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ABSTRACT

Recent research has demonstrated the efficacy of graph learning over a wide spec-
trum of materials, including molecular graphs, crystals, mechanical metamateri-
als, and strongly disordered systems. In this work, we draw attention to the broad
class of complex materials, which combine order and disorder, andfall outside
the above categories, yet have shown superior properties throughout the materi-
als science literature. We present a Complex Materials Benchmark (ComMat),
including three graph datasets of complex materials from experimental and com-
putational research studies, unifying distinctly developed data-to-graph pipelines
under a standardized graph-based representation. We then quantitatively show
that these graphs are fundamentally different from existing materials datasets. We
design various predictive tasks to advance machine learning (ML) methods, in-
cluding experimentally measured properties, simulated mechanical response, and
structural awareness. Extensive benchmark experiments are conducted over pop-
ular graph learning models, revealing their limitations and the need for further
development in handling complex material networks. ComMat is openly released
to accelerate ML research and innovation in complex material design.

1 INTRODUCTION

The discovery of high-performance materials is often the bottleneck in the development of tools in
science and engineering applications. Such materials must often combine contradictory properties.
Examples include coatings that must simultaneously be electrically conductive, flexible, and trans-
parent, for applications in flexible electronics; or structural batteries that must be simultaneously
load-bearing, ionically conductive, but electrically insulating. With advancements in synthesis and
manufacturing technologies, our ability to create these materials increasingly “outpaces our ability
to test them” (Sarkisov & Kim (2015)). This has driven the development of many computational
tools for studying structure–property relationships in modern materials, including inverse design
methods that tailor structures to achieve desired properties. However, even with these advances,
progress remains constrained by the high cost of simulating systems at realistic scales and with
diverse structural details. These limitations have motivated the development of machine learning
(ML) for materials science (Choudhary et al. (2022)).

Graph representations offer a flexible framework for encoding material structures across scales,
enabling deeper exploration of their structure–property relationships. Data from experiments (e.g.,
microscopy images) and simulations (e.g., molecular dynamics trajectories) can be readily mapped
to graphs, enabling the application of network science and graph learning methods to uncover deeper
physical insights. However, most studies are focused on crystalline materials (Yan et al. (2022)) and
molecular graphs (Gilmer et al. (2017)). In each case, the material can be well defined by a relatively
small amount of information, either by using unit-cells for crystals or molecular graphs for small
molecules (∼100 nodes). This greatly simplifies graph representations and subsequent ML tasks.

Our first claim is that there is a very broad category of practically relevant materials that do not
fall into the above categories and are not currently investigated with ML. Specifically, we are con-
cerned with complex materials. In this context, complex refers to the combined presence of order
and disorder in a material (Mao & Kotov (2024)). This structural characteristic has been shown to
impart many superior material properties of great importance in high-performance applications, in-
cluding improved transport properties (Smart et al. (2007)), fracture toughness (Fulco et al. (2025)),
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Figure 1: Left: Graph representations of complex materials derived from multi-modalities - experi-
mental microscopy images using StructuralGT (top) and molecular dynamics trajectories (bottom).
Right: Information from complex material characterization, from top to bottom, experimental mea-
surements of properties, molecular simulations of fracture, 3D imaging. Middle: Combination of
complex material graphs and ground truth information to form ComMat samples. Each ComMat
sample involves predicting complex material behavior from the associated graph, such as experi-
mentally measured resistances, locations of failing polymer links in molecular simulations, or 3D
network structure as imaged by microscopy.

anisotropy (Wu et al. (2024)), and optical activity (Kuznetsova et al. (2025)). Such materials are also
synthetically more accessible, which makes them practically attractive for low-cost manufacturing
and future technologies. Simultaneously, complex materials are also the dominant form in Nature
and so are also of fundamental interest (Jiang et al. (2020)).

However, the opportunities raised by the prevalence and utility of material complexity simultane-
ously raises challenges with regard to their ML-driven study. Specifically, the most efficient rep-
resentations of complex materials remain challenging due to the combined order and disorder in-
herent in their structure (Mao & Kotov (2024)). The multi-scale nature of complex materials and
the absence of a generalizable theory make their structure–property relationships difficult to explore
(Ortiz-Tavárez et al. (2025)). The commonly used unit cell representations do not apply due to the
lack of periodic order in complex materials. Given that complex materials are harder to generate
from toy models, there is also a stronger reliance on generating them from either costly experiments
or computationally expensive simulations. The resulting data scarcity motivates both centralizing
the data that is already available, and subsequently developing one-shot learning models for their
analysis.

Despite these challenges, graphs remain a powerful framework that serves as a universal representa-
tion while flexibly encoding structural details at different levels through adjustable graph properties.
Recent advancements in graph-based methods have enabled quantitative study of complex materi-
als for both experimental and computational researchers. Firstly, the development of StructuralGT
(Vecchio et al. (2021)) - an image informed package for generating and analyzing graphs - has al-
lowed experimental researchers to rapidly extract graphs from images. This process is depicted in
the top-left quadrant of Figure 1. Meanwhile, the increasing availability of computing resources
has pushed researchers to simulate increasingly complex systems. With such increasing complexity,
some researchers have found benefits of graph-based representations for detecting phase transitions
(Yang et al. (2024)), probing structural changes (Choi & Cho (2016)), and predicting properties
(Zhang & Riggleman (2024)). In these cases, simulation trajectories are converted to graphs di-
rectly from the system’s bond information, as depicted in the bottom-left quadrant of Figure 1. We
argue that a unified graph-based representation for these complex materials - in computational and
experimental structures - allows us to apply findings in the broadest possible manner. For example,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the ability of Geodesic Edge Betweenness Centrality to predict failure locations in various materials
has been confirmed by completely separate research groups in computational (Mangal et al. (2023);
Zhang & Riggleman (2024)) and experimental studies (E. Berthier (2019)).

