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ABSTRACT

Multimodal Large Language Models (MLLMs) face significant computational
overhead when processing long videos due to the massive number of visual tokens
required. To improve efficiency, existing methods primarily reduce redundancy by
pruning or merging tokens based on importance or similarity. However, these ap-
proaches largely overlook a critical dimension of video content, i.e., changes and
turning points, and they lack a collaborative model for spatio-temporal relation-
ships. To address this, we propose a new perspective: similarity is for identifying
redundancy, while difference is for capturing key events. Based on this, we de-
signed a training-free framework named ST-SimDiff. We first construct a spatio-
temporal graph from the visual tokens to uniformly model their complex associ-
ations. Subsequently, we employ a parallel dual-selection strategy: 1) similarity-
based selection uses community detection to retain representative tokens, com-
pressing static information; 2) temporal difference-based selection precisely lo-
cates content-changing points to preserve tokens that capture key dynamic shifts.
This allows it to preserve both static and dynamic content with a minimal num-
ber of tokens. Extensive experiments show our method significantly outperforms
state-of-the-art approaches while substantially reducing computational costs. Our
code is available in https://anonymous.4open.science/r/ST-SimDiff-7225 .

1 INTRODUCTION

The rise of Large Language Models (LLMs) has significantly propelled advancements of Large
Vision-Language Models (LVLMs), which have demonstrated remarkable capabilities in image and
video understanding (Zhang et al., 2024c; Liu et al., 2024c). For video processing, current LVLMs
typically sample a video into a sequence of frames and then convert each frame into hundreds or
even thousands of visual tokens for the LLM (Bai et al., 2025; Li et al., 2024). While this paradigm
is effective, the number of tokens grows explosively with increasing video duration and resolution.
This leads to prohibitive computational and storage burdens, severely limiting the application of
LVLMs in scenarios such as long-video analysis and real-time interaction (Fu et al., 2024b).

To address this challenge, various methods are proposed to enhance the efficiency of LVLMs. These
approaches can be categorized into two types. One category is importance-based pruning. As ob-
served by FastV (Chen et al., 2024), there is redundancy in the attention distribution across different
layers when LVLMs process visual information. Therefore, visual tokens with lower attention scores
in the deeper layers of the model can be pruned to reduce the computational load. The other category
is similarity-based merging/selection. Existing works have found high similarity among visual to-
kens, either between adjacent video frames or within a single frame. FrameFusion (Fu et al., 2024b)
reduces redundancy by merging similar tokens from adjacent frames, while VisionZip (Yang et al.,
2025) directly selects dominant tokens at the vision encoder level.

Despite the success of existing methods in visual token reduction, they face two key limitations.
First, existing token pruning methods often focus on spatial correlations within the same frame or
temporal correlations at the same positions across different frames. This lack of joint modeling and
analysis of spatio-temporal correlations prevents them from effectively capturing complex dynamic
events. Furthermore, these methods share a potential blind spot: they mainly focus on informational
commonalities, like similarity and importance, while neglecting crucial changes and differences.
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Figure 1: The core motivation of ST-SimDiff. We posit that efficient video understanding requires
handling two scenarios simultaneously: Spatiotemporal Similarity (left) can be utilized to compress
redundant information both spatially within a frame and temporally across adjacent frames. Tempo-
ral Difference (right) should be detected to capture the key actions or events that define the plot.

Since the narrative of the video is often driven by turning events, a model that only seeks similarity
might smooth over a sudden action, leading to a misinterpretation of the content.

Based on this, we propose a new perspective: similarity is for identifying redundancy, while dif-
ference is for capturing key moments. We believe that an ideal video token compression algorithm
should achieve two goals simultaneously: representing the stable content of a video with the fewest
tokens, and precisely preserving the key changes. To this end, we propose ST-SimDiff, a dual to-
ken selection framework based on a spatio-temporal graph. Specifically, the framework consists of
two parts. The first is similarity-based representative token selection: we treat all visual tokens
of a video as nodes and construct a graph based on their feature similarity in the spatio-temporal
dimension. Using a graph community detection algorithm, we find tightly connected token clus-
ters in the graph, which represent stable and persistent visual elements in the video. We select a
few central tokens with higher centrality from each cluster as representatives. The second part is
difference-based event token selection: we pay special attention to the edges connecting along the
time axis in the graph. When the similarity between corresponding tokens of adjacent frames drops
sharply, we consider it a turning point and mark these tokens as critical event tokens that must be
retained. Finally, we merge these two sets of tokens to be input into the LLM. Our contributions can
be summarized as follows:

• We are the first to propose that the similarity and difference of tokens should be given equal
importance in VLM efficiency research.

• We design a spatio-temporal graph framework to uniformly model the complex spatio-
temporal relationships between video tokens. We propose a novel dual token selection
strategy that can simultaneously screen for both representative and pivotal event tokens.

• We conduct extensive experiments on video understanding benchmarks, and the results
show that ST-SimDiff significantly reduces the visual token budget while maintaining or
even improving performance.

