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Abstract

Traditional evaluation metrics for clas-
sification in natural language process-
ing such as accuracy and area under
the curve fail to differentiate between
models with different predictive behav-
iors despite their similar performance
metrics. We introduce sensitivity score,
a metric that scrutinizes models’ be-
haviors at the vocabulary level to pro-
vide insights into disparities in their
decision-making logic. We assess the
sensitivity score on a set of represen-
tative words in the test set using two
classifiers trained for hospital readmis-
sion classification with similar perfor-
mance statistics. Our experiments com-
pare the decision-making logic of clini-
cians and classifiers based on rank cor-
relations of sensitivity scores. The re-
sults indicate that the language model’s
sensitivity score aligns better with the
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professionals than the xgboost classi-
fier on tf-idf embeddings, which sug-
gests that xgboost uses some spurious
features. Overall, this metric offers a
novel perspective on assessing models’
robustness by quantifying their discrep-
ancy with professional opinions. Our
code is available on GitHub.1

Keywords: hospital readmission pre-
diction, sensitivity analysis, model in-
terpretability, MIMIC-III

1. Introduction

Predicting 30-day all-cause hospital readmis-
sion is a classical problem in medical infor-
matics as 30-day readmissions are associated
with longer hospital stays, higher mortal-
ity rates, and significant operating expenses.
Several natural language processing (NLP)
tasks have used models based on BioClini-
calBERT, bag-of-words, and BI-LSTM; how-
ever, they all achieve similar test perfor-
mances despite difference in modelling tech-

1. https://github.com/nyuolab/Model_
Sensitivity
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niques (Jamei et al.; van Walraven et al.;
Xiao et al., b; Alsentzer et al.; Huang et al.).
It is challenging to select the best model for
deployment in such cases with similar per-
formance statistics, particularly in the case
of complex machine-learning models whose
decision-making logic may differ substan-
tially from professionals. This lack of inter-
pretability and insight into model predictions
is a substantial barrier to medical deploy-
ment for the fear of potentially causing harm
or incurring additional costs (Jackson et al.;
Xiao et al., a).

To keep the model accountable, we pro-
pose a general-purpose evaluation framework
to quantify the classifier’s sensitivity to indi-
vidual words based upon text perturbations.
Text perturbations have been used for model
bias detection (Prabhakaran et al.), but our
goal is to recast it for model sensitivity quan-
tification as a function of model vocabulary.
Similar attempts to evaluate models have
been proposed, but with their respective lim-
itations. We discuss the existing methods
and the motivation to create our metric in
Appendix D. For a particular model, we
compute the sensitivity score for each target
word as the L1 distance between the classi-
fier outputs before and after perturbations of
the word in the test corpora. We test the lan-
guage model classifier versus an extreme gra-
dient boosted tree (xgboost) classifier (Chen
and Guestrin) with tf-idf (Term Frequency-
Inverse Document Frequency) embeddings as
features (Sparck Jones).

The sensitivity score quantifies the signif-
icance of tokens as perceived by the model,
which enables us to inspect the classifier’s
decision-making logic in the context of pro-
fessional opinions. Ideally, if the classi-
fier is sensitive to clinically significant words
deemed by professionals, and indifferent to
words considered trivial, then the classifier
conforms to professional opinions and is less
likely to have learned spurious correlations.

For example, a reliable readmission classifier
could be sensitive to words like “dementia”
and indifferent to words like “parent”. San-
ity checks like this example enables us to rule
out bias and lend credence to the model.

The major contributions of this abstract
is: we offer a novel perspective of evalu-
ating the model’s accountability. Models
could make correct predictions simply by
exploiting spurious patterns from the data.
Such models are susceptible to distribution
shifts, and therefore less reliable in a chang-
ing clinical environment once deployed. Tra-
ditional metrics typically do not examine
which features models use to make predic-
tions, but rather focus on evaluating perfor-
mance statistics. Thus, it is necessary to
zoom into the model’s behavior at the vocab-
ulary level. A divergence between clinicians
and the model in word significance rankings
could indicate liability to distribution shifts
or potential insights overlooked by humans.

2. Methods

In our study, we test the sensitivity of two
text-based readmission predictors: a fine-
tuned BioClinicalBERT and an xgboost on
tf-idf embeddings. These models’ overall
performances are evaluated by their AU-
ROC (The area under the receiver operating
characteristic) and AUPRC (The area under
the precision recall curve) scores on the test
dataset. Their accountabilities are evaluated
by the correlation of their sensitivity rank-
ings on a set of 49 hand-selected words with
those of physicians.

