

000 ST-SIMDIFF: BALANCING SPATIOTEMPORAL SIMI- 001 LARITY AND DIFFERENCE FOR EFFICIENT VIDEO UN- 002 DERSTANDING WITH MLLMS 003

004 **Anonymous authors**
 005

006 Paper under double-blind review
 007

008 ABSTRACT 009

010 Multimodal Large Language Models (MLLMs) face significant computational
 011 overhead when processing long videos due to the massive number of visual tokens
 012 required. To improve efficiency, existing methods primarily reduce redundancy by
 013 pruning or merging tokens based on importance or similarity. However, these ap-
 014 proaches largely overlook a critical dimension of video content, i.e., changes and
 015 turning points, and they lack a collaborative model for spatio-temporal rela-
 016 tionships. To address this, we propose a new perspective: similarity is for identifying
 017 redundancy, while difference is for capturing key events. Based on this, we de-
 018 signed a training-free framework named ST-SimDiff. We first construct a spatio-
 019 temporal graph from the visual tokens to uniformly model their complex associa-
 020 tions. Subsequently, we employ a parallel dual-selection strategy: 1) similarity-
 021 based selection uses community detection to retain representative tokens, com-
 022 pressing static information; 2) temporal difference-based selection precisely lo-
 023 cates content-changing points to preserve tokens that capture key dynamic shifts.
 024 This allows it to preserve both static and dynamic content with a minimal num-
 025 ber of tokens. Extensive experiments show our method significantly outperforms
 026 state-of-the-art approaches while substantially reducing computational costs. Our
 027 code is available in <https://anonymous.4open.science/r/ST-SimDiff-7225> .
 028

029 1 INTRODUCTION 030

031 The rise of Large Language Models (LLMs) has significantly propelled advancements of Large
 032 Vision-Language Models (LVLMs), which have demonstrated remarkable capabilities in image and
 033 video understanding (Zhang et al., 2024c; Liu et al., 2024c). For video processing, current LVLMs
 034 typically sample a video into a sequence of frames and then convert each frame into hundreds or
 035 even thousands of visual tokens for the LLM (Bai et al., 2025; Li et al., 2024). While this paradigm
 036 is effective, the number of tokens grows explosively with increasing video duration and resolution.
 037 This leads to prohibitive computational and storage burdens, severely limiting the application of
 038 LVLMs in scenarios such as long-video analysis and real-time interaction (Fu et al., 2024b).
 039

040 To address this challenge, various methods are proposed to enhance the efficiency of LVLMs. These
 041 approaches can be categorized into two types. One category is importance-based pruning. As ob-
 042 served by FastV (Chen et al., 2024), there is redundancy in the attention distribution across different
 043 layers when LVLMs process visual information. Therefore, visual tokens with lower attention scores
 044 in the deeper layers of the model can be pruned to reduce the computational load. The other category
 045 is similarity-based merging/selection. Existing works have found high similarity among visual to-
 046 kens, either between adjacent video frames or within a single frame. FrameFusion (Fu et al., 2024b)
 047 reduces redundancy by merging similar tokens from adjacent frames, while VisionZip (Yang et al.,
 048 2025) directly selects dominant tokens at the vision encoder level.

049 Despite the success of existing methods in visual token reduction, they face two key limitations.
 050 First, existing token pruning methods often focus on spatial correlations within the same frame or
 051 temporal correlations at the same positions across different frames. This lack of joint modeling and
 052 analysis of spatio-temporal correlations prevents them from effectively capturing complex dynamic
 053 events. Furthermore, these methods share a potential blind spot: they mainly focus on informational
 commonalities, like similarity and importance, while neglecting crucial changes and differences.

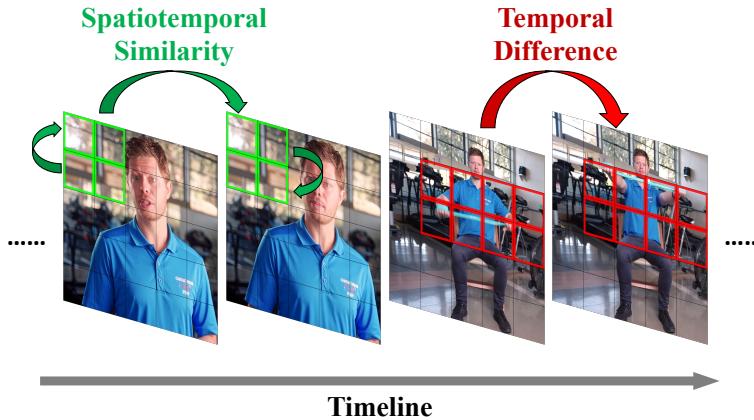


Figure 1: The core motivation of ST-SimDiff. We posit that efficient video understanding requires handling two scenarios simultaneously: Spatiotemporal Similarity (left) can be utilized to compress redundant information both spatially within a frame and temporally across adjacent frames. Temporal Difference (right) should be detected to capture the key actions or events that define the plot.

Since the narrative of the video is often driven by turning events, a model that only seeks similarity might smooth over a sudden action, leading to a misinterpretation of the content.

Based on this, we propose a new perspective: similarity is for identifying redundancy, while difference is for capturing key moments. We believe that an ideal video token compression algorithm should achieve two goals simultaneously: representing the stable content of a video with the fewest tokens, and precisely preserving the key changes. To this end, we propose **ST-SimDiff**, a dual token selection framework based on a spatio-temporal graph. Specifically, the framework consists of two parts. The first is **similarity-based representative token selection**: we treat all visual tokens of a video as nodes and construct a graph based on their feature similarity in the spatio-temporal dimension. Using a graph community detection algorithm, we find tightly connected token clusters in the graph, which represent stable and persistent visual elements in the video. We select a few central tokens with higher centrality from each cluster as representatives. The second part is **difference-based event token selection**: we pay special attention to the edges connecting along the time axis in the graph. When the similarity between corresponding tokens of adjacent frames drops sharply, we consider it a turning point and mark these tokens as critical event tokens that must be retained. Finally, we merge these two sets of tokens to be input into the LLM. Our contributions can be summarized as follows:

- We are the first to propose that the similarity and difference of tokens should be given equal importance in VLM efficiency research.
- We design a spatio-temporal graph framework to uniformly model the complex spatio-temporal relationships between video tokens. We propose a novel dual token selection strategy that can simultaneously screen for both representative and pivotal event tokens.
- We conduct extensive experiments on video understanding benchmarks, and the results show that ST-SimDiff significantly reduces the visual token budget while maintaining or even improving performance.

2 RELATED WORK

2.1 LARGE VISION LANGUAGE MODELS

The rapid advancement of Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023; Ouyang et al., 2022) has significantly propelled progress in multimodal understanding, leading to the emergence of numerous prominent Large Vision Language Models (LVLMs) (Liu et al., 2024b; Bai et al., 2023). These LVLMs typically process images or video frames by converting them into visual tokens via pre-trained visual encoders, which are then fed into LLMs. Various alignment modules commonly connect the visual encoder and the LLM, including MLPs (Liu et al., 2024a;b) and Q-Formers (Li et al., 2023; Dai et al., 2023). This architecture enables LVLMs to exhibit exceptional capabilities in multimodal tasks, particularly in video understanding, where they show promise in processing longer, higher-resolution complex videos (Bai et al., 2025; Li et al., 2024; Zhang et al., 2024c; Liu et al., 2024c).