2 RELATED WORK

2.1 LARGE VISION LANGUAGE MODELS

The rapid advancement of Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al.,
2023; Ouyang et al., 2022) has significantly propelled progress in multimodal understanding, lead-
ing to the emergence of numerous prominent Large Vision Language Models (LVLMs) (Liu et al.,
2024b; Bai et al., 2023). These LVLMs typically process images or video frames by converting
them into visual tokens via pre-trained visual encoders, which are then fed into LLMs. Various
alignment modules commonly connect the visual encoder and the LLM, including MLPs (Liu et al.,
2024a;b) and Q-Formers (Li et al., 2023; Dai et al., 2023). This architecture enables LVLMs to
exhibit exceptional capabilities in multimodal tasks, particularly in video understanding, where they
show promise in processing longer, higher-resolution complex videos (Bai et al., 2025; Li et al.,
2024; Zhang et al., 2024c; Liu et al., 2024c).
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Figure 2: The overview framework of ST-SimDiff, which consists of three parts: Spatio-Temporal
Graph Construction, Similarity-based Representative Token Selection, and Difference-based Event
Token Selection.

However, this powerful capability also introduces significant computational challenges, especially
in video understanding scenarios. Due to the need to process continuous sequences of frames, the
number of visual tokens grows exponentially, far exceeding that of static images, posing a severe
challenge to the training and inference efficiency of LVLMs. Therefore, how to efficiently process
massive video visual tokens and reduce computational overhead remains a critical issue in current
LVLM research.

2.2 VISUAL TOKEN COMPRESSION

Driven by the substantial overhead of video processing, visual token compression has become a
critical method for improving the efficiency of Large Visual Language Models (LVLMs). Existing
methods primarily approach compression from two aspects: token importance and similarity.

Earlier methods primarily focused on importance-based token pruning, aiming to identify and re-
move visual tokens that contribute less to model performance. These methods typically utilize at-
tention scores or other feature metrics to quantify token importance, such as FastV (Chen et al.,
2024) and FasterVLM (Zhang et al., 2024b). Subsequent works (Shang et al., 2024; Ye et al., 2025)
have started to further consider token similarity to more effectively reduce redundancy and preserve
critical information. These methods recognize that even important tokens can exhibit high similar-
ity, leading to informational redundancy. For instance, FrameFusion (Fu et al., 2024b) combines
similarity-based merging with importance-based pruning. VisionZip (Yang et al., 2025) reduces
redundancy by selecting dominant tokens and merging contextual information. VisPruner (Zhang
et al., 2025) leverages visual cues to remove redundant items.

Despite significant progress in visual token redundancy, existing work hardly addresses the intricate,
global spatio-temporal similarity relationships between tokens. In video scenarios, visual informa-
tion is redundant both spatially and temporally. Existing similarity-driven methods, like FrameFu-
sion, mainly only on the temporal similarity between adjacent frames, failing to utilize complex
spatio-temporal relevant information. This limits their ability to fully exploit inherent video redun-
dancy, restricting performance in extreme token reduction scenarios.

3 PROBLEM DEFINITION

Given a video V and a text query Q, a standard Large Vision-Language Model (LVLM) first en-
codes the video into a full sequence of N visual tokens, Tfull = {t1, t2, . . . , tN}. This process is
computationally demanding, as the self-attention mechanism’s complexity scales quadratically with
the token count N , i.e., O(N2). Our task is therefore to design an efficient token selection function,
f(·), that takes the full sequence Tfull and a compression ratio r to produce a much smaller subset
Tsub = f(Tfull, r). The objective is to maximize the LVLM’s downstream task performance using
this subset, subject to the constraint that its size |Tsub| is approximately r ·N . The core challenge is
to design the selection function f(·) to retain the most critical information within the subset Tsub.

4 ST-SIMDIFF

4.1 METHOD OVERVIEW

As illustrated in Figure 2, the proposed ST-SimDiff method comprises two key components that
operate in parallel on a spatio-temporal graph constructed from the video’s visual tokens: Similarity-
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based Representative Token Selection (SRTS) and Difference-based Event Token Selection (DETS).
First, in the SRTS module, we identify and condense the video’s stable and redundant content. By
applying community detection algorithms to the graph, we group highly similar tokens into clusters,
which correspond to persistent visual elements like static backgrounds. From each cluster, we then
select a few highly central tokens to form a representative set, Trep. Second, the DETS module
is designed to capture the video’s crucial dynamic shifts. It analyzes the temporal edges of the
graph, identifying moments where the similarity between corresponding tokens in adjacent frames
drops sharply. These points of high difference signify turning points, and the tokens framing these
transitions are preserved as critical event tokens, forming the set Ttrans. By synergistically combining
these two components, ST-SimDiff generates a final token subset Tsub = Trep

⋃
Ttrans, which is both

highly compact and information-rich, retaining stable content while precisely capturing key events.

4.2 SPATIO-TEMPORAL GRAPH CONSTRUCTION

Given a video, the vision encoder transforms it into a sequence of tokens T = {t1, t2, . . . , tN}.
Each token tk ∈ T corresponds to a specific spatio-temporal location and is associated with a
feature vector xk. We define the location of each token tk by its frame index T (tk), its spatial height
index H(tk), and its spatial width index W (tk).