2.1. Dataset

Both of the models are trained on a read-
mission dataset derived from MIMIC-III, a
database of electronic health records from
ICU patients at the Beth Israel Hospital
(Johnson et al.). Each note has a binary la-
bel for readmission. A positive label suggests
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readmission within 30 days following the pa-
tient’s discharge. The labeled dataset has 6%
positive labels, with 52,725 examples and a
70% train, 15% validation and 15% test split.
For more details see Appendix A.

For assessing model robustness and gen-
eralizability, a second readmission dataset
is obtained from the NYU Langone Health
System as part of an IRB approved study
of inpatient readmissions. The NYU read-
missions dataset consists of 45,120 examples
from all clinical departments with 10.67% of
positive labels.

2.2. Readmission Classifier

Language-model based classifier: Bio-
ClinicalBERT is a transformer encoder
model pretrained on PubMed abstracts and
MIMIC-III. It uses the original vocabulary
of BERT and a Wordpiece tokenizer (Song
et al.).

We finetune the pretrained model on
our readmission dataset for 10 epochs and
searched for a learning rate that gives the
lowest validation loss. We use weighted cross
entropy due to label imbalance. See ap-
pendix B.1 for more details.

For inference, we use a threshold of 0.35
to convert the redicted probabilities to bi-
nary labels (label 1 is assigned if the model’s
predicted probability is above 0.35 and vice
versa) such that we reach 70% recall on the
validation set.

Baseline Model (tf-idf+xgb): As a
baseline model, we build a xgboost classifier
using tf-idf embeddings as features. We se-
lect xgboost to compare the language model
based classifier with a traditional machine
learning classifier. See Appendix B.2 for
more details.

Tf-idf has a less informative embedding,
but is faster to train. The tf-idf based xg-
boost model does not use self-attention and
positional embedding to incorporate seman-

tic context and word orders into the repre-
sentation. This makes its embeddings sim-
ply reflect how important each word is to a
note compared to the entire corpus. On the
other hand, tf-idf has a linear computational
complexity for training with respect to the
input sequence length, whereas attention-
based model such as BioClinicalBERT has
quadratic complexity.

2.3. Metric: Token Sensitivity Score

We present the token sensitivity score, a
metric to gauge the difference between clas-
sifier outputs before and after text pertur-
bations. We say a classifier is sensitive to a
token if the probability output changes no-
tably after we perturb that token.

In this work, we explore swapping words as
the perturbation. In our experiment, we used
3 types of perturbations: the uniform per-
turbations, the 1-gram perturbations, and
the context perturbations. The uniform per-
turbation replaces a token of interest with
another token uniformly sampled from the
vocabulary of BioClinicalBert. The 1-gram
perturbation replaces a token of interest with
one of the five most frequent tokens. The
context perturbation replaces a token of in-
terest with one of the five most likely words
according to BioClinicalBert’s masked lan-
guage modeling.

To illustrate the intuition of sensitivity
score, consider determining whether or not
a patient needs to be hospitalized. If “the
patient has stroke”, then we think it’s likely
that the patient is hospitalized. After con-
text perturbation, if the text is swapped to
“the patient has flu”, then the patient is
probably fine. Since the swap changes our
opinion significantly, we say “stroke” is a sen-
sitive word for determining hospitalization.
Now we perturb the statement by swapping
“has” with “got”. In this case, the seman-
tic meaning does not change much, and we
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say “has” is a relatively nonsensitive word for
determining hospitalization.

In order to compare the model’s behaviors
with human doctors, we further propose the
token sensitivity score rank. For each to-
ken, we compute the token’s rank in terms of
sensitivity scores among all the target words.
We can then use the correlation between a
model’s rank and human’s rank to assess
how much a model’s decisions align with hu-
man doctors’ beliefs. For more details on the
mathematical formulation, see the remaining
subsections.

2.3.1. Notations

To formalize the token sensitivity score, we
need to first introduce some notations. A
classifier f is a function that takes in a note
x comprising of a set of tokens sampled from
a vocabulary and outputs a probability p.
For example, a constant classifier that al-
ways predict 30-day readmission using med-
ical discharge summaries is fconst(x) = 1.