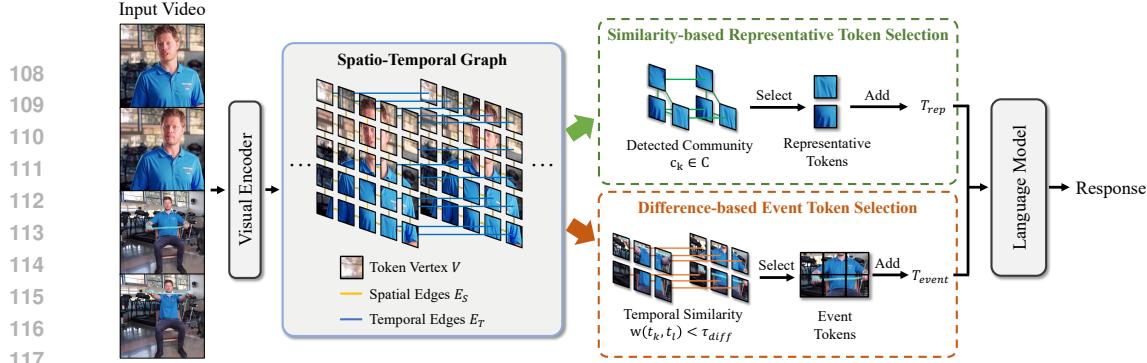


Figure 2: The overview framework of ST-SimDiff, which consists of three parts: Spatio-Temporal Graph Construction, Similarity-based Representative Token Selection, and Difference-based Event Token Selection.

However, this powerful capability also introduces significant computational challenges, especially in video understanding scenarios. Due to the need to process continuous sequences of frames, the number of visual tokens grows exponentially, far exceeding that of static images, posing a severe challenge to the training and inference efficiency of LVLMs. Therefore, how to efficiently process massive video visual tokens and reduce computational overhead remains a critical issue in current LVLM research.

2.2 VISUAL TOKEN COMPRESSION

Driven by the substantial overhead of video processing, visual token compression has become a critical method for improving the efficiency of Large Visual Language Models (LVLMs). Existing methods primarily approach compression from two aspects: token importance and similarity.

Earlier methods primarily focused on importance-based token pruning, aiming to identify and remove visual tokens that contribute less to model performance. These methods typically utilize attention scores or other feature metrics to quantify token importance, such as FastV (Chen et al., 2024) and FasterVLM (Zhang et al., 2024b). Subsequent works (Shang et al., 2024; Ye et al., 2025) have started to further consider token similarity to more effectively reduce redundancy and preserve critical information. These methods recognize that even important tokens can exhibit high similarity, leading to informational redundancy. For instance, FrameFusion (Fu et al., 2024b) combines similarity-based merging with importance-based pruning. VisionZip (Yang et al., 2025) reduces redundancy by selecting dominant tokens and merging contextual information. VisPruner (Zhang et al., 2025) leverages visual cues to remove redundant items.

Despite significant progress in visual token redundancy, existing work hardly addresses the intricate, global spatio-temporal similarity relationships between tokens. In video scenarios, visual information is redundant both spatially and temporally. Existing similarity-driven methods, like FrameFusion, mainly focus on the temporal similarity between adjacent frames, failing to utilize complex spatio-temporal relevant information. This limits their ability to fully exploit inherent video redundancy, restricting performance in extreme token reduction scenarios.

3 PROBLEM DEFINITION

Given a video V and a text query Q , a standard Large Vision-Language Model (LVLM) first encodes the video into a full sequence of N visual tokens, $T_{full} = \{t_1, t_2, \dots, t_N\}$. This process is computationally demanding, as the self-attention mechanism's complexity scales quadratically with the token count N , i.e., $O(N^2)$. Our task is therefore to design an efficient token selection function, $f(\cdot)$, that takes the full sequence T_{full} and a compression ratio r to produce a much smaller subset $T_{sub} = f(T_{full}, r)$. The objective is to maximize the LVLM's downstream task performance using this subset, subject to the constraint that its size $|T_{sub}|$ is approximately $r \cdot N$. The core challenge is to design the selection function $f(\cdot)$ to retain the most critical information within the subset T_{sub} .

4 ST-SIMDIFF

4.1 METHOD OVERVIEW

As illustrated in Figure 2, the proposed ST-SimDiff method comprises two key components that operate in parallel on a spatio-temporal graph constructed from the video's visual tokens: Similarity-

162 based Representative Token Selection (SRTS) and Difference-based Event Token Selection (DETS).
 163 First, in the SRTS module, we identify and condense the video’s stable and redundant content. By
 164 applying community detection algorithms to the graph, we group highly similar tokens into clusters,
 165 which correspond to persistent visual elements like static backgrounds. From each cluster, we then
 166 select a few highly central tokens to form a representative set, T_{rep} . Second, the DETS module
 167 is designed to capture the video’s crucial dynamic shifts. It analyzes the temporal edges of the
 168 graph, identifying moments where the similarity between corresponding tokens in adjacent frames
 169 drops sharply. These points of high difference signify turning points, and the tokens framing these
 170 transitions are preserved as critical event tokens, forming the set T_{trans} . By synergistically combining
 171 these two components, ST-SimDiff generates a final token subset $T_{\text{sub}} = T_{\text{rep}} \cup T_{\text{trans}}$, which is both
 172 highly compact and information-rich, retaining stable content while precisely capturing key events.

173 4.2 SPATIO-TEMPORAL GRAPH CONSTRUCTION

174 Given a video, the vision encoder transforms it into a sequence of tokens $T = \{t_1, t_2, \dots, t_N\}$.
 175 Each token $t_k \in T$ corresponds to a specific spatio-temporal location and is associated with a
 176 feature vector \mathbf{x}_k . We define the location of each token t_k by its frame index $T(t_k)$, its spatial height
 177 index $H(t_k)$, and its spatial width index $W(t_k)$.

178 We model the relationships between these tokens using a spatio-temporal graph $G = (V, E)$, where
 179 the vertex set V represents all tokens in T . The edge set E is the union of two distinct subsets,
 180 $E = E_S \cup E_T$, which capture spatial and temporal relationships respectively. The spatial edges E_S
 181 connects tokens that are spatially adjacent within the same frame:

$$182 \quad E_S = \{(v_i, v_j) \in V \times V \mid T(t_i) = T(t_j) \text{ and} \\ 183 \quad |H(t_i) - H(t_j)| + |W(t_i) - W(t_j)| = 1\} \quad (1)$$

185 The temporal edges E_T connects tokens that are at the same spatial position but in adjacent frames,
 186 capturing temporal continuity:

$$187 \quad E_T = \{(v_i, v_j) \in V \times V \mid H(t_i) = H(t_j), \\ 188 \quad W(t_i) = W(t_j), \text{ and } |T(t_i) - T(t_j)| = 1\} \quad (2)$$

191 The weight of any edge $w(v_i, v_j) \in E$ is defined by the cosine similarity of the feature vectors of
 192 the corresponding tokens:

$$193 \quad w(v_i, v_j) = \frac{\mathbf{x}_i \cdot \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|} \quad (3)$$

195 This sparse graph structure efficiently encodes local spatial relationships and temporal continuity,
 196 providing a unified foundation for our dual-path token selection strategy.