This further motivates the current cohesive, interdisciplinary, and open-source dataset for complex
material ML-driven study. We take raw data from both the computational and experimental pipelines
mentioned above, and unify them under the general G = (N,E) representation, whilst maintaining
geometric information via node position attributes. Our dataset includes graphs of over 330,000
nodes, samples from experimental images, and molecular simulations, and includes ML tasks rel-
evant to the material’s real world application, including fracture prediction (an edge-level task),
charge transport properties (a graph-level task), and link prediction, as depicted in the right half of
Figure 1. By calculating fundamental structural parameters, we quantitatively show that each of our
complex materials is fundamentally distinct from materials reported in previous databases.

Our contributions are as follows. 1) We introduce ComMat, a collection of three graph datasets from
complex materials, integrating both 2D and 3D structures from experimental and computational
sources. We provide complexity analysis to distinguish ComMat properties from existing materials
datasets. To the best of our knowledge, this is the first open-source benchmark of complex materials
at this scale. 2) We design a diverse set of predictive tasks, ranging from link-level to graph-level,
to drive ML advancements in materials science. 3) We conduct extensive experiments to benchmark
a wide range of mainstream graph learning baselines on our proposed tasks, establishing a robust
foundation for future research.

2 BACKGROUND & RELATED WORK

2.1 BACKGROUND ON ORDER, DISORDER, & COMPLEXITY

When a material has translational order, it is said that its composition is identical at points that are
apart by some given separation: f(r+R) = f(r), where f returns the vector that defines the content
of the material at a particular point, r is an arbitrary position, and R is some separation vector. This
allows for an efficient representation of the structure because one only needs to define the unit cell
and the manner in which it can be used to reconstruct the entire material. Such representations were
used by Yan et al. (2022) who represent atomic crystalline unit cells with A,P,L, where each of the
matrices is a set of vectors identifying the contents, positions and manner of the unit cell repeated to
form the bulk material. Subsequent work by Liu et al. (2022) included further geometric features,
such as bond angles, while work by Yan et al. (2024) achieves SE(3) invariant and SO(3) equivariant
representations. Similar methods have been applied to polymer crystalline materials (Zeng et al.
(2018)), while extensions to weakly disordered materials involve training on their strictly ordered
counterparts, followed by extensions that accommodate the minor deviations from perfect order
(Chen et al. (2021); Wang et al. (2022); Eremin et al. (2024)).

Just as is the case with the above ordered materials, when materials are strongly disordered, their
behavior can be inferred from their local environment (Kim et al. (2023)). As a result, graph learning
studies have allowed researchers to differentiate liquids from amorphours solids (Swanson et al.
(2020)), predict their long-time evolution (Bapst et al. (2020)), and inversely design their structure
for mechanical property improvements (Wang & Zhang (2021)).

When materials are neither ordered nor disordered, but instead complex, their local behavior is
often dependent on structural features beyond just their local environment. This phenomenon has
been demonstrated by Smart et al. (2007), who show that particles with high betweenness centrality
values experience higher heat flow than those with high nodal degree. Similarly, concentration of
stress in granular media and strut lattices is dependent on global connectivity patterns, as captured
by betweenness centrality metrics (Kollmer & Daniels (2019); E. Berthier (2019); Reyes-Martinez
et al. (2024)).

The importance of betweenness centrality highlights the problems with applying popular unit-cell
like graph representations of complex materials. Namely the local betweenness value depends on
the entire graph, because of the dependence on system-spanning shortest-paths (Newman (2010)).
Furthermore, because of this dependency on long-range connectivity, learning betweenness cen-
trality for complex materials would require inefficiently numerous iterations of the 1-hop neighbor
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information exchange scheme that is central to graph learning techniques that use the MP paradigm
(Gilmer et al. (2017)). This is because each iteration of the MP paradigm only augments the rep-
resentations of each node with its immediate neighbors. It is this defining feature of local behavior
depending on global connectivity that separates complex materials from their ordered and disordered
counterparts and thus motivates our complex material dedicated dataset.

2.2 RELATED WORK

Below we review existing datasets and benchmarks on materials science that do not fall into the com-
plex material category, yet provides useful insight in our development of this contribution. Further
related work is discussed in Appendix C.

Mechanical Metamaterials A popular class of materials for graph machine learning is metama-
terials, defined as those with interesting properties arising from their precisely arranged geometry
(Fang et al. (2022)). Having exploded in recent years due to advances in 3D printing and additive
manufacturing, there is increasing demand for their computational generation and analysis. Works
targeting metamaterial design often use experiments or finite-element simulations for establishing
ground truth target properties and behavior, such as MetaMatBench (Chen et al. (2025a)), which
standardizes 5 diverse metamaterial datasets into a unified representation M = (L,U, y). They also
provide a robust toolbox with 17 adapted ML models for property prediction and inverse design,
alongside a novel evaluation suite featuring 12 metrics and finite-element analysis for physics-aware
validation. Zhan et al. (2025) then extend this work to collectively consider all modalities associated
with ordered mechanical metamaterial design.