We model the relationships between these tokens using a spatio-temporal graph G = (V,E), where
the vertex set V represents all tokens in T . The edge set E is the union of two distinct subsets,
E = ES ∪ET , which capture spatial and temporal relationships respectively. The spatial edges ES

connects tokens that are spatially adjacent within the same frame:

ES ={(vi, vj) ∈ V × V | T (ti) = T (tj) and
|H(ti)−H(tj)|+ |W (ti)−W (tj)| = 1} (1)

The temporal edges ET connects tokens that are at the same spatial position but in adjacent frames,
capturing temporal continuity:

ET ={(vi, vj) ∈ V × V | H(ti) = H(tj),

W (ti) = W (tj), and |T (ti)− T (tj)| = 1} (2)

The weight of any edge w(vi, vj) ∈ E is defined by the cosine similarity of the feature vectors of
the corresponding tokens:

w(vi, vj) =
xi · xj

∥xi∥∥xj∥
(3)

This sparse graph structure efficiently encodes local spatial relationships and temporal continuity,
providing a unified foundation for our dual-path token selection strategy.

4.3 SIMILARITY-BASED REPRESENTATIVE TOKEN SELECTION

Video content is inherently characterized by substantial spatio-temporal redundancy. For instance,
in a static scene that persists for several seconds, the background tokens exhibit high similarity over
time. Similarly, for an object moving across the screen, its corresponding tokens, despite changing
spatial positions, maintain a high degree of semantic correlation. Existing methods often address
temporal and spatial similarities in isolation. In contrast, our spatio-temporal graph is designed to
capture these joint similarities. Within this graph, semantically related tokens form dense “commu-
nities” or “clusters” based on their feature similarity, irrespective of their specific frame or location.
Therefore, selecting representatives from each community emerges as a highly efficient strategy for
compressing redundant information while preserving core semantics.

To accurately identify strongly correlated token clusters, we first threshold the graph G. We set a
similarity threshold τsim and retain only the edges with weights above this threshold, forming a new
graph G′ = (V,E′), where E′ = {(vi, vj) ∈ E | w(vi, vj) > τsim}. Next, we apply a graph
community detection algorithm (e.g., the Louvain method (Blondel et al., 2008)) on G′ to identify
token clusters C = {c1, c2, . . . , cm}. For each community ck ∈ C, we rank and filter its internal
tokens based on their centrality. The centrality score Sc(ta) of a token ta ∈ ck is defined as its
average similarity with all other tokens within the community:

Sc(ta) =
1

|ck| − 1

∑
tb∈ck,b̸=a

w(ta, tb) (4)

4
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Subsequently, we set the intra-community retention rate to the globally preset compression ratio
r, and preserve the top ⌈|ck| · r⌉ tokens with the highest centrality scores from each community
ck. This uniform filtering process naturally handles all communities, including single-node com-
munities composed of unique tokens (in which case the sole node is retained). Formally, the set of
representative tokens, Trep, is defined as:

Trep =

m⋃
k=1

TopK
t∈ck,score=Sc(t)

(⌈|ck| · r⌉) (5)

where the TopK function returns the set of k elements with the highest scores from a given set.
In summary, this strategy efficiently compresses the static and persistent content of the video by
identifying and retaining the most central tokens within each semantic cluster.

4.4 DIFFERENCE-BASED EVENT TOKEN SELECTION

If similarity defines the “norm” of a video, then difference defines its “events”. A model focusing
only on similarity may excel at understanding “what is” but struggle with “what happened”. A
video’s plot is driven by key events, and the essence of an event is change—the appearance of a
new object, the start of an action, or a scene transition. In our model, these changes manifest as a
sharp difference in the features of temporally adjacent tokens. Therefore, accurately capturing these
“turning points” of significant difference is crucial for understanding the video’s dynamic content
and correctly answering questions like “when” and “why”.

Difference, particularly along the temporal dimension, often signals the occurrence of a key event.
For example, the entry of a new object, a scene change, or the beginning/end of an action will cause
drastic changes in the visual features at corresponding positions in adjacent frames. We specifically
analyze the temporal edges (ET ) in our spatio–temporal graph. For any temporal edge (vk, vl) ∈ ET

in the graph, which connects two temporally adjacent tokens tk and tl, we set a dynamic threshold
τ (e.g., the 95th percentile of all temporal edge difference scores). When the difference score of
a temporal edge (vk, vl) exceeds this threshold, i.e., w(tk, tl) < τdiff, we consider the subsequent
token tl as a critical event token and retain it. Formally, the set of event tokens, Tevent, is defined as:

Tevent ={tl | ∃tk s.t. (vk, vl) ∈ ET ,

T (tl) > T (tk), and w(vk, vl) < τdiff}
(6)

With this strategy, tokens that signify moments of significant temporal change can be preserved. By
capturing these key transitions, we ensure that the crucial dynamic aspects of the video’s narrative
are not overlooked during the compression process.

4.5 OVERALL REDUCTION PROCESS

In the proposed framework, we first compute the representative token set Trep and the event token
set Tevent in parallel, and take their union, Tcandidate = Trep ∪ Tevent, as the initial candidate set.To
precisely meet the target token count Ntarget = ⌈r · N⌉, we introduce a final pruning step. If the
size of the candidate set, |Tcandidate|, exceeds Ntarget, we remove the |Tcandidate| − Ntarget tokens with
the lowest importance. Following existing work (Chen et al., 2024), the importance of a token is
determined by its attention score in the shallow layers of the LLM. This step ensures that our method
can flexibly meet any computational budget while preserving critical information.

In summary, our overall method adeptly combines two strategies: graph-based token selection and
attention-based dynamic pruning. The former leverages the intrinsic structure of the video content
(similarity and difference) to ensure the retention of core information, while the latter provides
a flexible mechanism to precisely meet any given computational budget. This design makes our
token compression process both principled and adaptive, thereby achieving a robust balance between
efficiency and performance.

