object bottom and the table top. Please
refer to Fig. 3 in the main text for visualization), and whether the object’s orientation needs to be
estimated during the manipulation process.
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Object
Name

marker
body

marker
cap

marker
pen cupstanding

bottle
standing

bottle mugcuppump
bottle

spoon or
shovel

lying
bottle

standing
bottle mugspoon big

bowl
small
bowl funnel standing

bottle mug

Representive
Point Type MC MC MC CP CP CP CP CP CP MC MC CP CP MC CP CP CP CP CP

Orientation
Estimation? ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

B MORE IMPLEMENTATION DETAILS OF VLBIMAN

B.1 IMAGE MOMENTS BASED ORIENTATION ESTIMATION

In the Vision-Language Anchored Adaptation pipeline of VLBiMan, our method requires extracting
the principal axis and determining the orientation of direction-sensitive objects. This includes the
marker pen in the plugpen and inserting tasks, the spoon in the reorient and tool-use
spoon tasks, as well as the horizontally placed bottle in the reorient+unscrew task. As shown
in Algorithm 1, we adopt an object principal axis extraction algorithm based on image moments
theory Chaumette (2004); Kotoulas & Andreadis (2007). Since this algorithm relies primarily on
the 2D segmentation mask of object and does not require any deep networks, its computational
overhead is minimal and can be considered negligible in practice.

In general, the proposed algorithm estimates the orientation angle of an object from its 2D binary
mask through a hierarchical analysis of geometric properties. First, the object’s contour is extracted,
and its centroid is computed using image moments. A covariance matrix derived from second-order
central moments is then diagonalized to identify the principal axis direction via eigen decomposition.
To resolve directional ambiguity inherent to eigenvectors, contour points are projected onto the
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principal axis to locate two extreme endpoints. The front endpoint is determined by comparing local
perpendicular widths around these endpoints, leveraging the observation that structural asymmetry
often manifests as width variation. Finally, the principal axis direction is reoriented to align with the
front endpoint, and the orientation angle is calculated as the arctangent of the adjusted axis vector,
ensuring a continuous 0◦–360◦ representation. This approach robustly handles directional ambiguity
while maintaining computational efficiency through moment-based feature extraction. For more
details on which objects in which tasks require the orientation estimation algorithm, please refer to
Tab. 4 (see the last row).

Why Not Use Off-the-Shelf 6D Pose Estimation? While one may consider leveraging off-the-
shelf 6D pose estimators Lin et al. (2024); Wen et al. (2024a) for object orientation extraction, we
found that such solutions are unnecessary, unstable across objects, and incompatible with VLBi-
Man’s cross-object generalization objective. Classical and learning-based 6D pose estimators gen-
erally require either (1) object-specific CAD models, (2) textured templates, or (3) category-level
canonicalization priors. These assumptions are difficult to satisfy in our setup, where VLBiMan
must generalize to unseen and shape-diverse everyday objects without additional training or model
registration. Moreover, 6D estimators often degrade when objects lack distinctive geometry or tex-
ture—precisely the case for many household items used in our tasks (e.g., plain spoons, cylindrical
pens). In contrast, our moment-based orientation estimation (Algorithm 1) only depends on the 2D
segmentation mask produced by a VLM-powered perception module, eliminating the need for any
object-specific shape information. This makes the approach far more robust to appearance varia-
tions and naturally compatible with VLBiMan’s object-centric anchoring framework. Additionally,
we observed in our experiments that 6D pose estimators frequently output unstable yaw angles un-
der partial occlusion or when only a single RGB camera view is available, while the moment-based
method remains consistent, lightweight, and easy to deploy in real-world bimanual settings.

Finally, this simplified 2D-mask–driven orientation strategy is fully aligned with VLBiMan’s de-
sign principle—to avoid heavy perception modules that compromise generalization—and it has
proven sufficient for all direction-sensitive tasks, including plugpen, inserting, reorient,
tool-use spoon, and reorient+unscrew. Hence, the choice to avoid 6D pose estimation
is both practical and necessary: our goal is not to recover a full metric pose, but to obtain a stable,
VLM-compatible orientation anchor that enables one-shot bimanual manipulation without retraining
or object modeling.