197 4.3 SIMILARITY-BASED REPRESENTATIVE TOKEN SELECTION

199 Video content is inherently characterized by substantial spatio-temporal redundancy. For instance,
 200 in a static scene that persists for several seconds, the background tokens exhibit high similarity over
 201 time. Similarly, for an object moving across the screen, its corresponding tokens, despite changing
 202 spatial positions, maintain a high degree of semantic correlation. Existing methods often address
 203 temporal and spatial similarities in isolation. In contrast, our spatio-temporal graph is designed to
 204 capture these joint similarities. Within this graph, semantically related tokens form dense “commu-
 205 nities” or “clusters” based on their feature similarity, irrespective of their specific frame or location.
 206 Therefore, selecting representatives from each community emerges as a highly efficient strategy for
 207 compressing redundant information while preserving core semantics.

208 To accurately identify strongly correlated token clusters, we first threshold the graph G . We set a
 209 similarity threshold τ_{sim} and retain only the edges with weights above this threshold, forming a new
 210 graph $G' = (V, E')$, where $E' = \{(v_i, v_j) \in E \mid w(v_i, v_j) > \tau_{\text{sim}}\}$. Next, we apply a graph
 211 community detection algorithm (e.g., the Louvain method (Blondel et al., 2008)) on G' to identify
 212 token clusters $C = \{c_1, c_2, \dots, c_m\}$. For each community $c_k \in C$, we rank and filter its internal
 213 tokens based on their centrality. The centrality score $S_c(t_a)$ of a token $t_a \in c_k$ is defined as its
 214 average similarity with all other tokens within the community:

$$215 \quad S_c(t_a) = \frac{1}{|c_k| - 1} \sum_{t_b \in c_k, b \neq a} w(t_a, t_b) \quad (4)$$

216 Subsequently, we set the intra-community retention rate to the globally preset compression ratio
 217 r , and preserve the top $\lceil |c_k| \cdot r \rceil$ tokens with the highest centrality scores from each community
 218 c_k . This uniform filtering process naturally handles all communities, including single-node com-
 219 munities composed of unique tokens (in which case the sole node is retained). Formally, the set of
 220 representative tokens, T_{rep} , is defined as:

$$221 \quad T_{\text{rep}} = \bigcup_{k=1}^m \text{TopK}_{t \in c_k, \text{score} = S_c(t)} (\lceil |c_k| \cdot r \rceil) \quad (5)$$

225 where the TopK function returns the set of k elements with the highest scores from a given set.
 226 In summary, this strategy efficiently compresses the static and persistent content of the video by
 227 identifying and retaining the most central tokens within each semantic cluster.

228 4.4 DIFFERENCE-BASED EVENT TOKEN SELECTION

229 If similarity defines the “norm” of a video, then difference defines its “events”. A model focusing
 230 only on similarity may excel at understanding “what is” but struggle with “what happened”. A
 231 video’s plot is driven by key events, and the essence of an event is change—the appearance of a
 232 new object, the start of an action, or a scene transition. In our model, these changes manifest as a
 233 sharp difference in the features of temporally adjacent tokens. Therefore, accurately capturing these
 234 “turning points” of significant difference is crucial for understanding the video’s dynamic content
 235 and correctly answering questions like “when” and “why”.

236 Difference, particularly along the temporal dimension, often signals the occurrence of a key event.
 237 For example, the entry of a new object, a scene change, or the beginning/end of an action will cause
 238 drastic changes in the visual features at corresponding positions in adjacent frames. We specifically
 239 analyze the temporal edges (E_T) in our spatio-temporal graph. For any temporal edge $(v_k, v_l) \in E_T$
 240 in the graph, which connects two temporally adjacent tokens t_k and t_l , we set a dynamic threshold
 241 τ (e.g., the 95th percentile of all temporal edge difference scores). When the difference score of
 242 a temporal edge (v_k, v_l) exceeds this threshold, i.e., $w(t_k, t_l) < \tau_{\text{diff}}$, we consider the subsequent
 243 token t_l as a critical event token and retain it. Formally, the set of event tokens, T_{event} , is defined as:

$$244 \quad T_{\text{event}} = \{t_l \mid \exists t_k \text{ s.t. } (v_k, v_l) \in E_T, \\ 245 \quad T(t_l) > T(t_k), \text{ and } w(v_k, v_l) < \tau_{\text{diff}}\} \quad (6)$$

246 With this strategy, tokens that signify moments of significant temporal change can be preserved. By
 247 capturing these key transitions, we ensure that the crucial dynamic aspects of the video’s narrative
 248 are not overlooked during the compression process.

249 4.5 OVERALL REDUCTION PROCESS

250 In the proposed framework, we first compute the representative token set T_{rep} and the event token
 251 set T_{event} in parallel, and take their union, $T_{\text{candidate}} = T_{\text{rep}} \cup T_{\text{event}}$, as the initial candidate set. To
 252 precisely meet the target token count $N_{\text{target}} = \lceil r \cdot N \rceil$, we introduce a final pruning step. If the
 253 size of the candidate set, $|T_{\text{candidate}}|$, exceeds N_{target} , we remove the $|T_{\text{candidate}}| - N_{\text{target}}$ tokens with
 254 the lowest importance. Following existing work (Chen et al., 2024), the importance of a token is
 255 determined by its attention score in the shallow layers of the LLM. This step ensures that our method
 256 can flexibly meet any computational budget while preserving critical information.

257 In summary, our overall method adeptly combines two strategies: graph-based token selection and
 258 attention-based dynamic pruning. The former leverages the intrinsic structure of the video content
 259 (similarity and difference) to ensure the retention of core information, while the latter provides
 260 a flexible mechanism to precisely meet any given computational budget. This design makes our
 261 token compression process both principled and adaptive, thereby achieving a robust balance between
 262 efficiency and performance.

263 4.6 COMPUTATIONAL COMPLEXITY ANALYSIS

264 The computational overhead of our proposed ST-SimDiff framework can be analyzed in three
 265 main stages: Spatio-Temporal Graph Construction, Similarity-based Representative Token Selec-
 266 tion (SRTS), and Difference-based Event Token Selection (DETS).

267 The initial stage involves building the graph. For each of the N visual tokens, we compute the cosine
 268 similarity with its spatially and temporally adjacent neighbors. As each token has a small, constant

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290	Method	VideoMME				LongVideoBench			EgoSchema
		Short	Medium	Long	Overall	Relation	Perception	Overall	
Upper Bound (Full Performance)									
LLaVA-Video	-	-	-	63.3	-	-	58.2	-	57.3
Token Retain Ratio $r = 30\%$									
FastV	68.2	58.6	51.2	59.3	48.0	59.9	53.5	-	51.3
PruMerge	70.2	57.3	52.2	59.9	49.6	60.5	54.7	-	50.9
FasterVLM	71.3	57.6	51.4	60.1	51.0	61.3	55.8	-	52.6
VisionZip	68.4	55.9	50.4	58.3	46.9	60.3	53.2	-	53.0
FrameFusion	74.0	59.8	50.0	61.3	49.7	63.3	56.0	-	53.0
ST-SimDiff (Ours)	74.7	61.9	53.0	63.2	52.5	63.2	57.5	-	56.0
Token Retain Ratio $r = 50\%$									
FastV	73.9	61.4	51.3	62.2	50.1	62.2	55.7	-	54.7
PruMerge	72.3	58.7	52.8	61.3	51.4	63.2	56.9	-	54.6
FasterVLM	74.0	59.2	51.8	61.7	51.3	62.2	56.4	-	56.2
VisionZip	72.6	57.7	51.6	60.6	51.3	63.2	56.8	-	54.2
FrameFusion	74.6	61.2	52.0	62.6	51.7	64.2	57.6	-	55.8
ST-SimDiff (Ours)	76.2	62.4	52.7	63.8	52.3	64.3	57.9	-	57.3

Table 1: Performance comparison on long-form video understanding benchmarks on LLaVA-Video-7B for 64 input frames (%). The best performance among all methods is emphasized in **bold**.

number of neighbors, this step requires a single pass over all tokens, resulting in a complexity of $O(Nd)$, where d is the feature dimension of each token.