4.6 COMPUTATIONAL COMPLEXITY ANALYSIS

The computational overhead of our proposed ST-SimDiff framework can be analyzed in three
main stages: Spatio-Temporal Graph Construction, Similarity-based Representative Token Selec-
tion (SRTS), and Difference-based Event Token Selection (DETS).

The initial stage involves building the graph. For each of the N visual tokens, we compute the cosine
similarity with its spatially and temporally adjacent neighbors. As each token has a small, constant

5
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Upper Bound (Full Performance)
LLaVA-Video - - - 63.3 - - 58.2 57.3

Token Retain Ratio r = 30%

FastV 68.2 58.6 51.2 59.3 48.0 59.9 53.5 51.3
PruMerge 70.2 57.3 52.2 59.9 49.6 60.5 54.7 50.9
FasterVLM 71.3 57.6 51.4 60.1 51.0 61.3 55.8 52.6
VisionZip 68.4 55.9 50.4 58.3 46.9 60.3 53.2 53.0
FrameFusion 74.0 59.8 50.0 61.3 49.7 63.3 56.0 53.0
ST-SimDiff (Ours) 74.7 61.9 53.0 63.2 52.5 63.2 57.5 56.0

Token Retain Ratio r = 50%

FastV 73.9 61.4 51.3 62.2 50.1 62.2 55.7 54.7
PruMerge 72.3 58.7 52.8 61.3 51.4 63.2 56.9 54.6
FasterVLM 74.0 59.2 51.8 61.7 51.3 62.2 56.4 56.2
VisionZip 72.6 57.7 51.6 60.6 51.3 63.2 56.8 54.2
FrameFusion 74.6 61.2 52.0 62.6 51.7 64.2 57.6 55.8
ST-SimDiff (Ours) 76.2 62.4 52.7 63.8 52.3 64.3 57.9 57.3

Table 1: Performance comparison on long-form video understanding benchmarks on LLaVA-Video-
7B for 64 input frames (%). The best performance among all methods is emphasized in bold.

number of neighbors, this step requires a single pass over all tokens, resulting in a complexity of
O(Nd), where d is the feature dimension of each token.

Following graph construction, the SRTS module identifies token clusters. As detailed in our im-
plementation (Section 5.2), we employ a connected components algorithm, which operates with a
near-linear time complexity of O(N + |E|). Since the number of edges |E| is at most 3N , this
simplifies to O(N). The subsequent filtering step within each community could be computation-
ally intensive. A naive approach of calculating all-pairs similarity within each community ck would
have a complexity of O(|C| · |ck|2 · d). To prevent this, we impose a constraint on the maximum
size of any community. In the rare event that a community exceeds a predefined threshold (e.g.,
|ck| >

√
N ), we partition it. This ensures the filtering process remains efficient and does not

dominate the overall complexity. While other mainstream graph clustering algorithms such as the
Louvain and Leiden methods offer more complex community definitions, their computational com-
plexity is higher, approaching O(N logN). Therefore, we opted for the simpler and highly efficient
connected components algorithm to ensure minimal processing overhead.

The DETS module involves a single pass through all temporal edges in the graph to identify sig-
nificant changes by comparing token similarities against a threshold. This process has a linear
complexity of O(Nd).

In summary, the total complexity of our ST-SimDiff framework is governed by these linear-time
operations, culminating in an overall complexity of O(Nd). This is substantially more efficient
than the quadratic complexity of the self-attention mechanism, O(N2d), used in the Large Lan-
guage Model. Therefore, our method provides significant token reduction with only a negligible
computational footprint relative to the model’s main inference cost.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines To comprehensively evaluate our method’s effectiveness, we use LLaVA-Video (Zhang
et al., 2024c) and NVILA (Liu et al., 2024c) as our base models and compare our approach against a
range of state-of-the-art video token compression techniques. These baselines cover diverse strate-
gies, including importance-based reduction methods like FastV (Chen et al., 2024) and Faster-
VLM (Zhang et al., 2024b), and hybrid reduction methods like VisionZip (Yang et al., 2025),

6
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Upper Bound (Full Performance)
NVILA-Video - - - 61.5 - - 56.3 52.9

Token Retain Ratio r = 30%

FastV 69.4 55.3 48.8 57.9 50.8 55.6 53.0 49.7
PruMerge 71.0 53.7 49.9 58.2 49.3 58.1 53.4 47.5
FasterVLM 72.6 56.9 51.0 60.1 48.7 57.8 53.0 49.3
VisionZip 71.4 56.2 49.7 59.1 46.3 56.2 50.9 48.9
FrameFusion 72.1 55.7 48.7 58.8 51.3 59.3 54.9 51.3
ST-SimDiff (Ours) 73.3 57.7 49.7 60.2 51.7 59.2 55.2 51.7

Token Retain Ratio r = 50%

FastV 71.9 58.3 49.3 58.9 49.5 58.8 53.9 50.2
PruMerge 71.2 54.8 46.8 57.6 49.7 58.7 53.9 48.9
FasterVLM 74.6 57.8 50.1 60.8 48.5 58.1 53.0 50.5
VisionZip 72.8 58.1 50.6 60.5 50.4 58.9 54.4 50.3
FrameFusion 72.7 57.2 48.3 59.4 51.0 59.2 54.8 52.6
ST-SimDiff (Ours) 73.9 59.7 51.4 61.7 52.3 61.3 56.5 52.5

Table 2: Performance comparison on long-form video understanding benchmarks on NVILA-Video-
8B for 64 input frames (%). The best performance among all methods is emphasized in bold.