B.2 DYNAMIC INTERFERENCE ROBUST VLBIMAN

Thanks to the modular design of our VLBiMan system, we enable dynamic interference to be ap-
plied to an object before it is physically grasped by the robot arms (that is before the object formally
becomes part of a robot-object composite system). Such interference may include randomly per-
turbing the position or orientation of the object multiple times, without any predefined limit, until
the object is successfully captured. This capability introduces significant challenges for maintaining
robustness during execution, requiring a carefully structured control process to ensure system reli-
ability under disturbance. To address this, we summarize a dynamic closed-loop control pipeline
tailored for interference robustness pre-grasping below.

Specifically, for each object to be manipulated, VLBiMan first performs continuous 2D instance
segmentation and tracks the object across frames using a lightweight vision pipeline. Let Mt denote
the segmentation mask at time step t, and let the corresponding object pose estimation function be
Fpose → (pt, θt), where pt is the 2D position and θt is the principal axis orientation obtained
via image moments (refer Algorithm 1). This estimation is continuously updated and serves as
input to the grasp planning module. A grasping attempt is initiated only when the variance of
{pt−k, · · · ,pt} and {θt−k, · · · , θt} over a short sliding window falls below a pre-defined threshold
ϵ (e.g., absolute moving distance less than 10mm), indicating that the object has stabilized. This
implicitly filters out moments of dynamic perturbation. Once the object is deemed stable, the robot
executes the corresponding grasp action G(pt, θt), where G(·) denotes a grasp generation function
conditioned on both position and orientation. If the grasp fails (e.g., the object slips or moves
significantly post-action), the system returns to the observation loop and restarts the stabilization-
checking process. This mechanism ensures that the object’s interaction policy is dynamically robust,
without requiring hard-coded assumptions on when or how disturbances may occur.
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Table 5: Quantitative comparison results of success rates on six primary bimanual skills/tasks.
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Mechanisms 01/20 01/20 00/20 01/20 01/20 00/20 3.3% 00/20 00/20 00/20 00/20 00/20 00/20 0.0%
MAGIC 03/20 04/20 02/20 02/20 02/20 01/20 11.7% 01/20 02/20 00/20 01/20 01/20 00/20 4.2%

Robot-ABC 02/20 02/20 01/20 01/20 01/20 01/20 6.7% 00/20 00/20 00/20 00/20 00/20 00/20 0.0%
ReKep 05/20 03/20 02/20 01/20 02/20 02/20 12.5% 03/20 01/20 01/20 01/20 01/20 00/20 5.8%

ReKep+ 08/20 06/20 04/20 03/20 04/20 05/20 25.0% 05/20 02/20 03/20 02/20 03/20 01/20 13.3%
VLBiMan 14/20 13/20 14/20 15/20 14/20 11/20 67.5% 13/20 11/20 11/20 10/20 12/20 10/20 55.8%

Figure 9: Examples of plugpen (top) and pressing (bottom) show that under the uneven light-
ing, the system is subjected to consecutive external interferences, and tasks can still be completed.

C MORE EXPLORATION ON VLBIMAN ADVANTAGES AND LIMITATIONS

C.1 GOOD ROBUSTNESS TO LIGHTING CHANGES

In addition to the generalization capabilities of VLBiMan with respect to spatial object positions
and category-level instance variations, as demonstrated in the main text, we further explore another
crucial advantage—its robustness to lighting changes, which also constitutes an important aspect of
generalizable bimanual manipulation. Specifically, we investigate the impact of uneven illumination
on task success rates. For this purpose, we evaluate six basic bimanual tasks under a setting where
dynamic object perturbations are applied during the initial grasping phase, while also introducing
uneven lighting conditions. These lighting conditions cause non-uniform brightness across the scene
and cast shadows on the manipulated objects, posing new challenges to both the visual perception
module and the grasp pose alignment procedure for our VLBiMan.

Thanks to the strong generalization ability of the VLMs Xiao et al. (2024) and VFMs Ravi et al.
(2025) employed in our system, the detection and segmentation of target objects remain highly reli-
able even under such adverse lighting. Furthermore, our method for estimating object position and
orientation relies solely on binary masks, which are inherently invariant to lighting variations. Quan-
titative and qualitative results under this setting are summarized in Tab. 5 and Fig. 9, respectively.
As shown, the effect of uneven illumination on VLBiMan’s task success rate is minimal (70.0%→
67.5% for ID testing, and 59.2%→ 55.8% for OOD testing).