Following graph construction, the SRTS module identifies token clusters. As detailed in our implementation (Section 5.2), we employ a connected components algorithm, which operates with a near-linear time complexity of $O(N + |E|)$. Since the number of edges $|E|$ is at most $3N$, this simplifies to $O(N)$. The subsequent filtering step within each community could be computationally intensive. A naive approach of calculating all-pairs similarity within each community c_k would have a complexity of $O(|C| \cdot |c_k|^2 \cdot d)$. To prevent this, we impose a constraint on the maximum size of any community. In the rare event that a community exceeds a predefined threshold (e.g., $|c_k| > \sqrt{N}$), we partition it. This ensures the filtering process remains efficient and does not dominate the overall complexity. While other mainstream graph clustering algorithms such as the Louvain and Leiden methods offer more complex community definitions, their computational complexity is higher, approaching $O(N \log N)$. Therefore, we opted for the simpler and highly efficient connected components algorithm to ensure minimal processing overhead.

The DETS module involves a single pass through all temporal edges in the graph to identify significant changes by comparing token similarities against a threshold. This process has a linear complexity of $O(Nd)$.

In summary, the total complexity of our ST-SimDiff framework is governed by these linear-time operations, culminating in an overall complexity of $O(Nd)$. This is substantially more efficient than the quadratic complexity of the self-attention mechanism, $O(N^2d)$, used in the Large Language Model. Therefore, our method provides significant token reduction with only a negligible computational footprint relative to the model’s main inference cost.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines To comprehensively evaluate our method’s effectiveness, we use LLaVA-Video (Zhang et al., 2024c) and NVILA (Liu et al., 2024c) as our base models and compare our approach against a range of state-of-the-art video token compression techniques. These baselines cover diverse strategies, including **importance-based reduction methods** like FastV (Chen et al., 2024) and FasterVLM (Zhang et al., 2024b), and **hybrid reduction methods** like VisionZip (Yang et al., 2025),

324 325 326 327 328 329	330 331 332 333 334 335 336 337 338 339	330 331 332 333 334 335 336 337 338 339				330 331 332 333 334 335 336 337 338 339			330 331 332 333 334 335 336 337 338 339			
		330 331 332 333 334 335 336 337 338 339										
330 331 332 333 334 335 336 337 338 339										330 331 332 333 334 335 336 337 338 339		
330 331 332 333 334 335 336 337 338 339										330 331 332 333 334 335 336 337 338 339		
Upper Bound (Full Performance)												
330 331 332 333 334 335 336 337 338 339		NVILA-Video	-	-	-	61.5	-	-	56.3	52.9		
Token Retain Ratio $r = 30\%$												
330 331 332 333 334 335 336 337 338 339		FastV	69.4	55.3	48.8	57.9	50.8	55.6	53.0	49.7		
330 331 332 333 334 335 336 337 338 339		PruMerge	71.0	53.7	49.9	58.2	49.3	58.1	53.4	47.5		
330 331 332 333 334 335 336 337 338 339		FasterVLM	72.6	56.9	51.0	60.1	48.7	57.8	53.0	49.3		
330 331 332 333 334 335 336 337 338 339		VisionZip	71.4	56.2	49.7	59.1	46.3	56.2	50.9	48.9		
330 331 332 333 334 335 336 337 338 339		FrameFusion	72.1	55.7	48.7	58.8	51.3	59.3	54.9	51.3		
330 331 332 333 334 335 336 337 338 339		ST-SimDiff (Ours)	73.3	57.7	49.7	60.2	51.7	59.2	55.2	51.7		
Token Retain Ratio $r = 50\%$												
330 331 332 333 334 335 336 337 338 339		FastV	71.9	58.3	49.3	58.9	49.5	58.8	53.9	50.2		
330 331 332 333 334 335 336 337 338 339		PruMerge	71.2	54.8	46.8	57.6	49.7	58.7	53.9	48.9		
330 331 332 333 334 335 336 337 338 339		FasterVLM	74.6	57.8	50.1	60.8	48.5	58.1	53.0	50.5		
330 331 332 333 334 335 336 337 338 339		VisionZip	72.8	58.1	50.6	60.5	50.4	58.9	54.4	50.3		
330 331 332 333 334 335 336 337 338 339		FrameFusion	72.7	57.2	48.3	59.4	51.0	59.2	54.8	52.6		
330 331 332 333 334 335 336 337 338 339		ST-SimDiff (Ours)	73.9	59.7	51.4	61.7	52.3	61.3	56.5	52.5		

Table 2: Performance comparison on long-form video understanding benchmarks on NVILA-Video-8B for 64 input frames (%). The best performance among all methods is emphasized in **bold**.

FrameFusion (Fu et al., 2024b), and PruMerge (Shang et al., 2024). To ensure a fair and complete comparison, we also include the original uncompressed model (Vanilla) as a performance upper bound and Random Sampling of an equivalent number of tokens as a lower bound.

Benchmarks To test our method’s capabilities in long-video understanding, we adopt three challenging benchmark datasets: VideoMME (Fu et al., 2024a), LongVideoBench (Wu et al., 2025), and EgoSchema (Mangalam et al., 2024). VideoMME is a comprehensive benchmark for foundational video understanding, featuring diverse video types and three length categories: Short, Medium, and Long. LongVideoBench evaluates the ability to retrieve and reason about details in long videos through a “referring reasoning” task, with videos of four lengths: 15s, 60s, 600s, and 3600s. EgoSchema is a question-answering dataset focused on long-term, first-person videos that tests the model’s ability to understand character intentions and causal chains of actions.

5.2 IMPLEMENTATION DETAILS

We use NVIDIA L20 GPUs with 48GB VRAM on an Ubuntu 22.04. The inference evaluation is conducted based on the *lmms-eval* (Zhang et al., 2024a) library. For LLaVA-Video, we follow its original setting of 64 input frames. To ensure a fair comparison of computational efficiency and resource usage under similar conditions, we establish a consistent setup by also setting the input frame count for NVILA to 64. As for the hyperparameters, we set the similarity threshold $\tau_{\text{sim}} = 0.8$, and the difference threshold $\tau_{\text{diff}} = 0.2$. Experiments are conducted with token compression rates of $r = 30\%$ and $r = 50\%$, respectively. In our practical implementation, considering the trade-off between time consumption and performance improvement, we opt to use connected component finding as community detection algorithm.