Although mechanical metamaterials are not necessarily ordered, the above works focus on ordered
materials, and thus, rely on unit-cell based graph representations. While Grega et al. (2024) include
nodal perturbations in their GNN trained dataset, the importance of tuning disorder beyond the
mechanical metamaterial unit cell is highlighted by Fulco et al. (2025), who show that its presence
enhances fracture toughness. In other words, identifying the best candidates must involve inclusion
of complex materials, relying on graph representations incompatible with the unit-cell approach
used in the above works.

Nanomaterials In a similar vein to metamaterials, there are numerous studies of crystalline nano-
materials whose assumption of order enables unit-cells for efficient graph-based representations.
Instead of finite-element, the ground truth for most ML tasks comes from Density Functional The-
ory (DFT). ECD Chen et al. (2025b) proposes large-scale datasets for electronic charge densities
prediction. It contains 140,646 crystal geometries with medium-precision calculations and a subset
of 7,147 geometries with high-precision data. Friis-Jensen et al. (2024) present two novel datasets
for nanomaterials: CHILI-3K, a medium-scale dataset of over 6 million nodes focused on mono-
metallic oxides, and CHILI-100K, a large-scale dataset of over 183 million nodes derived from
experimentally determined crystal structures with broad chemical diversity. They also define several
property and structural prediction tasks, benchmarking a wide array of GNN models. Instead of
studying bulk crystals, they study small crystallites whose entirety can be represented with a graph.

3 COMMAT DATASETS

In Sections 3.1–3.3, we detail three datasets from complex materials with broad applications: poly-
mer networks obtained from 3D molecular dynamics simulations, silver nanowire networks derived
from 2D microscopy images, and an aramid nanofiber network reconstructed from 3D tomographic
images. In Section 3.4, we quantify the structural complexity of these networks.

3.1 POLYMER NETWORK

Polymer networks are formed by crosslinking polymer chains at multifunctional junctions and are
widely used for tissue engineering (Nonoyama & Gong (2021)) and drug delivery (Li & Mooney
(2016)). A central challenge is understanding how these networks fracture, since performance is
often limited by when and where failure occurs. The underlying network topology (the arrangement
of chains and junctions) plays a critical role in fracture behavior. In molecular dynamics simulations,
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both generating these networks and simulating their fracture require very large systems (tens of
thousands of particles) to capture macroscopic behavior, demanding thousands of CPU hours on
high-performance computing resources.

We introduce a structured dataset derived from coarse-grained molecular dynamics (MD) simu-
lations that frames a long-standing materials science problem as a machine learning benchmark.
The MD simulation protocol follows established approaches (Zhang & Riggleman (2024)). Briefly,
the simulations mimic experimental systems where linear polymer chains with reactive end groups
crosslink with tetrafunctional junctions, and the resulting network structures are represented as
graphs: junctions are modeled as nodes and polymer chains as edges. Graph representations natu-
rally encode topological defects such as self-loops, parallel edges, and higher-order cycles. Prior
work has shown that polymer chains with fewer local topological defects, higher-than-average
geodesic edge betweenness centrality, and stronger alignment with the loading direction are more
likely to break under uniaxial tensile deformation. These insights highlight an opportunity for the
ML community to apply graph-based models to predict fracture behavior directly from network
topology.

We provide ensemble datasets from 10 combinations of polymer mole fraction (ϕ) and chain length
(N ), which produce networks with varying topology and defect concentrations. Because fracture is
not fully deterministic and thermal fluctuations influence which chains break, we performed isocon-
figurational ensemble simulations, where the same network structure was fractured multiple times
with randomized initial particle velocities. This approach yields per-chain breakage probabilities
(Pbreak) and sequences of break events. The benchmark dataset supports two core tasks: 1) Link
prediction: recovering missing connections in partially observed networks, providing a pathway
to accelerate generation of large-scale polymer systems. 2) Fracture prediction: predicting where
and in what order polymer chains break under uniaxial deformation, directly linking microscopic
network topology to macroscopic failure behaviors.

3.2 NANOWIRE NETWORKS

Nanowire networks show unique combinations of transparency, flexibility, and conductivity, making
them ideal for flexible electronics and electrical shields for aerospace applications (Wu et al. (2024);
Tan et al. (2020)). Surrogate random stick models have been used by theorists to study nanowire
networks (Jagota & Scheinfeld (2020)). However, these were recently shown to differ from the real
complex structures (Wu et al. (2024)), which was shown to have an impact on their properties. With
an infinite number of potential structures (and with synthesis and characterization taking ∼ 1 day),
the infeasibility of testing all possible real networks motivates their ML-driven study.