A note x is a sequence of n tokens/words
(w1, w2, . . . , wn). For example, a note could
be (“his”, “mom”, “visited”).

We can perturb a note with a perturba-
tion function g, which is parameterized by
a token of interest u and a perturbation fil-
ter h. The perturbation function g replaces
the first occurrence of the token of interest u
with a perturbed token given by the filter h.
We only replace the first occurrence (denoted
as one-swap) to reduce the impact of token
frequency, which positively correlates with
changes in predicted probabilities as shown
in Appendix E.1.

For example, if we are interested in how
sensitive a classifier f is to seeing “dad”
rather than “mom”, then our word of inter-
est is u = “mom”, our perturbation filter is
h(“mom”) = “dad”, and a perturbation ex-

ample is:

gu,h((“his”,“mom”,“visited”))

=(“his”,“dad”,“visited”).

More generally,

gu,h(x) = g((w1, . . . , wn))

= (w1, . . . , wk−1, h(wk), wk+1, . . . , wn),

where k is the first location where the word
of interest u appears. Note that for a fixed
perturbation function gu,h, the input x must
contain u. Otherwise, the perturbation func-
tion does not change the note.

2.3.2. Quantifying Sensitivity w.r.t.
Perturbation Function

With a perturbation function gu,h, we can
quantify the sensitivity as the difference in
predicted readmission probabilities before
and after perturbing the token of interest u
with the filter h, as measured by L1 distance:

df (gu,h)(x) = |f(x)− f(gu,h(x))|

For example, given note x =(“his”, “mom”,
“visited”), the example classifier fconst, and
the perturbation function gu,h defined in sec-
tion D, we have

dfconst(gu,h)(x) = |1− 1| = 0,

since the constant classifier always predicts
positive labels regardless of the input text.

2.3.3. Averaging across Different
Perturbations and Notes

We are interested in a general-case estimate
of the sensitivity of a classifier with respect
to perturbing a token. This motivates us to
look at the difference in predicted probabil-
ity across different perturbations and in dif-
ferent notes. For example, the change (“his
mom visited”→“his dad visited”) might lead
to a smaller difference than (“his mom is
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pregnant”→“his dad is pregnant”) because
the semantic change is less substantial.

To approximate the sensitivity of classifier
f with respect to various perturbations, we
consider a set of perturbation filters H =
{h1, . . . , hm}. The choice of H is up to the
users. We use uniform filters to introduce
randomness in perturbations. To limit the
degree of perturbations out of the training
distribution, we add filters based on distribu-
tions induced from the training set, i.e., the
1-gram distribution of a well-trained masked
language model.

We define the note-level sensitivity
score with respect to a token u in a note x
as the average difference in predicted proba-
bilities after applying a filter in H.

df (gu,H)(x) =
1

m

m∑
i=1

df (gu,hi
)(x)

To approximate the sensitivity across var-
ious notes, we consider a set of notes X =
{x1, . . . , xl} and define the overall sensitiv-
ity score with respect to a token u as the
average of note-level sensitivity score:

df (gu,H)(X) =
1

l

l∑
j=1

df (gu,H)(xj)

2.3.4. Comparing Sensitivity of
Different Models

Different models f1, f2 have respective ranges
of output probabilities, making it unfair to
directly compare the changes in predicted
probabilities. For example, f1 could mostly
predict p ∈ [0.1, 0.3], whereas f2 predict
p ∈ [0.4, 1]. In this case, comparing the over-
all sensitivity scores of f1 and f2 is biased
towards the conclusion that f2 is more sensi-
tive, because its range of outputs is higher.

To address this issue, we compare relative
sensitivity as opposed to the absolute sensi-
tivity. That is, we want to say whether f1 is
more sensitive to u compared to f2.

We measure relative sensitivity with the
sensitivity rank. Given a set of token of in-
terest U , we calculate f ’s sensitivity scores of
each token within it. A token u has a sensi-
tivity rank of ru,f if it has the ru,f -th highest
sensitivity score among U .

Now we can compare relative sensitivity
of different classifiers using the sensitivity
ranks. For example, we say f1 is more sensi-
tive to u than f2 if ru,f1 < ru,f2 .