5.3 COMPARISON WITH STATE-OF-THE-ARTS

To comprehensively evaluate our proposed ST-SimDiff framework, we compare it against a range of mainstream efficient video language model (VLM) compression methods. All experiments are conducted on three widely-used long-form video understanding benchmarks: VideoMME, LongVideoBench, and EgoSchema. To validate the generalization ability and robustness of our method, we report detailed performance data on two different base models, LLaVA-Video-7B and

Method	VideoMME	LongVideoBench	EgoSchema
Token Retain Ratio $r = 30\%$			
Baseline	60.3	56.2	54.8
+ Sim	Spatial	61.5	56.5
	Temporal	61.7	56.8
	Spa. + Tem.	62.6	57.0
++ Diff (Proposed)	63.2	57.5	56.0
Token Retain Ratio $r = 50\%$			
Baseline	63.2	56.7	56.5
+ Sim	Spatial	63.3	57.0
	Temporal	63.7	57.2
	Spa. + Tem.	63.7	57.8
++ Diff (Proposed)	63.8	57.9	57.3

Table 3: Ablation results of different components (%).

NVILA-8B, under token retain ratios of 30% and 50%. The experimental results are presented in Table 1 and Table 2.

(1) ST-SimDiff consistently outperforms all competing methods across all test configurations. A particularly noteworthy finding is that at a 50% token retain ratio, the overall performance of our method on both base models not only surpasses other compression algorithms but, on some benchmarks, even matches or exceeds that of the original model using 100% of the tokens. This result validates the effectiveness and novelty of ST-SimDiff and prompts a deeper analysis of the strategies and limitations of existing baselines.

(2) In importance-based baseline methods (e.g., FastV, FasterVLM), FasterVLM typically exhibits relatively stronger performance. However, their common limitation lies in the inefficient handling of temporal redundancy prevalent in videos, as they tend to retain important yet repetitive tokens, thereby limiting information compression efficiency. Hybrid baseline methods (e.g., PruMerge, VisionZip, FrameFusion) demonstrate more competitive performance than importance-only approaches, with FrameFusion generally showing the most outstanding overall results. Nevertheless, the common optimization goal of these methods is still to identify and preserve representative “commonality” information, with a theoretical blind spot of potentially overlooking key narrative information driven by “turning points” and “abrupt events”.

(3) In summary, existing baselines reflects a deepening understanding of “redundancy” in videos, yet they still face two core challenges: first, a lack of synergistic analysis of spatio-temporal joint similarity between visual tokens, making it difficult to capture complex redundancies; and second, a general neglect of “difference” detection, failing to actively preserve key changes that define plot development. The performance gain of ST-SimDiff stems from addressing these issues by constructing a spatio-temporal graph to uniformly model complex spatio-temporal relationships and innovatively introducing difference detection.

5.4 ABLATION STUDY

To validate the effectiveness of each core component within our ST-SimDiff framework, we conducted a series of detailed ablation studies. We started with a Baseline strategy that includes only fundamental importance-based pruning and progressively introduced our proposed similarity selection module (+Sim) and difference selection module (++Diff) to quantify their respective contributions. All experiments were conducted at token retain ratios of 30% and 50%, with the results presented in Table 5.

(1) First, we evaluated the effectiveness of the +Sim module. The experimental results clearly indicate that introducing similarity modeling on top of the baseline consistently improves model performance. We further broke down the similarity strategy into three types: spatial-only (Spatial), temporal-only (Temporal), and spatio-temporal joint (Spa. + Tem.). The data shows that collaboratively modeling the spatio-temporal associations between visual tokens is the most effective way to compress redundancy.

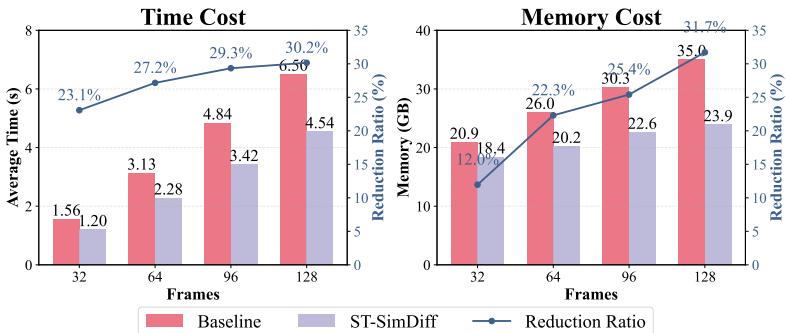


Figure 3: Computational cost comparison between our method and the baseline LLaVA-Video model in average inference time and peak GPU memory usage under a 30% token budget.

(2) After integrating the optimal spatio-temporal joint similarity module, we introduced the difference selection module (++Diff) to form our complete framework. The addition of this module provides a significant performance leap, particularly under the high compression ratio of 30%. This demonstrates its vital complementary role: while the aggressive +Sim module focuses on redundancy, the ++Diff module acts as a safety net to identify and preserve unique event tokens that define the video’s narrative. In contrast, the module’s marginal gain is smaller at a 50% retention ratio. This is because the more lenient +Sim module is more likely to have already captured these event tokens, and the overall model performance is already approaching its upper bound. This analysis confirms our core motivation: the framework’s strength lies in its ability to balance similarity-based redundancy compression with the crucial preservation of difference-based events, especially in demanding high-compression scenarios.

5.5 COMPUTATIONAL COST ANALYSIS

To quantify the efficiency advantages of our proposed ST-SimDiff method in practical applications, we conducted detailed tests on its inference time and peak GPU memory usage under a 30% token budget. We compared it against the baseline model (Baseline LLaVA-Video) without any compression. The experimental results in Figure 3 cover video inputs lengths from 32 to 128 frames.

Inference Time ST-SimDiff demonstrates a significant speedup. As the number of input video frames increases, the average inference time of the baseline model grows sharply from 1.56 seconds (32 frames) to 6.50 seconds (128 frames). In contrast, our method effectively curtails this growth, with an average time of only 4.54 seconds when processing 128 frames. This means that ST-SimDiff achieves an increasingly higher time-saving rate for longer videos, improving from 23.0% for 32 frames to 30.2% for 128 frames.

Memory Cost ST-SimDiff also performs exceptionally well. The peak GPU memory usage of the baseline model climbs linearly with video length, from 20.9 GB (32 frames) to 35.0 GB (128 frames). Our method significantly reduces memory pressure by substantially decreasing the number of tokens fed into the large language model. When processing 128-frame videos, ST-SimDiff’s peak memory usage is only 23.9 GB, saving 31.7% of the memory space compared to the baseline. This advantage enables our model to process longer videos on hardware with limited memory, greatly expanding its potential applications.

In summary, ST-SimDiff not only achieves leading performance but also demonstrates significant advantages in computational efficiency (both time and memory), proving its efficiency for video understanding.

6 CONCLUSION

In this paper, we address the inefficiency of Multimodal Large Language Models for long videos, which stems from existing methods’ lack of joint spatio-temporal modeling and their neglect of critical changes (difference). We propose ST-SimDiff, a novel training-free framework that uses a spatio-temporal graph to leverage both similarity for compressing static content and dissimilarity for preserving key dynamic events, creating a more complete and efficient representation of video content. Extensive experiments demonstrate that ST-SimDiff consistently surpasses state-of-the-art methods, opening a new research direction that shifts the focus from mere redundancy compression to a balanced modeling of content representativeness and transitional events.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
492 Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
493 ization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 1(8), 2023.