This dataset comprises 33 graphs across four sets of scanning electron microscopy images of silver
nanowires. Each set corresponds to a sample with a particular electrical sheet resistance that was
measured experimentally, using the well-established four-point probe technique, with experimental
measurement error less than 10 %. Each image has a graph associated with it, which was extracted
with StructuralGT, as depicted in the top left quadrant of Figure 1. There are a total of 33 graphs,
across the four different experimentally measured resistances. For this dataset, we test the ability for
graph learning to predict the electrical resistance of the networks from the extracted graphs.

3.3 ARAMID NANOFIBERS

Synthesized from well-known Kevlar, aramid nanofiber networks show enhanced thermal and me-
chanical properties (Yang et al. (2011)), and have since shown application in membranes (Wang et al.
(2022)), structural batteries (Wang et al. (2020)), and protective coatings (Wang et al. (2025b)).
Aramid nanofiber networks take even longer to synthesize than nanowire networks (∼ 10 days).
To confidently predict their complex, multidirectional behavior from their structure, accurate 3D
imaging is required. Our nanofiber graph comes from a 3D tomographic image processed by Struc-
turalGT, yielding a graph of over 330,000 nodes. For this dataset, we test a series of models’ abilities
to predict the presence of links when the graph is incomplete.
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Figure 2: Clustering coefficient distributions for graphs from a variety of material. (a) Molecu-
lar graph of aspirin, from PubChem; (b) Unit-cell for zincblende, from CHILI (Friis-Jensen et al.
(2024)); (c) A graph from an experimental image of a nanowire network; (d) A random stick mod-
els created for this work; (e) A graph from a 3D tomographic reconstruction of aramid nanofibers;
(f) A graph from the molecular simulations of polymer networks. (g-l) is the same but for square
clustering coefficients. (m) Generalized fractal dimension of each graph; (n) Multi-fractal spectrum
of each graph; (o) a radar plot depicting the values of some graph theory metrics and order parame-
ters or each of the graphs (average degree, average clustering coefficient, average square clustering
coefficient, nematic order parameter, average Ollivier-Ricci curvature (ORC), asymmetry, degree
assortativity. The nanowire and random stick values have been normalized w.r.t. their ordered dis-
ordered limiting values for 2D structures (see Appendix B).

3.4 DATASET COMPLEXITY

While our material graphs come from a diverse range of experimental and computational sources,
they share a common feature: structural complexity. Although quantitative complexity measures
remain an open question in materials science, here we adopt the general heuristic of a mix of order
and disorder/defects as a hallmark of complexity, commensurate with information theory and ther-
modynamics (Mao & Kotov (2024)). Leveraging a wide range of graph theory metrics, we contrast
the highly ordered and disordered structures with our own structures in Fig. 2. The clustering and
square clustering distributions for all networks are shown in Fig.2 a-l. We also calculate generalized
fractal dimensions (GFD) and node-based multifractal analysis (NMFA) for topological complexity
Xiao et al. (2021). In Fig.2o we show standard parameters quantifying local environments, such as
degree, clustering, square clustering, and degree assortativity. We also include graph Ollivier-Ricci
curvature (ORC), which is a crucial feature in identifying the community structure of complex net-
works (Sia et al. (2019)), and asymmetry from the analyses in (Xiao et al. (2021)). Separate from
graph theory, nematic order parameter Wu et al. (2024) is used to measure the correlation between
orientations of geometric entities, and increases with increasing orientational order. Full definitions
are given in Appendix B.

First, because of stoichiometric constraints not present in most complex materials, the molecular
graph for aspirin has (square) clustering coefficient of 0 for all atoms (Figure 2 a,g). Due to its
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Table 1: Statistics of datasets.
Dataset #Graph #Node (per graph) #Edge (per graph) Diameter Generation time

Nanofibres 1 336968 901066 154 ∼ 2 weeks
Nanowire 33 712 - 3899 1670 - 9162 50 - 128 ∼ 5 days
Polymer 10 800 - 8000 1493 - 15642 12 - 44 ∼ 3480 CPU hours

simplicity and small size, it has near-zero asymmetry, and high nematic order (Figure 2o). For the
crystal unit cell, high order leads to (square) clustering coefficients taking only one of two values
(Figure 2 b,h). High density of connections leads to high clustering values, degree and ORC, shown
in Figure 2o. Additionally, it can be shown that there are only 19 unique orientations of the bonds,
which results in the high nematic order parameter. As with molecular graph, the asymmetry is near-
zero, suggesting no dominant structure. The exponent α0 from NMFA - the α value at maximum
f(α) - is crucial to quantify the complexity of network structure. The higher α0 indicates the higher
degree of complexity in network structure Xiao et al. (2021). From Figure 2 n, both crystalline unit
cells and small molecule graphs - common targets of graph learning studies - manifest low exponent
α0, therefore do not exhibit complex structure.

Meanwhile, the NMFA spectra show significantly higher α0 in nanofibers and polymer datasets,
demonstrating higher degree of complexity in their networks (Fig.2 n). The negative asymmetry
implies thorn-like structures dominate in the network. To highlight how hidden geometric order
may result in unique complex material properties relevant to their application, we can compare
complex nanowire network results to results from the commonly used random stick surrogate model.
Comparisons show that, despite having very similar clustering distributions, GFDs and NMFA (Fig.2
c,d,i,j), the real networks have significantly higher hidden nematic order (Figure 2o). This is because
random stick networks are generated from i.i.d. sampling of orientations and positions, while real
nanowire networks experience crowding effects, resulting in alignment of neighboring edges, and
hence correlations in the orientations. Because it is a geometric effect, the discrepancy is not detected
by most topological analyses (Fig.2m-o). Although subtle, this structural difference has been shown
to impart unexpected directional dependencies of properties (Wu et al. (2024)).