In contrast, two baselines Mechanisms Mao et al. (2023) and MAGIC Liu et al. (2025b) have had
obvious negative effects (13.3%→ 3.3% and 3.3%→ 0.0% for Mechanisms, and 24.2%→ 11.7%
and 11.7%→ 4.2% for MAGIC). For another two stronger baseline methods (Robot-ABC Ju et al.
(2024) and ReKep Huang et al. (2024b)) also exhibit substantial performance degradation (18.3%
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→ 6.7% and 6.7%→ 0.0% for Robot-ABC, 23.3%→ 12.5% and 14.2%→ 5.8% for ReKep, and
37.5% → 25.0% and 25.0% → 13.3% for ReKep+). This is not unexpected, as both baselines
rely on inferior vision pipelines that are sensitive to lighting. For instance, AnyGrasp Fang et al.
(2023), which Robot-ABC depends on for grasping, was never trained on point clouds data contain-
ing uneven illumination, and ReKep employs a fragile keypoints tracking mechanism that becomes
prone to false positives and missed detections under such lighting variations. Additional dynamic
execution records are available in our supplementary videos.

Figure 10: Examples of synchronized dual-arm movement. Segments from top to bottom are tasks
plugpen, inserting, and pouring, which have relatively high dual-arm synchronizability.

C.2 EFFICIENT SYNCHRONOUS DUAL-ARM MOVEMENT

Another notable advantage of the VLBiMan system lies in its ability to support more human-like
dual-arm behaviors, specifically the hybrid execution of asynchronous and synchronous arm move-
ments. This capability not only contributes to the overall manipulation efficiency of each task but
also serves as an essential factor for achieving generalizable bimanual manipulation. For instance,
certain tasks, such as lifting large balls Grotz et al. (2024); Liu et al. (2024a) or bimanual occluded
grasping Yamada et al. (2025) (which we have not yet explored in this study), require strictly syn-
chronized dual-arm motions.

In our system, after decomposing the given one-shot demonstration, we obtain temporally indexed
motion sequences for both arms. These sequences are further processed with collision-avoidance
strategies under a global trajectory perspective, enabling the possibility of triggering specific motion
segments concurrently. For example, in the plugpen task, the left and right arms can move simul-
taneously to align and close the pen body and cap; similarly, in the pouring task, both arms can
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coordinate to bring the bottle and cup closer and align them for fluid transfer. Such synchronized
execution clearly reduces overall task duration. However, this does not imply that the task execution
time is halved, as certain motion segments inherently require strictly asynchronous behavior. For
example, in the unscrew task, the left arm must serve as a stabilizer to hold the bottle stationary
while the right arm unscrews the cap, making simultaneous execution infeasible.

To evaluate this advantage quantitatively, we conducted comparative experiments on all ten biman-
ual tasks, testing strictly asynchronous execution versus a strategy that maximally leverages syn-
chronous execution wherever feasible. We observed time savings of varying magnitudes across all
ten tasks, yielding an average improvement in execution efficiency of approximately 22%. Fig. 10
visualizes the synchronous motion segments for some tasks, and additional dynamic comparison
footage can be found in our supplementary videos.

Figure 11: Example of dynamic interferences during task execution. From top to bottom, they are
segments of the dynamic closed-loop grasping phase of tasks pouring, reorient+unscrew,
and tool-use funnel, where each object is manually disturbed from one to three times. The red
arrow indicates the direction of the manually moved object (interfering). The cyan arrow and yellow
arrow indicate the movement direction of the left and right robotic arms (chasing) respectively.