494

495 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
496 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
497 2025.

498 Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
499 of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008
500 (10):P10008, 2008.

501

502 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
503 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
504 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024.

505

506 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
507 Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
508 models with instruction tuning, 2023.

509

510 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
511 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
512 tion benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024a.

513

514 Tianyu Fu, Tengxuan Liu, Qinghao Han, Guohao Dai, Shengen Yan, Huazhong Yang, Xuefei Ning,
515 and Yu Wang. Framefusion: Combining similarity and importance for video token reduction on
516 large visual language models. *arXiv preprint arXiv:2501.01986*, 2024b.

517

518 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
519 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
520 arXiv:2408.03326*, 2024.

521

522 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
523 pre-training with frozen image encoders and large language models. In *International conference
524 on machine learning*, pp. 19730–19742. PMLR, 2023.

525

526 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
527 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
528 nition*, pp. 26296–26306, 2024a.

529

530 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
531 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

532

533 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
534 Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models. *arXiv
535 preprint arXiv:2412.04468*, 2024c.

536

537 Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic bench-
538 mark for very long-form video language understanding. *Advances in Neural Information Process-
539 ing Systems*, 36, 2024.

540

541 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
542 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
543 low instructions with human feedback. *Advances in neural information processing systems*, 35:
544 27730–27744, 2022.

540 Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
 541 reduction for efficient large multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.

542

543 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 544 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 545 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

546

547 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 548 interleaved video-language understanding. *Advances in Neural Information Processing Systems*,
 37:28828–28857, 2025.

549

550 Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia.
 551 Visionzip: Longer is better but not necessary in vision language models. In *Proceedings of the
 552 Computer Vision and Pattern Recognition Conference*, pp. 19792–19802, 2025.

553

554 Weihao Ye, Qiong Wu, Wenhao Lin, and Yiyi Zhou. Fit and prune: Fast and training-free visual
 555 token pruning for multi-modal large language models. In *Proceedings of the AAAI Conference on
 556 Artificial Intelligence*, volume 39, pp. 22128–22136, 2025.

557

558 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
 559 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on
 560 the evaluation of large multimodal models, 2024a. URL <https://arxiv.org/abs/2407.12772>.

561

562 Qizhe Zhang, Aosong Cheng, Ming Lu, Zhiyong Zhuo, Minqi Wang, Jiajun Cao, Shaobo Guo,
 563 Qi She, and Shanghang Zhang. [cls] attention is all you need for training-free visual token prun-
 564 ing: Make vlm inference faster. *arXiv e-prints*, pp. arXiv–2412, 2024b.

565

566 Qizhe Zhang, Aosong Cheng, Ming Lu, Renrui Zhang, Zhiyong Zhuo, Jiajun Cao, Shaobo Guo,
 567 Qi She, and Shanghang Zhang. Beyond text-visual attention: Exploiting visual cues for effective
 568 token pruning in vlms. *arXiv preprint arXiv:2412.01818*, 2025.

569

570 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 571 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024c.

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A VISUALIZATION OF THE TOKEN SELECTION PROCESS**

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

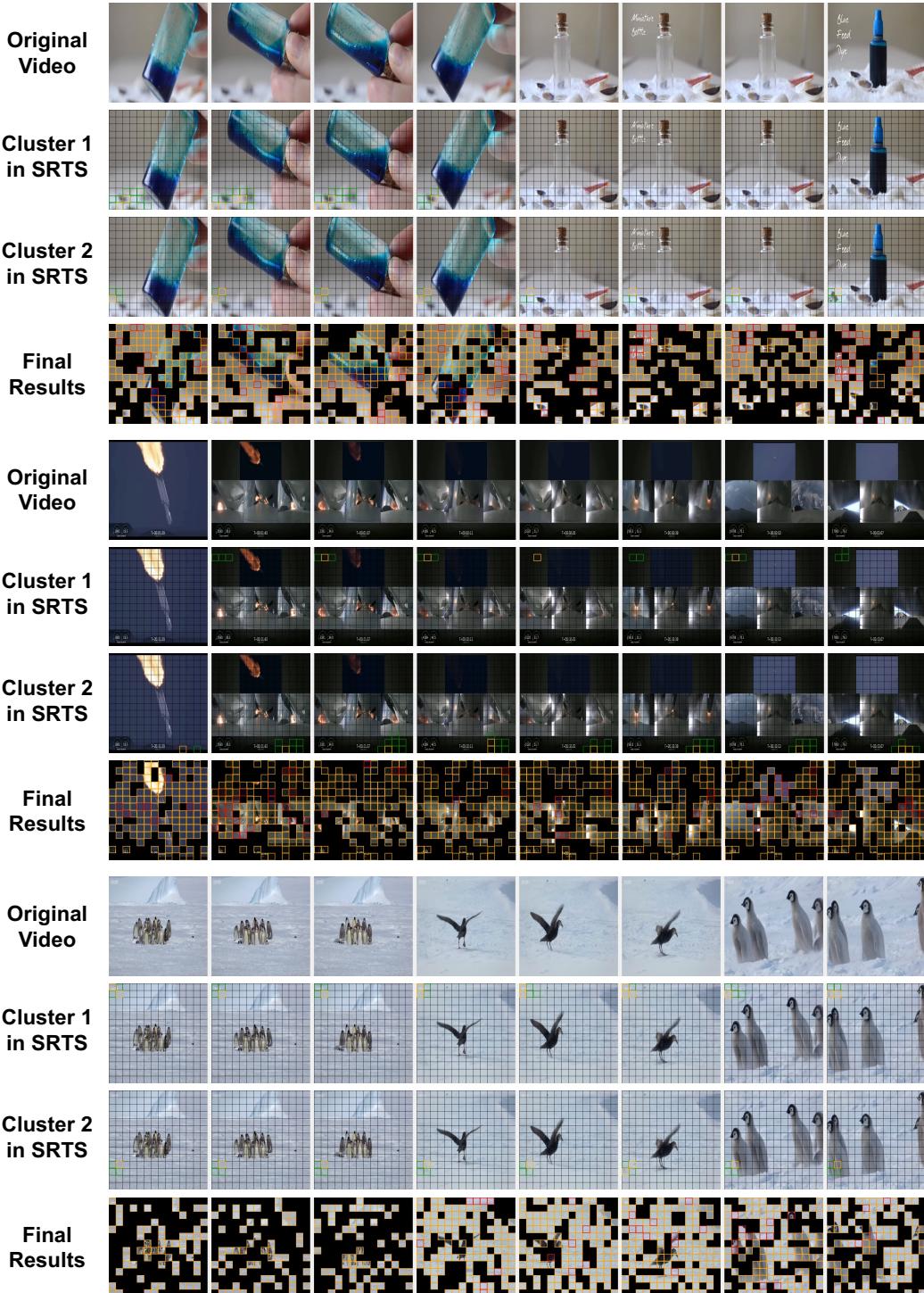
640

641

642

643

644



645 Figure 4: **Visualization of the ST-SimDiff process.** The visualization breaks down the token selection
 646 into communities detected by SRTS (shown as grids in Cluster 1 and 2) and event-driven tokens
 647 detected by DETS. The final result highlights the synergy between sparse representative tokens (yellow)
 648 for stable content and dense event tokens (red) for dynamic actions.