FrameFusion (Fu et al., 2024b), and PruMerge (Shang et al., 2024). To ensure a fair and complete
comparison, we also include the original uncompressed model (Vanilla) as a performance upper
bound and Random Sampling of an equivalent number of tokens as a lower bound.

Benchmarks To test our method’s capabilities in long-video understanding, we adopt three chal-
lenging benchmark datasets: VideoMME (Fu et al., 2024a), LongVideoBench (Wu et al., 2025),
and EgoSchema (Mangalam et al., 2024). VideoMME is a comprehensive benchmark for foun-
dational video understanding, featuring diverse video types and three length categories: Short,
Medium, and Long. LongVideoBench evaluates the ability to retrieve and reason about details
in long videos through a “referring reasoning” task, with videos of four lengths: 15s, 60s, 600s, and
3600s. EgoSchema is a question-answering dataset focused on long-term, first-person videos that
tests the model’s ability to understand character intentions and causal chains of actions.

5.2 IMPLEMENTATION DETAILS

We use NVIDIA L20 GPUs with 48GB VRAM on an Ubuntu 22.04. The inference evaluation
is conducted based on the lmms-eval (Zhang et al., 2024a) library. For LLaVA-Video, we follow
its original setting of 64 input frames. To ensure a fair comparison of computational efficiency
and resource usage under similar conditions, we establish a consistent setup by also setting the input
frame count for NVILA to 64. As for the hyperparameters, we set the similarity threshold τsim = 0.8,
and the difference threshold τdiff = 0.2. Experiments are conducted with token compression rates
of r = 30% and r = 50%, respectively. In our practical implementation, considering the trade-
off between time consumption and performance improvement, we opt to use connected component
finding as community detection algorithm.

5.3 COMPARISON WITH STATE-OF-THE-ARTS

To comprehensively evaluate our proposed ST-SimDiff framework, we compare it against a range
of mainstream efficient video language model (VLM) compression methods. All experiments
are conducted on three widely-used long-form video understanding benchmarks: VideoMME,
LongVideoBench, and EgoSchema. To validate the generalization ability and robustness of our
method, we report detailed performance data on two different base models, LLaVA-Video-7B and

7
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Method VideoMME LongVideoBench EgoSchema
Token Retain Ratio r = 30%

Baseline 60.3 56.2 54.8

+ Sim
Spatial 61.5 56.5 55.2
Temporal 61.7 56.8 55.1
Spa. + Tem. 62.6 57.0 55.3

++ Diff (Proposed) 63.2 57.5 56.0
Token Retain Ratio r = 50%

Baseline 63.2 56.7 56.5

+ Sim
Spatial 63.3 57.0 56.7
Temporal 63.7 57.2 56.9
Spa. + Tem. 63.7 57.8 57.2

++ Diff (Proposed) 63.8 57.9 57.3

Table 3: Ablation results of different components (%).

NVILA-8B, under token retain ratios of 30% and 50%. The experimental results are presented in
Table 1 and Table 2.

(1) ST-SimDiff consistently outperforms all competing methods across all test configurations. A
particularly noteworthy finding is that at a 50% token retain ratio, the overall performance of our
method on both base models not only surpasses other compression algorithms but, on some bench-
marks, even matches or exceeds that of the original model using 100% of the tokens. This result
validates the effectiveness and novelty of ST-SimDiff and prompts a deeper analysis of the strategies
and limitations of existing baselines.

(2) In importance-based baseline methods (e.g., FastV, FasterVLM), FasterVLM typically exhibits
relatively stronger performance. However, their common limitation lies in the inefficient handling
of temporal redundancy prevalent in videos, as they tend to retain important yet repetitive tokens,
thereby limiting information compression efficiency. Hybrid baseline methods (e.g., PruMerge,
VisionZip, FrameFusion) demonstrate more competitive performance than importance-only ap-
proaches, with FrameFusion generally showing the most outstanding overall results. Nevertheless,
the common optimization goal of these methods is still to identify and preserve representative “com-
monality” information, with a theoretical blind spot of potentially overlooking key narrative infor-
mation driven by “turning points” and “abrupt events”.

(3) In summary, existing baselines reflects a deepening understanding of “redundancy” in videos,
yet they still face two core challenges: first, a lack of synergistic analysis of spatio-temporal joint
similarity between visual tokens, making it difficult to capture complex redundancies; and second, a
general neglect of “difference” detection, failing to actively preserve key changes that define plot de-
velopment. The performance gain of ST-SimDiff stems from addressing these issues by constructing
a spatio-temporal graph to uniformly model complex spatio-temporal relationships and innovatively
introducing difference detection.

5.4 ABLATION STUDY

To validate the effectiveness of each core component within our ST-SimDiff framework, we con-
ducted a series of detailed ablation studies. We started with a Baseline strategy that includes only
fundamental importance-based pruning and progressively introduced our proposed similarity selec-
tion module (+Sim) and difference selection module (++Diff) to quantify their respective contri-
butions. All experiments were conducted at token retain ratios of 30% and 50%, with the results
presented in Table 5.