C.3 INTERFERENCE FREQUENCY AND SUCCESS RATE

We have extensively examined VLBiMan’s robustness to external disturbances in both the main
paper and this supplementary material, which is an essential capability for achieving highly gener-
alizable bimanual manipulation. As discussed in works like AnyGrasp Fang et al. (2023), dynamic
grasping presents substantial practical value while remaining a formidable challenge, even for sys-
tems already equipped with strong static 6-DoF grasp pose prediction and execution capabilities.
Moreover, dynamic interference robustness also provides the embodied agent with a foundation for
error recovery and correction mechanisms during execution, whether through end-to-end learning
pipelines Black et al. (2024); Liu et al. (2025a); Pertsch et al. (2025) or external intervention mod-
ules such as human feedbacks Wang et al. (2024) or multimodal large models for intermediate state
evaluation Duan et al. (2024b;a).
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To further quantify this robustness, we investigate how the number of external interferences affects
task success rates, by extending beyond the single-interference-per-object setting used in our previ-
ously reported quantitative results. Specifically, we conduct experiments on all six basic bimanual
tasks, focusing on the ID evaluations without loss of generality. We define one interference as a
scenario where each object involved in the task is disturbed once. Under this definition, we sys-
tematically vary the number of interferences from 0 to 5 and record the average task success rates,
which are: 85.0%, 70.0%, 61.7%, 56.7%, 53.3%, and 50.8%, respectively. These results reveal a
clear negative correlation between interference frequency and task success rate. However, the rate
of decline diminishes as the number of interferences increases, suggesting a trend of diminishing
marginal impact. One plausible explanation is that as the end-effector gradually approaches the ob-
ject over time, the spatial freedom available for introducing effective perturbations decreases, thus
leading to more stable system performance. Fig. 11 provides illustrative examples of continuous dy-
namic interference scenarios, and additional results showcasing closed-loop dual-arm control under
such conditions can be found in our supplementary videos.

Table 6: Quantitative results of VLBiMan’s success rates on four transferred bimanual tasks.
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No Contralateral 18/20 16/20 17/20 15/20 82.5% 17/20 14/20 14/20 14/20 73.8%
Humanoid 19/20 17/20 16/20 15/20 83.8% 18/20 16/20 13/20 14/20 76.3%

Yes Contralateral 13/20 15/20 15/20 12/20 68.8% 11/20 12/20 11/20 10/20 55.0%
Humanoid 14/20 15/20 14/20 13/20 70.0% 12/20 13/20 12/20 10/20 58.8%

Figure 12: Examples of four transferred bimanual tasks with synchronized dual-arm movement.
Segments from top to bottom are tasks inserting, unscrew, and pouring, which have rela-
tively high dual-arm synchronizability. The last row are examples of single-arm task reorient,
explicitly examining left- or right-handed execution strategies.

C.4 CROSS-EMBODIMENT TRANSFERABILITY OF VLBIMAN

To further assess the generalization ability of VLBiMan, we investigate its cross-embodiment trans-
ferability. Specifically, we evaluate how a one-shot demonstration collected from a human demon-
strator can be transferred to a robotic embodiment with different kinematic and actuation constraints.
We report both qualitative visualizations and quantitative results, focusing on four representative bi-
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manual tasks: inserting, unscrew, pouring, and reorient, with the corresponding object
assets shown on the right side of Fig. 8.

Among them, the unscrew and pouring tasks preserve the exact same step design and final
goals as in the original experiments, thereby serving as direct transfer cases. The inserting
task, however, introduces embodiment-induced modifications: due to the reduced maximum gripper
opening width (from 80 mm to 75 mm), the manipulated cup is no longer placed upside down on the
table but instead stands upright. The gripper is required to grasp the cup vertically from the rim and
move it to intercept the pen held by the other arm. For the reorient task, the manipulated object
is replaced with a horizontally placed bottle, and the goal is changed to upright the bottle (with
a minimum theoretical rotation of 90 degrees instead of the 180 degrees required when flipping
a spoon or spatula). While this can be accomplished by a single arm, we consider a humanoid
dual-arm embodiment, as illustrated in the last row of Fig. 6.

As shown in Tab. 6, we further evaluate VLBiMan on the new dual-arm humanoid robot with real-
world executions of the four tasks. Following the comparison protocol of Tab. 1, we report success
rates on both previously seen objects and novel unseen objects, and additionally record performance
under external perturbations. The results demonstrate that, even under a different embodiment, VL-
BiMan consistently achieves competitive performance comparable to that on the original dual-arm
platform with opposite-side arm installation. This provides convincing evidence of VLBiMan’s ca-
pability for cross-embodiment transfer and generalization. Fig. 12 presents qualitative visualizations
of real-world executions. On this new humanoid platform, we adopt a system configuration where
the two arms are maximally synchronized, leading to smoother, more human-like, and more efficient
motions. More intuitive dynamic real robot rollouts can be found in our supplementary videos.

pre-grasping colliding with bottle → changing its position → robotic arm moving back → re-grasping clamped

pre-grasping moving to the top of the marker → partial occlusion → recalculating grasping position clamped

pre-grasping gripper is not aligned with bottle cap → unscrewing → bottle cap is realigned re-grasping

Figure 13: Examples of some interesting findings. Top row: this case comes from the pre-grasping
phase of pouring, where the left arm approaches and grasps the bottle. Middle row: this case
comes from the pre-grasping phase of inserting, where the right arm approaches and grasps the
marker from the top direction. Bottom row: this case comes from the untwisting bottle cap phase of
unscrew, where the center of the bottle cap is not aligned with the center point of the end of the
gripper. But after a counterclockwise rotation, the upper part of the bottle tilts to the right, and the
bottle cap is aligned with the gripper.