648 To provide a more intuitive understanding of the ST-SimDiff framework, we present some visualization
 649 samples of the intermediate and final token selection results in Figure 4. The figure illustrates
 650 the process on a sample video sequence featuring a dynamic object manipulation task. First, regarding
 651 the Similarity-based Representative Token Selection (SRTS), the rows labeled “Cluster 1” and
 652 “Cluster 2” demonstrate how our graph community detection algorithm functions. It successfully
 653 groups spatially and temporally redundant regions, such as the static background and stationary ob-
 654 jects, into cohesive communities. This visualization confirms that SRTS effectively identifies stable
 655 visual elements and compresses them by selecting only a few central “representative tokens,” which
 656 appear as sparse yellow boxes in the final results. This mechanism allows the model to handle
 657 massive background redundancy efficiently.

658 Complementing this, the Difference-based Event Token Selection (DETS) plays a critical role during
 659 dynamic moments. As seen in the “Final Results” row, tokens triggered by high temporal difference
 660 are explicitly marked with dense red bounding boxes. These red boxes align perfectly with the moving
 661 hand and the shifting blue liquid, verifying that our method precisely locates “turning points”
 662 where the temporal difference exceeds the threshold (τ_{diff}). This ensures that fine-grained action
 663 details and rapid visual changes are preserved, allowing the model to capture the essence of the event
 664 without being overwhelmed by static data.

665 Finally, the synergistic effect of these two components is evident in the overlay of the final results.
 666 The visualization demonstrates a powerful balance: the sparse yellow tokens represent the stable
 667 background, while the dense red tokens capture the rapid motion. This contrast provides direct visual
 668 evidence of our core motivation. ST-SimDiff avoids the blind spots of similarity-only approaches by
 669 densely sampling during rapid changes, while simultaneously pruning the spatiotemporal redundan-
 670 cies that importance-based methods often miss. Consequently, our framework achieves an optimal
 671 balance between computational efficiency and the preservation of critical visual information.

672 B COMPARISON RESULTS ON QWEN2.5-VL

676 Method	677 VideoMME				678 LongVideoBench			679 EgoSchema
	680 Short	681 Medium	682 Long	683 Overall	684 Relation	685 Perception	686 Overall	
687 Upper Bound (Full Performance)								
Qwen2.5-VL-64	74.2	62.7	51.8	62.9	54.2	64.8	59.2	63.0
Qwen2.5-VL-128	77.4	65.8	56.1	66.4	56.2	65.1	60.4	63.9
688 Token Retain Ratio $r = 30\%$								
ST-SimDiff-64	73.8	61.7	51.8	62.4	52.2	62.1	56.8	62.7
ST-SimDiff-128	75.4	64.7	55.2	65.1	53.1	65.0	58.6	64.4
689 Token Retain Ratio $r = 50\%$								
ST-SimDiff-64	74.2	62.1	52.2	62.9	54.2	63.2	58.4	62.7
ST-SimDiff-128	76.8	66.3	55.8	66.3	54.9	65.3	59.8	64.5

688 Table 4: Performance comparison on long-form video understanding benchmarks on Qwen2.5-VL-
 689 7B for 64 and 128 input frames (%).

690 To further validate the generalization capability of our proposed framework, we conducted additional
 691 experiments on the recently released Qwen2.5-VL model. These evaluations were performed on the
 692 VideoMME and LongVideoBench benchmarks to confirm that our method’s efficacy is not limited
 693 to a specific model architecture but can be broadly applied.

694 The empirical results, presented in Table 4, demonstrate the strong performance of ST-SimDiff on
 695 the Qwen2.5-VL model. At a token retention ratio of 30%, our method achieved scores of 62.4
 696 on VideoMME and 56.8 on LongVideoBench. When the token budget was increased to a 50%
 697 retention ratio, the performance improved to 62.9 on VideoMME and 58.4 on LongVideoBench.
 698 It is particularly noteworthy that at the 50% ratio, the performance on VideoMME matches the
 699 upper-bound performance achieved using all tokens, and the score on LongVideoBench is highly
 700 comparable to its full-performance counterpart. These findings affirm the excellent generalization
 701 ability of our framework.

702 C ABLATION STUDY RESULTS ON NVILA
703
704

Method	VideoMME	LongVideoBench	EgoSchema
Token Retain Ratio $r = 30\%$			
Baseline	59.3	53.8	50.2
+ Sim	Spatial	59.5	54.5
	Temporal	59.6	54.3
	Spa. + Tem.	59.9	54.6
++ Diff (Proposed)	60.2	55.2	51.7
Token Retain Ratio $r = 50\%$			
Baseline	60.9	55.3	51.5
+ Sim	Spatial	61.1	55.7
	Temporal	61.3	55.6
	Spa. + Tem.	61.4	56.0
++ Diff (Proposed)	61.7	56.5	52.5

721
722 Table 5: Ablation results of different components on NVILA-Video-8B model (%).
723

724 To further validate the generalization ability of each component in our framework across different
725 base models, we also conducted a series of detailed ablation studies on the NVILA-Video-8B model
726 (Liu et al., 2024c). The experimental setup is consistent with the ablation study in the main paper;
727 we start with a Baseline strategy that includes only fundamental importance-based pruning and
728 progressively introduce the similarity selection module (+ Sim) and the difference selection module
729 (++ Diff).

730 As shown in Table 5, the experimental results once again validate the effectiveness of our framework
731 design, and the trends are highly consistent with the performance on LLaVA-Video-7B. First, after
732 introducing the similarity module (+ Sim) on top of the baseline, the model’s performance shows
733 a steady improvement at both 30% and 50% token retain ratios. Within the similarity module, we
734 compared three strategies: spatial-only (Spatial), temporal-only (Temporal), and spatio-temporal
735 joint (Spa. + Tem.). The results show that spatio-temporal joint modeling (Spa. + Tem.) is the most
736 effective. For example, with $r = 50\%$, the spatio-temporal joint strategy achieved a score of 61.4% on
737 VideoMME, outperforming the spatial-only and temporal-only strategies. This again demonstrates
738 the importance of collaboratively considering spatio-temporal associations for effectively identify-
739 ing redundant information. After integrating the optimal spatio-temporal joint similarity module,
740 we further introduced the dissimilarity selection module (++ Diff) to form our complete ST-SimDiff
741 framework. The table clearly shows that the addition of this module brought the most significant
742 performance gains. This result strongly demonstrates the effectiveness and generalization ability
743 of the two core modules in our framework (similarity and dissimilarity selection) and once again
744 validates our core idea of simultaneously handling redundancy and change.

745 D ABLATION RESULTS OF τ_{sim} AND τ_{diff} ON LLAVA-VIDEO
746

747 In our framework, the similarity threshold τ_{sim} and the difference threshold τ_{diff} are two key hy-
748 perparameters that respectively influence the selection of representative and transitional tokens. To
749 investigate their impact, we conducted a series of ablation studies, with the results shown in Figure
750 6. The experiments show that the impact of both parameters on model performance follows a similar
751 trend, first rising and then falling, while demonstrating good robustness within a certain range. For
752 τ_{sim} , a value that is too low leads to imprecise community detection, while a value that is too high
753 can disrupt the integrity of semantic clusters. For τ_{diff} , a value that is too low can introduce noise
754 due to over-sensitivity, whereas a value that is too high may cause the model to miss key events.
755 According to the experimental results, the model achieves optimal performance at $\tau_{sim} = 0.8$ and
 $\tau_{diff} = 0.2$. Therefore, we adopted this optimal configuration for all other experiments.