2.3.5. example with mimic-iii

We choose 49 tokens of interest to eval-
uate our two readmission classifiers,
fBioClinicalBERT and ftfidf+xgb. For each
token u of interest, we calculate the overall
sensitivity score df (gu,H)(X), with H as one
of the fifteen perturbation filters, and X as
the subset of our dataset that contains the
token u. Our perturbation filters H is par-
titioned into 3 sets of 5 replacement filters:
the uniform perturbations, the 1-gram per-
turbations, and the context perturbations.
For more details check Appendix E.2.

3. Experiment Results

Tf-idf+xgb has slightly better AUC
than BioClinicalBERT. As shown in Ta-
ble 1, The standard deviation of BioClini-
calBERT is 2.77 times that of tf-idf+xgb in
AUROC, and 3.25 times that of tf-idf+xgb
in AUPRC. While the marginal advantage
of tf-idf+xgb suggests that word order and
semantic context are not crucial, our next
result shows that tf-idf+xgb’s predictive be-
haviors align worse with the physicians.

Language-model based readmission
classifier correlates better with clini-
cians’ sensitivity. To investigate which
model is more reliable, we select 49 target
words based on professional inputs and col-
lect the sensitivity rankings of 3 readmission
predictor: the finetuned BioClinicalBERT,
tfidf+xgb, and 3 human clinicians. We in-
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Model AUROC AUPRC

bioclinical 0.6995±0.0036 0.1224±0.0065
tf-idf+xgb 0.7150±0.0013 0.1340±0.0020

Table 1: Comparison of readmission AUC
between BioClinicalBERT and
tfidf+xgb. Test statistics are from
5 trials with distinct random seed.

vite three clinicians to rank 49 target words
with a score from 1 to 5 to reflect the sig-
nificance of each word in readmission pre-
diction. A higher rank (smaller number) in-
dicates a more important word for decision
making. We obtain the overall clinician rank-
ings by averaging the ranks across all three
clinicians. We then assess the model’s simi-
larity to professional judgements through the
Spearman rank correlation (Spearman) be-
tween models’ rankings and the overall clini-
cian ranking. Table 2 shows that BioClinical-
BERT has a higher rank correlation, despite
a slightly lower AUC in Table 1. Check Ap-
pendix E.3 and Appendix F for more details.

classifier rank correlation

BioClinicalBERT 0.5754
tf-idf+xgb 0.1259

Table 2: Spearman rank correlation between
the two classifiers’ rankings and the
physicians’ ranking.

In addition to the quantitative difference
in Spearman rank correlations, to under-
stand the difference between BioClinical-
BERT and tfidf+xgb, we perform a quali-
tative analysis on where these models dis-
agree based on Table 8 and Table 9. Words
like “tumor”, “pancreatic”, and “demen-
tia” are considered important by clinicians
and BioClinicalBERT but neglected by the
tfidf+xgb model. Meanwhile, words like “in-
crease”, “prescribed”, and “blood” are con-
sidered important by the tfidf model but

trivial by the other two. The inconsistency
between the rankings of clinicians and the
tfidf+xgb model shows its potential reliance
on spurious features, rendering it less robust.

To empirically verify that the
tfidf+xgboost model is less robust, we
make zero-shot inferences on a held-out
readmission dataset from NYU Langone
Health. The result in Table 3 partially
verifies the legitimacy of our sensitivity
metric’s ability in evaluating robustness.

Model AUROC AUROC drop

bioclinical 0.633 0.0665
tf-idf+xgb 0.605 0.11

Table 3: tfidf+xgboost has a greater drop
in AUROC than BioClinicalBERT
when inferencing on new data

4. Discussions

Limitation: Our metric has a large spatial
and computational complexity. Generally,
the complexity is worse than NM , where
N is the dataset size and M is the number
of perturbations. We can reduce complex-
ity with the Monte Carlo method: subsam-
pling the dataset and the perturbation filters.
Methods of improving computational ineffi-
ciency is a direction of future research.

Implications: BioClinicalBERT might
use the semantic context to extract more
holistic information from a patient, as op-
posed to relying on statistical correlations
that do not apply to specific subgroups. For
example, an “increase” of blood pressure
might be dangerous for patients with heart
problems, but is a sign of recovery for pa-
tients with low blood pressure.
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Appendix A. Data

A.1. Data Source

We use three tables from the MIMIC-III in
our study: patients, admissions, and no-
teevents. The three tables have “subject id”,
“hadm id”, and “row id” as their respective
primary keys. We use the discharge note as
our input since it contains the most informa-
tion as a summary of the entire visit.