C.5 SOME INTERESTING FINDINGS OF VLBIMAN

During our dynamic interference experiments, we observed several interesting and insightful phe-
nomena that further reflect the robustness and adaptability of the proposed VLBiMan framework.

(1) Dynamic adjustment during initial grasping: We found that the robot arms often exhibit the
ability to dynamically refine their approach trajectories when objects are perturbed just before being
grasped. This can be attributed to the fact that VLBiMan leverages VLMs with strong perception
generalization, allowing real-time re-estimation of object poses based on updated visual feedback.
Please refer the case in the top row of Fig. 13.
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(2) Continuity despite partial perception failure: In scenarios where the manipulated object is
partially occluded or momentarily not detected (e.g., due to visual obstructions or lighting shifts),
the robot can still complete the task. This resilience stems from our modular trajectory composition
scheme, which incorporates temporal anchoring of the demonstration-derived trajectory and does
not rely on frame-by-frame perfect perception. Please refer the case in the middle row of Fig. 13.

(3) Tolerance to object displacement during execution: We also noticed that slight spatial dis-
placements of target objects during intermediate task stages often do not disrupt task execution.
This behavior is supported by the task-aware decomposition and image-moment-based orientation
extraction modules, which are both designed to operate on robust and low-frequency visual features
(e.g., binary masks), making the entire system less sensitive to minor deviations and noise. These
findings collectively highlight how VLBiMan benefits from the synergy between robust perception
modules and structured motion control, leading to more fault-tolerant and adaptable bimanual ma-
nipulation. Please refer the case in the bottom row of Fig. 13.

a1

a2

a3

a4

a5

a6

a7

a8

Figure 14: Taking the inserting task as an example, we replaced the marker pen held by the left
arm with other rectangular objects that were completely different (including spoon in cases a1/a2,
brush in cases a3/a4, spatula in case a5, syringe in case a6, and toothbrush in cases a7/a8). These
newly added objects are circled in cyan color. We found that VLBiMan could still successfully
locate the objects based on our designed method of using the centroid of the object’s 2D mask as
a representative point. Furthermore, it accurately estimated the object’s pose using the orientation
estimation method in Algorithm 1, thereby helping to stably grasp these objects and ultimately
achieve the inserting task objective.

C.6 DISCUSSION OF HUMAN-IN-THE-LOOP REFINEMENT

While VLBiMan is designed as a training-free and highly automated pipeline, the initial task-aware
spatio-temporal decomposition may occasionally require minor human refinement during its first-
time execution on a new task. These refinements primarily concern safety and robustness adjust-
ments that are difficult to infer from a single demonstration alone. Typical examples include veri-
fying the tilt angle when grasping a mug’s handle or ensuring that the downward orientation of the
right arm during unscrewing avoids exerting lateral pressure on deformable bottles.
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a1

a2

a3

a4

a5

a6

a7

a8

Figure 15: Taking the inserting task as an example again, we changed the cup being grasped
by the right arm to cups of completely different shapes (including mugs with handles in examples
a1/a2/a3/a4, and ordinary cups without handles in examples a5/a6/a7/a8). These newly added
objects are circled in yellow color. We found that VLBiMan can still successfully locate the objects
using our designed method of using the foremost point of contact between the object and the table
as a representative point (note that at this time, it is not necessary to use the orientation estimation
method to estimate the object’s pose again), thus helping to stably grasp these cups and ultimately
complete the inserting task objective.

Importantly, such refinements occur only once per task, at decomposition time, and do not reappear
during any subsequent executions. Once the primitive boundaries and key waypoints are validated,
VLBiMan entirely relies on (1) VLM-based spatial adaptation and (2) trajectory composition to
handle object pose variation, shape diversity, and long-horizon skill chaining. In practice, we find
that only a small subset of tasks require any refinement at all, and the operator does not need to
possess expert-level manipulation knowledge.