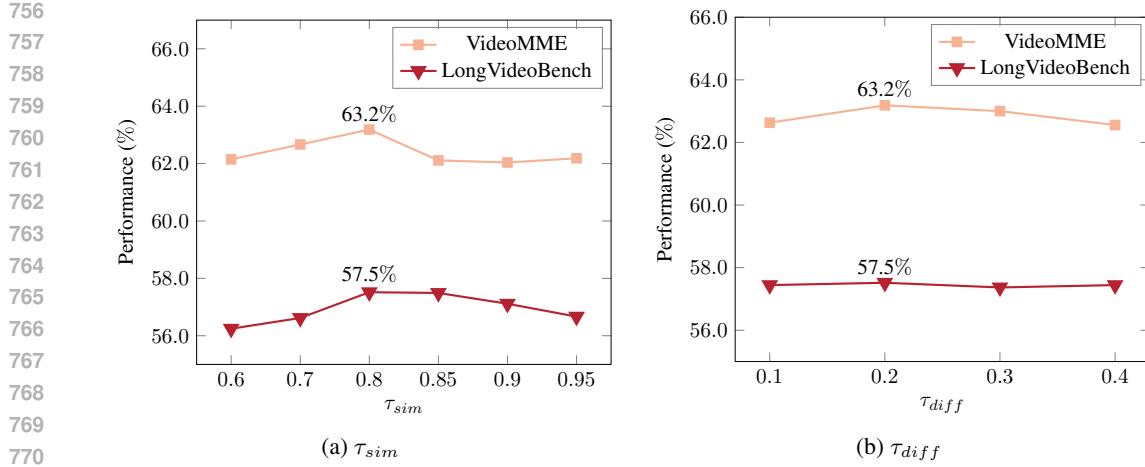


Figure 5: Ablation study results for different values of τ_{diff} and τ_{sim} on VideoMME and LongVideoBench.

E ABLATION RESULTS OF τ_{sim} AND τ_{diff} ON NVILA-VIDEO

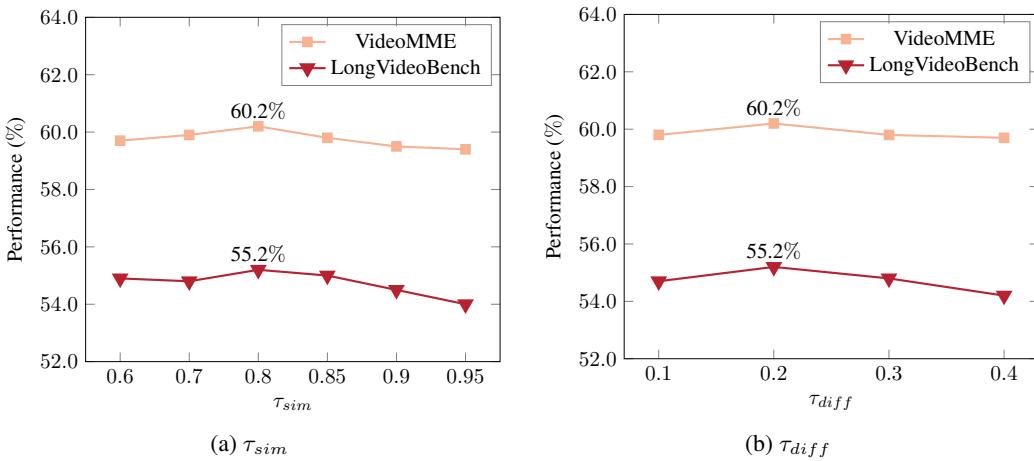


Figure 6: Ablation study results for different values of τ_{diff} and τ_{sim} on NVILA-Video-8B.

To determine the robustness of the key hyperparameters in our method, we conducted a series of ablation studies on the NVILA-Video-8B model. As shown in Fig. 6, we evaluated the impact of the similarity threshold, τ_{sim} , and the difference threshold, τ_{diff} , on the model's performance across two benchmarks: VideoMME and LongVideoBench.

Impact of Similarity Threshold τ_{sim} . We tested different values for τ_{sim} within the range of $[0.6, 0.95]$. The experimental results show that the model's performance is relatively insensitive to changes in this threshold. On the VideoMME dataset, peak performance of 60.2% was achieved at $\tau_{sim} = 0.8$. Similarly, on the LongVideoBench dataset, performance was also optimal at $\tau_{sim} = 0.8$, reaching 55.2%. While performance slightly decreased when the threshold was too high or too low, the overall fluctuation was minimal, confirming that our method maintains good stability across a wide range of similarity thresholds.

Impact of Difference Threshold τ_{diff} . We tested τ_{diff} in the range of $[0.1, 0.4]$. Similar to τ_{sim} , the model's performance demonstrated strong robustness to variations in τ_{diff} . In both benchmarks, the optimal performance was achieved around $\tau_{diff} = 0.2$, with VideoMME at 60.2% and LongVideoBench at 55.2%. This indicates that setting the difference threshold around 0.2 is most

810 effective for capturing key events in the video, thereby maximizing model performance while
 811 compressing tokens.
 812

813 In summary, these ablation studies confirm the robustness of our proposed method with respect to its
 814 key hyperparameters. The results validate our choice of using $\tau_{\text{sim}} = 0.8$ and $\tau_{\text{diff}} = 0.2$ in our main
 815 experiments, as these values consistently yield optimal performance across different benchmarks
 816 and different base models.
 817

818 F CODE APPENDIX

820 The code for our model is located in the anonymous GitHub repository. Detailed experimental
 821 instructions are provided below. This implementation is based on PyTorch.
 822

823 F.1 INSTALLATION

824 This code is written in *Python 3.10*. To run the code, we recommend using virtual environment like
 825 conda. Please run the following commands to set up environment for the code.
 826

```
827 1 conda create --name expl python=3.10
828 2 pip install -e .
829 3 pip install matplotlib
830 4 pip install transformers==4.51.3
```

833 F.2 DOWNLOADING PRETRAINED WEIGHTS

835 Download the pretrained LLaVA-Video-7B checkpoint from [here](#).

837 F.3 RUNNING EXPERIMENTS

839 We provide example scripts for reproducing results of our method. Raw logs of experimental results
 840 are put in 'logs/' directory.

841 For most datasets, you can get the final scores by replacing \$TASK with dataset name and running
 842 the following command:
 843

```
844 1 cost=0.3
845 2 TASK=videomme
846 3 python -m accelerate.commands.launch \
847 4     --num_processes=2 \
848 5     -m lmms_eval \
849 6     --model llava_video \
850 7     --model_args pretrained=../model/llava-video,
851 8         conv_template=qwen_1_5,model_name=llava_qwen,
852 9         max_frames_num=64,cost=$cost,similarity_lower_bound
853 10        =0.8,event_upper_bound=0.2,merge_type=new_topk,right=
854 11        True,bottom=True,spatial=True,temporal=True,strategy
855 12        =3,mm_spatial_pool_mode=bilinear \
856 13        --tasks $TASK \
857 14        --batch_size 1 \
858 15        --output_path ./logs/ \
```

859
 860
 861
 862
 863