(1) First, we evaluated the effectiveness of the +Sim module. The experimental results clearly in-
dicate that introducing similarity modeling on top of the baseline consistently improves model per-
formance. We further broke down the similarity strategy into three types: spatial-only (Spatial),
temporal-only (Temporal), and spatio-temporal joint (Spa. + Tem.). The data shows that collabora-
tively modeling the spatio-temporal associations between visual tokens is the most effective way to
compress redundancy.
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Figure 3: Computational cost comparison between our method and the baseline LLaVA-Video
model in average inference time and peak GPU memory usage under a 30% token budget.

(2) After integrating the optimal spatio-temporal joint similarity module, we introduced the dif-
ference selection module (++Diff) to form our complete framework. The addition of this module
provides a significant performance leap, particularly under the high compression ratio of 30%. This
demonstrates its vital complementary role: while the aggressive +Sim module focuses on redun-
dancy, the ++Diff module acts as a safety net to identify and preserve unique event tokens that define
the video’s narrative. In contrast, the module’s marginal gain is smaller at a 50% retention ratio. This
is because the more lenient +Sim module is more likely to have already captured these event tokens,
and the overall model performance is already approaching its upper bound. This analysis confirms
our core motivation: the framework’s strength lies in its ability to balance similarity-based redun-
dancy compression with the crucial preservation of difference-based events, especially in demanding
high-compression scenarios.

5.5 COMPUTATIONAL COST ANALYSIS

To quantify the efficiency advantages of our proposed ST-SimDiff method in practical applications,
we conducted detailed tests on its inference time and peak GPU memory usage under a 30% token
budget. We compared it against the baseline model (Baseline LLaVA-Video) without any compres-
sion. The experimental results in Figure 3 cover video inputs lengths from 32 to 128 frames.

Inference Time ST-SimDiff demonstrates a significant speedup. As the number of input video
frames increases, the average inference time of the baseline model grows sharply from 1.56 seconds
(32 frames) to 6.50 seconds (128 frames). In contrast, our method effectively curtails this growth,
with an average time of only 4.54 seconds when processing 128 frames. This means that ST-SimDiff
achieves an increasingly higher time-saving rate for longer videos, improving from 23.0% for 32
frames to 30.2% for 128 frames.

Memory Cost ST-SimDiff also performs exceptionally well. The peak GPU memory usage of
the baseline model climbs linearly with video length, from 20.9 GB (32 frames) to 35.0 GB (128
frames). Our method significantly reduces memory pressure by substantially decreasing the number
of tokens fed into the large language model. When processing 128-frame videos, ST-SimDiff’s peak
memory usage is only 23.9 GB, saving 31.7% of the memory space compared to the baseline. This
advantage enables our model to process longer videos on hardware with limited memory, greatly
expanding its potential applications.

In summary, ST-SimDiff not only achieves leading performance but also demonstrates significant
advantages in computational efficiency (both time and memory), proving its efficiency for video
understanding.

6 CONCLUSION

In this paper, we address the inefficiency of Multimodal Large Language Models for long videos,
which stems from existing methods’ lack of joint spatio-temporal modeling and their neglect of
critical changes (difference). We propose ST-SimDiff, a novel training-free framework that uses a
spatio-temporal graph to leverage both similarity for compressing static content and dissimilarity
for preserving key dynamic events, creating a more complete and efficient representation of video
content. Extensive experiments demonstrate that ST-SimDiff consistently surpasses state-of-the-art
methods, opening a new research direction that shifts the focus from mere redundancy compression
to a balanced modeling of content representativeness and transitional events.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 1(8), 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer Vision, pp. 19–35. Springer, 2024.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
tion benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024a.

Tianyu Fu, Tengxuan Liu, Qinghao Han, Guohao Dai, Shengen Yan, Huazhong Yang, Xuefei Ning,
and Yu Wang. Framefusion: Combining similarity and importance for video token reduction on
large visual language models. arXiv preprint arXiv:2501.01986, 2024b.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models. arXiv
preprint arXiv:2412.04468, 2024c.

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic bench-
mark for very long-form video language understanding. Advances in Neural Information Process-
ing Systems, 36, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

10

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
reduction for efficient large multimodal models. arXiv preprint arXiv:2403.15388, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
interleaved video-language understanding. Advances in Neural Information Processing Systems,
37:28828–28857, 2025.

Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia.
Visionzip: Longer is better but not necessary in vision language models. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 19792–19802, 2025.

Weihao Ye, Qiong Wu, Wenhao Lin, and Yiyi Zhou. Fit and prune: Fast and training-free visual
token pruning for multi-modal large language models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 22128–22136, 2025.

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on
the evaluation of large multimodal models, 2024a. URL https://arxiv.org/abs/2407.
12772.

Qizhe Zhang, Aosong Cheng, Ming Lu, Zhiyong Zhuo, Minqi Wang, Jiajun Cao, Shaobo Guo,
Qi She, and Shanghang Zhang. [cls] attention is all you need for training-free visual token prun-
ing: Make vlm inference faster. arXiv e-prints, pp. arXiv–2412, 2024b.

Qizhe Zhang, Aosong Cheng, Ming Lu, Renrui Zhang, Zhiyong Zhuo, Jiajun Cao, Shaobo Guo,
Qi She, and Shanghang Zhang. Beyond text-visual attention: Exploiting visual cues for effective
token pruning in vlms. arXiv preprint arXiv:2412.01818, 2025.

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024c.