A.2. Label Generation

For each distinct discharge note associated
with an encounter, we generate a binary

readmission label based on the patient’s
medical record. A positive label suggests
readmission within 30 days following the pa-
tient’s discharge.

We generate the readmission labels as fol-
lows: for each patient, we order their encoun-
ters by admission time. For each of their
encounters, we calculate the readmission in-
terval between the discharge time for the
current visit and the subsequent admission
time. If an encounter does not have subse-
quent admissions or the readmission interval
is longer than 30 days, we assign a negative
label. Otherwise, we assign a positive label.

To properly handle boundary cases, we
only consider encounters that are discharged
at least a month before the latest admission
time. This prevents false negative labels with
unobserved readmissions outside the dataset.

Appendix B. Training Details

B.1. Finetuning BioClinicalBERT

In finetuning, we search learning rate from
{2e-5, 2e-6, 2e-7, 2e-8, 2e-9} using ray-tune
(Liaw et al., 2018). For each learning rate,
we finetune the model for 10 epochs using a
Nvidia-3090 GPU for around 140 minutes.
We select the model with best validation
loss, which uses a learning rate of 2e-5 and 5
epochs.

To address the label imbalance issue, we
use a weighted cross entropy loss function
to increase the penalty for misclassifying the
minority class. Specifically, we weigh the
positive example with the ratio of negative
examples in the entire dataset; Similarly, we
weigh the negative example with the ratio of
positive examples.

B.2. Training tf-idf+xgb

The model first convert the input texts to
a word-count vector, then calculate the tf-
idf embedding. Next, xgboost uses this em-
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bedding matrix for binary classification. We
repeat the training five times with distinct
random seeds (24, 42, 61, 67, 70) for a total
of three minutes.

Appendix C. Figures

Figure 1: Comparison of BioClinicalBERT
word sensitivities using the one-
swap and multiple-swap scheme on
readmission prediction. The one-
swap scheme counteracts the effect
of frequency on sensitivity score.

Appendix D. Metric Formalization

D.1. Previous Works

Existing metrics for model interpretation
mainly focus on unraveling individual pre-
dictions or mimicking local behaviors of the
model. However, these methods have two
limitations: first, they focus on attributing
decision making to local features in indi-
vidual examples; second, they cannot quan-
tify explainability as measured by alignment
with some ground-truth references. For ex-
ample, SHAP (Shapley Additive exPlana-
tions) (Lundberg and Lee) may be able to
tell us that “alcohol” is important for pre-
dicting that an individual depressed patient

Figure 2: Comparison of tf-idf word sensi-
tivities using the one-swap and
multiple-swap scheme on readmis-
sion prediction. The one-swap
scheme counteracts the effect of
frequency on sensitivity score.

would be readmitted. But SHAP cannot tell
us whether “alcohol” is a key feature for pre-
dicting readmission over an entire readmis-
sion dataset (not necessarily the case, be-
cause the use of “rubbing alcohol” indicates
good hygiene). Further, if SHAP tells us
that “alcohol” is important for an individ-
ual prediction, we cannot interpret this find-
ing without checking its alignment with some
experts. One way is to consult some physi-
cians: “Is it good that my model thinks alco-
hol is an important feature?” Our proposed
sensitivity score fills this gap by: first, quan-
tifying the sensitivity of each token over an
entire dataset (e.g., overall, “alcohol” is not
a sensitive feature); second, quantifying the
alignment of model’s sensitivity with a refer-
ence (e.g., overall, language model’s sensitiv-
ity to words are more similar to trustworthy
physicians than tf-idf models).

9
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Appendix E. Derivation details

E.1. Reasons for Substituting the
First Occurrence

This section explains the rationale behind
word substitution only once regardless their
total occurrences.

Previously, we substitute all occurrences of
any target word (denoted as multiple-swap)
and found that frequent words in general
have smaller sensitivity rankings, i.e., higher
sensitivity scores. The sensitivity ranking
and word frequency are correlated with a
Pearson coefficient of -0.62 for tf-idf as shown
in Figure 2 and Appendix F. The Pearson
coefficient is -0.60 for BioClinicalBERT, as
shown in Figure 1 and Appendix F. Thus,
the metric is biased if we compare sensitivi-
ties of tokens with diverging frequencies.