Thus, both graph theory and materials metrics confirm the presence of complexity in our proposed
datasets. Additionally, the presence of defects in the polymer network is enumerated by a consider-
able number of nodes with non-zero clustering coefficients (Figure 2 f), which should be zero for all
nodes in ideal networks (Zhang & Riggleman (2024)).

4 EXPERIMENT AND BENCHMARKING

In this section, we elaborate on the experimental setup for our proposed datasets, where the overview
of statistics is provided in Table 1. The generation time reflects the experimental time for Nanofi-
bres and Nanowire, and time for network construction and equilibration in Polymer. We perform
experiments on comprehensive standard graph learning models, evaluating their effectiveness and
discussing potentials for future research.

4.1 EVALUATION TASKS

Link prediction Link prediction aims to predict missing links from incomplete graph, which is a
fundamental task to evaluate model capability to capture the network structure. We conduct the link
prediction as a binary classification task, predicting whether there exists a link between two nodes.
For Nanowire and Polymer datasets, we use the largest graph for this task.

For each graph, we retain a portion of total links for validating and testing, with the ratio of 5% /
10% / 20% sequentially. The models are trained on the subgraph constructed from the remaining
links. The ratio of positive and sampled negative edges is set as 1:1. The performance is measured
by the Area Under Curve (AUC).

Resistance prediction We formulate the property prediction task on the Nanowire dataset as a
graph regression problem, which aims to predict the electrical resistance for each graph. For each
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Table 2: Evaluation of the Link Prediction on ComMat datasets. The metric used is AUC ↑. Best is
bolded and runner-up is underlined.

Dataset Ratio GCN GAT GraphSAGE EGNN Equiformer

Nanofibers
5% 63.60±1.10 56.40±0.55 77.19±0.44 73.02±11.9 76.14±10.3

10% 63.02±1.03 55.23±0.78 74.95±0.17 73.44±10.6 63.51±11.5
20% 59.14±0.80 53.10±0.65 68.54±0.92 67.98±12.9 61.52±10.1

Nanowire
5% 75.00±1.84 66.80±1.30 66.13±1.86 62.73±11.7 59.54±1.28

10% 73.04±1.74 67.52±1.65 62.70±1.34 55.10±8.33 53.92±1.80
20% 71.90±3.70 64.46±2.71 56.64±1.99 55.61±9.73 54.63±1.58

Polymer
5% 77.27±1.07 76.18±0.69 78.36±1.34 72.68±0.71 76.93±0.12

10% 77.20±1.00 77.04±0.51 78.14±0.39 75.43±1.12 77.69±0.34
20% 76.59±0.20 77.10±0.44 77.41±0.48 75.50±0.28 74.09±0.46

set of Nanowire, we split the total number of graphs into 60%/20%/20% for training, validation, and
testing, respectively. We use the mean absolute error (MAE) and relative error (RE) to measure the
deviation of predictions from ground-truth.

Fracture prediction Predicting fracture in polymer networks is crucial for evaluating material
performance across a wide range of applications. We design this task as link regression problem,
where the model predicts the breaking probability Pbreak for each target link.

For each graph, the total links are partitioned into training (60%), validation (20%), and testing
(20%) sets. To maintain the balance in ground-truth distribution, we sample a maximum of 100
links for each label. MAE is used to measure the error for each graph, and we report the mean MAE
(mMAE) for the overall performance of all graphs.

4.2 BASELINES

Classic GNNs Classic GNNs adopt the message-passing paradigm to learn from graph-structured
data, where each node iteratively updates its feature representation by aggregating information from
its neighbors. Among that, GCN Kipf (2016) aggregates information by operating convolution,
which is approximately equivalent to mean pooling over the neighbor nodes. GAT Veličković et al.
(2017) applies a self-attention mechanism to assign weights to each neighbor, thereby modeling their
levels of importance. SAGE Hamilton et al. (2017) concatenates information from its neighbors
with the target node representation during aggregation, ensuring that the node’s original identity is
preserved and plays a key role in its new embedding.

Geometric GNNs These methods leverage spatial information to learn equivariant graph represen-
tations under geometric transformations, such as translation, rotation, and reflection. E-GNN Sator-
ras et al. (2021) employs equivariance by incorporating relative squared distances into the message-
passing function and updating node coordinates based on relative position vectors. Equiformer Liao
et al. (2023) leverages irreducible representations to integrate SE(3)-equivariant features into the
network’s channels, preserving geometric information without altering the graph structure.

4.3 RESULTS AND DISCUSSION

Link prediction Results from Table.2 show that existing baselines can achieve promising perfor-
mance on this task. Overall, classic GNN methods such as GraphSAGE, GCN achieve more robust
performance, and performance generally degrades as more of the graph structures are hidden. Geo-
metric GNNs often show higher fluctuation performance while being less computationally efficient.
This might indicate that the geometric equivariance properties are not as beneficial for this particular
link prediction task, and these models may require careful hyperparameter tuning.