11

https://arxiv.org/abs/2407.12772
https://arxiv.org/abs/2407.12772


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A VISUALIZATION OF THE TOKEN SELECTION PROCESS
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Figure 4: Visualization of the ST-SimDiff process. The visualization breaks down the token selec-
tion into communities detected by SRTS (shown as grids in Cluster 1 and 2) and event-driven tokens
detected by DETS. The final result highlights the synergy between sparse representative tokens (yel-
low) for stable content and dense event tokens (red) for dynamic actions.
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To provide a more intuitive understanding of the ST-SimDiff framework, we present some visualiza-
tion samples of the intermediate and final token selection results in Figure 4. The figure illustrates
the process on a sample video sequence featuring a dynamic object manipulation task. First, regard-
ing the Similarity-based Representative Token Selection (SRTS), the rows labeled “Cluster 1” and
“Cluster 2” demonstrate how our graph community detection algorithm functions. It successfully
groups spatially and temporally redundant regions, such as the static background and stationary ob-
jects, into cohesive communities. This visualization confirms that SRTS effectively identifies stable
visual elements and compresses them by selecting only a few central “representative tokens,” which
appear as sparse yellow boxes in the final results. This mechanism allows the model to handle
massive background redundancy efficiently.

Complementing this, the Difference-based Event Token Selection (DETS) plays a critical role during
dynamic moments. As seen in the “Final Results” row, tokens triggered by high temporal difference
are explicitly marked with dense red bounding boxes. These red boxes align perfectly with the mov-
ing hand and the shifting blue liquid, verifying that our method precisely locates “turning points”
where the temporal difference exceeds the threshold (τdiff ). This ensures that fine-grained action
details and rapid visual changes are preserved, allowing the model to capture the essence of the event
without being overwhelmed by static data.

Finally, the synergistic effect of these two components is evident in the overlay of the final results.
The visualization demonstrates a powerful balance: the sparse yellow tokens represent the stable
background, while the dense red tokens capture the rapid motion. This contrast provides direct visual
evidence of our core motivation. ST-SimDiff avoids the blind spots of similarity-only approaches by
densely sampling during rapid changes, while simultaneously pruning the spatiotemporal redundan-
cies that importance-based methods often miss. Consequently, our framework achieves an optimal
balance between computational efficiency and the preservation of critical visual information.

B COMPARISON RESULTS ON QWEN2.5-VL

Method VideoMME LongVideoBench EgoSchemaShort Medium Long Overall Relation Perception Overall
Upper Bound (Full Performance)

Qwen2.5-VL-64 74.2 62.7 51.8 62.9 54.2 64.8 59.2 63.0
Qwen2.5-VL-128 77.4 65.8 56.1 66.4 56.2 65.1 60.4 63.9

Token Retain Ratio r = 30%

ST-SimDiff-64 73.8 61.7 51.8 62.4 52.2 62.1 56.8 62.7
ST-SimDiff-128 75.4 64.7 55.2 65.1 53.1 65.0 58.6 64.4

Token Retain Ratio r = 50%

ST-SimDiff-64 74.2 62.1 52.2 62.9 54.2 63.2 58.4 62.7
ST-SimDiff-128 76.8 66.3 55.8 66.3 54.9 65.3 59.8 64.5

Table 4: Performance comparison on long-form video understanding benchmarks on Qwen2.5-VL-
7B for 64 and 128 input frames (%).

To further validate the generalization capability of our proposed framework, we conducted additional
experiments on the recently released Qwen2.5-VL model. These evaluations were performed on the
VideoMME and LongVideoBench benchmarks to confirm that our method’s efficacy is not limited
to a specific model architecture but can be broadly applied.

The empirical results, presented in Table 4, demonstrate the strong performance of ST-SimDiff on
the Qwen2.5-VL model. At a token retention ratio of 30%, our method achieved scores of 62.4
on VideoMME and 56.8 on LongVideoBench. When the token budget was increased to a 50%
retention ratio, the performance improved to 62.9 on VideoMME and 58.4 on LongVideoBench.
It is particularly noteworthy that at the 50% ratio, the performance on VideoMME matches the
upper-bound performance achieved using all tokens, and the score on LongVideoBench is highly
comparable to its full-performance counterpart. These findings affirm the excellent generalization
ability of our framework.
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C ABLATION STUDY RESULTS ON NVILA

Method VideoMME LongVideoBench EgoSchema
Token Retain Ratio r = 30%

Baseline 59.3 53.8 50.2

+ Sim
Spatial 59.5 54.5 50.9
Temporal 59.6 54.3 51.2
Spa. + Tem. 59.9 54.6 51.3

++ Diff (Proposed) 60.2 55.2 51.7
Token Retain Ratio r = 50%

Baseline 60.9 55.3 51.5

+ Sim
Spatial 61.1 55.7 51.9
Temporal 61.3 55.6 51.8
Spa. + Tem. 61.4 56.0 52.3

++ Diff (Proposed) 61.7 56.5 52.5

Table 5: Ablation results of different components on NVILA-Video-8B model (%).

To further validate the generalization ability of each component in our framework across different
base models, we also conducted a series of detailed ablation studies on the NVILA-Video-8B model
(Liu et al., 2024c). The experimental setup is consistent with the ablation study in the main paper;
we start with a Baseline strategy that includes only fundamental importance-based pruning and
progressively introduce the similarity selection module (+ Sim) and the difference selection module
(++ Diff).