To tackle this problem, we substitute
the first occurrence of the target word
(called “one-swap” for brevity) rather than
multiple-swap. Figure 2 and 1 shows that
with this method, the sensitivity ranking
are distributed more evenly across word fre-
quency. Nevertheless, it should be acknowl-
edged that under rare circumstances, swap-
ping the first occurrence could introduce a
small bias when its particular context lend
higher importance to this occurrence than
others.

To get some insights about the correlation
between word frequency and sensitivity, we
consider a toy example of a linear classifier
using the TD-IDF embedding. Suppose we
have an input

x = (“hi”, “there”)

and a perturbed input with respect to the
token of interest u=“there”:

g(x) = (“hi”, “hi”)

The tf-idf+linear classifier is defined as

ftf-idf+linear(x) = softmax(Wφ(x)).

Here φ is the tf-idf embedding function with
two vocab: ”hi” and ”there”:

φ(x) =

[
tf(“hi”, x) log( |X|

df(“hi”,x))

tf(“there”, x) log( |X|
df(“there”,x))

]
,

where term frequency tf(w,x) is the num-
ber of w in a note x and document frequency
df is the number of notes x ∈ X that contain
token w.

The key insight is that a higher term fre-
quency of the token of interest tf(u, x) would
lead to a larger change in L1 norm of the per-
turbed tf-idf embedding. For example, both
“hi” and “there” appears once in x, so

φ(x) =

[
log( |X|

df(“hi”,x))

log( |X|
df(“there”,x))

]
.

After perturbation, “there” completely
disappear while there are 2 “hi”s, so

φ(g(x)) =

[
2 log( |X|

df(“hi”,x))

0

]
.

The difference in tf-idf embedding is

‖φ(x)− φ(g(x))‖1

= log(
|X|

df(“hi”,x)
) + log(

|X|
df(“there”,x)

)

More generally, given a word of interest u
with term frequency n, the difference in tf-idf
embeddings scales with n:

‖φ(x)− φ(g(x))‖1

= n log(
|X|2

df(“hi”,x)df(“there”,x)
)

=⇒ ‖φ(x)− φ(g(x))‖1 ∝ n

In our toy example, since f is linear, we
know the difference in predicted probability
would be larger if the perturbed word of in-
terest has a larger term frequency n:

|f(x)− f(g(x))| ∝ ‖φ(x)− φ(g(x))‖1 ∝ n
(1)
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On average, a token with a higher word
frequency (meaning that it appears more of-
ten in the dataset) have a higher term fre-
quency in each note. By Equation 1, such
high-frequency token has a higher sensitivity
score after perturbation.

E.2. Perturbation Filter

Each filter in uniform perturbations replaces
the token of interest u with another token
uniformly sampled from the vocabulary of
BioClinical Bert.

U = {h : h(u) = w′, w′ ∈Wuniform}

Each filter in 1-gram perturbations re-
places the token of interest u with one of the
five most frequent tokens from the subset X
that contains u.

G = {h : h(u) = w′, w′ ∈W1-gram}

Each filter in context perturbations re-
places the token of interest u with one of the
five most likely predictions according to non-
finetuned BioClinicalBERT’s MLM proba-
bility. We specifically used the non-finetuned
BioClinicalBERT to avoid using the same
model for both prediction and assessment.

O = {h : h(u) = w′, w′ ∈Wcontext}

E.3. Spearman Rank Correlation

rs = 1− 6 ·
∑
D2

n(n2 − 1)
(2)

We use the Spearman rank correlation
(Spearman) to quantify the divergence be-
tween the model ranking and the manual
ranking. In Equation 2, D is the difference
between ranks, and n is the number of pairs
of data.

Appendix F. Tables

The sensitivity ranking and word frequency
are negatively correlated for both the tf-idf
model and BioClinicalBERT when we swap
multiple occurrences.

Despite similar AUROC scores, BioClini-
calBERT is more sensitive to disease names
compared to general words, while tf-idf+xgb
displays a more irregular distribution of sen-
sitivity.