We acknowledge that fully automatic and reliable segmentation remains an open challenge in few-
shot imitation learning. Hardware-assisted demonstration capture (e.g., instrumented gloves or
hand-held trackers) could offer increased precision, though such solutions incur embodiment mis-
match, reduced dexterity, and alignment overhead. Exploring more principled automatic segmenta-
tion approaches while preserving usability remains an important future direction.

C.7 ROBUSTNESS OF OBJECT REPRESENTING POINTS

A core design choice in VLBiMan is the use of simple yet highly generalizable object representing
points, which serve as anchors for both task-aware decomposition and cross-object adaptation. In
practice, we adopt either the center of the object’s 2D mask or the foremost contact point between
the object and the supporting surface. Despite their simplicity, these representations prove surpris-
ingly robust across a wide variety of object geometries. Because these points are derived directly
from VLM-assisted object segmentation, they require no object-specific modeling like the widely-
used 6D object pose estimation Lin et al. (2024); Wen et al. (2024a), and naturally extend to unseen
objects with distinct shapes, sizes, and surface profiles. This choice also provides a robust abstrac-
tion that generalizes across intra-class variations, imperfect geometry, and partial occlusions. And
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inserting

pouring

reorient

pouring

reorient

inserting

inserting

Reorient the lying down bottle. 

Reorient the lying down bottle.  

Pour water from bottle into blue mug.

Pour water from bottle into blue mug.

Insert green marker pen into yellow cup.

Insert black marker pen into yellow cup.

Insert green marker pen into yellow cup.

a1

a2

b1

b2

c1

c2

c3

Figure 16: Visualization of test results for VLBiMan’s robustness performance in cluttered sce-
narios. We selected three tasks, reorient (corresponding to examples a1/a2), pouring (corre-
sponding to examples b1/b2), and inserting (corresponding to examples c1/c2/c3), for extensive
evaluation. In these examples, there are not only various irrelevant objects that can easily lead to
semantic ambiguity and execution obstacles, but we will also unexpectedly rearrange the target
object during the pre-grasping stage. This requires the VLBiMan to be able to quickly and nimbly
find the target object again from the cluttered scene based on the task’s linguistic instructions. This
process faces many significant non-trivial challenges. The red arrow indicates the direction of the
manually moved or deliberately obscured object (interfering). The cyan arrow and yellow arrow
indicate the movement direction of the left and right robotic arms (chasing) respectively.

the system adapts by reattaching the invariant primitive to newly inferred representing points, main-
taining functional consistency even in scenarios where popular 6D pose methods Lin et al. (2024);
Wen et al. (2024a) tend to fail due to symmetry or texture sparsity.

To further validate this robustness, we conducted additional experiments in the inserting task,
where geometric variations and small pose offsets are particularly challenging. And the used hard-
ware and platform are the dual-arm humanoid robot (refer Fig. 8). As shown in Fig. 14 and Fig. 15,
the results consistently show that these lightweight representations support reliable cross-instance
transfer without re-tuning, enabling accurate alignment even when objects differ significantly from
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those used in the original demonstration (e.g., varying mug/cup shapes or cuboid object’s sizes).
These findings highlight that VLBiMan’s adaptation does not depend on high-fidelity 3D recon-
struction or complex shape descriptors. Instead, object-centric points extracted from 2D perception
are sufficient to drive effective and scalable bimanual manipulation. For all examples in Fig. 14
and Fig. 15, we have provided corresponding real-robot rollout videos in the supplementary ma-
terials, and continue to support the application of perturbation to these entirely new categories of
objects during the initial grasping phase, further demonstrating the strong generalization and wide
versatility of VLBiMan.

C.8 TESTING VLBIMAN UNDER CLUTTERED SCENARIOS

To further examine VLBiMan’s robustness to complex perceptual conditions and more abstract nat-
ural language descriptions, we conduct additional experiments in cluttered tabletop environments.
These scenes contain at least five distractor objects whose categories, shapes, or colors resemble
the target object, increasing semantic ambiguity and spatial interference. Using the same pipeline
as in the main paper (without modifying any module), we evaluate reorient, pouring, and
inserting tasks under distractors, dynamic object relocation, and partial occlusion. We still uti-
lized the dual-arm humanoid robot (refer Fig. 8) as the hardware and platform. In these clutter
tests, the VLM module must rely solely on the language instruction to identify the correct target and
provide a stable grounding for subsequent geometric adaptation.