As shown in Table 5, the experimental results once again validate the effectiveness of our framework
design, and the trends are highly consistent with the performance on LLaVA-Video-7B. First, after
introducing the similarity module (+ Sim) on top of the baseline, the model’s performance shows
a steady improvement at both 30% and 50% token retain ratios. Within the similarity module, we
compared three strategies: spatial-only (Spatial), temporal-only (Temporal), and spatio-temporal
joint (Spa. + Tem.). The results show that spatio-temporal joint modeling (Spa. + Tem.) is the most
effective. For example, with r = 50%, the spatio-temporal joint strategy achieved a score of 61.4% on
VideoMME, outperforming the spatial-only and temporal-only strategies. This again demonstrates
the importance of collaboratively considering spatio-temporal associations for effectively identify-
ing redundant information. After integrating the optimal spatio-temporal joint similarity module,
we further introduced the dissimilarity selection module (++ Diff) to form our complete ST-SimDiff
framework. The table clearly shows that the addition of this module brought the most significant
performance gains. This result strongly demonstrates the effectiveness and generalization ability
of the two core modules in our framework (similarity and dissimilarity selection) and once again
validates our core idea of simultaneously handling redundancy and change.

D ABLATION RESULTS OF τsim AND τdiff ON LLAVA-VIDEO

In our framework, the similarity threshold τsim and the difference threshold τdiff are two key hy-
perparameters that respectively influence the selection of representative and transitional tokens. To
investigate their impact, we conducted a series of ablation studies, with the results shown in Figure
6. The experiments show that the impact of both parameters on model performance follows a similar
trend, first rising and then falling, while demonstrating good robustness within a certain range. For
τsim, a value that is too low leads to imprecise community detection, while a value that is too high
can disrupt the integrity of semantic clusters. For τdiff , a value that is too low can introduce noise
due to over-sensitivity, whereas a value that is too high may cause the model to miss key events.
According to the experimental results, the model achieves optimal performance at τsim = 0.8 and
τdiff = 0.2. Therefore, we adopted this optimal configuration for all other experiments.
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Figure 5: Ablation study results for different values of τdiff and τsim on VideoMME and
LongVideoBench.
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Figure 6: Ablation study results for different values of τdiff and τsim on NVILA-Video-8B.

To determine the robustness of the key hyperparameters in our method, we conducted a series of
ablation studies on the NVILA-Video-8B model. As shown in Fig. 6, we evaluated the impact of the
similarity threshold, τsim, and the difference threshold, τdiff, on the model’s performance across two
benchmarks: VideoMME and LongVideoBench.

Impact of Similarity Threshold τsim. We tested different values for τsim within the range of
[0.6, 0.95]. The experimental results show that the model’s performance is relatively insensitive to
changes in this threshold. On the VideoMME dataset, peak performance of 60.2% was achieved at
τsim = 0.8. Similarly, on the LongVideoBench dataset, performance was also optimal at τsim = 0.8,
reaching 55.2%. While performance slightly decreased when the threshold was too high or too low,
the overall fluctuation was minimal, confirming that our method maintains good stability across a
wide range of similarity thresholds.

Impact of Difference Threshold τdiff. We tested τdiff in the range of [0.1, 0.4]. Similar to τsim,
the model’s performance demonstrated strong robustness to variations in τdiff. In both bench-
marks, the optimal performance was achieved around τdiff = 0.2, with VideoMME at 60.2% and
LongVideoBench at 55.2%. This indicates that setting the difference threshold around 0.2 is most
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effective for capturing key events in the video, thereby maximizing model performance while com-
pressing tokens.

In summary, these ablation studies confirm the robustness of our proposed method with respect to its
key hyperparameters. The results validate our choice of using τsim = 0.8 and τdiff = 0.2 in our main
experiments, as these values consistently yield optimal performance across different benchmarks
and different base models.

F CODE APPENDIX

The code for our model is located in the anonymous GitHub repository. Detailed experimental
instructions are provided below. This implementation is based on PyTorch.

F.1 INSTALLATION

This code is written in Python 3.10. To run the code, we recommend using virtual environment like
conda. Please run the following commands to set up environment for the code.

1 conda create --name exp1 python=3.10
2 pip install -e .
3 pip install matplotlib
4 pip install transformers==4.51.3

F.2 DOWNLOADING PRETRAINED WEIGHTS

Download the pretrained LLaVA-Video-7B checkpoint from here.

F.3 RUNNING EXPERIMENTS

We provide example scripts for reproducing results of our method. Raw logs of experimental results
are put in ’logs/’ directory.

For most datasets, you can get the final scores by replacing $TASK with dataset name and running
the following command:

1 cost=0.3
2 TASK=videomme
3 python -m accelerate.commands.launch \
4 --num_processes=2 \
5 -m lmms_eval \
6 --model llava_video \
7 --model_args pretrained=../model/llava-video,

conv_template=qwen_1_5,model_name=llava_qwen,
max_frames_num=64,cost=$cost,similarity_lower_bound
=0.8,event_upper_bound=0.2,merge_type=new_topk,right=
True,bottom=True,spatial=True,temporal=True,strategy
=3,mm_spatial_pool_mode=bilinear\

8 --tasks $TASK \
9 --batch_size 1 \

10 --output_path ./logs/ \
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https://pytorch.org/
https://www.anaconda.com/download
https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2/tree/main
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