Resistance prediction The results in Table 3 highlight two findings: first, all baselines obtain
suboptimal performance on this task, as shown by the high MAE and RE values. It shows that
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Table 3: Evaluation of the electrical resistance for Nanowire. Best is bolded and runner-up is under-
lined.

Methods MAE ↓ RE ↓
GCN 61.48 ± 0.38 0.49 ± 0.01
GAT 60.98 ± 0.29 0.49 ± 0.01
GraphSAGE 62.83 ± 1.68 0.48 ± 0.01
EGNN 59.89 ± 0.12 0.51 ± 0.01
Equiformer 57.46 ± 2.76 0.39 ± 0.07

Table 4: Evaluation of the link breaking probability for polymer. Best is bolded and runner-up is
underlined.

GCN GAT GraphSAGE EGNN Equiformer
mMAE ↓ 0.30 ± 0.03 0.29 ± 0.03 0.32 ± 0.05 0.31 ± 0.03 0.50 ± 0.01

the task remains challenging for current mainstream GNN models, and more effective methods
should be investigated. Second, geometric GNNs significantly outperform classic counterparts on
this task. This suggests the geometric information is essential for physics-related problems, where
target properties could be intrinsically governed by the material’s physical shape.

Fracture prediction We also witness the underperformance of benchmark graph methods on this
task, as shown by the high MAE values in Table.4. The classic GNNs tends to be more robust than
geometric class, suggesting the local connectivity patterns could be more effective for predicting the
breaking probability.

Overall, there is no single model that dominates for all tasks. We find that benchmark models are
unable to predict behavior that has previously been shown to be deterministic and predictable from
complex material graph structure (Wu et al. (2024); Zhang & Riggleman (2024)). This may arise
from a combination of complex material data scarcity and from the message-passing paradigm’s
inability to efficiently learn features uniquely crucial to predicting complex material performance.
Specifically, betweenness centrality parameters and edge-flows (as calculated from networked linear
transport methods) are known to be strong predictors of complex material performance. However,
those long-range connectivity patterns are computationally expensive, limiting their utilization on
large-scale graphs. Future research could investigate efficient approaches to incorporate global indi-
cators with local aggregation to enhance performance.

5 CONCLUSION

In this work, we present ComMat, the first open graph benchmark of complex materials to foster
ML research for advanced materials science. ComMat consists of 3 complex materials datasets
unified under graph representations from multi-modality sources. We show how the complex mate-
rial structures at this intersection exhibit structural features distinct from previous material datasets.
By providing a range of material scales, properties, and predictive tasks, ComMat enables a thor-
ough and challenging evaluation of machine learning models. Our benchmark experiments highlight
a significant performance gap, showing that popular graph ML models currently struggle with the
challenges posed by these complex materials. These limitations raise the urgent need for novel graph
learning algorithms that can accelerate the design and discovery workflows for advanced materials.

Future work Acceleration of polymer network generation, which in current MD protocols re-
quires costly simulations of chains and crosslinking junctions diffusing to form bonds, can be nat-
urally framed as a link prediction task. While current models can capture some structural patterns,
more fine-tuned or domain-informed approaches are needed to generate physically plausible net-
works with defect concentrations comparable to real materials. Limitations of this and similar di-
rections include the data scarcity associated with the high computational cost of ground-truth data.
However, this data scarcity also further motivates the development of models that generalize well on
limited training data.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Conghao Wang, Gaurav Asok Kumar, and Jagath C. Rajapakse. Drug discovery and mecha-
nism prediction with explainable graph neural networks. Scientific Reports, 15:1–14, 12 2025a.
ISSN 20452322. doi: 10.1038/S41598-024-83090-3Y. URL https://www.nature.com/
articles/s41598-024-83090-3.

Mingqiang Wang, Drew Vecchio, Chunyan Wang, Ahmet Emre, Xiongye Xiao, Zaixing Jiang, Paul
Bogdan, Yudong Huang, and Nicholas A. Kotov. Biomorphic structural batteries for robotics.
Science Robotics, 5:1912, 8 2020. ISSN 24709476. doi: 10.1126/SCIROBOTICS.ABA1912/
SUPPL FILE/ABA1912 SM.PDF. URL https://www.science.org/doi/full/10.
1126/scirobotics.aba1912.

Mingqiang Wang, Shuhan Hu, Sangwok Bae, Volkan Cecen, Ahmet E. Emre, Zhengxi-
ang Zhong, Li Liu, Carl Heltzel, Yudong Huang, and Nicholas A. Kotov. Aramid
nanofiber aerogels: Versatile high complexity components for multifunctional com-
posites. Advanced Materials, pp. 2502508, 2025b. ISSN 1521-4095. doi:
10.1002/ADMA.202502508. URL /doi/pdf/10.1002/adma.202502508https:
//onlinelibrary.wiley.com/doi/abs/10.1002/adma.202502508https:
//advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502508.

Qi Wang and Longfei Zhang. Inverse design of glass structure with deep graph neu-
ral networks. Nature Communications 2021 12:1, 12:1–11, 9 2021. ISSN 2041-
1723. doi: 10.1038/s41467-021-25490-x. URL https://www.nature.com/articles/
s41467-021-25490-x.