As shown in Fig. 16, across all cluttered configurations, VLBiMan consistently identifies the ap-
propriate object and completes the tasks with high reliability. Even when the object is perturbed
mid-execution or intentionally partially obscured, the system re-aligns the representing points and
resumes the correct trajectory within a single perception–planning cycle (∼1 second). Correspond-
ing visual results along with various indicating arrows are provided in Fig. 16. To our knowledge,
many of the challenges in these examples lack systematic exploration in the current field of robotic
manipulation. For instance, even when the target object is partially obscured during manipulation,
VLBiMan can still locate the target and execute the grasping action accurately (see examples a1/c3).
When there are multiple selectable target objects in the scene, VLBiMan can consistently eliminate
ambiguous interference from very similar objects (in examples b1 and b2, where both require grasp-
ing the blue mug, the system will not grasp the handleless yellow cup. And in examples c1 and c2,
where the system needs to grasp the green and black marker pens respectively, it will not mistakenly
grasp the other unwanted marker pen).

To sum up, these new experiments further validate that VLBiMan extends beyond template verb-
conditioned tasks and remains robust under linguistic variation, distractor-rich scenes, and environ-
mental disturbances. We highly recommend watching our recorded rollout videos provided in the
supplementary materials to get a more intuitive feel for VLBiMan’s stunning performance.

C.9 ABLATION STUDIES OF THE INTERPOLATION DENSITY

During the pre-grasp phase in each task, VLBiMan introduces a set of interpolated waypoints param-
eterized by an interpolation density n. This design serves two purposes: (1) ensuring a smooth and
safe approach trajectory that reduces the risk of prematurely colliding with the object, and (2) help-
ing to improve robustness against external disturbances. Without interpolation, the end-effector may
directly execute a long straight-line motion from its initial configuration toward the demonstration-
aligned grasp pose, which increases the chance of accidental contact, especially when the object has
been shifted or rotated. Here we discuss how to find the optimal value of n.

As shown in Tab. 7, our ablation on the choice of n reveals clear benefits: higher interpolation den-
sity leads to improved stability under perturbations, including cases where the object is intentionally
repositioned by a human or slightly displaced by the robot’s own motion during execution. The grad-
ual, multi-step approach allows the controller to continually re-evaluate object-relative anchors and
correct small deviations on the fly. Notably, we find diminishing returns beyond a moderate range
of n (e.g., relatively small values), indicating that the pre-grasp interpolation strategy does not rely
on excessive tuning. Overall, these studies demonstrate that a carefully selected number of interpo-
lated points contributes to both safety and disturbance resilience, enhancing VLBiMan’s reliability
in real-world deployments. Practical deployments can adopt a medium density (n=6) that balances
pre-grasping accuracy and computational efficiency, as used in our main experiments.
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Table 7: Ablation experiments of the interpolation density n. We utilized the dual-arm humanoid
robot platform to conduct four bimanual manipulation tasks. Similar to Tab. 6, we still divided them
into objects that appeared in the single demonstration and new objects that did not appear in the
demonstration. Each task under each setting was executed with 20 trails, and the average success
rate was calculated. To ensure reliable searching of the optimal n, we did not add any additional
dynamic interference in each trail, and stopped the task immediately after the initial grasping stage
finished or failed of the test (indicating the pre-grasping only performance).

Interpolation
Density n
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n = 3 15/20 14/20 12/20 13/20 67.5% 13/20 12/20 11/20 11/20 58.8%
n = 4 18/20 15/20 15/20 16/20 80.0% 17/20 14/20 14/20 14/20 73.8%
n = 5 19/20 17/20 18/20 16/20 87.5% 18/20 16/20 17/20 15/20 82.5%
n = 6 19/20 19/20 18/20 17/20 91.3% 19/20 18/20 17/20 16/20 87.5%
n = 7 19/20 18/20 18/20 18/20 92.5% 18/20 19/20 17/20 16/20 87.5%
n = 8 19/20 19/20 17/20 18/20 92.5% 19/20 18/20 16/20 17/20 87.5%

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we used the ChatGPT language model exclusively for
linguistic refinement, including grammar correction and stylistic improvement. The model did
not contribute to research design, methodology, experiments, or analysis. All scientific content and
intellectual contributions are solely the work of the authors.
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