Table 4 and Table 5 display the Sensi-
tivity Score of 10 words with different fre-
quencies with respect to the language model
and the tfidf+xgboost model using multiple
swaps of occurrences. The one-swap coun-
terparts are shown in Table 6 and Table 7.
To assess the models’ alignment with profes-
sional opinions, Table 8 lists the token sets
and words’ relative significance ranking.
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word test fre df (gu,H)(X) rank

cancer 1912 0.033884 1
mg 58910 0.027513 2
colon 395 0.020076 3
expired 1234 0.018921 4
deceased 399 0.017083 5
heparin 1898 0.014974 6
died 1871 0.012532 7
father 1890 0.007779 8
mother 1897 0.006713 9
mouthwash 78 0.005541 10
regimen 395 0.004930 11
congenital 78 0.002269 12
thinner 78 0.002439 13

Table 4: The language model’s Sensitivity
Score of 10 words within different
frequency range (multiple-swap)

word test fre df (gu,H)(X) rank

expired 1234 0.019003 1
mg 58910 0.007416 2
heparin 1898 0.000583 3
mouthwash 78 0.005541 4
deceased 399 0.017083 5
died 1871 0.012532 6
cancer 1912 0.033884 7
regimen 395 0.004930 8
colon 395 0.020076 9
mother 1897 0.006713 10
father 1890 0.007779 11
thinner 78 0.002439 12
congenital 78 0.002269 13

Table 5: The tf-idf + xgboost model’s Sen-
sitivity Score of 10 words within
different frequency range (multiple-
swap)

word test fre df (gu,H)(X) rank

hypoglycemia 168 0.025779 1
fall 789 0.021095 2
ulcer 358 0.011134 3
prematurity 164 0.010929 4
arthritis 158 0.009826 5
father 1890 0.007510 6
mother 1897 0.006404 7
patient 7900 0.005129 8
blood 6565 0.004980 9
labor 16 0.003916 10
vaccination 78 0.001465 11

Table 6: BioClinicalBERT’s Sensitivity
Score of a list of ailments and
words for comparison (one-swap)

word test fre df (gu,H)(X) rank

fall 789 0.003331 1
blood 6565 0.000481 2
hypoglycemia 168 0.000426 3
patient 7900 0.000342 4
ulcer 358 0.000319 5
prematurity 164 0.000249 6
arthritis 158 0.000248 7
mother 1897 0.000248 8
father 1890 0.000239 9
vaccination 78 0.000024 10
labor 16 0.000000 11

Table 7: tf-idf+xgb’s Sensitivity Score of a
list of ailments and words for com-
parison (one-swap)
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word manual language tf-idf

chemotherapy 1.0 15 25
hypoglycemia 2.0 3 12
tumor 3.0 19 40
overdose 3.0 1 2
dementia 3.0 2 16
anticoagulation 6.0 36 36
delirium 6.0 26 17
debridement 6.0 7 10
arrhythmia 6.0 5 20
pancreatic 6.0 4 35
amputation 6.0 10 23
fall 6.0 6 3
cardiovascular 13.0 17 45
neurosurgery 13.0 31 33
diabetes 13.0 39 24
ablation 16.0 11 15
expired 16.0 21 1
dehydrated 16.0 25 41
palpitations 16.0 8 28
obesity 16.0 41 34
wheeze 21.0 14 27
vaccination 21.0 47 48
arthritis 21.0 22 30
pain 21.0 27 32
dysfunction 21.0 23 8

Table 8: Sensitivity Score rankings of 49
hand-chosen words for model com-
parison (one-swap). The language
model’s sensitivity ranking aligns
better with the clinicians’ manual
rankings. (first half)

word manual language tf-idf

urinary 26.0 24 5
faint 26.0 46 42
refills 26.0 9 19
immunizations 26.0 38 39
blood 26.0 34 9
family 26.0 35 37
diarrhea 32.0 16 22
female 32.0 18 44
prescribed 32.0 30 7
medication 32.0 45 29
electrolytes 32.0 40 43
allergies 32.0 12 46
aspirin 32.0 13 6
increase 32.0 48 4
tylenol 40.0 20 13
care 40.0 37 26
benign 40.0 29 38
mother 40.0 28 31
cartridge 40.0 44 14
labor 40.0 43 49
moderate 40.0 49 47
tablet 40.0 33 21
mg 40.0 42 11
patient 40.0 32 18

Table 9: Sensitivity Score rankings of 49
hand-chosen words for model com-
parison (one-swap). The language
model’s sensitivity ranking aligns
better with the clinicians’ manual
rankings. (second half)
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