Zhilong Wang, Yanqiang Han, Junfei Cai, Sicheng Wu, and Jinjin Li. Deeptmc: A deep learning
platform to targeted design doped transition metal compounds. Energy Storage Materials, 45:
1201–1211, 3 2022. ISSN 2405-8297. doi: 10.1016/J.ENSM.2021.11.020. URL https://
www.sciencedirect.com/science/article/abs/pii/S2405829721005377.

13

https://iopscience.iop.org/article/10.1209/0295-5075/79/24002 https://iopscience.iop.org/article/10.1209/0295-5075/79/24002/meta
https://iopscience.iop.org/article/10.1209/0295-5075/79/24002 https://iopscience.iop.org/article/10.1209/0295-5075/79/24002/meta
https://iopscience.iop.org/article/10.1209/0295-5075/79/24002 https://iopscience.iop.org/article/10.1209/0295-5075/79/24002/meta
https://pubs.rsc.org/en/content/articlehtml/2020/sm/c9sm01903k https://pubs.rsc.org/en/content/articlelanding/2020/sm/c9sm01903k
https://pubs.rsc.org/en/content/articlehtml/2020/sm/c9sm01903k https://pubs.rsc.org/en/content/articlelanding/2020/sm/c9sm01903k
https://pubs.rsc.org/en/content/articlehtml/2020/sm/c9sm01903k https://pubs.rsc.org/en/content/articlelanding/2020/sm/c9sm01903k
https://link.springer.com/article/10.1007/s10854-020-04131-x
https://link.springer.com/article/10.1007/s10854-020-04131-x
https://www.nature.com/articles/s41598-024-83090-3
https://www.nature.com/articles/s41598-024-83090-3
https://www.science.org/doi/full/10.1126/scirobotics.aba1912
https://www.science.org/doi/full/10.1126/scirobotics.aba1912
/doi/pdf/10.1002/adma.202502508 https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202502508 https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502508
/doi/pdf/10.1002/adma.202502508 https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202502508 https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502508
/doi/pdf/10.1002/adma.202502508 https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202502508 https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502508
https://www.nature.com/articles/s41467-021-25490-x
https://www.nature.com/articles/s41467-021-25490-x
https://www.sciencedirect.com/science/article/abs/pii/S2405829721005377
https://www.sciencedirect.com/science/article/abs/pii/S2405829721005377


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I.M.
Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
Baek, and David Baker. De novo design of protein structure and function with rfdiffusion. Nature
2023 620:7976, 620:1089–1100, 7 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06415-8.
URL https://www.nature.com/articles/s41586-023-06415-8.

Wenbing Wu, Alain Kadar, Sang Hyun Lee, Sharon C Glotzer, Valerie Goss, and Nicholas A Kotov.
Layer-by-layer assembled nanowire networks enable graph-theoretical design of multifunctional
coatings. Matter, 2024. doi: 10.1016/j.matt.2024.09.014. URL https://doi.org/10.
1016/j.matt.2024.09.014.

Xiongye Xiao, Hanlong Chen, and Paul Bogdan. Deciphering the generating rules and func-
tionalities of complex networks. Scientific Reports, 11:1–15, 12 2021. ISSN 20452322.
doi: 10.1038/S41598-021-02203-4. URL https://www.nature.com/articles/
s41598-021-02203-4.

Keqiang Yan, Yi Liu, Yuchao Lin, and Shuiwang Ji. Periodic graph transformers for crys-
tal material property prediction. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=pqCT3L-BU9T.

Keqiang Yan, Cong Fu, Xiaofeng Qian, Xiaoning Qian, and Shuiwang Ji. Complete and efficient
graph transformers for crystal material property prediction. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
BnQY9XiRAS.

Ming Yang, Keqin Cao, Lang Sui, Ying Qi, Jian Zhu, Anthony Waas, Ellen M. Arruda, John Kieffer,
M. D. Thouless, and Nicholas A. Kotov. Dispersions of aramid nanofibers: A new nanoscale
building block. ACS Nano, 5:6945–6954, 9 2011. ISSN 19360851. doi: 10.1021/NN2014003.
URL /doi/pdf/10.1021/nn2014003?ref=article_openPDF.

Ruochen Yang, Kalil Bernardino, Xiongye Xiao, Weverson R. Gomes, Davi A. Mattoso, Nicholas A.
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APPENDIX

A MODEL SETTINGS

We provide the details of model parameters for each experiment tasks:

Link tasks On link prediction and fracture prediction task, we employ a GNN encoder of 2 layers
and the decoder as a multilayer perceptron (MLP) for all baselines. Each GNN layer is followed by
a layer normalization, and the hidden dimension is set as 32. For GAT, we use 4 heads of attention.
For GraphSAGE, we use mean pooling for neighborhood aggregation. For EquiformerV2, we set
the maximum degree of spherical harmonics as 2. the dropout ratio is set as 0.5 for classic GNNs
and 0.1 for geometric GNNs.

Graph task For all baselines, we use a GNN encoder of 3 layers with the hidden dimension set
as 32, followed by layer normalization. Finally, a graph mean pooling layer is applied to obtain a
graph embeddings from all element nodes. The regressor is implemented as 2-layer MLP.

B GRAPH PARAMETER DEFINITIONS AND CALCULATION METHODS

B.1 AVERAGE DEGREE AND AVERAGE CLUSTERING COEFFICIENT

Average degree and average clustering coefficeint, ∆, were calculated using the structural module
from StructuralGT, and follow the standard definitions given in the documentation:

∆ =

∑
i δ

n
,

δi =
2 ∗ Ti

ki(ki − 1)

where Ti is the number of connected triples (visually triangles) on node i and ki is the degree of
node i.

B.2 GRAPH OLLIVIER-RICCI CURVATURE

Ollivier-Ricci Curvature Sia et al. (2019) measures the local geometric property in the network. An
edge with positive curvature suggests it resides in a tight cluster, while a negative curvature edge
tends to be a ”bridge” between clusters of the network.

κ(x, y) = 1− W1(µx, µy)

d(x, y)
,

where d(x, y) is the distance between two points x and y, W1(µx, µy) is the 1-Wasserstein distance
(or Earth Mover’s distance) between two probability distributions.

B.3 NEMATIC ORDER PARAMETER

The nematic order parameter was calculated using the geometric module of StructuralGT. The
nematic order parameter S is defined via the eigenvalues of the nematic tensor, Q. The nematic
tensor is defined as

Q = M− 1

3
I

where M is computed from a sum of multiplications of the vectors, m(i), describing particle orien-
tations:

Mαβ =

N∑
i=1

m(i)
α m

(i)
β .
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a

d

b c

e f

Figure 3: Degree distributions for graphs from a variety of material. (a) Unit-cell for zincblende,
from CHILI (Friis-Jensen et al. (2024)); (b) Molecular graph of aspirin, from PubChem; (c) A graph
from an experimental image of a nanowire network; (d) A random stick models created for this
work; (e) A graph from a 3D tomographic reconstruction of aramid nanofibers; (f) A graph from the
molecular simulations of polymer networks.

The eigenvalues of Q are 2
3S,−

1
3S,−

1
3S. The closer a graph’s value of S is to 1, the greater

the degree of corelation between edge orientations. When S approaches 0, the graph’s edges are
uncorrelated.

For 2D networks, edges are confined to a plane, and so the lower limit for the nematic order parame-
ter is 0.25, as shown in Wu et al. (2024). The values of nematic order parameter for the 2D networks
in 2g (nanowires and random sticks) are normalized w.r.t. to this lower limit.

C FURTHER RELATED WORK

Biological materials Material datasets for non-ordered structures are highly prevalent throughout
the biological communities. Owing to the small number of nodes in most of the molecular graphs
from drug discovery studies (∼100 nodes), such structures are well-suited to message-passing mod-
els (Batatia et al. (2022); Wang et al. (2025a)), or transformer architectures that treat molecular
sequences as linguistic entities Owoyemi & Medzhidov (2023); Zheng et al. (2025).

Non-ordered materials that extend beyond this size include non-graph-based representations such
as protein sequences. Most dataset-like studies involve applying new models to existing datasets
and the most recent studies have acknowledged that the behavior of these structures, like complex
materials, depends on more than just aggregations over local environments (Atkinson et al. (2025)).
As such, there has been a recent push to extend beyond the transformer and message-passing ar-
chitectures, especially towards diffusion models (Watson et al. (2023); Abramson et al. (2024)).
Bottom-up development of diffusion models suited to the discreteness of protein sequences include
Bayesian Flow Networks (Graves et al. (2023)). Extension of these models to graph-based repre-
sentations is a critical missing piece in ML-driven complex material design and our dataset offers
the best benchmark to test them.

D FURTHER NETWORK ANALYSIS

Figure 3 shows degree distributions for each network. Unsuprisingly, the molecular and crystal
graphs have simple degree distributions (Figure 3a,b). Random stick model and nanowire networks
have very similar degree distributions (Figure 3c,d), which highlights the importance of geometric
effects, as cpatured by the nematic order parameter in Figure 2o. Nanofiber network shows log-log
distributions (Figure 3e), which is a commonly observed departure from the Poissonian distribution
of random graphs, (and is often referred to scale-free (Barabási (2009))) While often attributed to the
preferential attachment mechanism (Newman (2010)), geometric constraints mean that this doesn’t

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

apply here. The true source of this complex structure remains an open question, likely answerable
by the ML community. Finally, polymer networks show defects, indicated by considerable number
of nodes with degree less than four, which is the ideal network value (Zhang & Riggleman (2024)).

E ENVIRONMENT

For the polymer network dataset, molecular dynamics simulations were performed using the
LAMMPS package (versions 09 Jan 2020 and 23 Jun 2022) Thompson et al. (2022) to generate
model end-linked polymer networks and conduct fracture tests. Computational resources were pro-
vided by high-performance computing facilities under national and institutional programs.

Graph extraction and analysis for aramid nanofibers and silver nanowire network datasets were
carried on an Apple Mac mini 2020, with Apple M1 CPU, and 16 GB RAM, using a conda-forge
distribution of StructuralGT 0.1.6 and Python 3.13.

The experiments for benchmark on graph ML tasks are conducted on a workstation including a 24-
core CPU, 64GB RAM, and an RTX A6000 GPU. We implement the benchmarks using Python 3.10
and PyTorch 2.1 on Ubuntu-22.04.
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